八年级数学上册 全册全套试卷同步检测(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册 全册全套试卷同步检测(Word 版 含答案)
一、八年级数学三角形填空题(难)
1.如图,ABC ∆的面积为1,第一次操作:分别延长AB ,BC ,CA 至点111,,A B C ,使111,,A B AB B C BC C A CA ===,顺次连接111,,A B C ,得到111A B C ∆;第二次操作:分别延长111111,,A B B C C A 至点222,,A B C ,使2111A B A B =,2111B C B C =,2111C A C A =,顺次连接222,,A B C ,得到222A B C ∆,…;按此规律,要使得到的三角形的面积超过2020,最少需经过__________次操作.
【答案】4
【解析】
【分析】
连接111,,AC B A C B ,根据两个三角形等底同高可得
111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======从而得出第一次操作:11177A B C ABC S S ∆∆==<2020;同理可得第二次操作22211127749A B C A B C S S ∆∆===<
2020……直至第四次操作4443334
772401A B C A B C S S ∆∆===>2020,即可得出结论.
【详解】
解:连接111,,AC B A C B
∵111,,A B AB B C BC C A CA ===
根据等底同高可得:
111111111,,C A B C AB ABC A B C A BC ABC B C A B CA ABC S S S S S
S S S S ====== ∴111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======
∴第一次操作:11177A B C ABC S S ∆∆==<2020
同理可得第二次操作2221112
7749A B C A B C S S ∆∆===<2020
第三次操作333222377343A B C A B C S S ∆∆===<2020
第四次操作4443334772401A B C A B C S S ∆∆===>2020
故要使得到的三角形的面积超过2020,最少需经过4次操作,
故答案为:4.
【点睛】
此题考查的是三角形的面积关系和探索规律,掌握两个三角形等底同高时,面积相等是解决此题的关键.
2.如图,△ABC 中,BD 、BE 分别是高和角平分线,点F 在CA 的延长线上,FH ⊥BE ,交BD 于点G ,交BC 于点H .下列结论:①∠DBE =∠F ;
②2∠BEF =∠BAF +∠C ;③∠F =∠BAC -∠C ;④∠BGH =∠ABE +∠C .其中正确个数是
( )
A .4个
B .3个
C .2个
D .1个
【答案】B
【解析】
解:①∵BD ⊥FD ,∴∠FGD +∠F =90°,∵FH ⊥BE ,∴∠BGH +∠DBE =90°,∵∠FGD =∠BGH ,∴∠DBE =∠F ,①正确;
②∵BE 平分
∠ABC ,∴∠ABE =∠CBE ,∠BEF =∠CBE +∠C ,∴2∠BEF =∠ABC +2∠C ,∠BAF =∠ABC +∠C ,∴2∠BEF =∠BAF +∠C ,②正确;
③∠ABD =90°﹣∠BAC ,∠DBE =∠ABE ﹣∠ABD =∠ABE ﹣90°+∠BAC =∠CBD ﹣∠DBE ﹣90°+∠BAC ,∵∠CBD =90°﹣∠C ,∴∠DBE =∠BAC ﹣∠C ﹣∠DBE ,由①得,
∠DBE =∠F ,∴∠F =∠BAC ﹣∠C ﹣∠DBE ,③错误;
④∵∠AEB =∠EBC +∠C ,∵∠ABE =∠CBE ,∴∠AEB =∠ABE +∠C ,∵BD ⊥FC ,FH ⊥BE ,∴∠FGD =∠FEB ,∴∠BGH =∠ABE +∠C ,④正确.
故答案为①②④.
点睛:本题考查的是三角形内角和定理,正确运用三角形的高、中线和角平分线的概念以及三角形外角的性质是解题的关键.
3.△ABC 的两边长为4和3,则第三边上的中线长m 的取值范围是_______.
【答案】1722
m <<
【解析】
【分析】
作出草图,延长AD到E,使DE=AD,连接CE,利用“边角边”证明△ABD和△ECD全等,然后根据全等三角形对应边相等可得CE=AB,再根据三角形的任意两边之和大于第三边,两边之和小于第三边求出AE的取值范围,便不难得出m的取值范围.
【详解】
解:如图,延长AD到E,使DE=AD,连接CE,
∵AD是△ABC的中线,
∴BD=CD,
在△ABD和△ECD中,
AD DE
ADB EDC
BD CD
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△ABD≌△ECD(SAS),
∴CE=AB,
∵AB=3,AC=4,
∴4-3<AE<4+3,即1<AE<7,
∴
17
22
m
<<.
故答案为:
17
22
m
<<.
【点睛】
本题主要考查倍长中线法构造全等三角形和三边关系,解决本题的关键是要熟练掌握倍长中线法构造全等三角形.
4.已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则
c=_____.
【答案】7
【解析】
【分析】
根据非负数的性质列式求出a、b的值,再根据三角形的任意两边之和大于第三边,两边之
差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.
【详解】
∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,
∴a ﹣7=0,b ﹣1=0,
解得a=7,b=1,
∵7﹣1=6,7+1=8,
∴68c <<,
又∵c 为奇数,
∴c=7,
故答案为7.
【点睛】
本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.
5.∠A=65º,∠B=75º,将纸片一角折叠,使点C•落在△ABC 外,若∠2=20º,则∠1的度数为 _______.
