数学模型模板

合集下载

数学建模的万能模板

数学建模的万能模板

K:学科评价模型学科的水平、地位是高等学校的一个重要指标,而学科间水平的评价对于学科的发展有着重要的作用,它可以使得各学科能更加深入的了解本学科(与其他学科相比较)的地位及不足之处,可以更好的促进该学科的发展。

因此,如何给出合理的学科评价体系或模型一直是学科发展研究的热点问题。

现有某大学(科研与教学并重型高校)的13个学科在一段时期内的调查数据,包括各种建设成效数据和前期投入的数据。

1、根据已给数据建立学科评价模型,要求必要的数据分析及建模过程。

2、模型分析,给出建立模型的适用性、合理性分析。

3、假设数据来自于某科研型或教学型高校,请给出相应的学科评价模型。

承诺书页编号学科评价摘要(一)对问题的基本认识或处理整个问题的基本框架,思路(简明扼要,重点,亮点突出)研究目的,意义要求)本文研究。

问题。

即数学类型的归纳(一)(建模思路)(1.每题数据性质等粗略分析)首先,本文分别分析每个小题的特点:。

(2.建立模型的思路:)针对第一问。

问题,本文建立。

模型;在第一个。

模型中,本文对。

问题进行简化,利用。

什么知识建立什么模型;在对。

模型改进的基础上建立了。

模型Ⅱ。

针对第二。

针对第三。

(三)算法思想,求解思路,使用方法,程序)1)针对模型求解,(设计。

求解思路)。

本文使用。

什么算法,。

软件工具,对附件中所给的数据进行筛选,去除异常数据,对残缺数据进行适当的补充,求解出什么问题,进一步求解出。

什么结果。

(方法,软件,结果清晰写出来)2)建模特点,模型检验)对模型进行合理的理论证明和推导,所给出的理论证明结果大约为。

模型优点。

,建模思想方法。

,算法特点。

,结果检验。

,。

,模型检验。

从中随机抽取了3组(每组8个采样)对理论结果进行了数据模拟,结果显示,理论结果与数据模拟结果吻合。

等等3)在模型的检验模型中,本文分别讨论了以上模型的精度,稳定性,灵敏度等分析。

(四)(数据结果,结论,回答所问道所有问题)最后,归纳全文,突出亮点,指出不足,提出本文通过改进或扩展。

数学建模论文-基于双线性系统、差分方程的人口增长模型模板

数学建模论文-基于双线性系统、差分方程的人口增长模型模板

基于双线性系统、差分方程的人口增长模型摘要社会经济的许多领域的规划都必须考虑人口这一重要因素。

而人口普查只能为我们提供某几个时间点的横截面数值,但在现实生活中,人们常常需要其他时间点的人口总数及其构成。

于是一个迫切的任务就是如何用少数的几个时点的信息比较准确的得到较详尽的其他时点的人口数据。

人口系统发展是一个动力学过程,为强惯性系统,人口死亡率和出生率构成人口增长的双线性系统。

针对中短期预测,基于统计理论,将5年的死亡出生率,死亡率求期望,建立了人口增长的定常差分方程模型,预测至2015的人口发展趋势,通过MATLAB求解得到2015年的总人口为14.17亿,乡村城镇化趋势明显;并且人口在2025左右出现峰值,约为15.1亿。

针对长期预测,根据动力学发展过程理论,当时间尺度接近惯性系统的时间常数(社会人口的平均寿命)时,人口状态将发生明显改变。

由此建立了人口增长的时变差分模型。

并通过MATLAB求解,预测2050年的人口总数为14.33亿,人口系统达稳定状态。

然后,利用Leslie矩阵分析模型的稳定性。

当时间t(年)充分大时人口增长也趋于稳定。

针对长期模型的检验,对不同的总和生育率做出了人口总数的变化曲线。

得出当总和生育率的更替水平临界值略大于2.0。

关键词:差分方程,强惯性系统,Leslie矩阵,总和生育率一.问题重述与分析1.1问题重述中国乃泱泱人口大国,人口规模是城市规划和土地利用总体规划中一项重要的控制性指标,人口规模是否合理,不仅影响到未来地区经济和社会发展,而且会影响到地区生态环境可持续发展。

