杭锦后旗第三高级中学2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杭锦后旗第三高级中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 已知角α的终边上有一点P (1,3),则
的值为( )
A .﹣
B .﹣
C .﹣
D .﹣4
2. 设偶函数f (x )满足f (x )=2x ﹣4(x ≥0),则{x|f (x ﹣2)<0}=( )
A .{x|x <﹣2或x >4}
B .{x|x <0或x >4}
C .{x|x <0或x >6}
D .{x|0<x <4}
3. 已知集合A={x|a ﹣1≤x ≤a+2},B={x|3<x <5},则A ∩B=B 成立的实数a 的取值范围是( ) A .{a|3≤a ≤4} B .{a|3<a ≤4} C .{a|3<a <4} D .∅
4. 数列{}n a 中,11a =,对所有的2n ≥,都有2123n a a a a n =,则35a a +等于( )
A .259
B .2516
C .6116
D .3115
5. 如图F 1、F 2是椭圆C 1:
+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共
点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )
A .
B .
C .
D .
6. 已知f (x )为偶函数,且f (x+2)=﹣f (x ),当﹣2≤x ≤0时,f (x )=2x ;若n ∈N *,a n =f (n ),则a 2017等于( )
A .2017
B .﹣8
C .
D .
7. 已知命题p :2≤2,命题q :∃x 0∈R ,使得x 02+2x 0+2=0,则下列命题是真命题的是( ) A .¬p B .¬p ∨q
C .p ∧q
D .p ∨q
8. 设x ∈R ,则x >2的一个必要不充分条件是( ) A .x >1 B .x <1 C .x >3 D .x <3
9.已知向量=(1,),=(,x)共线,则实数x的值为()
A.1 B.C.tan35°D.tan35°
10.设集合()
{,|,,1
A x y x y x y
=--是三角形的三边长},则A所表示的平面区域是()
A.B.C.D.
11.已知函数
(5)2
()e22
()2
x
f x x
f x x
f x x
+>
⎧
⎪
=-≤≤
⎨
⎪-<-
⎩
,则(2016)
f-=()
A.2e B.e C.1 D.
1
e
【命题意图】本题考查分段函数的求值,意在考查分类讨论思想与计算能力.
12.函数()log1
x
a
f x a x
=-有两个不同的零点,则实数的取值范围是()
A.()
1,10
B.()
1,+∞
C.()
0,1
D.()
10,+∞二、填空题
13.若数列{a n}满足:存在正整数T,对于任意的正整数n,都有a n+T=a n成立,则称数列{a n}为周期为T的周期数列.已知数列{a n}满足:a1>=m (m>a ),a n+1=,现给出以下三个命题:
①若m=,则a5=2;
②若a3=3,则m可以取3个不同的值;
③若m=,则数列{a n}是周期为5的周期数列.
其中正确命题的序号是.
14.已知随机变量ξ﹣N(2,σ2),若P(ξ>4)=0.4,则P(ξ>0)=.
15.已知圆O :x 2+y 2=1和双曲线C :
﹣=1(a >0,b >0).若对双曲线C 上任意一点A (点A 在圆O
外),均存在与圆O 外切且顶点都在双曲线C 上的菱形ABCD ,则
﹣
= .
16.观察下列等式 1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49 …
照此规律,第n 个等式为 .
17.过抛物线C :y 2=4x 的焦点F 作直线l 交抛物线C 于A ,B ,若|AF|=3|BF|,则l 的斜率是 .
18.定义在R 上的函数)(x f 满足:1)(')(>+x f x f ,4)0(=f ,则不等式3)(+>x
x e x f e (其
中为自然对数的底数)的解集为 .
三、解答题
19.求曲线y=x 3的过(1,1)的切线方程.
20.(本小题满分12分)
已知直三棱柱111C B A ABC -中,上底面是斜边为AC 的直角三角形,F E 、分别是11AC B A 、的中点.
(1)求证://EF 平面ABC ; (2)求证:平面 AEF 平面B B AA 11.
21.已知角α的终边在直线y=
x 上,求sin α,cos α,tan α的值.
