永福县三中2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
永福县三中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 已知三棱柱111ABC A B C - 的侧棱与底面边长都相等,1A 在底面
ABC 上的射影为BC 的中点, 则异面直线AB 与1CC 所成的角的余弦值为( )
A B D .34
2. 某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位:
小时)间的关系为0e kt
P P -=(0P
,k 均为正常数).如果前5个小时消除了10%的污染物,为了消除27.1% 的污染物,则需要( )小时. A.8
B.10
C. 15
D. 18
【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想.
3. 在定义域内既是奇函数又是减函数的是( )
A .y=
B .y=﹣x+
C .y=﹣x|x|
D .y=
4. 已知f (x )=2sin (ωx+φ)的部分图象如图所示,则f (x )的表达式为( )
A .
B .
C .
D .
5. 已知函数f (x )=a x ﹣1
+log a x 在区间[1,2]上的最大值和最小值之和为a ,则实数a 为( )
A .
B .
C .2
D .4
6. 连续抛掷两次骰子得到的点数分别为m 和n ,记向量=(m ,n ),向量=(1,﹣2),则⊥的概率是( )
A .
B .
C .
D .
7. 数列{a n }是等差数列,若a 1+1,a 3+2,a 5+3构成公比为q 的等比数列,则q=( )
A .1
B .2
C .3
D .4
8. 四棱锥P ﹣ABCD 的底面是一个正方形,PA ⊥平面ABCD ,PA=AB=2,E 是棱PA 的中点,则异面直线BE 与AC 所成角的余弦值是( )
A .
B .
C .
D .
9. 若函数f (x )的定义域为R ,则“函数f (x )是奇函数”是“f (0)=0”的( ) A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
10.复数i ﹣1(i 是虚数单位)的虚部是( )
A .1
B .﹣1
C .i
D .﹣i 11.已知函数y=f (x )的周期为2,当x ∈[﹣1,1]时 f (x )=x 2,那么函数y=f (x )的图象与函数y=|lgx|的图象的交点共有( )
A .10个
B .9个
C .8个
D .1个
12.已知在△ABC 中,a=,b=,B=60°,那么角C 等于( )
A .135°
B .90°
C .45°
D .75°
二、填空题
13.命题“(0,)2x π
∀∈,sin 1x <”的否定是 ▲ .
14.(﹣2)7
的展开式中,x 2的系数是 .
15.运行如图所示的程序框图后,输出的结果是
16.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是.已知样本中平均气温不大于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为 .
17.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2﹣5x+4=0的两个根,则S 6= .
18.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均的课外阅读时间为 小时.
三、解答题
19.(本小题满分10分)选修4—4:坐标系与参数方程
以坐标原点为极点,以x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为方程为r (],0[πθ∈),直线l 的参数方程为2t cos 2sin x y t a
a
ì=+ïí=+ïî(t 为参数).
x y+垂直,求点D的直角坐标和曲线C (I)点D在曲线C上,且曲线C在点D处的切线与直线+2=0
的参数方程;
(II)设直线l与曲线C有两个不同的交点,求直线l的斜率的取值范围.
20.设定义在(0,+∞)上的函数f(x)=ax++b(a>0)
(Ⅰ)求f(x)的最小值;
(Ⅱ)若曲线y=f(x)在点(1,f(1))处的切线方程为y=,求a,b的值.
21.【徐州市2018届高三上学期期中】如图,有一块半圆形空地,开发商计划建一个矩形游泳池及其矩形附属设施,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为,半径为,矩形的一边在直径上,点、、、在圆周上,、在边上,且,设.
(1)记游泳池及其附属设施的占地面积为,求的表达式;
(2)怎样设计才能符合园林局的要求?
22.已知集合A={x|1<x<3},集合B={x|2m<x<1﹣m}.
(1)若A⊆B,求实数m的取值范围;
(2)若A∩B=∅,求实数m的取值范围.
23.已知命题p:“存在实数a,使直线x+ay﹣2=0与圆x2+y2=1有公共点”,命题q:“存在实数a,使点(a,1)
在椭圆内部”,若命题“p且¬q”是真命题,求实数a的取值范围.
24.在锐角△ABC中,角A、B、C的对边分别为a、b、c,且.
(Ⅰ)求角B的大小;
(Ⅱ)若b=6,a+c=8,求△ABC的面积.
永福县三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1.【答案】D
【解析】
考点:异面直线所成的角.
2.【答案】15
【解析】
3.【答案】C
【解析】解:A.在定义域内没有单调性,∴该选项错误;
B.时,y=,x=1时,y=0;
∴该函数在定义域内不是减函数,∴该选项错误;
C.y=﹣x|x|的定义域为R,且﹣(﹣x)|﹣x|=x|x|=﹣(﹣x|x|);
∴该函数为奇函数;
;
∴该函数在[0,+∞),(﹣∞,0)上都是减函数,且﹣02=02;
∴该函数在定义域R上为减函数,∴该选项正确;
D.;
∵﹣0+1>﹣0﹣1;
∴该函数在定义域R上不是减函数,∴该选项错误.