【答案】100°
【解析】
【分析】
先根据三角形的内角和定理可出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°,再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,即可得到∠3+∠4=80°,然后利用平角的定义即可求出∠1.
【详解】
如图,
∵∠A=65°,∠B=75°,
∴∠C=180°-∠A-∠B=180°-65°-75°=40°;
又∵将三角形纸片的一角折叠,使点C 落在△ABC 外,
∴∠C′=∠C=40°,
而∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,∠2=20°,
∴∠3+20°+∠4+40°+40°=180°,
∴∠3+∠4=80°,
∴∠1=180°-80°=100°.
故答案是:100°.
【点睛】
考查了折叠前后两图形全等,即对应角相等,对应线段相等.也考查了三角形的内角和定理以及外角性质.
6.如图,∠A=50°,∠ABO=28°,∠ACO=32°,则∠BOC=______°.
【答案】110
【解析】
已知∠A=50°,∠ABO=28°,∠ACO=32°,根据三角形外角的性质可得
∠BDC=∠A+∠ABO=78°,∠BOC=∠BDC+∠ACO=110°.
二、八年级数学三角形选择题(难)
7.若△ABC内有一个点P1,当P1、A、B、C没有任何三点在同一直线上时,如图1,可构成3个互不重叠的小三角形;若△ABC内有两个点P1、P2,其它条件不变,如图2,可构成5个互不重叠的小三角形:……若△ABC内有n个点,其它条件不变,则构成若干个互不重叠的小三角形,这些小三角形的内角和为()
A.n·180°B.(n+2)·180°C.(2n-1)·180°D.(2n+1)·180°【答案】D
【解析】
【分析】
当△ABC内的点的个数是1时,三角形内互不重叠的小三角形的个数是3;当△ABC内的点的个数是2时,三角形内互不重叠的小三角形的个数是5;依此类推得到当△ABC内的点的个数是3时,三角形内互不重叠的小三角形的个数是7;当△ABC内的点的个数是n 时,三角形内互不重叠的小三角形的个数2n+1,所以这些小三角形的内角和为
(2n+1)·180°
【详解】
】解:图1中,当△ABC内只有1个点时,可分割成3个互不重叠的小三角形;
图2中,当△ABC内只有2个点时,可分割成5个互不重叠的小三角形;
图3中,当△ABC内只有3个点时,可分割成7个互不重叠的小三角形;
根据以上规律,当△ABC内有n个点(P1,P2,…,P n)时,可以把△ABC分割成S=2n+1个互不重叠的三角形,所以这些小三角形的内角和为(2n+1)·180°.
【点睛】
此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.
8.如图,D是△ABC的边BC上任意一点,E、F分别是线段AD、CE的中点,且△ABC的面积为40cm2,则△BEF的面积是()cm2.
A.5B.10C.15D.20
【答案】B
【解析】
【分析】
根据三角形的中线把三角形分成两个面积相等的三角形解答即可.
【详解】
∵点E是AD的中点,
∴S△ABE=1
2
S△ABD,S△ACE=
1
2
S△ADC,
∴S△ABE+S△ACE=1
2
S△ABC=
1
2
×40=20cm2,
∴S△BCE=1
2
S△ABC=
1
2
×40=20cm2,
∵点F是CE的中点,
∴S△BEF=1
2
S△BCE=
1
2
×20=10cm2.
故选B.
【点睛】
本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.
9.如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()
A.4cm B.2cm C.4cm或2cm D.小于或等于4cm,且大于或等于2cm
【答案】D
试题分析:①当A ,B ,C 三点在一条直线上时,分点B 在A 、C 之间和点C 在A 、B 之间两种情况讨论;
②当A ,B ,C 三点不在一条直线上时,根据三角形三边关系讨论.
解:当点A 、B 、C 在同一条直线上时,①点B 在A 、C 之间时:AC =AB +BC =3+1=4;②点C 在A 、B 之间时:AC =AB -BC =3-1=2,
当点A 、B 、C 不在同一条直线上时,A 、B 、C 三点组成三角形,根据三角形的三边关系AB -BC <AC <AB +BC ,即2<AC <4,综上所述,选D.
故选D.
点睛:本题主要考查点与线段的位置关系..利用分类思想得出所有情况的图形是解题的关键,
10.一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为( )
A .三角形
B .四边形
C .六边形
D .八边形
【答案】D
【解析】
【分析】
一个外角与一个内角的比为1 : 3,则内角和是外角和的3倍,根据多边形的外角和是360°,即可求得多边形的内角的度数,依据多边形的内角和公式即可求解.
【详解】
解:多边形的内角和是:360°×3=1080°.
设多边形的边数是n ,
则(n-2)•180=1080,
解得:n=8.
即这个多边形是正八边形.
故选D .
【点睛】
本题考查了多边形的内角和定理以及多边形的外角和定理,注意多边形的外角和不随边数的变化而变化.
11.已知直线m n ,将一块含45︒角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D .若125∠=︒,则2∠的度数为( )
A .60︒
B .65︒
C .70︒
D .75︒
【解析】
【分析】
先求出∠AED=∠1+∠B=25°+45°=70°,再根据平行线的性质可知∠2=∠AED=70°.
【详解】
设直线n 与AB 的交点为E 。
∵AED ∠是BED ∆的一个外角,
∴1AED B ∠=∠+∠,
∵45B ∠=︒,125∠=︒,
∴452570AED ∠=︒+︒=︒,
∵m n ,
∴270AED ∠=∠=︒.