因此准确地预测未来人口的发展趋势,制定合理的人口规划和人口布局方案具有重大的理论意义和现实意义。

根据国家人口报告,对短期、中期和长期人口预测作如下定义:十年内为短期,十到十五年为中期,五十年及其以上为长期。

人口发展过程是一个很缓慢的过程。

它的“时间常数”接近平均期望寿命约七、八十年的时间。

人口状态随时间变化的过程称为人口发展过程。

2023数学建模圈养湖羊空间利用率模板

2023数学建模圈养湖羊空间利用率模板

2023数学建模圈养湖羊空间利用率模板数学建模是一门涵盖数学、计算机科学、统计学等学科知识的交叉学科,通过建立数学模型来解决实际问题。

而在数学建模中,圈养湖羊空间利用率是一个重要的研究课题。

本文将探讨2023年数学建模圈养湖羊空间利用率的模板设计。

首先,我们需要了解圈养湖羊的特点和需求。

湖羊是一种生活在湖泊周围的特殊动物,它们需要一定的水域和陆地空间来生存和繁殖。

因此,在设计圈养湖羊的空间利用率模板时,需要考虑到湖泊的大小、形状、水质等因素。

其次,我们需要确定圈养湖羊的数量和密度。

在实际圈养湖羊的过程中,需要控制羊群的数量和密度,以避免过度放牧导致资源的过度消耗。

因此,在模板设计中需要考虑到羊群数量的变化和不同密度下的空间利用率。

另外,圈养湖羊的行为特点也是影响空间利用率的重要因素。

湖羊的活动范围和行为模式会直接影响到它们在圈养空间中的利用率。

因此,在模板设计中需要考虑到湖羊的行为特点,以便更准确地评估空间利用率。

在模板设计过程中,我们可以采用数学模型和计算机模拟的方法。

通过建立数学模型,我们可以模拟湖羊在圈养空间中的行为和空间利用情况,从而评估不同因素对空间利用率的影响。

同时,通过计算机模拟,我们可以更加直观地展示不同参数组合下的空间利用率情况,为决策提供参考。

最后,在模板设计完成后,我们需要进行模型验证和优化。

通过采集实际的数据和观测湖羊的行为,我们可以验证模型的准确性,并进一步优化模板,提高模型的预测能力和实用性。

同时,我们还可以通过模拟不同场景下的空间利用率,为圈养湖羊的管理和规划提供科学依据。

综上所述,2023年数学建模圈养湖羊空间利用率模板的设计是一个复杂而重要的课题。

通过建立数学模型、考虑湖羊的特点和需求、模拟不同情景下的空间利用率,我们可以更好地理解和管理湖羊的圈养空间,实现空间的有效利用和湖羊的健康生长。

希望通过不懈的努力,我们可以为湖羊的圈养提供更科学的模板和方法,推动湖羊养殖的发展和进步。

数学建模范文参考实用模板

数学建模范文参考实用模板

理工大学2015年数学建模竞赛论文(文样本)答卷编号(竞赛组委会填写):题目编号:( A )论文题目:基于双种群遗传算法的公交路线查询问题参赛队员信息(必填):答卷编号(竞赛组委会填写):评阅情况(学校评阅专家填写):评阅1.评阅2.评阅3.基于双种群遗传算法的公交路线查询问题摘要本文探讨的是公交路线选择而开发的查询系统.以两站点之间所花时间的最小值作为主要目标函数,利用双种群遗传算法的原理建立公交路线选择数学模型,再通过MATLAB程序来实现整个流程和迭代,最终求出全局近似最优解,即最优权重线路,以起点和终点查询到近似的最优公交路线,并进行了误差分析,模型的评价与推广.问题一:仅考虑公汽线路,对数据进行初步分析和处理后,考虑到数据的复杂性和数据搜索围的广度,我们应用比较成熟的双种群遗传算法建立数学模型. 通过MATLAB强大的矩阵运算功能得到站点之间的邻接矩阵,用时间加权. 其流程思想为基于双种群初始群体A、B,对染色体进行整数编码,用竞争选择法选择出较优个体作为繁殖下一代的母体,依据选择性集成思想,等概率使用两点交叉法和区域交叉法对染色体进行交叉操作与使用邻居交换变异和两点交换变异进行染色体变异操作,并结合MATLAB反复迭代,最终给出了六对起始站与终点站的六条近似最优路线. 该法扩大遗传算法的搜索围,避免过早收敛.问题二:在数据处理上用时间加权把地铁站点和汽车站点统一化,可得所有站点之间的邻接矩阵. 其求解原理与问题一相似,但由转车方式的不同生成了8种不同的适应度函数,再根据适应度函数来进行问题的求解.问题三:我们将任意两个站点之间的步行时间作为矩阵中相应位置的权,这时构建的邻接矩阵中的权就由两站点之间公汽到公汽的时间,公汽到地铁的时间,地铁到公汽的时间,地铁到地铁的时间和两点之间的步行时间构成. 但其求解原理与问题一相似,但由转车方式的不同就会生成不同的适应度函数,再根据适应度函数来进行问题的求解.双种群遗传算法提供了一种求解复杂系统优化问题的通用框架,它不依赖于问题的具体领域,对问题的种类有很强的鲁棒性,具有自组织、自适应和自学习性.关键词双种群遗传算法;竞争选择法;离散赌轮选择算子;选择性集成思想.一、问题的重述第29届奥运会明年8月将在举行,届时有大量观众到现场观看奥运比赛,其部分人将会乘坐公共交通工具(简称公汽,包括公汽、地铁等)出行. 市的公汽线路已达800条以上,使得公众的出行更加通畅、便利,但同时也面临多条线路的选择问题. 针对市场需求,某公司准备研制开发一个解决公汽线路选择问题的自主查询计算机系统.为了设计这样一个系统(核心是线路选择的模型与算法),从实际情况出发,满足查询者的各种不同需求. 需要研究的问题如下:问题一:只考虑公汽线路情况,给出任意两公汽站点之间线路选择问题的一般数学模型与算法. 并根据基本参数设定中的数据,利用其模型与算法,求出6对起始站→终问题三:假设知道所有站点之间的步行时间,给出任意两站点之间线路选择问题的数学模型.其中基本参数设定:相邻公汽站平均行驶时间(包括停站时间):3分钟相邻地铁站平均行驶时间(包括停站时间):2.5分钟公汽换乘公汽平均耗时:5分钟(其中步行时间2分钟)地铁换乘地铁平均耗时:4分钟(其中步行时间2分钟)地铁换乘公汽平均耗时:7分钟(其中步行时间4分钟)公汽换乘地铁平均耗时:6分钟(其中步行时间4分钟)公汽票价:分为单一票价与分段计价两种,标记于线路后;其中分段计价的票价为:0~20站:1元;21~40站:2元;40站以上:3元地铁票价:3元(无论地铁线路间是否换乘)注:以上参数均为简化问题而作的假设,未必与实际数据完全吻合.公汽线路及相关信息见数据文件B2007data.rar.二、模型的假设1.转车的次数控制在2次以;2. 相邻公汽站平均行驶时间(包括停站时间):3分钟;3. 相邻地铁站平均行驶时间(包括停站时间):2.5分钟;4. 公汽换乘公汽平均耗时:5分钟(其中步行时间2分钟);5. 地铁换乘地铁平均耗时:4分钟(其中步行时间2分钟);6. 地铁换乘公汽平均耗时:7分钟(其中步行时间4分钟);7. 公汽换乘地铁平均耗时:6分钟(其中步行时间4分钟);8. 公汽票价:分为单一票价与分段计价两种,标记于线路后,其中分段计价的票价为:0~20站:1元,21~40站:2元,40站以上:3元;9. 地铁票价:3元(无论地铁线路间是否换乘);10. 知道所有站点之间的步行时间.三、符号说明C:只考虑公汽线路的情况下,每个个体对应路线总长;D:考虑公汽和地铁线路的情况下,每个个体对应路线部长;T:相邻公汽站平均行驶时间(包括停站时间);1T:相邻地铁站平均行驶时间(包括停站时间);2()f X:第k个个体所对应的适应度值;kA:每个个体所对应的适应度比例;P:每个个体所对应的选择概率(适应度比例);T:所有站点之间的步行时间;abu:表示转车换乘所耗时间之和.四、模型的建立与求解(一)问题一1.1 问题分析该问题是一个组合优化问题. 对于此类问题,只有当其规模较小时,才能求其精确解. 在本文中公汽路线总数与站点数是成指数型增长的,所以一般很难精确地求出其最优解,因而寻找出有效的近似求解算法就具有重要意义.由于L406公汽线路的路线是环形的,而数据中没有标示出来,所以我们用相邻站点整体路线也相邻,判断出该公汽线路是环行的,所以应当作环行处理. 对于该问题,我们先求出其站点与站点之间的邻接矩阵(权用时间表示),其矩阵大小为39573957,数据量太多,不能输出,只能把放在存中.许多智能算法被用于求解两点间线路问题. 如禁忌搜索、模拟退火、蚁群算法等. 其中遗传算法是被研究最多的一种算法. 但标准遗传算法容易陷入局部极值解,出现“早熟收敛”现象. 为此人们提出了多种改进方法,如将遗传算子中的交叉算子进行改进,应用单亲遗传算法,将遗传算子与启发式算法结合等.遗传算法的核心思想为自然选择,适者生存. 遗传算法作为一种模拟生物进化的一种算法,提供了一种求解复杂系统优化问题的通用框架,它不依赖于问题的具体领域,对问题的种类有很强的鲁棒性,具有自组织、自适应和自学习性. 其也是一种迭代算法,从选定的初始解出发,通过不断地迭代,逐步改进当前解,直到最后搜索到最优解或满意解,其迭代过程是从一组初始解(群体)出发,采用类似于自然选择和有性繁殖的方法,在继承原有优良基因的基础上生成具有更好性能的下一代解的群体. 遗传算法的流程图见下图:遗传算法流程图标准遗传算法是针对一个宏观的种群进行选择、交叉、变异三种操作.双种群遗传算法是一种并行遗传算法,它使用多种群同时进化,并交换种群之间优秀个体所携带的遗传信息,以打破种群的平衡态达到更高的平衡态,跳出局部最优. 在双种群遗传算法中,每一种群都是按照标准算法进行操作. 在操作时,首先建立两个遗传算法群体,即种群A和种群B,分别独立地进行选择、交叉、变异操作,且交叉概率、变异概率不同. 当每一代运行结束以后,产生一个随机数n,分别从A,B中选出最优染色体和n个染色体进行杂交,以打破平衡态. 因为在双种群遗传算法中,每一种群都是按照标准算法进行操作的.算法(double populations genetic 由上分析,对于本问题,我们釆用双种群遗传[5]algorithm)在选择公汽路线问题中的应用.遗传算法的创始人美国著名学者、密西根大学教授John H.Holland认为,可以用一组编码来模拟一组计算机程序,并且定义了一个衡量每个“程序”的度量:“适应值”. Holland模拟自然选择机制对这组“程序”进行“进化”,直到最终得到一个正确的“程序”为止. 编码方式有:二进制编码、十进制编码和符号编码等方法. 整数编码与符号编码一般用于与顺序有关的组合优化方面的问题. 根据公汽路线的特点,本文的工作采编码. 染色体长度与公汽路线结点个数相同,染色体的每个基因的编码即为公用整数[6]汽路线结点的编号. 因此,每条染色体由1到n(3957)的一个全排列组成.选择时,考虑到适应度比例法(轮盘赌选择法)与最佳个体保留法在对染色体进行[6]各自的优缺点,差异性较大,依据选择性集成思想,表现好的个体学习器越精确、差异越大,集成后可以获得的结果越好. 而竞争选择法集成了上述两种的优点克服了它们的缺点,因此本文釆用竞争选择法. 其中竞争选择法是釆用适应度比例法进行选择,交叉后产生下一代,再利用最佳个体保留法将上一代的最佳个体直接保存下来,然后从新群体中淘汰一个适应度最差的个体,提高了问题求解的收敛速度,体现了遗传算法自适应环境的能力.在对染色体进行交叉[6]操作时,对于由整数编码的染色体,交叉操作会形成染色体中的非法基因,即重复基因. 所以实现染色体交叉要将重复的基因清除. 只使用一种交叉方法容易引起过早收敛,即“早熟”. 依据选择性集成思想 ,等概率使用两点交叉法和区域交叉法这两种交叉方法,扩大遗传算法的搜索围,避免过早收敛.在染色体的变异[6]操作中,与交叉方法一样,如果使用一种变异方法,同样可能会引起“早熟”. 为了避免过早收敛,依据选择性集成思想选择邻居交换变异和两点交换变异这两种个性好且差异性较大的变异方法,等概率使用以扩大搜索围.1.2 模型建立1.2.1 从起点站到终点站不转车,则双种群遗传算法的流程如下:(1)产生邻接矩阵邻接矩阵的MATLAB 程序实现见附件一.(2)基于站点序号的编码一般来说种群规模越大越容易收敛到最优解,但是要保证其初始种群中的每个个体都是互异的,m 不能设置过大,否则无法产生初始种群,且m 过大其收敛速度必然降低,也会消耗更多的计算资源,并基于一般遗传算法中初始群体大小的选择,本文中取m=30.公汽路线问题中每一种起点站到终点站的方案对应于解空间的一个解 ,解空间中的数据是遗传算法的表现形式,从表现到基因型的映射称为编码. 最初遗传算法是采用二进制编码方法,但在大量实际问题中,二进制编码操作不简便,不易进行变异交叉操作,易产生大量非可行解,所以针对特殊的问题,可以灵活采用不同的编码方法. 本文在公汽线路求解中,采用基于站点序号的实数编码,将染色体定义为公汽线路的一条解路线中的站点号序列,在MATLAB 中为一个没有重复数字的行向量来表示. 设有n 个站点的某个全排列为12(,,,)n x x x ,则个体的染色体表示为12(,,,)n X x x x ,n=3957.(3)产生初始群体种群中每一个体为n (3957)个站点的一个全排列,随机生成m (m=30)个1~n 的随机排列,得到m 个个体的初始种群,m 为种群大小,n 为染色体长度.生成初始群体的具体算法的MATLAB 程序实现见附件二.A 、B 初始群体的数据矩阵为303957,由于数据太多,文中就不给出数据(其结果可运行程序得出).(4)适应度函数与染色体的选择在遗传算法进行搜索时只以适应度函数为依据,利用种群中个体每个的适应度值来进行搜索,适应度值是进化时优胜劣汰的依据,应用中总是根据问题的优化指标来定义.对于公汽线路问题,以个体对应路线所发的时间之和作为个体适应度,其适应度越小,表明该个体越优. 则该个体对应[7]适应度值为:11111()()(1)n i n i i k x x x x f X T C C其中1T (3(分钟))表示相邻公汽站平均行驶时间(包括停站时间),b a x x C 表示站点a x 和b x 之间的距离,1n x x C 表示起始点与终点站之间的距离.一般来说,选择算子设计使得个体被选中并遗传到下一代群体中的概率与该个体的适应度大小有关. 适应度是越高越好,而在公汽线路问题中,如果适应度是所经过的对应路线所花的时间之和,路线所花时间之和是越小越好,为了使公汽线路问题的适应度与一般遗传算法中的适应度一致. 这里用选择概率来进行衡量. 则每个个体的选择概率(适应度比例)就是每个个体的适应度与所有个体适应度的总和之比,即: 301()(2)()k k k f X A f X 其中301()k k f X 表示所有个体适应度的总和.但当路径所花时间非常大(例如:10000),这样其适应度比例的最高数据位将在小数点后的第四位,这样不利于计算,为此要进行尺度变换. 为确保适应度有两位整数,此处将适应度放大倍数L(本题中 L=lOOO) 因此适应度比例[8]函数的表达式为:(3)P AL遗传算法中选择算子设计经典的是用适应度成比例的概率方法 ,但是这里存在的问题是由于许多个体的适应度比例很小几乎没有机会复制个体,从而被过早地淘汰. 这样整个群体多样性就无法得到保证,这里采用一种新的赌轮选择算子——离散赌轮选择[8]算子,将有效地避免了这个问题.在本题中是由30个个体构成初始群体,即:1230,,,X X X ,其所占的适应度比例分别是1230,,,P P P ,在保持这个比例的情况下对这个取值围放大1000倍. 按照顺序在1~1000分别占不同的区间,当随机函数产生1~1000以的时,即使是适应度比例最小的也有可能被选中,从而较好的保持了群体的多样性.由上所述则可选择出适应力强的,淘汰适应力弱的个体从而得到总体适应能力强的群体.经过选择算子得出总体适应能力强的A 、B 群体数据矩阵为303957,因数据量太大,文中就不给出具体数据.(5)交叉重组依据选择性集成思想 ,等概率使用两点交叉法和区域交叉法这两种差异性较大的交叉方法,扩大遗传算法的搜索围,避免过早收敛.其中,两点交叉法是先随机设定两个基因交叉位置,将父辈两个个体在这两个交叉点之间的基因链码相互交换,从而形成新的个体;区域交叉法是随机在染色体中选择一个交叉区域,将第二条染色体的交叉区域加在第一条染色体的前面,第一条染色体的交叉区域加在第二条染色体的前面,在交叉区域后依次删除与交叉区域相同的基因,得到最后的两条子染色体.将第(3)步得到的关于A ,B 种群的数据分别用两种交叉算法来实现操作. 其中一半数据用两点交叉法,另一半的数据用区域交叉法来进行染色体的交叉重组.其具体算法的MATLAB 程序实现见附件四.经过交叉重组得出的A 、B 群体数据矩阵为303957,因数据量太大,文中就不给出具体数据.(6)染色体的变异为了避免过早收敛,依据选择性集成思想选择邻居交换变异和两点交换变异这两种个性好且差异性较大的变异方法,等概率使用以扩大搜索围.其中,邻居交换变异是产生一个随机数,将该数对应的基因和其后的基因交换;若该数对应的基因是染色体中的最后一个基因,则将该基因与染色体的第一个基因交换;两点交换变异是先产生两个不同的随机数,确定两个交换点,然后对个体在此两点的基因进行交换.经过染色体变异得出的A 、B 群体数据矩阵为303957,因数据量太大,文中就不给出具体数据.(7)种群交叉将两个种群中的最优解取出,再在每个种群中随机选取n 个染色体,将这n+1个染色体互换,进入对方种群.经过种群交叉得出的A 、B 群体数据矩阵为303957,因数据量太大,文中就不给出具体数据.(8)最佳个体保留法要把群体中适应度最高的个体不经过配对交叉直接复制到下一代中,然后从 新群体中淘汰一个适应度最差的个体. 分别对A 、B 进行独立的操作.经过最佳保留法选择后得出的A 、B 群体数据矩阵为303957,因数据量太大,文中就不给出具体数据.(9)迭代的结束条件在本文中,采用进化的代数N 作为循环迭代过程的结束,如果等于N ,则算法结束,输出适应值最高的解;否则,继续重复上述过程.重复步骤(3),(4),(5),(6),(7),(8)依次进行循环迭代,本题中设定迭代次数为N=1000. 最后得到30个近似的最优解.以上(2)—(9)流程的MATLAB 程序实现见附件二.(10)结果选出这30个近似最优解中以时间作为权值最小的那一组解作为题设中要求的近似最优解. 其中满足要求的基因链码(站点数)的顺序即是顾客所需从起始点到终点站的路线1.2.2 从起点站到终点站转一次车从起点站到终点站转一次车遗传算法流程中基于站点序号的编码,交叉重组,染色体的变异,种群交叉,迭代的结束条件和结果的原理与从起点站到终点站不转车相同.只有在适应度函数与选择流程中每一个个体所对应的适应度函数处有所改变,其函数为:11111()()5(4)n i n i i k x x x x f X T C C其中5(分钟)表示公汽换乘公汽一次耗时(其中步行时间2分钟).除这之外,这一流程中的其他的原理没变.1.2.3 从起点站到终点站转两次车从起点站到终点站转两次车遗传算法流程中基于站点序号的编码,交叉重组,染色体的变异,种群交叉,迭代的结束条件和结果的原理与从起点站到终点站不转车相同.只有在适应度函数与选择流程中每一个个体所对应的适应度函数处有所改变,其函数为:11111()()52(5)n i n i i k x x x x f X T C C其中52(分钟)表示公汽换乘公汽两次耗时(其中步行时间22分钟).除这之外,这一流程中的其他的原理没变.1.3 模型求解1.3.1从起点站到终点站不转车由程序运行最终得出:找不一条路线使从起点站到终点站不转车.1.3.2 从起点站到终点站转一次车1.3.32.1 问题分析考虑到加入地铁及公汽的交叉通道,在数据处理上用时间加权把地铁站点和汽车站点统一化,可得所有站点之间的邻接矩阵. 其求解原理与问题一相似,但由转车方式的不同就会生成相对应的适应度函数,再根据适应度函来对问题求解.2.2 模型建立2.2.1 产生邻接矩阵首先运用MATLAB 强大的矩阵运算功能把其邻接矩阵得出,该矩阵是39573957,由于数据量太大不能把其具体表示出来,只能把所得到的数据放在存中,在运用的时候再从存中调用.2.2.2 只坐地铁(不换乘)对于该问题遗传算法流程中基于站点序号的编码,交叉重组,染色体的变异,种群交叉,迭代的结束条件和结果的原理与仅考虑公汽线路从起点站到终点站不转车相同.只有在适应度函数与选择流程中每一个个体所对应的适应度函数处有所改变,其函数为:12111()()(6)m m j j j k x x x x f X T D D其中2T 表示相邻地铁站平均行驶时间(包括停站时间),a bx x D 表示站点a x 和b x 之间的距离, 1mx x D 表示起始点与终点站之间的距离. 除这之外,这一流程中的其他的原理没变.2.2.3 地铁到地铁(换乘一或两次)对于该问题遗传算法流程中基于站点序号的编码,交叉重组,染色体的变异,种群交叉,迭代的结束条件和结果的原理与仅考虑公汽线路从起点站到终点站不转车相同.只有在适应度函数与选择流程中每一个个体所对应的适应度函数处有所改变,其函数为:12111()()4(42)(7)m m j j j k x x x x f X T or D D其中2T (2.5(分钟))表示相邻地铁站平均行驶时间(包括停站时间),a bx x D 表示站点a x 和b x 之间的距离, 1mx x D 表示起始点与终点站之间的距离, 4(分钟)表示地铁换乘地铁平均耗时(其中步行时间2分钟).除这之外,这一流程中的其他的原理没变.2.2.4 地铁到公汽对于该问题遗传算法流程中基于站点序号的编码,交叉重组,染色体的变异,种群交叉,迭代的结束条件和结果的原理与仅考虑公汽线路从起点站到终点站不转车相同.只有在适应度函数与选择流程中每一个个体所对应的适应度函数处有所改变,其函数为:1112111111()()()7(8)mn m i j n i j ijk x x x x x x x x f X T T C C D D除这之外,这一流程中的其他的原理没变. 2.2.5 公汽到地铁为了简化模型,将地铁换乘公汽平均耗时与公汽换乘地铁平均耗时都假设为7分钟,因为耗时相差不大. 则地铁到公汽与公汽到地铁是一样的.对于该问题遗传算法流程中基于站点序号的编码,交叉重组,染色体的变异,种群交叉,迭代的结束条件和结果的原理与仅考虑公汽线路从起点站到终点站不转车相同.只有在适应度函数与选择流程中每一个个体所对应的适应度函数处有所改变,其函数为:1112111111()()()6(9)mn m i j n i j ijk x x x x x x x x f X T T C C D D除这之外,这一流程中的其他的原理没变. 2.2.6 公汽到地铁再到公汽对于该问题遗传算法流程中基于站点序号的编码,交叉重组,染色体的变异,种群交叉,迭代的结束条件和结果的原理与仅考虑公汽线路从起点站到终点站不转车相同.只有在适应度函数与选择流程中每一个个体所对应的适应度函数处有所改变,其函数为:1112111111()()()67(10)mn m i j n i j ijk x x x x x x x x f X T T C C D D除这之外,这一流程中的其他的原理没变. 2.2.7公汽到地铁再到地铁对于该问题遗传算法流程中基于站点序号的编码,交叉重组,染色体的变异,种群交叉,迭代的结束条件和结果的原理与仅考虑公汽线路从起点站到终点站不转车相同.只有在适应度函数与选择流程中每一个个体所对应的适应度函数处有所改变,其函数为:1112111111()()()64(11)mn m i j n i j ijk x x x x x x x x f X T T C C D D除这之外,这一流程中的其他的原理没变. 2.2.8地铁到公汽再到公汽对于该问题遗传算法流程中基于站点序号的编码,交叉重组,染色体的变异,种群交叉,迭代的结束条件和结果的原理与仅考虑公汽线路从起点站到终点站不转车相同.只有在适应度函数与选择流程中每一个个体所对应的适应度函数处有所改变,其函数为:1112111111()()()75(12)mn m i j n i j ijk x x x x x x x x f X T T C C D D 除这之外,这一流程中的其他的原理没变. 2.2.9地铁到公汽再到地铁对于该问题遗传算法流程中基于站点序号的编码,交叉重组,染色体的变异,种群交叉,迭代的结束条件和结果的原理与仅考虑公汽线路从起点站到终点站不转车相同.只有在适应度函数与选择流程中每一个个体所对应的适应度函数处有所改变,其函数为:1112111111()()()76(13)mn m i j n i j ijk x x x x x x x x f X T T C C D D 除这之外,这一流程中的其他的原理没变. 2.3 模型求解 2.3.1 只坐地铁由程序运行最终得出:对六对起点到终点找不一条路线为只做地铁. 2.3.2 地铁到地铁由程序运行最终得出:对六对起点到终点找不一条路线地铁到地铁. 2.3.3 地铁到公汽由程序运行最终得出:对六对起点到终点找不一条路线为地铁到公汽. 2.3.4 公汽到地铁由程序运行最终得出:对六对起点到终点找不一条路线为公汽到地铁. 2.3.5 公汽到公汽 1.换一次车2.换两次车由程序运行最终得出:对六对起点到终点找不一条路线为公汽到地铁再到地铁. 2.3.7 地铁到公汽再到公汽由程序运行最终得出:对六对起点到终点找不一条路线为地铁到公汽再到公汽. 2.3.8 地铁到公汽再到地铁由程序运行最终得出:对六对起点到终点找不一条路线为地铁到公汽再到地铁. (三)问题三 3.1 问题分析在该问题中假设知道所有站点之间的步行时间,即任意两个站点之间都是可以到达的,只是以步行的方式来实现. 我们以两个站点之间的步行时间作为矩阵中的权. 这时构建的邻接矩阵中的权由两站点之间公汽到公汽的时间,公汽到地铁的时间,地铁到公汽的时间,地铁到地铁的时间和两点之间的步行时间构成. 3.2 模型建立对于该问题遗传算法流程中基于站点序号的编码,交叉重组,染色体的变异,种群交叉,迭代的结束条件和结果的原理与仅考虑公汽线路从起点站到终点站不转车相同.。