22.已知函数f (x )=a ﹣,
(1)若a=1,求f (0)的值;
(2)探究f (x )的单调性,并证明你的结论;
(3)若函数f (x )为奇函数,判断|f (ax )|与f (2)的大小.
23.已知椭圆C:+=1(a>b>0)的短轴长为2,且离心率e=,设F1,F2是椭圆的左、右焦点,
过F2的直线与椭圆右侧(如图)相交于M,N两点,直线F1M,F1N分别与直线x=4相交于P,Q两点.(Ⅰ)求椭圆C的方程;
(Ⅱ)求△F2PQ面积的最小值.
24.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
(不等式选做题)设,且,则的最小值为
(几何证明选做题)如图,中,,以为直径的半圆分别交于点,若,则
杭锦后旗第三高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题
1.【答案】A
【解析】解:∵点P(1,3)在α终边上,
∴tanα=3,
∴====﹣.
故选:A.
2.【答案】D
【解析】解:∵偶函数f(x)=2x﹣4(x≥0),故它的图象
关于y轴对称,
且图象经过点(﹣2,0)、(0,﹣3),(2,0),
故f(x﹣2)的图象是把f(x)的图象向右平移2个
单位得到的,
故f(x﹣2)的图象经过点(0,0)、(2,﹣3),(4,0),
则由f(x﹣2)<0,可得0<x<4,
故选:D.
【点评】本题主要考查指数不等式的解法,函数的图象的平移规律,属于中档题.
3.【答案】A
【解析】解:∵A={x|a﹣1≤x≤a+2}
B={x|3<x <5} ∵A ∩B=B ∴A ⊇B
∴
解得:3≤a ≤4 故选A
【点评】本题考查集合的包含关系判断及应用,通过对集合间的关系转化为元素的关系,属于基础题.
4. 【答案】C 【解析】
试题分析:由2
123
n a a a a n =,则2
123
1(1)n a a a a n -=-,两式作商,可得2
2
(1)
n n a n =-,所以2235223561
2416
a a +=+=,故选C .
考点:数列的通项公式. 5. 【答案】 D
【解析】解:设|AF 1|=x ,|AF 2|=y ,∵点A 为椭圆C 1: +y 2=1上的点,
∴2a=4,b=1,c=
;
∴|AF 1|+|AF 2|=2a=4,即x+y=4;① 又四边形AF 1BF 2为矩形,
∴
+
=
,即x 2+y 2=(2c )2
=
=12,②
由①②得:,解得x=2﹣
,y=2+,设双曲线C
2的实轴长为2m ,焦距为2n ,
则2m=|AF
2|﹣|AF 1|=y ﹣x=2,2n=2c=2,
∴双曲线C 2的离心率e===
.
故选D .
【点评】本题考查椭圆与双曲线的简单性质,求得|AF 1|与|AF 2|是关键,考查分析与运算能力,属于中档题.
6. 【答案】D
【解析】解:∵f (x+2)=﹣f (x ),
∴f(x+4)=﹣f(x+2)=f(x),
即f(x+4)=f(x),
即函数的周期是4.
∴a2017=f(2017)=f(504×4+1)=f(1),
∵f(x)为偶函数,当﹣2≤x≤0时,f(x)=2x,
∴f(1)=f(﹣1)=,
∴a2017=f(1)=,
故选:D.
【点评】本题主要考查函数值的计算,利用函数奇偶性和周期性之间的关系是解决本题的关键.
7.【答案】D
【解析】解:命题p:2≤2是真命题,
方程x2+2x+2=0无实根,
故命题q:∃x0∈R,使得x02+2x0+2=0是假命题,
故命题¬p,¬p∨q,p∧q是假命题,
命题p∨q是真命题,
故选:D
8.【答案】A
【解析】解:当x>2时,x>1成立,即x>1是x>2的必要不充分条件是,
x<1是x>2的既不充分也不必要条件,
x>3是x>2的充分条件,
x<3是x>2的既不充分也不必要条件,
故选:A
【点评】本题主要考查充分条件和必要条件的判断,比较基础.
9.【答案】B
【解析】解:∵向量=(1,),=(,x)共线,
∴x====,
故选:B.
【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题.