故选C .
【点睛】
本题主要考查了平行线的性质以及三角形外角性质,解题的关键是借助平行线和三角形内外角转化角.
12.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( ) A .108°
B .90°
C .72°
D .60° 【答案】C
【解析】
【分析】
首先设此多边形为n 边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.
【详解】
解:设此多边形为n 边形,
根据题意得:180(n-2)=540,
解得:n=5, ∴这个正多边形的每一个外角等于:
3605
︒=72°. 故选C .
【点睛】
此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.
三、八年级数学全等三角形填空题(难)
13.如图,MN ∥PQ ,AB ⊥PQ ,点A ,D ,B ,C 分别在直线MN 和PQ 上,点E 在AB 上,AD +BC =7,AD =EB ,DE =EC ,则AB =_____.
【答案】7
【解析】
由MN ∥PQ ,AB ⊥PQ ,可知∠DAE=∠EBC=90°,可判定△ADE ≌△BCE ,从而得出AE=BC ,则AB=AE+BE=AD+BC=7.
故答案为:7.
点睛:本题考查了直角三角形全等的判定和性质以及平行线的性质,是基础知识,比较简单.
14.如图,已知点I 是△ABC 的角平分线的交点.若AB +BI =AC ,设∠BAC =α,则∠AIB =______(用含α的式子表示)
【答案】1206α︒-
【解析】
【分析】 在AC 上截取AD=AB ,易证△ABI ≌△ADI ,所以BI=DI ,由AB +BI =AC ,可得DI=DC ,
设∠DCI=β,则∠ADI=∠ABI=2β,然后用三角形内角和可推出β与α的关系,进而求得∠AIB.
【详解】
解:如图所示,在AC 上截取AD=AB ,连接DI ,
点I 是△ABC 的角平分线的交点
所以有∠BAI=∠DAI ,∠ABI=∠CBI ,∠ACI=∠BCI ,
在△ABI 和△ADI 中,
AB=AD BAI=DAI AI=AI
⎧⎪∠∠⎨⎪⎩
∴△ABI ≌△ADI (SAS )
∴DI=BI
又∵AB +BI =AC ,AB+DC=AC
∴DI=DC
∴∠DCI=∠DIC
设∠DCI=∠DIC=β
则∠ABI=∠ADI=2∠DCI=2β
在△ABC 中,
∠BAC+2∠ABI+2∠DCI=180°,即42180ββ︒++=a ,
∴180=3066
β︒︒=--a a 在△ABI 中,180︒∠=-∠-∠AIB BAI ABI
121802
αβ︒=-- 1=23160028αα︒︒⎛⎫--- ⎪⎝
⎭ =1206α
︒-
【点睛】
本题考查全等三角形的判定和性质,以及三角形角度计算,利用截长补短构造全等三角形是解题的关键.
15.如图,52A ∠=︒,O 是ABC ∠、ACB ∠的角平分线交点,P 是ABC ∠、ACB ∠外角平分线交点,则BOC ∠=______︒,BPC ∠=_____︒,联结AP ,则
PAB ∠=______︒,点O ____(选填“在”、“不在”或“不一定在”)直线AP 上.
【答案】116 64 26 在
【解析】
【分析】
∠ABC+∠ACB=180°-∠A,∠OBC+∠OCB= 1
2
(∠ABC+∠ACB), ∠BOC=180°-
(∠OBC+∠OCB),据此可求∠BOC的度数;
∠BCP= 1
2
∠BCE=
1
2
(∠A+∠ABC),∠PBC=
1
2
∠CBF=
1
2
(∠A+∠ACB),由三角形内角
和定理得:∠BPC=180°-∠BCP-∠PBC,据此可求∠BPC的度数;
作PG⊥AB于G,PH⊥AC于H,PK⊥BC于K,利用角平分线的性质定理可证明PG=PH,于是可证得AP平分∠BAC,据此可求∠PAB的度数;
同理可证OA平分∠BAC,故点O在直线AP上.
【详解】
解:∵O点是∠ABC和∠ACB的角平分线的交点,
∴∠OBC+∠OCB= 1
2
(∠ABC+∠ACB)
= 1
2
(180°-∠A)
=90°- 1
2
∠A,
∴∠BOC=180°-(∠OBC+∠OCB)
=180°-90°+ 1
2
∠A
=90°+ 1
2
∠A
=90°+26°
=116°;
如图,
∵BP、CP为△ABC两外角的平分线,
∴∠BCP= 1
2
∠BCE=
1
2
(∠A+∠ABC),
∠PBC= 1
2
∠CBF=
1
2
(∠A+∠ACB),
由三角形内角和定理得:∠BPC=180°-∠BCP-∠PBC
=180°- 1
2
[∠A+(∠A+∠ABC+∠ACB)]
=180°- 1
2
(∠A+180°)
=90°- 1
2
∠A
=90°-26°
=64°.
如图,作PG⊥AB于G,PH⊥AC于H,PK⊥BC于K,连接AP,
∵BP、CP为△ABC两外角的平分线,PG⊥AB,PH⊥AC,PK⊥BC,
∴PG=PK,PK=PH,
∴PG=PH,
∴AP平分∠BAC,
∴PAB
∠=26°
同理可证OA平分∠BAC,
点O在直线AP上.
故答案是:(1) 116 ;(2) 64;(3) 26;(4) 在.