数学建模论文模板

数学建模论文模板

数学建模论文模板摘要正文要点如下(宋体小四号):1、研究目的:对问题的简洁交代,用1~2句话说明原问题中要解决的问题,一般可根据参赛题目给出论断。

句型:本文研究XX问题。

2、建立模型思路:针对什么问题,从怎样的角度进行考虑的,考虑的关键因素是什么,是怎样处理的,建立了什么模型(在数学上属于什么类型),建模的思想,模型特点。

依次解释问题一/二/三的模型建立过程。

句型:首先,本文针对问题一的XX问题,对XX进行简化,利用XX知识建立了XX模型。

其次,针对问题二的……。

最后,针对问题三的……。

3、模型求解和结果:模型建立的思路想好之后,采取了怎样的算法对模型进行了实现。

前面建了几个模型,这里就有几个模型的求解。

(如利用Matlab 编程求解、用spss软件求解,利用拉普拉斯变换求解,用蒙特卡罗模拟求解等。

特别是求解有难度的模型要介绍求解方法。

)获得什么样的结果,可围绕题目要求综合给出关键结论,建议不要将问题所需结果全部给出,否则摘要显得太长。

句型:针对XX模型的求解,本文使用XX算法,计算出XX,并用XX工具求解出XX问题,进一步求解出XX结果。

针对XX模型……。

针对XX模型……。

4、建模特点:模型优缺点,创新之处,算法特点,模型检验,结果检验,灵敏度分析,稳定性分析等,推广性如何。

整体上讲,摘要一定要语句通顺,无错别字,交代简洁、清楚,具有层次感。

摘要最为关键,需最后从全局的高度进行写作,可花费半天到整晚的时间进行润色,最长不超过一页。

关键词(黑体不加粗小四号):结合问题、方法、理论、概念等选择3至5关键词,相互之间用空格隔开。

01问题重述(黑体不加粗四号居中,下同)问题重述正文,内容要点如下:问题背景:结合时代、社会、民生等用自己的语言阐述问题背景。

要解决的问题:陈述自己对于问题的理解,是要解决怎样的问题。

注意:重述不是题目的完整拷贝,要根据自己的理解,用自己的语言清楚简明的阐述问题的背景、条件和要求。

美赛数学建模模板

美赛数学建模模板

摘要:第一段:写论文解决什么问题1.问题的重述a. 介绍重点词开头:例1:“Hand move” irrigation, a cheap but labor-intensive system used on small farms, consists of a movable pipe with sprinkler on top that can be attached to a stationary main.例2:……is a real-life common phenomenon with many complexities.例3:An (effective plan) is crucial to………b. 直接指出问题:例 1:We find the optimal number of tollbooths in a highway toll-plaza for a given number of highway lanes: the number of tollbooths that minimizes average delay experienced by cars.例2:A brand-new university needs to balance the cost of information technology security measures with the potential cost of attacks on its systems.例3:We determine the number of sprinklers to use by analyzing the energy and motion of water in the pipe and examining the engineering parameters of sprinklers available in the market.例4: After mathematically analyzing the …… problem, our modeling group would like to present our conclusions, strategies, (and recommendations )to the …….例5:Our goa l is... that (minimizes the time )……….2.解决这个问题的伟大意义反面说明。

数学建模论文写作模板

数学建模论文写作模板

论文标题摘要内容要点:1、研究目的:本文研究……问题。

2、建立模型思路、:首先,本文……。

然后针对第一问……问题,本文建立……模型:在第一个……模型中,本文对哪些问题进行简化,利用什么知识建立了什么模型在第二个……模型中,本文对哪些问题进行简化,利用什么知识建立了什么模型3、求解思路,使用的方法、程序针对模型的求解,本文使用什么方法,计算出,并只用什么工具求解出什么问题,进一步求解出什么结果。