故选:C.
【点评】考查反比例函数的单调性,奇函数的定义及判断方法,减函数的定义,以及分段函数单调性的判断,二次函数的单调性.
4. 【答案】 B
【解析】解:∵函数的周期为T==
,
∴ω=
又∵函数的最大值是2,相应的x 值为
∴
=
,其中k ∈Z
取k=1,得φ=
因此,f (x )的表达式为,
故选B
【点评】本题以一个特殊函数求解析式为例,考查由y=Asin (ωx+φ)的部分图象确定其解析式、三角函数的图象与性质,周期与相位等概念,属于基础题.
5. 【答案】A
【解析】解:分两类讨论,过程如下:
①当a >1时,函数y=a x ﹣1 和y=log a x 在[1,2]上都是增函数, ∴f (x )=a
x ﹣1
+log a x
在[1,2]上递增,
∴f (x )max +f (x )min =f (2)+f (1)=a+log a 2+1=a ,
∴log a 2=﹣1,得a=,舍去;
②当0<a <1时,函数y=a x ﹣1 和y=log a x 在[1,2]上都是减函数, ∴f (x )=a
x ﹣1
+log a x
在[1,2]上递减,
∴f (x )max +f (x )min =f (2)+f (1)=a+log a 2+1=a ,
∴log a 2=﹣1,得a=,符合题意;
故选A .
6. 【答案】A
【解析】解:因为抛掷一枚骰子有6种结果,设所有连续抛掷两次骰子得到的点数为(m ,n ),有36种可能,
而使⊥的m,n满足m=2n,这样的点数有(2,1),(4,2),(6,3)共有3种可能;
由古典概型公式可得⊥的概率是:;
故选:A.
【点评】本题考查古典概型,考查用列举法得到满足条件的事件数,是一个基础题.
7.【答案】A
【解析】解:设等差数列{a n}的公差为d,
由a1+1,a3+2,a5+3构成等比数列,
得:(a3+2)2=(a1+1)(a5+3),
整理得:a32+4a3+4=a1a5+3a1+a5+3
即(a1+2d)2+4(a1+2d)+4=a1(a1+4d)+4a1+4d+3.
化简得:(2d+1)2=0,即d=﹣.
∴q===1.
故选:A.
【点评】本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题.
8.【答案】B
【解析】解:以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,
则B(2,0,0),E(0,0,1),A(0,0,0),C(2,2,0),
=(﹣2,0,1),=(2,2,0),
设异面直线BE与AC所成角为θ,
则cosθ===.
故选:B.
9.【答案】A
【解析】解:由奇函数的定义可知:若f(x)为奇函数,
则任意x都有f(﹣x)=﹣f(x),取x=0,可得f(0)=0;
而仅由f(0)=0不能推得f(x)为奇函数,比如f(x)=x2,
显然满足f(0)=0,但f(x)为偶函数.
由充要条件的定义可得:“函数f(x)是奇函数”是“f(0)=0””的充分不必要条件.故选:A.
10.【答案】A
【解析】解:由复数虚部的定义知,i﹣1的虚部是1,
故选A.
【点评】该题考查复数的基本概念,属基础题.
11.【答案】A
【解析】解:作出两个函数的图象如上
∵函数y=f(x)的周期为2,在[﹣1,0]上为减函数,在[0,1]上为增函数
∴函数y=f(x)在区间[0,10]上有5次周期性变化,
在[0,1]、[2,3]、[4,5]、[6,7]、[8,9]上为增函数,
在[1,2]、[3,4]、[5,6]、[7,8]、[9,10]上为减函数,
且函数在每个单调区间的取值都为[0,1],
再看函数y=|lgx|,在区间(0,1]上为减函数,在区间[1,+∞)上为增函数,
且当x=1时y=0; x=10时y=1,
再结合两个函数的草图,可得两图象的交点一共有10个,
故选:A .
【点评】本题着重考查了基本初等函数的图象作法,以及函数图象的周期性,属于基本题.
12.【答案】D
【解析】解:由正弦定理知=
,
∴sinA==
×
=
,
∵a <b , ∴A <B , ∴A=45°,
∴C=180°﹣A ﹣B=75°, 故选:D .