【点睛】
此题主要考查了角平分线的性质定理和判定定理及三角形内角和定理,熟知定理并正确作出辅助线是解题关键.
16.已知:如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,垂足为E,BD=4cm,则DC=_______
【答案】2cm
【解析】
试题解析:
解:连接AD,
∵ED是AB的垂直平分线,
∴BD=AD=4c m,
∴∠BAD=∠B=30°,
∵∠C=90°,
∴∠BAC=90°-∠B=90°-30°=60°,∴∠DAC=60°-30°=30°,
在Rt△ACD中,
∴DC=1
2
AD==
1
2
× 4=2c m.
故答案为2c m.
点睛:本题考查了线段垂直平分线,在直角三角形中30度角所对的边等于斜边的一半,三角形内角和定理,主要考查学生运用性质进行计算的能力.
17.如图,AD=AB,∠C=∠E,AB=2,AE=8,则DE=_________.
【答案】6
【解析】
根据三角形全等的判定“AAS”可得△ADC≌△ABE,可得AD=AB=2,由AE=8可得
DE=AE-AD=6.
故答案为:6.
点睛:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
18.如图,在△ABC中,∠B=∠C,BD=CE,BE=CF.若∠A=40°,则∠DEF的度数为
____.
【答案】70°
【解析】
由等腰三角形的性质得出∠B=∠C=70°,再根据SAS证得△BDE≌△CEF,得出
∠BDE=∠CEF,运用三角形的外角性质得出∠CEF+∠DEF=∠B+∠BDE,即可得出
∠DEF=∠B=70°.
点睛:此题主要考查了等腰三角形的性质,解题时,利用等腰三角形的性质和三角形全等的判定证得∠BDE=∠CEF,然后根据三角形外角的性质可求解.
四、八年级数学全等三角形选择题(难)
19.如图,在△ABC中,AB=AC,高BD,CE交于点O,AO交BC于点F,则图中共有全等三角形()
A.8对B.7对C.6对D.5对
【答案】B
【解析】
【分析】
易证△ABC是关于AF对称的图形,其中的小三角形也关于AF对称,共可找出7对三角形.【详解】
全等的三角形有:①△AFB≌△AFC;②△CEB≌△BDC;③△AEO≌△ADO;
④△EOB≌△DOC;⑤△OBF≌△OFC;⑥△AOB≌△AOC;⑦△AEC≌△ADB
证明①△AFB≌△AFC
∵AB=AC,CE⊥AB,BD⊥AC
又∵
11
22
ABC
S AB CE AC BD ==
∴CE=BD
∴在Rt△BCE 和Rt△CBD 中
BC BC CE BD
=⎧⎨=⎩ ∴△BCE≌△CBD
∴BE=CD,∴AE=AD
在Rt△AEO 和Rt△ADO 中
AE AD AO AO =⎧⎨=⎩
∴△AEO≌△ADO
∴∠EOD=∠DOA
在△BA F 和△CAF 中
AB AC BAF CAF AF AF =⎧⎪∠=∠⎨⎪=⎩
∴△BAF≌△CAF,得证
其余全等证明过程类似
故选:B
【点睛】
本题考查全等的证明,解题关键是利用等腰三角形的性质,推导出图形中边的关系,为证全等作准备
20.如图,ABC ∆中,45ABC ∠=,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G ,下列结论正确的有( )个
①BF AC =;②12
AE BF =;③67.5A ∠=;④DGF ∆是等腰三角形;⑤ADGE GHCE S S =四边形四边形.
A .5个
B .4个
C .3个
D .2个
【答案】B
【解析】
【分析】
只要证明△BDF ≌△CDA ,△BAC 是等腰三角形,∠DGF =∠DFG =67.5°,即可判断①②③④正确,作GM ⊥BD 于M ,只要证明GH <DG 即可判断⑤错误.
【详解】
∵CD ⊥AB ,BE ⊥AC ,
∴∠BDC =∠ADC =∠AEB =90°,
∴∠A +∠ABE =90°,∠ABE +∠DFB =90°,
∴∠A =∠DFB ,
∵∠ABC =45°,∠BDC =90°,
∴∠DCB =90°−45°=45°=∠DBC ,
∴BD =DC ,
在△BDF 和△CDA 中
BDF CDA A DFB
BD CD ∠∠⎧⎪∠∠⎨⎪⎩
===, ∴△BDF ≌△CDA (AAS ),
∴BF =AC ,故①正确.
∵∠ABE =∠EBC =22.5°,BE ⊥AC ,
∴∠A =∠BCA =67.5°,故③正确,
∴BA =BC ,
∵BE ⊥AC ,
∴AE =EC =
12AC =12
BF ,故②正确, ∵BE 平分∠ABC ,∠ABC =45°,
∴∠ABE =∠CBE =22.5°,
∵∠BDF =∠BHG =90°,
∴∠BGH =∠BFD =67.5°,
∴∠DGF =∠DFG =67.5°,
∴DG =DF ,故④正确.
作GM ⊥AB 于M .
∵∠GBM =∠GBH ,GH ⊥BC ,
∴GH =GM <DG ,
∴S △DGB >S △GHB ,
∵S △ABE =S △BCE ,
∴S 四边形ADGE <S 四边形GHCE .故⑤错误,
∴①②③④正确,
故选:B .
【点睛】
此题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,全等三角形的性质和判定,三角形的面积等知识点的综合运用,第五个问题难度比较大,添加辅助线是解题关键,属于中考选择题中的压轴题.