4、建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验等)5、在模型的检验模型中,本文分别讨论了以上模型的精度和稳定性6、最后,本文通过改变,得出什么模型。

关键词:结合问题、方法、理论、概念等一、问题重述内容要点:1、问题背景:结合时代、社会、民生等2、需要解决的问题问题一:问题二:问题三:二、问题分析内容要点:什么问题、需要建立什么样的模型、用什么方法来求解三、模型假设与约定内容要点:1、根据题目中条件作出假设2、根据题目中要求作出假设写作要求:细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。

将一些问题理想化、简单化。

1、论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解2、所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考3、假设应验证其合理性。

假设的合理性可以从分析问题过程中得出,例如从问题的性质出发作出合乎常识的假设,或者由观察所给数据的图象,得到变量的函数形式,也可以参考其他资料由类推得到。

对于后者应指出参考文献的相关内容四、符号说明及名词定义内容要点:包括建立方程符号、及编程中用到的符号等五、模型建立内容要点:1、模型一2、模型二3、模型三对于每一个模型的建立,需要写出的内容:问题分析→公式推导→基本模型→最终或简化模型。

基本模型要有数学公式、方案等。

简化模型要明确说明简化思想、依据。

写作要点:数学建模面临的、要解决的是实际问题,不追求数学上:高(级)、深(刻)、难(度大)。

最新数学建模格式规范及word模板

最新数学建模格式规范及word模板

数学建模论文格式规范•论文用白色A4纸单面打印;上下左右各留出至少2.5厘米的页边距;从左侧装订。

•论文第一页的内容是:论文题目、组员姓名、学号、所属专业、联系电话、电子邮箱。

•论文题目和摘要写在第二页上, 从第三页开始是论文正文。

•论文从第二页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。

•论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。

•论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。

论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。

•提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。

评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。

•引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。

正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。

参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年。

参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。

参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间(年月日)。

题目(三号黑体居中)摘要:此处写摘要。

摘要在整篇论文评阅中占有重要权重,请认真书写摘要(注意篇幅不能超过一页)。

组委会评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。

简要论述本文所要解决的问题及意义,解决问题的思路与方法、主要结果(数值结果或结论),建模的创新之处与特色等。

①短:字数尽量控制在500字内;语言精简,用词准确;②精:阐述细致具体的方法;列出主要结论③完整:写出主要模型(名称)、方法和结果,解决了什么问题,有何特色等;摘要应具有独立性和自明性,应是一篇完整的短文。

数学建模论文模板

数学建模论文模板

附件一:数学建模论文模板(注:论文标题、摘要、关键词为单独的第1页;第2页开始为正文,原则上应该包括问题提出、问题分析、…、模型的评价与改进及参考文献;若需写短文的则另起一页附在最后)论文标题姓名1;姓名2;姓名3(学院班级1,学院班级2,学院班级3,)摘要:XXXXXX(字数至少3百,但不得超过8百)关键词:XXXXXXXXXXXXX1 问题的提出(重述)2 问题的分析3 模型基本假设4 定义符号说明5 模型的建立6 模型的求解XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX7 结果分析XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX8 模型的评价与改进参考文献(数学建模论文书写基本框架,仅供参考)题目(黑体不加粗三号居中)摘要(黑体不加粗四号居中)(摘要正文小4号,写法如下)(第1段)首先简要叙述所给问题的意义和要求,并分别分析每个小问题的特点(以下以三个问题为例)。

根据这些特点我们对问题1用。

的方法解决;对问题2用。

的方法解决;对问题3用。

的方法解决。

(第2段)对于问题1我们用。

数学中的。

首先建立了。

模型I。

在对。

模型改进的基础上建立了。

模型II。

对模型进行了合理的理论证明和推导,所给出的理论证明结果大约为。

,然后借助于。

数学算法和。

软件,对附件中所提供的数据进行了筛选,去除异常数据,对残缺数据进行适当补充,并从中随机抽取了3组数据(每组8个采样)对理论结果进行了数据模拟,结果显示,理论结果与数据模拟结果吻合。

(方法、软件、结果都必须清晰描述,可以独立成段,不建议使用表格)(第3段)对于问题2我们用。

(第4段)对于问题3我们用。

如果题目单问题,则至少要给出2种模型,分别给出模型的名称、思想、软件、结果、亮点详细说明。

数学建模范文模板

数学建模范文模板

数学建模范文模板一、问题分析1. 问题的背景与意义:(1)简要介绍问题的相关背景与意义;(2)问题的研究价值和应用前景。

2. 问题的具体描述:(1)详细描述问题的具体内容,包括已知条件和需要求解的问题;(2)对问题进行可视化分析,如示意图、数据表格等。

3. 问题的假设:(1)对问题进行一些合理的假设,以简化问题;(2)明确各种假设的合理性和局限性。

二、模型的建立1. 模型的基本思路:(1)根据问题的具体情况,提出解决问题的基本思路、方法或策略;(2)形成数学模型的核心思想。

2. 模型的符号定义:(1)对模型中所用到的符号进行明确的定义;(2)解释符号的含义和用途。

3. 模型的建立与求解:(1)根据问题的具体要求,建立相应的数学模型;(2)通过数学方法对模型进行求解,得到问题的最优解或近似解。

三、模型的验证与分析1. 模型的验证:(1)对建立的数学模型进行验证,检验模型的合理性;(2)通过比较模型的预测结果与现实数据或实验结果的吻合程度,判断模型的有效性。

2. 模型的结果与讨论:(1)分析模型的求解结果,阐述其具体含义和实际意义;(2)对模型的局限性和改进方向进行讨论。

四、模型的应用与推广1. 模型的应用:(1)对模型的应用范围和条件进行说明;(2)通过实际案例分析,探讨模型在解决问题中的实际应用。

2. 模型的推广:(1)对模型的推广适用性进行分析;(2)针对其他类似问题,探讨模型的推广和改进方向。

五、总结与展望1. 研究总结:(1)对已完成的研究工作进行总结,强调研究的主要成果和创新之处;(2)指出问题研究中的不足和需要进一步探索的方向。

2. 研究展望:(1)对未来的研究方向和重点进行展望;(2)对进一步提高模型的精度、拓宽应用范围等方面提出建议。

求最值中的几何模型-2024年中考数学答题技巧与模板构建(解析版)

求最值中的几何模型-2024年中考数学答题技巧与模板构建(解析版)

求最值中的几何模型题型解读|模型构建|通关试练模型01 将军饮马模型将军饮马模型在考试中主要考查转化与化归等的数学思想,该题型综合考查学生的理解和数形结合能力具有一定的难度,也是学生感觉有难度的题型.在解决几何最值问题主要依据是:①将军饮马作对称点;②两点之间,线段最短;③垂线段最短,涉及的基本知识点还有:利用轴对称变换化归到“三角形两边之和大于第三边”、“三角形两边之差小于第三边”等;希望通过本专题的讲解让大家对这类问题有比较清晰的认识. 模型02 建桥选址模型建桥选址模型,即沿一个方向平移的定长线段两端到两个定点距离和最小,解题时需要理清楚是否含有定长平移线段,且利用平移求出最短路径位置.求解长度时若有特殊角,通常采用构造直角三角形利用勾股定理求解的方法.该题型主要考查了在最短路径问题中的应用,涉及到的主要知识点有矩形的性质、平行四边形的性质、等腰直角三角形的性质、勾股定理,解题的关键在于如何利用轴对称找到最短路径.模型03 胡不归模型胡不归PA+k·PB”型的最值问题:当k等于1时,即为“PA+PB”之和最短问题,可用我们常见的“将军饮马”问题模型来处理,即可以转化为轴对称问题来处理.当k不等于1时,若再以常规的轴对称思想来解决问题,则无法进行,因此必须转换思路.此类问题的处理通常以动点P所在图象的不同来分类,一般分为两类研究.即点P在直线上运动和点P在圆上运动.其中点P在直线上运动的类型通常为“胡不归”问题.模型01将军饮马模型考|向|预|测将军饮马模型问题该题型主要以选择、填空形式出现,综合性大题中的其中一问,难度系数较大,在各类考试中都以中高档题为主.本题考查的是轴对称--最短路线问题、勾股定理、等边三角形的判定和性质、含30°角的直角三角形的性质、垂线段最短,解这类问题的关键是将所给问题抽象或转化为数学模型,把两条线段的和转化为一条线段,属于中考选择或填空题中的压轴题.答|题|技|巧 第一步: 观察所求为横向还是纵向的线段长度(定长),将线段按照长度方向平移第二步: 同侧做对称点变异侧,异侧直接连线第三步: 结合两点之间,线段最短;垂线段最短;三角形两边之和大于第三边等常考知识点 第四步: 利用数学的转化思想,将复杂模型变成基本模型(1)点A 、B 在直线m 两侧两点连线,线段最短例1.(2023·四川)如图,等边三角形ABC 的边BC 上的高为6,AD 是BC 边上的中线,M 是线段AD 上的-一个动点,E 是AC 中点,则EM CM +的最小值为 .【答案】6【详解】解:连接BE ,与AD 交于点M .∵AB=AC ,AD 是BC 边上的中线,mA B P m AB∴B 、C 关于AD 对称,则EM+CM=EM+BM ,则BE 就是EM+CM 的最小值.∵E 是等边△ABC 的边AC 的中点,AD 是中线∴BE=AD=6,∴EM+CM 的最小值为6,故答案为:6.(2)点A 、B 在直线同侧例2.(2022·安徽)如图,在锐角△ABC 中,AB =6,∠ABC =60°,∠ABC 的平分线交AC 于点D ,点P ,Q 分别是BD ,AB 上的动点,则AP +PQ 的最小值为( )A .6B .C .3D .【答案】D 【详解】解:如图,在BC 上取E ,使BE =BQ ,连接PE ,过A 作AH ⊥BC 于H ,∵BD 是∠ABC 的平分线,∴∠ABD =∠CBD ,∵BP =BP ,BE =BQ ,∴△BPQ ≌△BPE (SAS ),m ABm∴PE =PQ ,∴AP +PQ 的最小即是AP +PE 最小,当AP +PE =AH 时最小,在Rt △ABH 中,AB =6,∠ABC =60°,∴AH =33,∴AP +PQ 的最小为33, 故选:D .模型02 建桥选址模型考|向|预|测建桥选址模型该题型也主要以选择、填空的形式出现,一般较为靠后,有一定难度,该题型主要考查轴对称---最短路径问题、勾股定理、三角形及平行四边形的判定与性质,要利用“两点之间线段最短”等,但许多实际问题没这么简单,需要我们将一些线段进行转化,即用与它相等的线段替代,从而转化成两点之间线段最短的问题.目前,往往利用对称性、平行四边形的相关知识进行转化.答|题|技|巧 第一步: 观察点或图形的变化规律,根据图形的变化规律求出已知关键点的坐标;第二步: 分析变化规律得到一般的规律看是否具有周期性(如点变的循环规律或点运动的循环规律,点的横、纵坐标的变化规律等)第三步: 周期性的求最小周期看余数,不是周期性的可以罗列求解几组以便发现规律,根据最后的变化次数或者运动时间登,确定要求的点与哪个点重合或在同一象限,或与哪个关键点的横纵坐标相等;第四步: 利用有理数的运算解题(1)两个点都在直线外侧:辅助线:连接AB 交直线m 、n 于点P 、Q ,则PA +PQ +QB 的最小值为AB .例1.(2022·湖北)如图,在Rt △ABC 中,∠ACB =90°,∠ABC =30°,AC =2,以BC 为边向左作等边△BCE ,点D 为AB 中点,连接CD ,点P 、Q 分别为CE 、CD 上的动点.求PD +PQ +QE 的最小值为 .n QP n mAP'Q'【答案】4.【详解】如图,连接,PA QB ,BCE QV 和ADC 都是等边三角形,60BCE ∴∠=︒,60ACD ∠=︒,1302ACE ACB BCE ACD ∴∠=∠−∠=︒=∠,CE ∴垂直平分AD ,PA PD ∴=, 同理可得:CD 垂直平分BE ,QB QE ∴=,PD PQ QE PA PQ QB ∴++=++,由两点之间线段最短可知,当点,,,A P Q B 共线时,PA PQ QB ++取得最小值AB ,故PD PQ QE ++的最小值为4.(2)一个点在内侧,一个点在外侧:辅助线:过点B 作关于定直线n 的对称点B’,连接AB’交直线m 、n 于点P 、Q ,则PA +PQ +QB 的最小值为AB ’.例2.(2023·山东)如图,在ABC 中,6AB =,7BC =,4AC =,直线m 是ABC 中BC 边的垂直平分线,P 是直线m 上的一动点,则APC △的周长的最小值为_________.n mn【答案】10【详解】解:∵直线m 垂直平分BC ,∴B 、C 关于直线m 对称,设直线m 交AB 于D ,∴当P 和D 重合时,AP +CP 的值最小,最小值等于AB 的长,∴△APC 周长的最小值是6+4=10.故答案为:10.(3)如图3,两个点都在内侧:辅助线:过点A 、B 作关于定直线m 、n 的对称点A’ 、B’ ,连接A’B’ 交直线m 、n 于点P 、Q ,则PA +PQ +QA 的最小值为A ’B’.例3.(2023.浙江)如图所示,∠AOB =50°,∠BOC =30°,OM =12,ON =4.点P 、Q 分别是OA 、OB 上动点,则MQ +PQ +NP 的最小值是 .【答案】4【详解】解:如图,作点N 关于OA 的对称点N ′,则NP =N ′P ,nmn作点M关于OB的对称点M′,则MQ=M′Q,∴MQ+PQ+NP=M′Q+PQ+N′P,当N′M′在同一条直线上时取最小值,连接ON′,OM′,∵∠AOB=50°,∠BOC=30°则∠N′OA=∠AOC=∠AOB﹣∠BOC=20°,∠BOM′=∠BOA=50°,∴∠N′OM′=2×20°+30°+50°=120°,∵ON′=ON=4,OM′=OM=12,∴∠AON=∠AOB﹣∠BOC=50°﹣30°=20°,先作射线ON'与射线ON关于OA对称,由对称的性质可知∠AON'=20°,PN=PN',同理作射线OM'与射线OM关于OB对称,同理∠BOM'=50°,QM=QM′,当N'、P、Q、M'四点共线时,MQ+PQ+NP最小,则∠N′OM′=∠N′OP+∠AOB+∠BPM′=20°+50°+50°=120°,作N'垂直OM'的延长线交于点E,∴∠EON'=60°,∴ON'=ON=4,在Rt△N'OE中,∠EN'O=30°,根据30°角所对的直角边是斜边的一半可知OE=2,则EN'=2,OM=OM'=12,∴EM′=OE+OM′=12+2=14,则N′M===4.故答案为:4.模型03胡不归模型考|向|预|测胡不归模型可看作将军饮马衍生,主要考查转化与化归等的数学思想,近年在中考数学和各地的模拟考中常以压轴题的形式考查,学生不易把握.本专题就最值模型中的胡不归问题进行梳理及对应试题分析,方便掌握.在解决胡不归问题主要依据是:点到线的距离垂线段最短.答|题|技|巧第一步:构造与kPB相等的线段,将“PA+kPB”型问题转化为“PA+PC”型;第二步:借助三角函数,构造锐角α,将另一个系数也化为1;第三步:利用“垂线段最短”原理构造最短距离;第四步:数形结合解题【答案】42【详解】解:如图,过点P 作PE ⊥AD ,交AD 的延长线于点E ,∵AB CD ∥,∴∠EDP=∠DAB=45°,∴sin EP EDP DP ∠==,∴EP PD =,∴2PB PD PB PE +=+, ∴当点B ,点P ,点E 三点共线且BE ⊥AD 时,PB+PE 有最小值,即最小值为BE ,∵sin BE A AB ∠=,∴BE AB =故答案为:1.(2023·江苏扬州)如图所示,军官从军营C 出发先到河边(河流用AB 表示)饮马,再去同侧的D 地开会,应该怎样走才能使路程最短?你能解决这个著名的“将军饮马”问题吗?下列给出了四个图形,你认为符合要求的图形是( )A .B .C .D .【答案】D【详解】解:由选项D 中图可知:作D 点关于直线AB 的对称点D ¢,连接CD '交AB 于点N ,由对称性可知,DN D N '=,CN DN CN D N CD ∴+=≥''+,当C 、N 、D ¢三点共线时,CN DN +的距离最短,故选:D2.(2023.浙江)如图,等边△ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点,若AE =2,当EF +CF 取得最小值时,则∠ECF= .【答案】∠ECF =30º【详解】过E 作EM ∥BC ,交AD 于N ,如图所示:∵AC =4,AE =2,∴EC =2=AE ,∴AM =BM =2,∴AM =AE ,∵AD 是BC 边上的中线,△ABC 是等边三角形,∴AD ⊥BC ,∵EM ∥BC ,∴AD ⊥EM ,∵AM =AE ,∴E 和M 关于AD 对称,连接CM 交AD 于F ,连接EF ,则此时EF +CF 的值最小, ∵△ABC 是等边三角形,∴∠ACB =60º,AC =BC ,∵AM =BM ,∴∠ECF =∠ACB =30º.故答案为30°3.(2022·安徽)如图,在平面直角坐标系中,∠AOB =30°,P (5,0),在OB 上找一点M ,在OA 上找一点N ,使△PMN 周长最小,则此时△PMN 的周长为 .【答案】5【详解】作点P 关于OB 的对称点C ,作P 点关于AO 的对称点D ,连接CD 交OA 于N ,交OB 于M ,连接MP ,NP ,OC ,OD ,∴CM =MP ,NP =DN ,∴PM+PN+MN =CM+MN+DN≥CD ,∴当C 、M 、N 、D 点共线时,△PMN 的周长最小,∵∠BOA =30°,OP =OC =OB ,∴∠COD =60°,∴△OCD 是等边三角形,∴CD =OP ,∵P (5,0),∴OP =5,∴CD =5,∴△PMN 的周长最小值为5,故答案为:5.4.(2023·广东)如图,在Rt ABC 中,ACB 90∠=︒,AC 9=,BC 12=,15AB =,AD 是BAC ∠的平分线,若点P 、Q 分别是AD 和AC 上的动点,则PC PQ +的最小值是 .【答案】365【详解】解:如图,作Q 关于AP 的对称点O ,则PQ=PO ,所以O 、P 、C 三点共线时,CO=PC+PO=PC+PQ ,此时PC+PQ 有可能取得最小值,∵当CO 垂直于AB 即CO 移到CM 位置时,CO 的长度最小,∴PC+PQ 的最小值即为CM 的长度, ∵111591222ABC S AB CM AC CB CM =⨯=⨯∴=⨯,,∴CM=91236155⨯=,即PC+PQ 的最小值为 365, 故答案为365.5.(2023·江苏)如图,高速公路的同一侧有A ,B 两城镇,它们到高速公路所在直线MN 的距离分别为2km AC =,4km BD =,8km CD =.要在高速公路上C ,D 之间建一个出口P ,使A ,B 两城镇到P 的距离之和最小,则这个最短距离为 .【答案】10km【详解】解:如图所示:作A 点关于直线MN 的对称点A ',再连接A B ',交直线MN 于点P ,则此时AP PB +最小,过点B 作BE CA ⊥交延长线于点E ,∵2km AC =,4km BD =,8km CD =.∴m 422k AE =−=,4km AA '=,∴6km A E '=,km 8BE CD ==,在Rt A EB '△中,10km A B '==,则AP PB +的最小值为10km .故答案为:10km .【答案】B【详解】解:如图:等腰Rt △DEF 中,过点D 作DM ⊥EF 于点M ,过E 、F 分别作∠MEP=∠MFP=30°,则EM=DM=1,故cos30°=EM EP ,解得:,则PM=,故DP=1﹣,则PD+PE+PF=2×+1﹣1. 故选B .A .42B .33 【答案】A 【详解】解:延长AD ,过点B 作BE AD ⊥交CD 于点P ,∵四边形ABCD 为平行四边形,∴AB CD ∥,∴45DEP DAB ∠=∠=︒,∵BE AD ⊥,∴DE PE =,则22222DE PE DE PD +==,则2DE PD =,同理可得:BE AB =,∴2PB PD PB PE +=+,∴当点E 、P 、B 在同一条直线上时,PB PD 的值最小,∵8AB =,∴22P E BE A B PD B P B P +===+=故选:A .8.(2023·四川)如图,在ABC 中,90,60,4BAC B AB ∠=︒∠=︒=,若D 是BC 边上的动点,则2AD DC +的最小值是( )A .6B .8C .10D .12【答案】D 【详解】解:过点C 作射线CE ,使30BCE ∠=︒,再过动点D 作DF CE ⊥,垂足为点F ,连接AD ,如图所示:在t R DFC △中,30DCF ∠=︒,∴12DF DC =,∵122()2AD DC AD DC +=+=2()AD DF +,∴当A ,D ,F 在同一直线上,即AF CE ⊥时,AD DF +的值最小,最小值等于垂线段AF 的长, 此时,60B ADB ︒∠=∠=,∴ABD △是等边三角形,∴4===AD BD AB ,在t R ABC 中,90,60,4A B AB ∠=∠=︒=︒,∴8BC =,∴4DC =,∴12,2DF DC ==,∴426AF AD DF =+=+=,∴2()212AD DF AF +==,∴2()AD DC +的最小值为12,故选:D .9.(2023·湖南)某班级在探究“将军饮马问题”时抽象出数学模型:直线l 同旁有两个定点A 、B ,在直线l 上存在点P ,使得PA PB +的值最小.解法:如图1,作A 点关于直线l 的对称点A ',连接A B ',则A B '与直线l 的交点即为P ,且PA PB +的最小值为A B '.请利用上述模型解决下列问题:(1)几何应用:如图2,ABC 中,90C ∠=︒,2AC BC ==,E 是AB 的中点,P 是BC 边上的一动点,则PA PE+的最小值为 ;(2)几何拓展:如图3,ABC 中,2AC =,30A ∠=︒,若在AB 、AC 上各取一点M 、N 使CM MN +的值最小,画出图形,求最小值并简要说明理由.【答案】【详解】(1)解:如图2所示,作点A 关于BC 的对称点A ',连接A E '交BC 于P ,此时PA PE +的值最小.连接BA ',由勾股定理得, BA BA '==∵E 是AB 的中点,∴12BE BA ===∵90C ∠=︒,2AC BC ==,∴45A BC ABC '∠=∠=︒,∴90A BA '∠=︒,∴PA PE +的最小值A E '===;(2)解:如图3,作点C 关于直线AB 的对称点C ',作C N AC '⊥于N ,交AB 于M ,连接AC ',则2C A CA '==,30C AB CAB '∠=∠=︒,60C AC '∴∠=︒∴C AC '△为等边三角形,∴30AC N '∠=︒,∴112AN C A '==,∴CM MN +的最小值为C N '=10.(2023·陕西)在学习对称的知识点时,我们认识了如下图所示的“将军饮马”模型求最短距离. 问题提出:(1)如图1所示,已知A ,B 是直线l 同旁的两个定点.在直线l 上确定一点P ,并连接AP 与BP ,使PA PB +的值最小.问题探究:(2)如图2所示,正方形ABCD 的边长为2,E 为AB 的中点,P 是AC 上一动点.连接EP 和BP ,则PB PE +的最小值是___________;问题解决:(3)某地有一如图3所示的三角形空地AOB ,已知45AOB ∠=︒,P 是AOB 内一点,连接PO 后测得10PO =米,现当地政府欲在三角形空地AOB 中修一个三角形花坛PQR ,点Q R ,分别是OA OB ,边上的任意一点(不与各边顶点重合),求PQR 周长的最小值.【答案】(1)见解析(3)【详解】(1)解:如图所示,当P 点在如图所示的位置时,PA PB +的值最小;(2)解:如下图所示,∵四边形ABCD 是正方形,∴AC 垂直平分BD ,∴PB PD =,由题意易得:PB PE PD PE DE +=+≥,当D 、P 、E 共线时,在ADE V 中,根据勾股定理得,DE =(3)解:如下图所示,分别作点P 关于OA ,OB 的对称点M N ,,连接OM ON MN ,,,MN 交OA ,OB 于点Q R ,,连接PR PQ ,,此时PQR 周长的最小值等于MN .由轴对称性质可得,10OM ON OP MOA POA NOB POB ===∠=∠∠=∠,,,∴224590MON AOB ∠=∠=⨯︒=︒,在Rt MON △中,MN ===即PQR 周长的最小值等于上一动点,则ACBD【答案】A【详解】解:连接CD ,设,CD AB 交于点G ,如图所示,∵四边形ABCD 是平行四边形,∴CG GD =,AG GB =,∵()0,8A ,()0,2B −∴()0,3G ,∴当CG 取得最小值时,CD 取得最小值,∴当CG EF ⊥时,CG 取得最小值,∵()05E ,,()5,0F −,∴OE OF =,2EG =,∴OEF 是等腰直角三角形,∴此时CGE 是直角三角形,且EG 是斜边,∵2EG =,∴CG =ACBD 的对角线CD 的最小值是,故选:A .2.(2023·上虞市)如图,点P 是∠AOB 内任意一点,OP =6cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,若△PMN 周长的最小值是6 cm ,则∠AOB 的度数是( )A .15B .30C .45D .60【答案】B 【详解】分别作点P 关于OA 、OB 的对称点C 、D ,连接CD ,分别交OA 、OB 于点M 、N ,连接OC 、OD 、PM 、PN 、MN ,如图所示:∵点P 关于OA 的对称点为D ,关于OB 的对称点为C ,∴PM=DM ,OP=OD ,∠DOA=∠POA ; ∵点P 关于OB 的对称点为C ,∴PN=CN ,OP=OC ,∠COB=∠POB ,∴OC=OP=OD ,∠AOB=12∠COD , ∵△PMN 周长的最小值是6cm ,∴PM+PN+MN=6,∴DM+CN+MN=6,即CD=6=OP ,∴OC=OD=CD ,即△OCD 是等边三角形,∴∠COD=60°,∴∠AOB=30°,故选:B .【答案】B 【详解】解:如图,过点G 作GH ⊥AB 于H ,过点G 作MN ∥AB ,∵四边形ABCD 是矩形,AB =112,BC =3,∴∠B =90°,CD =112,AD =3,∵AE =1,∴BE =92,∵∠GHE =∠A =∠GEF =90°,∴∠GEH +∠EGH =90°,∠GEH +∠FEA =90°,∴∠EGH =∠FEA ,又∵GE =EF ,∴△GEH ≌△EFA (AAS ),∴GH =AE =1,∴点G 在平行AB 且到AB 距离为1的直线MN 上运动,∴当F 与D 重合时,CG 有最小值,此时AF =EH =3,∴CG52, 故选B .【答案】B 【详解】解:连接AM 、AC ,AM 交BD 于P ,此时PM+PC 最小,连接CP ,∵四边形ABCD 是菱形,∴OA=OC ,AC ⊥BD ,∴C 和A 关于BD 对称,∴AP=PC ,∵∠A=120°,∴∠ABC=60°,∴△ABC 是等边三角形,∴AC=AB=2,∵M 是BC 的中点,∴AM ⊥BC ,∴∠BAM=30°,∴BM=1,∴故选B .5.(2023·湖北)如图,将△ABC 沿AD 折叠使得顶点C 恰好落在AB 边上的点M 处,D 在BC 上,点P 在线段AD 上移动,若AC =6,CD =3,BD =7,则△PMB 周长的最小值为 .【答案】18【详解】解:由翻折的性质可知,AM =AC ,PM =PC ,∴M 点为AB 上一个固定点,则BM 长度固定, ∵△PMB 周长=PM +PB +BM ,∴要使得△PMB 周长最小,即使得PM +PB 最小,∵PM =PC ,∴满足PC +PB 最小即可,显然,当P 、B 、C 三点共线时,满足PC +PB 最小,如图所示, 此时,P 点与D 点重合,PC +PB =BC ,∴△PMB 周长最小值即为BC +BM ,此时,作DS ⊥AB 于S 点,DT ⊥AC 延长线于T 点,AQ ⊥BC 延长线于Q 点,由题意,AD 为∠BAC 的角平分线,∴DS =DT ,∵1122ACD S AC DT CD AQ ==,1122ABD S AB DS BD AQ ==, ∴11221122ABDACD AB DS BD AQ S S AC DT CD AQ ==,即:AB BD AC CD =,∴763AB =,解得:AB =14, ∵AM =AC =6,∴BM =14-6=8,∴△PMB 周长最小值为BC +BM =3+7+8=18,故答案为:18.6.(2023·北京)如图,P 是AOB ∠内一定点,点M ,N 分别在边OA ,OB 上运动,若30AOB ∠=︒,3OP =,则PMN 的周长的最小值为 .【答案】3【详解】如图,作P 关于OA ,OB 的对称点C ,D .连接OC ,OD .则当M ,N 是CD 与OA ,OB 的交点时,△PMN 的周长最短,最短的值是CD 的长.∵点P 关于OA 的对称点为C ,∴PM=CM ,OP=OC ,∠COA=∠POA ;∵点P 关于OB 的对称点为D ,∴PN=DN ,OP=OD ,∠DOB=∠POB ,∴OC=OD=OP=3,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD 是等边三角形,∴CD=OC=OD=3.∴△PMN 的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=3.【答案】【详解】解:如图,过点P 作PE ⊥AB 于点E ,过点D 作DF ⊥AB 于点F,∵四边形ABCD 是菱形,且∠B =120°,∴∠DAC =∠CAB =30°,∴PE =12AP;∵∠DAF =60°,∴∠ADF =30°,∴AF =12AD =12×6=3;∴DF = ∵12AP+PD =PE+PD,∴当点D ,P ,E 三点共线且DE ⊥AB 时,PE+DP 的值最小,最小值为DF 的长,∴12AP+PD 的最小值为故答案为: 8.(2023·广东)如图,在Rt ABC △中,90BAC ∠=︒,2AB =,4AC =.D ,E 分别是边AB ,AC 上的动点,且2CE AD =,则2BE CD +的最小值为 .【答案】【详解】如图,作Rt CEF ADC ∽,连接BF ,过B 点作BG AC ⊥的延长线与G 点,Rt Rt CEF ADC ∽,且2CE AD =,21CF EF EC AC DC AD ∴===,282,CF AC EF DC ∴===,2BE CD BE EF ∴+=+.BE EF BF +≥,∴当B 、E 、F 三点共线时,BE EF BF +=,此时2BE CD +的值最小,为BF .90FCA ∠=︒,90ACG ∴∠=︒.又90A ∠=︒,90BGC ∠=︒,∴四边形ABGC 是矩形,4BG AC ∴==,2GC AB ==,8210FG FC CG ∴=+=+=,BF ∴==故答案为:9.(2023·内蒙古)如图,已知菱形ABCD的边长为8,点M是对角线AC上的一动点,且∠ABC=120°,则MA+MB+MD的最小值是________.【答案】【详解】解:如图,过点D作DE⊥AB于点E,连接BD,∵菱形ABCD中,∠ABC=120°,∠MAE=30°,∴∠DAB=60°,AD=AB=DC=BC,MD=MB,∴△ADB是等边三角形,∵∠MAE=30°,∴AM=2ME,∵MD=MB,∴MA+MB+MD=2ME+2DM=2DE,根据垂线段最短,此时DE MA+MB+MD最小,∵菱形ABCD的边长为8,∴=∴MA+MB+MD的最小值是故答案为:10.(2023·浙江)如图,河的两岸有A,B两个水文观测点,为方便联络,要在河上修一座木桥MN(河的两岸互相平行,MN垂直于河岸),现测得A,B两点到河岸的距离分别是5米,4米,河宽3米,且A,++的最小值是米.B两点之间的水平距离为12米,则AM MN NB【答案】18【详解】作BB '垂直于河岸,使BB '等于河宽,连接AB ',与靠近A 的河岸相交于M ,作MN 垂直于另一条河岸, 过点A 作'⊥AC BB 交BB '的延长线于点C ,则MN BB '∥且MN BB '=,于是MNBB '为平行四边形,故MB BN '=,当AM MB AB '+=时,AM BN +最小,也就是AM MN NB ++最短,∵12AC =(米),54312BC =++=(米),1239B C '=−=(米)∴在Rt AB C '△中,15AB '(米),∴AM MN NB ++的最小值为:15318+=(米)故答案为:18 .11.(2023·广东)如图所示,已知O 为坐标原点,矩形ABCD (点A 与坐标原点重合)的顶点D 、B 分别在x 轴、y 轴上,且点C 的坐标为()4,8−,连接BD ,将ABD △沿直线BD 翻折至A BD ',交CD 于点E .(1)求点A '坐标.(2)试在x 轴上找点P ,使A P PB '+的长度最短,请求出这个最短距离.【答案】(1)3216,55A ⎛⎫'− ⎪⎝⎭;(2)A P PB '+的长度的最短距离为.【详解】(1)点C 的坐标为(4,8)−,4OD BC ∴==,8CD OB ==,连接AA ',与BD 交于点G ,过A '作A F OB '⊥于点F ,由折叠知,8A B OA '==,OG A G '=,OA BD '⊥, ∴11··22OBD S BD OG OD OB ==,∴·OD OB OG BD ==,∴2OA OG '==, 设OF x =,则8BF x =−,22222OA OF A F A B BF '''−==−,即()222288x x −=−−⎝⎭, 解得,165x =,即165OF =,∴325A F '==, 3216,55A ⎛⎫∴− ⎪⎝⎭';(2)作A '点关于x 轴的对称点A ',连接BA '',与x 轴交于点P ,则A P PB A P PB A B '''''+=+=的值最小,3216,55A ⎛⎫∴−−' ⎝'⎪⎭, (0,8)B ,∴A B =='' 故A P PB '+的长度的最短距离为.吉林)数学兴趣活动课上,小致将等腰的底边,在中,,在中,作在中,,得到线段ABC ABC 120︒ABP ABC 60【答案】(1)2;(2;(3)3.【详解】(1)如图,过点A 作,此时AP 的值最小.∵,,,故答案为:2.(2)根据小致的思路作出图形,可知当时的值最小,如图:∵,,∴,∵,∴(3)如图3中,在上取一点,使得,连接,.,,,,,,,,,时,的值最小,最小值为3,的最小值为3.13.(2023·河南)唐朝诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——将军饮马问题:如图1所示,诗中将军在观望烽火之后从山脚下的A 点出发,走到河旁边的P 点饮马后再到B 点宿营.请问怎样走才能使总的路程最短?作法如下:如图1,从B 出发向河岸引垂线,垂足为D ,在BD 的延长线上,取B 关于河岸的对称点B ',连接AB ',与河岸线相交于P ,则P 点就是饮马的地方,将军只要从A 出发,沿直线走到P ,饮马之后,再由P 沿直线走到B ,所走的路程就是最短的.⊥AP BC 4,120AB AC BAC ==∠=︒30ABC ∴∠=︒122AP AB ∴==PN AB ⊥PE EF +30ABC ∠=︒122AP AB ==BP =1122BP AP AB PN ⋅=⋅PN =AB K AK AC =CK DK 90ACB ∠=︒30B ∠=︒60CAK ∴∠=︒PAD CAK ∴∠=∠PAC DAK ∴∠=∠PA DA =CA KA =()PAC DAK SAS ∴△≌△PC DK ∴=KD BC ⊥KD PC ∴(1)观察发现如图2,在等腰梯形ABCD 中,2,120AB CD AD D ===∠=︒,点E 、F 是底边AD 与BC 的中点,连接EF ,在线段EF 上找一点P ,使BP AP +最短.作点B 关于EF 的对称点,恰好与点C 重合,连接AC 交EF 于一点,则这点就是所求的点P ,故BP AP +的最小值为_______.(2)实践运用如图3,已知O 的直径1MN =,点A 在圆上,且AMN ∠的度数为30︒,点B 是弧AN 的中点,点P 在直径MN 上运动,求BP AP +的最小值.(3)拓展迁移如图,已知抛物线()20y ax bx c a =++≠的对称轴为1x =,且抛物线经过()()1,00,3A C −−、两点,与x 轴交于另一点B .①求这条抛物线所对应的函数关系式;②在抛物线的对称轴直线1x =上找到一点M ,使ACM △周长最小,请求出此时点M 的坐标与ACM △周长最小值.【答案】(1)(2)PA PB +的最小值为(3)①2=23y x x −−;②点M 的坐标为()12−,;ACM △【详解】(1)解:过点A 作AM BC ⊥于点M ,作DN BC ⊥于点N ,如图所示:则AM DN ∥,∵四边形ABCD 为等腰梯形,∴AD BC ∥,120BAD ADC ∠=∠=︒,∴18060ABM BAD ∠=︒−∠=︒,18060DCN ADC ∠=︒−∠=︒,∴1cos 60212BM AB =⨯︒=⨯=,sin 602AM AB =⨯︒== 1cos 60212CN CD =⨯︒=⨯=,∵AD BC ∥,AM DN ∥,∴四边形AMND 为平行四边形,∴2MN AD ==,∴123CM CN MN =+=+=,∴AC ==即BP AP +的最小值为故答案为:(2)解:取点A 关于MN 的对称点A ',连接OA '、OB 、OA 、MB 、A B ',MN 与A B '交于点P ',当点P 在点P '时,PA PB +最小,且最小值为A B ',如图所示:∵A 关于MN 的对称点A ',MN 为直径,∴点A '在O 上,∵30AMN ∠=︒,∴260AON AMN ∠=∠=︒,∵点A 关于MN 的对称点A ',∴60A ON AON '∠=∠=︒,∵点B 是弧AN 的中点, ∴1152BMN AMN ∠=∠=︒, ∴230BON BMN ∠=∠=︒,∴603090BOA '∠=︒+︒=︒,∵直径1MN =, ∴12OA OB '==,∴A B ==', 即PA PB +的最小值为2.(3)解:①∵抛物线()20y ax bx c a =++≠的对称轴为1x =,且抛物线经过()1,0A −, ∴抛物线与x 轴的另外一个交点B 的坐标为:()3,0, ∴抛物线的解析式为:()()13y a x x =+−, 把()0,3C −代入得:()()30103a −=+−,解得:1a =,∴抛物线的解析式为:()()21323y x x x x =+−=−−.②连接CB 交直线1x =于一点,该点即为点M ,连接AM ,AC ,如图所示:∵点A 、B 关于直线1x =对称,∴AM BM =,∴AM CM CM BM +=+,∵两点之间线段最短,∴CM BM +最小,即AM CM +最小,∵AC 为定值,∴此时ACM △的周长最小,∵AC =BC = ∴ACM △;设直线BC 的解析式为()0y kx b k =+≠,把()0,3C −,()3,0B 代入得:330b k b =−⎧⎨+=⎩,解得:13k b =⎧⎨=−⎩,∴直线BC 的解析式为3y x =−,把1x =代入得:132y =−=−,∴点M 的坐标为()12−,.。