10.【答案】A
【解析】
考
点:二元一次不等式所表示的平面区域. 11.【答案】B
【解析】(2016)(2016)(54031)(1)f f f f e -==⨯+==,故选B . 12.【答案】B 【解析】
试题分析:函数()f x 有两个零点等价于1x
y a ⎛⎫
= ⎪⎝⎭
与log a y x =的图象有两个交点,当01a <<时同一坐标
系中做出两函数图象如图(2),由图知有一个交点,符合题意;当1a >时同一坐标系中做出两函数图象如图
(1),由图知有两个交点,不符合题意,故选B.
x
(1) (2)
考点:1、指数函数与对数函数的图象;2、函数的零点与函数交点之间的关系.
【方法点睛】本题主要考查指数函数与对数函数的图象、函数的零点与函数交点之间的关系.属于难题.判断方程()y f x =零点个数的常用方法:①直接法:可利用判别式的正负直接判定一元二次方程根的个数;②转化法:函数()y f x =零点个数就是方程()0f x =根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;③数形结合法:一是转化为两个函数()(),y g x y h x ==的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为(),y a y g x ==的交点个数的图象的交点个数问题.本题的解答就利用了方法③.
二、填空题
13.【答案】①②.
【解析】解:对于①由a n+1=,且a1=m=<1,
所以,>1,,,∴a5=2 故①正确;
对于②由a3=3,若a3=a2﹣1=3,则a2=4,若a1﹣1=4,则a1=5=m.
若,则.
若a1>1a1=,若0<a1≤1则a1=3,不合题意.
所以,a3=2时,m即a1的不同取值由3个.
故②正确;
若a
=m=>1,则a2=,所a3=>1,a4=
1
故在a1=时,数列{a
}是周期为3的周期数列,③错;
n
故答案为:①②
【点评】本题主要考查新定义题目,属于创新性题目,但又让学生能有较大的数列的知识应用空间,是较好的题目
14.【答案】0.6.
【解析】解:随机变量ξ服从正态分布N(2,σ2),
∴曲线关于x=2对称,
∴P(ξ>0)=P(ξ<4)=1﹣P(ξ>4)=0.6,
故答案为:0.6.
【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题.
15.【答案】1.
【解析】解:若对双曲线C上任意一点A(点A在圆O外),
均存在与圆O外切且顶点都在双曲线C上的菱形ABCD,
可通过特殊点,取A(﹣1,t),
则B(﹣1,﹣t),C(1,﹣t),D(1,t),
由直线和圆相切的条件可得,t=1.
将A (﹣1,1)代入双曲线方程,可得﹣=1.
故答案为:1.
【点评】本题考查双曲线的方程和运用,同时考查直线和圆相切的条件,属于基础题.
16.【答案】 n+(n+1)+(n+2)+…+(3n ﹣2)=(2n ﹣1)2 .
【解析】解:观察下列等式 1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49 …
等号右边是12,32,52,72…第n 个应该是(2n ﹣1)2 左边的式子的项数与右边的底数一致, 每一行都是从这一个行数的数字开始相加的,
照此规律,第n 个等式为n+(n+1)+(n+2)+…+(3n ﹣2)=(2n ﹣1)2, 故答案为:n+(n+1)+(n+2)+…+(3n ﹣2)=(2n ﹣1)2
【点评】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.
17.【答案】 .
【解析】解:∵抛物线C 方程为y 2
=4x ,可得它的焦点为F (1,0), ∴设直线l 方程为y=k (x ﹣1),
由
,消去x 得
.
设A (x 1,y 1),B (x 2,y 2),
可得y 1+y 2=,y 1y 2=﹣4①. ∵|AF|=3|BF|,
∴y 1+3y 2=0,可得y 1=﹣3y 2,代入①得﹣2y 2=,且﹣3y 22
=﹣4, 消去y
2得k 2
=3,解之得k=±
.
故答案为:.
【点评】本题考查了抛物线的简单性质,着重考查了舍而不求的解题思想方法,是中档题.
18.【答案】),0(+∞ 【
解
析
】
考点:利用导数研究函数的单调性.