21.如图,AOB ∆的外角,CAB DBA ∠∠的平分线,AP BP 相交于点P ,PE OC ⊥于E ,PF OD ⊥于F ,下列结论:(1)PE PF =;(2)点P 在COD ∠的平分线上;(3)90APB O ∠=︒-∠,其中正确的有 ( )
A .0个
B .1个
C .2个
D .3个
【答案】C
【解析】
【分析】 过点P 作PG ⊥AB ,由角平分线的性质定理,得到PE PG PF ==,可判断(1)(2)正
确;由12APB EPF ∠=
∠,180EPF O ∠+∠=︒,得到1902
APB O ∠=︒-∠,可判断(3)错误;即可得到答案.
【详解】
解:过点P 作PG ⊥AB ,如图:
∵AP 平分∠CAB ,BP 平分∠DBA ,PE OC ⊥,PF OD ⊥,PG ⊥AB ,
∴PE PG PF ==;故(1)正确;
∴点P 在COD ∠的平分线上;故(2)正确;
∵12APB APG BPG EPF ∠=∠+∠=∠, 又180EPF O ∠+∠=︒, ∴11(180)9022
APB O O ∠=
⨯︒-∠=︒-∠;故(3)错误; ∴正确的选项有2个;
故选:C . 【点睛】 本题考查了角平分线的判定定理和性质定理,解题的关键是熟练掌握角平分线的判定和性质进行解题.
22.如图,
与都是等边三角形,,下列结论中,正确的个数是( )①;②;③;④若,且,则
.
A .1
B .2
C .3
D .4
【答案】C
【解析】
【分析】 利用全等三角形的判定和性质一一判断即可.
【详解】
解:∵与都是等边三角形
∴AD=AB,AC=AE,∠DAB=∠EAC=60°
∴∠DAB+∠BAC=∠EAC +∠BAC
即∠DAC=∠EAB
∴
∴
,①正确; ∵
∴∠ADO=∠ABO
∴∠BOD=∠DAB=60°,②正确
∵∠BDA=∠CEA=60°,∠ADC≠∠AEB
∴∠BDA -∠ADC≠∠CEA -∠AEB
∴
,③错误 ∵
∴∠DAC+∠BCA=180° ∵∠DAB=60°,
∴∠BCA=180°-∠DAB-∠BAC=30°
∵∠ACE=60°
∴∠BCE=∠ACE+∠BCA=60°+30°=90°
∴④正确
故由①②④三个正确,
故选:C
【点睛】
本题考查全等三角形的判定和性质、等边三角形的性质、角平分线的判定定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
23.已知等边△ABC中,在射线BA上有一点D,连接CD,并以CD为边向上作等边△CDE,连接BE和AE,试判断下列结论:①AE=BD;②AE与AB所夹锐夹角为60°;③当D在线段AB或BA延长线上时,总有∠BDE-∠AED=2∠BDC;④∠BCD=90°时,CE2+AD2=AC2+DE2,正确的序号有()
A.①②B.①②③C.①②④D.①②③④
【答案】C
【解析】
【分析】
由∠BCD=∠ACD+60°,∠ACE=∠ACD+60°可得∠BCD=∠ACE,利用SAS可证明
△BCD≌△ACE,可得AE=BD,①正确;∠CBD=∠CAE=60°,进而可得∠EAD=60°,②正确,当∠BCD=90°时,可得∠ACD=∠ADC=30°,可得AD=AC,即可得CE2+AD2=AC2+DE2,④正确;当D点在BA延长线上时,∠BDE-∠BDC=60°,根据△BCD≌△ACE可得∠AEC=∠BDC,进而可得∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,即可证明∠BDE-∠BDC=∠BDC+∠AED,即∠BDE-∠AED=2∠BDC,当点D在AB上时可证明∠BDE-∠AED=120°,③错误,综上即可得答案.
【详解】
∵∠BCA=∠DCE=60°,
∴∠BCA+∠ACD=∠DCE+∠ACD,
∴∠BCD=∠ACE,
又∵AC=BC,CE=CD,
∴△BCD≌△ACE,
∴AE=BD,∠CBA=∠CAE=60°,∠AEC=∠BDC,①正确,
∴∠BAE=120°,
∴∠EAD=60°,②正确,
∵∠BCD=90°,∠BCA=60°,
∴∠ACD=∠ADC=30°,
∴AC=AD,
∵CE=DE,
∴CE2+AD2=AC2+DE2,④正确,
当D点在BA延长线上时,∠BDE-∠BDC=60°,
∵∠AEC=∠BDC,
∴∠BDC+∠AED=∠AEC+∠AED=∠CED=60°,
∴∠BDE-∠BDC=∠BDC+∠AED
∴∠BDE-∠AED=2∠BDC,
如图,当点D在AB上时,
∵△BCD≌△∠ACE,
∴∠CAE=∠CBD=60°,
∴∠DAE=∠BAC+∠CAE=120°,
∴∠BDE-∠AED=∠DAE=120°,③错误
故正确的结论有①②④,
故选C.
【点睛】
此题主要考查等边三角形的性质和全等三角形的判定与性质等知识点的理解和掌握24.如图,AD是△ABC的外角平分线,下列一定结论正确的是()
A.AD+BC=AB+CD,B.AB+AC=DB+DC,
C.AD+BC<AB+CD,D.AB+AC<DB+DC
【解析】
【分析】
在BA的延长线上取点E,使AE=AC,连接ED,证△ACD≌△AED,推出DE=DC,根据三角形中任意两边之和大于第三边即可得到AB+AC<DB+DC.