数学建模万能模板

数学建模万能模板

“中国矿大出版杯”第五届苏北数学建模联赛题 目 A 题:私家车保有量增长及调控问题 摘 要私人汽车保有量与社会经济发展有着密切的联系,然而,私人汽车保有量的剧增给能源、环境带来了巨大的压力,因此调控汽车保有量显得尤为重要。

本文通过对已有数据的统计分析,根据相关的数学建模知识,解决了题目要求的实际问题。

针对问题一,通过建立并求解熵值法确定了汽车保有量的影响因素。

并以此分别建立了灰色预测模型、BP 神经网络模型,在这两种模型的基础上,进行了优化处理,建立了灰色-神经网络组合模型,并求解出2008-2010年的预测值(见得知加息、上调存款准备金率对私人汽车保有量的影响是温和轻微的。

针对问题三,根据汽车尾气的排放情况,分析了两类汽车的数量、运营里程与废气排放之间的关系,建立了LEAP 模型,并提出可行性方案。

在理想的排放尾气状况下,得到了合理的调控汽车保有量方案。

随后给出了模型的改进方案,并指出模型的优缺点。

最后,结合本文的优越性,我们给政府和消费者提出了一些建议。

关键词: 汽车保有量预测 熵值法 灰色-神经网络 权系数Logistic 关系 LEAP 模型参赛队号 1503目录一、问题的提出 (2)二、背景简述 (2)三、基本假设与符号说明 (3)3.1. 基本假设 (3)3.2. 符号说明 (4)四、问题分析与建模流程 (4)4.1. 问题一的分析 (4)4.2. 问题二、三的分析 (5)五、数学模型的建立与求解 (6)5.1. 确定影响因素模型(熵值法)的建立 (6)5.2. 影响因素的确定 (7)5.3. 私人汽车保有量预测模型的建立 (9)5.4. 私人汽车保有量的预测 (16)5.5. 升息等因素对汽车保有量的影响 (18)5.6. 调控汽车保有量 (21)六、模型的改进 (27)七、模型的评价 (28)八、相关建议 (28)参考文献 (29)附录 (30)一、问题的提出我国经济的快速发展为私人汽车提供了巨大的发展空间。

数学建模万能模板8模型的进一步讨论和改进

数学建模万能模板8模型的进一步讨论和改进

七、模型改进方向改进方向一:对于问题二的求解,我们提出了另外一个求解方法。

在问题二中,若全力造房,即每月建房33套,总建房数为33⨯6=198(套),比预计新建房18749236=-多建11套。

我们设在i 月份中的建房数目比33少i X 套,则有1161=∑=i i X结合前面模型建立部分的约束条件,同样可以求出最优月建造计划。

改进方向二:我们的模型是线性规划模型,本题涉及到六个月的建造计划,我们在假设的时候,将一个月作为一个建造周期。

我们可以从另外一个角度考虑,这实际上也是一个多阶段规划问题。

多阶段规划属于离散动态优化问题,动态规划模型是解决这类问题的有效方法。

我们要解决的建造计划问题就是这类问题,可以将它转化为典型的动态优化模型—最短路问题。

最短路问题 为了更好的解决这类问题,我们将6个月的建房计划问题化为最短路问题,最短路线问题有这样的特点,如果最短线路在第K 站通过点,则这一线路在由出发到达终点的那一部分线路,对于从点到达终点的所有可能选择的不同线路来说,必定也是距离最短的。

最短线路问题的这一特性启示我们:以一个月为一个建造周期,从最后一个周期向前逐步推进,求出各月到最后的最短路线,最终求得从1月到6月的最短路线。

八、模型的进一步讨论和改进8.1 回归模型对教材满意度权重的确定在本文中,我们考虑调查问卷中:教材内容新颖,保持学术前沿水平(Q2l1);教材的作者是相应领域的权威,所以课程理论基础扎实(Q2l2);教材印刷及排版质量(Q2l3);教材价格(Q2l4)四项指标在材材满意度中的权重,为了问题的简化,我们人为取Q211的权重系数为0.1,Q212的权重系数为0.2,Q213的权重系数0.2,Q214的权重系数为0.5。

这样的权重没有牢固的理论背影及依据,因此,基于教材满意度的调查数据,建立一个有效的教材满意度回归模型,实现教材满意度影响因素Q211,Q212,Q213,Q214的合理匹配,对于挖掘教材强势点,提高新教材出版的针对性具有十分重要的意义。

数学建模万能模板9模型优缺点评价三篇

数学建模万能模板9模型优缺点评价三篇

数学建模万能模板9模型优缺点评价篇一模型评价优点:1 、本文在正确、清楚地分析了题意地基础上,建立了合理、科学的可变成本计算模型,为求最大利润准备了条件。

2 、在假设基础上建立了计算折旧费用的模型,巧妙地解决了实房、期房数目不确定的问题。

3 、建立了以最大利润为目标的单目标规划函数,选用MATLAB 编程,具有一定的实际价值。

4 、运用了正确的数据处理方法,很好的解决了小数取整问题。

缺点:1 、在编程中,没有加入的约束条件,导致了最终的运算结果出现小数。

最后,我们采用人工方法进行了较好的弥补。

2 、公司预计的销售量与实际的销售量肯定会有出入。

但在模型计算中,我们取了预计值作为近似值来计算,这与实际值必会有些出入。

3 、在假设中我们作出了“顾客完全服从公司分配”的假设,这与实际情况不完全相符。

4 、在确定固定成本G 和销售费用X 时,我们只是从网上查阅的资料中得到1500 元/ 平方米和0.1 的粗略值,这与实际情况有出入。

但这只会对净利润L 的值产生影响,而不会影响建造计划。

5 、模型建立过程中引入的变量过多,容易引起“维数灾”,且不利于编程处理。

十、模型优缺点评价优点1 、原创性很强,文章中的大部分模型都是自行推导建立的;2 、建立的规划模型能与实际紧密联系,结合实际情况对问题进行求解,使得模型具有很好的通用性和推广性;3 、模型的计算采用专业的数学软件,可信度较高;4 、对附件中的众多表格进行了处理,找出了许多变量之间的潜在关系;5 、对模型中涉及到的众多影响因素进行了量化分析,使得论文有说服力。

缺点1 、规划模型的约束条件有点简单;2 、顾客满意度调查的权重系数人为确定缺少理论依据;3 、没有很好地把握论文的重心,让人感觉论文有点散。

篇二模型评价:模型优点:建立的模型方法简单易行,且易中应用于现实生活。

模型缺点:考虑的影响因素较少,在处理问题时可能存在一些误差。

仅使用一个月的数据具有一定的局限性,另外对外伤患者都按急症处理,考虑的情况比较简单。

方程的实际应用模型(4大模型)-2024年中考数学答题技巧与模板构建含参考答案

方程的实际应用模型(4大模型)-2024年中考数学答题技巧与模板构建含参考答案

方程的实际应用模型题型解读|模型构建|通关试练本专题主要对初中阶段的方程应用题型进形总结分析,收集汇总各地市常考的方程应用题型,主要分为一元一次方程,二元一次方程组,分式方程,一元二次方程几大题型。