【方法点晴】本题是一道利用导数判断单调性的题目,解答本题的关键是掌握导数的相关知识,首先对已知的不
等式进行变形,可得()()01>-'+x f x f ,结合要求的不等式可知在不等式两边同时乘以x
e ,即
()()0>-'+x x x e x f e x f e ,因此构造函数()()x x e x f e x g -=,求导利用函数的单调性解不等式.另外本题也可
以构造满足前提的特殊函数,比如令()4=x f 也可以求解.1
三、解答题
19.【答案】
【解析】解:y=x 3的导数y ′=3x 2, ①若(1,1)为切点,k=3•12=3, ∴切线l :y ﹣1=3(x ﹣1)即3x ﹣y ﹣2=0; ②若(1,1)不是切点,
设切点P (m ,m 3),k=3m 2=
,
即2m 2﹣m ﹣1=0,则m=1(舍)或﹣ ∴切线l :y ﹣1=(x ﹣1)即3x ﹣4y+1=0. 故切线方程为:3x ﹣y ﹣2=0或3x ﹣4y+1=0.
【点评】本题主要考查导数的几何意义、利用导数研究曲线上某点处的切线方程等基础知识,注意在某点处和过某点的切线,考查运算求解能力.属于中档题和易错题.
20.【答案】(1)详见解析;(2)详见解析. 【
解
析
】
试
题解析:证明:(1)连接C A 1,∵直三棱柱111C B A ABC -中,四边形C C AA 11是矩形, 故点F 在C A 1上,且F 为C A 1的中点,
在BC A 1∆中,∵F E 、分别是11AC B A 、的中点,∴BC EF //. 又⊄EF 平面ABC ,⊂BC 平面ABC ,∴//EF 平面ABC .
考点:1.线面平行的判定定理;2.面面垂直的判定定理. 21.【答案】
【解析】解:直线y=x ,
当角α的终边在第一象限时,在α的终边上取点(1,
),
则sin α=
,cos α=,tan α=
;
当角α的终边在第三象限时,在α的终边上取点(﹣1,﹣),
则sin α=﹣
,cos α=﹣,tan α=
.
【点评】本题考查三角函数的定义,涉及分类讨论思想的应用,属基础题.
22.【答案】
【解析】解:(1)a=1时:f(0)=1﹣=;
(2)∵f(x)的定义域为R∴任取x1x2∈R且x1<x2
则f(x1)﹣f(x2)=a﹣﹣a+=.
∵y=2x在R是单调递增且x1<x2
∴0<2x1<2x2,∴2x1﹣2x2<0,
2x1+1>0,2x2+1>0,
∴f(x1)﹣f(x2)<0
即f(x1)<f(x2),
∴f(x)在R上单调递增.
(3)∵f(x)是奇函数∴f(﹣x)=﹣f(x),
即a﹣=﹣a+,
解得:a=1.
∴f(ax)=f(x)
又∵f(x)在R上单调递增
∴x>2或x<﹣2时:|f(x)|>f(2),
x=±2时:|f(x)|=f(2),
﹣2<x<2时:|f(x)|<f(2).
【点评】本题考查的是函数单调性、奇偶性等知识的综合问题.在解答的过程当中充分体现了计算的能力、单调性定义的应用以及问题转化的能力.值得同学们体会和反思.
23.【答案】
【解析】解:(Ⅰ)∵椭圆C:+=1(a>b>0)的短轴长为2,且离心率e=,
∴,解得a2=4,b2=3,
∴椭圆C的方程为=1.
(Ⅱ)设直线MN的方程为x=ty+1,(﹣),
代入椭圆,化简,得(3t2+4)y2+6ty﹣9=0,
∴,,
设M(x1,y1),N(x2,y2),又F1(﹣1,0),F2(1,0),
则直线F1M:,令x=4,得P(4,),同理,Q(4,),
∴=||=15×||=180×||,
令μ=∈[1,),则=180×,
∵y==在[1,)上是增函数,
∴当μ=1时,即t=0时,()min=.
【点评】本题考查椭圆方程的求法,考查三角形面积的最小值的求法,是中档题,解题时要认真审题,注意韦达定理、直线方程、弦长公式、函数单调性、椭圆性质的合理运用.
24.【答案】
【解析】A
B。