【详解】
解: 在BA的延长线上取点E, 使AE=AC,连接ED,
∵AD是△ABC的外角平分线,
∴∠EAD=∠CAD,
在△ACD和△AED中,
AD AD
EAD CAD
AC AE
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
∴△ACD≌△AED(SAS)
∴DE=DC,
在△EBD中,BE<BD+DE,
∴AB+AC<DB+DC
故选:D.
【点睛】
本题主要考查三角形全等的证明,全等三角形的性质,三角形的三边关系,作辅助线构造以AB、AC、DB、
DC的长度为边的三角形是解题的关键,也是解本题的难点.
五、八年级数学轴对称三角形填空题(难)
25.如图,△ABC中,AB=8,AC=6,∠ABC与∠ACB的平分线交于点F,过点F作
DE∥BC,分别交AB、AC于点D、E,则△ADE的周长为_____.
【答案】14.
【分析】
先根据角平分线的定义及平行线的性质得BD =DF ,CE =EF ,则△ADE 的周长=AB +AC =14.
【详解】
∵BF 平分∠ABC ,
∴∠DBF =∠CBF , ∵DE ∥BC ,
∴∠CBF =∠DFB ,
∴∠DBF =∠DFB ,
∴BD =DF ,
同理FE =EC ,
∴△AED 的周长=AD +AE +ED =AB +AC =8+6=14.
故答案为:14.
【点睛】
此题考查角平分线的性质,平行线的性质,等腰三角形的等角对等边的性质.
26.如图,在△ABC 中,AB 的中垂线交BC 于D ,AC 的中垂线交BC 于E ,若∠BAC=126°,则∠EAD=_____°.
【答案】72°
【解析】
【分析】
根据AB 的中垂线可得BAD ∠,再根据AC 的中垂线可得EAC ∠,再结合∠BAC=126°即可计算出∠EAD .
【详解】
根据AB 的中垂线可得BAD ∠=B
根据AC 的中垂线可得EAC ∠=C ∠
18012654B C ︒︒︒∠+∠=-=
又 126BAD DAE EAC BAC ︒∠+∠+∠=∠=
+C+126B DAE ︒∴∠∠∠=
72DAE ︒∴∠=
【点睛】 本题主要考查中垂线的性质,重点在于等量替换表示角度.
27.如图,将ABC ∆沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的1A 处,称为第1次操作,折痕DE 到BC 的距离记为1h ,还原纸片后,再将ADE ∆沿着过AD 中点1D 的直线折叠,使点A 落在DE 边上的2A 处,称为第2次操作,折痕11D E 到BC 的距离记为2h ,按上述方法不断操作下去…经过第2020次操作后得到的折痕20192019D E 到BC 的距离记为2020h ,若11h =,则2020h 的值为______.
【答案】2019122-
【解析】
【分析】
根据中点的性质及折叠的性质可得DA=DA ₁=DB,从而可得∠ADA ₁=2∠B,结合折叠的性质可得.,∠ADA ₁=2∠ADE,可得∠ADE=∠B,继而判断DE// BC,得出DE 是△ABC 的中位线,证得AA ₁⊥BC,AA ₁=2,由此发现规律:01 2122
h =-=-₁同理21122h =-32
11122222h =-⨯=-…于是经过第n 次操作后得到的折痕Dn-1 En-1到BC 的距离1122n n h -=-
,据此求得2020h 的值. 【详解】
解:如图连接AA ₁,由折叠的性质可得:AA ₁⊥DE, DA= DA ₁ ,A ₂、A ₃…均在AA ₁上
又∵ D 是AB 中点,∴DA= DB ,
∵DB= DA ₁ ,
∴∠BA ₁D=∠B ,
∴∠ADA ₁=∠B +∠BA ₁D=2∠B,
又∵∠ADA ₁ =2∠ADE ,
∴∠ADE=∠B
∵DE//BC,
∴AA ₁⊥BC ,
∵h ₁=1
∴AA ₁ =2, ∴01
2122h =-=-₁ 同理:21
122h =-; 3211122222
h =-⨯=-; …
∴经过n 次操作后得到的折痕D n-1E n-1到BC 的距离1122n n h -=-
∴20202019122h =-
【点睛】
本题考查了中点性质和折叠的性质,本题难度较大,要从每次折叠发现规律,求得规律的过程是难点.
28.如图,在平面直角坐标系中,点 A,B 的坐标分别是(1,5)、(5,1), 若点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有_____________个
【答案】5
【解析】
【分析】
分别以A、B为圆心,AB为半径画圆,及作AB的垂直平分线,数出在x轴上的点C的数量即可
【详解】
解:由图可知:点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有5个
故答案为:5
【点睛】
本题考查了等腰三角形的存在性问题,掌握“两圆一线”找等腰三角形是解题的关键
29.如图,在3×3的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中的△ABC为格点三角形,在图中最多能画出_____个格点三角形与△ABC成轴对称.
【答案】6
【解析】
【分析】
根据网格结构分别确定出不同的对称轴,然后作出轴对称三角形即可得解.
【详解】
如图,最多能画出6个格点三角形与△ABC成轴对称.
故答案为:6.
【点睛】
本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,本题难点在于确定出不同的对称轴.
30.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为_________
【答案】8 5
【解析】
【分析】
首先根据折叠可得CD=AC=6,B′C=BC=8,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=4.8,由勾股定理求出AE,得出BF 的长,即B′F的长.
【详解】
解:根据折叠的性质可知:DE=AE,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,B′F=BF,
∴B′D=8-6=2,∠DCE+∠B′CF=∠ACE+∠BCF ,
∵∠ACB=90°,
∴∠ECF=45°,
∴△ECF 是等腰直角三角形,
∴EF=CE ,∠EFC=45°,
∴∠BFC=∠B′FC=135°,
∴∠B′FE=90°,
∵S △ABC =
12AC•BC=12
AB•CE , ∴AC•BC=AB•CE , ∵根据勾股定理得:22226810AB
AC BC ∴ 4.8AC BC CE AB
⋅== ∴EF=4.8,22 3.6AE AC EC -=
∴B′F=BF=AB -AE-EF=10-3.6-4.8=1.6=8
5,
故答案是:85
.
【点睛】
此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理等知识;熟练掌握翻折变换的性质,由直角三角形的性质和勾股定理求出CE 、AE 是解决问题的关键.
六、八年级数学轴对称三角形选择题(难)
31.平面直角坐标系中,已知A (2,0),B (0,2)若在坐标轴上取C 点,使△ABC 为等腰三角形,则满足条件的点C 的个数是( )
A .4
B .6
C .7
D .8 【答案】C
【解析】
【分析】
【详解】
解:如图,①以A 为圆心,AB 为半径画圆,交坐标轴于点B ,C 1,C 2,C 5,得到以A 为顶点的等腰△ABC 1,△ABC 2,△ABC 5;
②以B 为圆心,AB 为半径画圆,交坐标轴于点A ,C 3,C 6,C 7,得到以B 为顶点的等腰
△BAC3,△BAC6,△BAC7;
③作AB的垂直平分线,交x轴于点C4,得到以C为顶点的等腰△C4AB
∴符合条件的点C共7个
故选C
32.在平面直角坐标系中,等腰△ABC的顶点A、B的坐标分别为(1,0)、(2,3),若顶点C 落在坐标轴上,则符合条件的点C有( )个.
A.9 B.7 C.8 D.6
【答案】C
【解析】
【分析】
要使△ABC是等腰三角形,可分三种情况(①若CA=CB,②若BC=BA,③若AC=AB)讨论,通过画图就可解决问题.
【详解】
①若CA=CB,则点C在AB的垂直平分线上.
∵A(1,0),B(2,3),∴AB的垂直平分线与坐标轴有2个交点C1,C2.
②若BC=BA,则以点B为圆心,BA为半径画圆,与坐标轴有3个交点(A点除外)C3,
C4,C5;
③若AC=AB,则以点A为圆心,AB为半径画圆,与坐标轴有4个交点C6,C7,C8,C9.而C8(0,-3)与A、B在同一直线上,不能构成三角形,故此时满足条件的点有3个.
综上所述:符合条件的点C 的个数有8个.
故选C .
【点睛】
本题考查了等腰三角形的判定、垂直平分线的性质的逆定理等知识,还考查了动手操作的能力,运用分类讨论的思想是解答本题的关键.
33.如图,Rt ABC ∆中,90ACB ∠=,3AC =,4BC =,5AB =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段EF 的长为( )
A .52
B .125
C .4
D .53
【答案】B
【解析】
【分析】
先利用折叠的性质证明出△ECF 是一个等腰直角三角形,因此EF=CE ,然后再根据文中条件综合得出S △ABC =
12AC∙BC=12
AB∙CE ,求出CE 进而得出答案即可. 【详解】
根据折叠性质可知:CD=AC=3,BC=B C '=4,∠ACE=∠DCE ,∠BCF=∠B 'CF ,CE ⊥AB , ∴∠DCE+∠B 'CF=∠ACE+∠BCF ,
∵∠ACB=90°,
∴∠ECF=45°,
又∵CE ⊥AB ,
∴△ECF 是等腰直角三角形,
∴EF=CE ,
又∵S △ABC =
12AC∙BC=12
AB∙CE , ∴AC∙BC=AB∙CE , ∵3AC =,4BC =,5AB =,
∴125CE =
, ∴EF 125
=. 所以答案为B 选项.
【点睛】
本题主要考查了直角三角形与等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.
34.如图,已知:∠MON =30°,点A 1、A 2、A 3 ···在射线ON 上,点1B 、2B 、3B ···在射线OM 上,△112A B A 、△223A B A 、△334A B A …均为等边三角形,若112
OA =,则△667A B A 的边长为( )
A .6
B .12
C .16
D .32
【答案】C
【解析】
【分析】 根据等腰三角形与等边三角形性质以及直角三角形中30°角所对应的直角边等于斜边的一半111OA A B =,112122321122A B A B A B A B ==
=…以此类推得出答案即可 【详解】
∵△112A B A 是等边三角形,
∴∠112A B A =∠112B A A =60°
又∵∠MON =30°
∴∠11OB A =30°
∴∠12OB A =∠212A B B =90°,1112112
A B OA A B ===
又∵△223A B A 是等边三角形
∴22A B ∥11A B
∴∠22OB A =∠11OB A =30°
∴在Rt△212A B B 中,22A B =212A B =1
以此类推,得出△667A B A 的边长=
1222222
⋅⋅⋅⋅⋅=16 所以答案为C 选项
【点睛】
本题主要考查了等腰三角形与等边三角形性质以及30°角的直角三角形的性质,熟练掌握相关概念通过题目发现规律是解题关键
35.如图,在△ABC 中,BI ,CI 分别平分∠ABC,∠ACB,过I 点作DE∥BC,交AB 于D ,交AC 于E ,给出下列结论:①△DBI 是等腰三角形;②△ACI 是等腰三角形;③AI 平分∠BAC;④△ADE 周长等于AB +AC .其中正确的是( )
A .①②③
B .②③④
C .①③④
D .①②④
【答案】C
【解析】
【分析】 根据角平分线的性质、平行线的性质、等腰三角形的判定与性质分别对各选项分析判断后利用排除法求解.
【详解】
①∵IB 平分∠ABC ,∴∠DBI =∠CBI .
∵DE ∥BC ,∴∠DIB =∠CBI ,∴∠DBI =∠DIB ,∴BD =DI ,∴△DBI 是等腰三角形.
故本选项正确;
②∵∠BAC 不一定等于∠ACB ,∴∠IAC 不一定等于∠ICA ,∴△ACI 不一定是等腰三角形. 故本选项错误;
③∵三角形角平分线相交于一点,BI ,CI 分别是∠ABC 和∠ACB 的平分线,∴AI 平分∠BAC .故本选项正确;
④∵BD =DI ,同理可得EI =EC ,∴△ADE 的周长=AD +DI +EI +AE =AD +BD +EC +AE =AB +AC . 故本选项正确;
其中正确的是①③④.
故选C .
【点睛】
本题考查了等腰三角形的判定与性质,熟记三角形的角平分线相交于一点是解题的关键.
36.如图,已知AD为△ABC的高线,AD=BC,以AB为底边作等腰Rt△ABE,连接
ED,EC,延长CE交AD于F点,下列结论:
①△ADE≌△BCE;②CE⊥DE;③BD=AF;④S△BDE=S△ACE,其中正确的有()
A.①③B.①②④C.①②③④D.①③④
【答案】C
【解析】
【分析】
①易证∠CBE=∠DAE,即可求证:△ADE≌△BCE;
②根据①结论可得∠AEC=∠DEB,即可求得∠AED=∠BEG,即可解题;
③证明△AEF≌△BED即可;
④易证△FDC是等腰直角三角形,则CE=EF,S△AEF=S△ACE,由△AEF≌△BED,可知
S△BDE=S△ACE,所以S△BDE=S△ACE.
【详解】
①∵AD为△ABC的高线,∴∠CBE+∠ABE+∠BAD=90°.
∵Rt△ABE是等腰直角三角形,∴∠ABE=∠BAE=∠BAD+∠DAE=45°,AE=BE,
∴∠CBE+∠BAD=45°,∴∠DAE=∠CBE.在△DAE和△CBE中,∵
AE BE
DAE CBE
AD BC
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△ADE≌△BCE(SAS);故①正确;
②∵△ADE≌△BCE,∴∠EDA=∠ECB.
∵∠ADE+∠EDC=90°,∴∠EDC+∠ECB=90°,∴∠DEC=90°,∴CE⊥DE;故②正确;
③∵∠BDE=∠ADB+∠ADE,∠AFE=∠ADC+∠ECD,∴∠BDE=∠AFE.
∵∠BED+∠BEF=∠AEF+∠BEF=90°,∴∠BED=∠AEF.
在△AEF和△BED中,∵
BDE AFE
BED AEF
AE BE
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
,∴△AEF≌△BED(AAS),∴BD=AF;故③正
确;
④∵AD=BC,BD=AF,∴CD=DF.
∵AD⊥BC,∴△FDC是等腰直角三角形.
∵DE⊥CE,∴EF=CE,∴S△AEF=S△ACE.
∵△AEF≌△BED,∴S△AEF=S△BED,∴S△BDE=S△ACE.故④正确.
故选C.
【点睛】
本题考查了全等三角形的判定与性质,本题中求证△BFE ≌△CDE 是解题的关键.
七、八年级数学整式的乘法与因式分解选择题压轴题(难)
37.已知226a b ab +=,且a>b>0,则
a b a b +-的值为( ) A 2B 2C .2 D .±2 【答案】A
【解析】
【分析】已知a 2+b 2=6ab ,变形可得(a+b )2=8ab ,(a-b )2=4ab ,可以得出(a+b )和(a-b )的值,即可得出答案.
【详解】∵a 2+b 2=6ab ,
∴(a+b )2=8ab ,(a-b )2=4ab ,
∵a >b >0,
∴8ab 4ab
∴a b a b +-824ab ab
= 故选A.
【点睛】本题考查了分式的化简求值问题,观察式子可以得出应该运用完全平方式来求解,要注意a 、b 的大小关系以及本身的正负关系.
38.下列各式中,不能运用平方差公式进行计算的是( )
A .(21)(12)x x --+
B .(1)(1)ab ab -+
C .(2)(2)
x y x y ---
D .(5)(5)a a -+--
【答案】A
【解析】
【分析】
运用平方差公式(a+b )(a-b )=a 2-b 2时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.
【详解】
A. 中不存在互为相反数的项,
B. C. D 中均存在相同和相反的项,。