考试中我们可以看出二元一次方程组和分式方程考试频率较高。

一元一次方程相对基础较为简单,应用题型中出现较少,一元二次方程的应用综合性较高除了在应用题型中有所体现,在二次函数的应用中也经常出现。

本专题根据考试题型分类归纳总结。

模型01一元一次方程的应用一元一次方程的应用题型1.行程问题路程=时间×速度,时间=路程÷速度,速度=路程÷时间;(单位:路程--米、千米;时间--秒、分、时;速度--米/秒、米/分、千米/时间)2.工程问题:工作总量=工作时间×工作效率,工作总量=各部分工作量的和3.利润问题:利润=售价-进价,利润率=利润÷进价,售价=标价×折扣4.等积变形问题长方体的体积=长×宽×高;圆柱的体积=底面积×高;锻造前的体积=锻造后的体积5.利息问题利息和=本金+利息;利息=本金×利率×时间模型02二元一次方程组应用二元一次方程组应用:1.行程问题:速度×时间=路程顺水速度=静水速度+水流速度逆水速度=静水速度-水流速度2.配套问题:实际数量比=配套比3.商品销售问题:利润=售价-进价;售价=标价×折扣;利润率=利润÷进价×100%4.工程问题:工作效率×工作时间=工作总量;甲乙合作效率=甲的效率+乙的效率模型03分式方程应用分式方程的应用解法步骤及题型:列分式方程解应用题的一般步骤,与列整式方程解应用题的步骤一样,都是按照审、设、列、解、验、答六步进行.(1)在利用分式方程解实际问题时,必须进行“双检验”,既要检验去分母化成整式方程的解是否为分式方程的解,又要检验分式方程的解是否符合实际意义.(2)分式方程应用题常见类型有行程问题、工作问题、销售问题等,其中行程问题中又出现逆水、顺水航行这一类型.模型04一元二次方程应用一元二次方程的应用主要有以下几种题型:1.数字问题:个位数为a,十位数是b,则这个两位数表示为10b+a.2.增长率问题:增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即原数×(1+增长百分率)2=后来数.3.形积问题:①利用勾股定理列一元二次方程,求三角形、矩形的边长.②利用三角形、矩形、菱形、梯形和圆的面积,以及柱体体积公式建立等量关系列一元二次方程.③利用相似三角形的对应比例关系,列比例式,通过两内项之积等于两外项之积,得到一元二次方程.4.运动点问题:物体运动将会沿着一条路线或形成一条痕迹,运行的路线与其他条件会构成直角三角形,可运用直角三角形的性质列方程求解.5. 利润(销售)问题利润(销售)问题中常用的等量关系:利润=售价-进价(成本)总利润=每件的利润×总件数模型01一元一次方程的应用考|向|预|测一元一次方程的应用该题型近年主要以应用题形式出现,一般为应用题型的第一问,难度系数较小,在各类考试中基本为送分题型。

概率统计模型【范本模板】

概率统计模型【范本模板】

概率统计模型(2)—随机决策模型决策问题是人们在政治、军事、社会、经济南药以及我们的日常生活和学习中都会经常遇到的问题,比如说,你有了余钱,这个钱应该如何支配呢?希望你做出决策来。

那么有几个选择方案呢?首先你可以想到把它存到银行,既保险又能增值,但是相对的收入就低一些;有没有其它方案可以选择呢?当然还有,比如说,把你的余钱投资于房地产或者是买股票、玩期货都是选择方案,那么这些方案带有很大的风险性,但相对的收入要比存银行高得多.那么该你决策了,这存银行,还是投资于房地产、去买股票、去搞期货呢?需要你做出决策,再比如说,我们冬季要取暖,在秋天要买些燃料以作冬天取暖用,这就有问题了,假如说正常的冬天你需要10吨煤的话,那么严冬,比较冷的冬天你需要15吨煤,而遇到暖冬你可能需要5吨煤就可以了,那么这个时候就需要你做出相应的决策了,你去买多少煤,如果买多了,恰巧遇到一个暖冬,那么无疑是一种浪费;那么如果买多了,比如买了5吨煤,正好遇到一个严冬,那么到严冬到来的时候你再去买煤的话,那个时候的价格就比秋天买的时候高得多了,你就多付出不少,这同样需要你做出决策来。

这样的例子到处都是。

应该如何去做呢?就要研究决策问题了。

按照决策环境可以分为三大类:确定性决策、不确定性决策和风险性决策,确定性决策我们在以前已经接触过了,比如说通过微分方程的方法建立模型,做出决策,通过规划论的方法建立模型,做出决策,那么这些决策都属于确定性决策;前面说过的投资房地产、买股票、搞期货等是带有风险性的决策,这种决策在实际中经常遇到,因此我们这一讲主要介绍风险性决策,主要内容如下:风险决策模型的概念决策树的概念施工决策问题市场预测问题1、风险型决策是指在作出决策时往往有某些随机性的因素影响,而决策者对于这些因素了解不足,但是对于各种因素发生的概率已知或者可估算出来,这种决策因存在一定的风险而称为风险型决策。

2、风险决策模型的基本要素决策者——进行决策的个人、委员会或某个组织。

高中数学模型教案设计模板

高中数学模型教案设计模板

一、教学目标1. 知识与技能:掌握模型的基本概念、类型及构建方法;能够运用所学知识解决实际问题。

2. 过程与方法:通过小组合作、探究式学习,培养学生分析问题、解决问题的能力。

3. 情感态度与价值观:激发学生学习数学的兴趣,提高学生的创新意识和实践能力。

二、教学重点与难点1. 教学重点:模型的基本概念、类型及构建方法。

2. 教学难点:运用所学知识解决实际问题,提高模型构建的灵活性。

三、教学过程1. 导入(1)创设情境,激发兴趣:通过实际生活中的实例,引导学生认识到数学模型在解决实际问题中的重要性。

(2)提出问题:如何运用数学知识构建模型,解决实际问题?2. 基本概念与类型(1)讲解模型的基本概念,如数学模型、实际问题、模型构建等。

(2)介绍模型的类型,如线性模型、非线性模型、概率模型等。

3. 模型构建方法(1)引导学生分析实际问题,找出数学关系。

(2)讲解模型构建的基本步骤,如建立方程、求解方程、验证模型等。

(3)通过实例,展示模型构建的过程。

4. 实际应用(1)分组讨论,让学生结合所学知识,分析实际问题。

(2)指导学生运用模型构建方法,解决实际问题。

(3)展示学生作品,进行点评与总结。

5. 总结与反思(1)回顾本节课所学内容,强调模型在解决实际问题中的重要性。

(2)引导学生反思,总结自己在模型构建过程中的收获与不足。

四、作业布置1. 完成课后习题,巩固所学知识。

2. 选择一个实际问题,运用所学知识构建模型,并进行求解。

五、教学评价1. 课堂表现:观察学生在课堂上的参与度、积极性。

2. 作业完成情况:检查学生作业的准确性和完整性。

3. 实际应用能力:评估学生在实际问题中运用模型的能力。

六、教学资源1. 教材:高中数学教材,相关教辅资料。

2. 课件:制作与教学内容相关的课件,便于学生理解。

3. 实际案例:收集与模型构建相关的实际案例,丰富教学内容。

七、教学反思1. 教学内容是否符合学生的认知水平?2. 教学方法是否有效激发学生的学习兴趣?3. 教学过程是否注重培养学生的创新意识和实践能力?4. 教学效果如何,学生是否掌握了模型构建的方法?通过以上教案设计模板,教师可以根据实际教学情况,灵活调整教学内容和方法,提高教学质量。

旅游策划数学模板

旅游策划数学模板

旅游策划数学模板引言旅游策划是一项需要精确计划和准确决策的任务。

数学作为一门基础学科,可以在旅游策划中发挥重要作用,帮助我们进行合理的决策和规划。

本文将介绍一种数学模板,该模板可以帮助旅游策划者进行系统性的思考和决策。

步骤一:目标设定首先,我们需要明确旅游策划的目标。

这可以包括旅游线路的设计、旅游景点的选择、预算的安排等等。

通过明确目标,我们可以更好地进行下一步的计算和决策。

步骤二:数据收集在进行数学模型计算之前,我们需要收集并整理相关的数据。

这些数据可以包括旅游景点的吸引力评分、旅游线路的距离和时间、旅游交通的费用等等。

通过收集数据,我们可以更好地了解旅游策划中的各种限制和约束条件。

步骤三:数学模型在旅游策划中,我们可以使用数学模型来帮助我们进行决策和规划。

下面是一个简单的数学模型示例:•旅游景点选择模型:根据各个景点的吸引力评分和旅游线路的距离,我们可以使用加权求和的方法来计算每个景点的得分,然后选择得分最高的景点。

•旅游线路设计模型:根据旅游景点之间的距离和时间,我们可以使用最短路径算法来设计最优线路,以最小化旅行时间和距离。

•旅游预算模型:根据旅游交通的费用和住宿的费用,我们可以使用线性规划模型来确定最优的预算分配,以最大化旅游体验。

这些数学模型只是示例,实际应用中可以根据具体情况进行调整和优化。

步骤四:模型求解一旦建立了数学模型,我们可以使用计算机编程或者是数学软件来求解模型。

通过计算机的帮助,我们可以更快速、更准确地得到答案。

在求解模型时,我们需要将收集到的数据输入模型,并根据具体的目标和约束条件进行计算。

步骤五:结果分析求解完数学模型后,我们需要对结果进行分析。

这包括评估旅游策划的效果、分析各种方案的优劣、找出潜在的改进空间等等。

通过结果分析,我们可以对旅游策划进行进一步的优化和改进。

结论数学模板可以帮助旅游策划者进行系统性的思考和决策。

通过合理地使用数学模型,我们可以更好地进行旅游策划,提高旅游体验的质量和效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告(二)
院(系)数学与统计学院课程名称:数学模型与数学实验日期:2015 年 10 月 8 日班级学号实验室3-34
专业数学与应用数学姓名所用软件matlab
实验
名称
无约束最优化成绩评定
实验目的1..了解无约束最优化方法的一些基本概念。

2.熟悉掌握用相关的命令来求解无约束最优化问题。

实验内容
1:无约束最优化问题实际上是什么问题?求这类问题的最优解的基本思路是什么?
2:求()5
x
f x e x
=-在区间[1,2]内的极小值点和极小值。

3:已知222
12312123
(,,)3sin
f x x x x x x x x
=+-,求
123
(,,)
f x x x在点(1,1,0)
-附近的极小值。

实验过程1.:无约束最优化问题实际上是一个多元函数无条件极值问题;求这类
问题的最优解的基本思路是采用迭代法,即先选择一个初始点,再寻找该点处的下降方向(我们称为搜索方向),在该方向上求极小点,得到一个新的点,然后在新点处再寻找下降方向和在该方向上的求极小点,……,如此下去,最终得到最优解。

2.
命令:
f='exp(x)-5*x';
x=fminbnd(f,1,2) %极小值点
fval=exp(x)-5*x %对应x的极小值
运行结果:
x =
1.6094
fval =
-3.0472
3.首先,建立M-文件,文件名取函数名 myfun.m。

function f=myfun(x)
f=x(1)^2+3*sin(x(2))-x(1)*x(2)^2*x(3)^2 命令:
x0=[1,-1,0]; %取点(1,-1,0)为迭代初值
x=fminunc('myfun',x0);
fval=myfun(x);
运行结果:
f =
-1.5244
心得体会
通过本次试验学会用matlab调用函数求极值的几种方法,了解了无约束最优化相关问题的解题方式。

这次的实验做起来比第一次快多了,也许是对MATLAB软件和数学建模都比较熟悉了。

不过总的来说这次做实验都没遇到什么大的问题,就是新建MATLAB文件时有点困难,不过实验的过程和函数的含义还是不懂,只是照着模版做题,没能理解真正的含义。

注:实验报告用A4纸双面打印,篇幅不要超过2页纸。

相关文档
最新文档