二、填空题
13.【答案】()
0,2x π
∃∈,sin 1≥
【解析】
试题分析:“(0,)2x π
∀∈,sin 1x <”的否定是()
0,2
x π
∃∈,sin 1≥
考点:命题否定
【方法点睛】(1)对全称(存在性)命题进行否定的两步操作:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定.(2)判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每个元素x ,证明p (x )成立;要判定一个全称命题是假命题,只要举出集合M 中的一个特殊值x 0,使p (x 0)不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个x =x 0,使p (x 0)成立即可,否则就是假命题. 14.【答案】﹣280
解:∵(
﹣2)7
的展开式的通项为
=.
由,得r=3.
∴x2的系数是.故答案为:﹣280.
15.【答案】0
【解析】解:模拟执行程序框图,可得程序框图的功能是计算并输出S=sin+sin+…+sin的值,
由于sin周期为8,
所以S=sin+sin+…+sin=0.
故答案为:0.
【点评】本题主要考查了程序框图和算法,考查了正弦函数的周期性和特殊角的三角函数值的应用,属于基本知识的考查.
16.【答案】9.
【解析】解:平均气温低于22.5℃的频率,即最左边两个矩形面积之和为0.10×1+0.12×1=0.22,
所以总城市数为11÷0.22=50,
平均气温不低于25.5℃的频率即为最右面矩形面积为0.18×1=0.18,
所以平均气温不低于25.5℃的城市个数为50×0.18=9.
故答案为:9
17.【答案】63
【解析】解:解方程x2﹣5x+4=0,得x1=1,x2=4.
因为数列{a n}是递增数列,且a1,a3是方程x2﹣5x+4=0的两个根,
所以a1=1,a3=4.
设等比数列{a n}的公比为q,则,所以q=2.
则.
故答案为63.
【点评】本题考查了等比数列的通项公式,考查了等比数列的前n项和,是基础的计算题.
18.【答案】0.9
【解析】解:由题意, =0.9,
故答案为:0.9
三、解答题
19.【答案】
【解析】【命题意图】本题考查圆的参数方程和极坐标方程、直线参数方程、直线和圆位置关系等基础知识,意在考查数形结合思想、转化思想和基本运算能力.
(Ⅱ)设直线l :2)2(+-=x k y 与半圆)0(22
2
≥=+y y x 相切时
21|22|2
=+-k
k
0142=+-∴k k ,32-=∴k ,32+=k (舍去)
设点)0,2(-B ,2
AB
k =
=-
故直线l 的斜率的取值范围为]22,32(--. 20.【答案】
【解析】解:(Ⅰ)f (x )=ax+
+b ≥2
+b=b+2
当且仅当ax=1(x=)时,f (x )的最小值为b+2
(Ⅱ)由题意,曲线y=f (x )在点(1,f (1))处的切线方程为y=,可得:
f (1)=,∴a++b=①
f'(x )=a ﹣
,∴f ′(1)=a ﹣=②
由①②得:a=2,b=﹣1
21.【答案】(1)
(2)
【解析】试题分析:(1)根据直角三角形求两个矩形的长与宽,再根据矩形面积公式可得函数解析式,最后根据实际意义确定定义域(2)利用导数求函数最值,求导解得零点,列表分析导函数符号变化规律,确定函数单调性,进而得函数最值
(2)要符合园林局的要求,只要最小,
由(1)知,
令,即,
解得或(舍去),
令,
当时,是单调减函数,
当时,是单调增函数,
所以当时,取得最小值.
答:当满足时,符合园林局要求.
22.【答案】
【解析】解:(1)由A⊆B知:,
得m≤﹣2,即实数m的取值范围为(﹣∞,﹣2];
(2)由A∩B=∅,得:
①若2m≥1﹣m即m≥时,B=∅,符合题意;
②若2m<1﹣m即m<时,需或,
得0≤m<或∅,即0≤m<,
综上知m≥0.
即实数m的取值范围为[0,+∞).
【点评】本题主要考查集合的包含关系判断及应用,交集及其运算.解答(2)题时要分类讨论,以防错解或漏解.
23.【答案】
【解析】解:∵直线x+ay﹣2=0与圆x2+y2=1有公共点
∴≤1⇒a2≥1,即a≥1或a≤﹣1,
命题p为真命题时,a≥1或a≤﹣1;
∵点(a,1)在椭圆内部,
∴,
命题q为真命题时,﹣2<a<2,
由复合命题真值表知:若命题“p且¬q”是真命题,则命题p,¬q都是真命题
即p真q假,则⇒a≥2或a≤﹣2.
故所求a的取值范围为(﹣∞,﹣2]∪[2,+∞).
24.【答案】
【解析】解:(Ⅰ)由2bsinA=a,以及正弦定理,得sinB=,
又∵B为锐角,
∴B=,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
(Ⅱ)由余弦定理b2=a2+c2﹣2accosB,
∴a2+c2﹣ac=36,
∵a+c=8,
∴ac=,
∴S△ABC==.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣。