大一上学期高数期中考试

合集下载

2023-2024学年高一(上)期中数学试卷(带解析)

2023-2024学年高一(上)期中数学试卷(带解析)

2023-2024学年高一(上)期中数学试卷一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3} 2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥04.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.37.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.368.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为.14.(5分)已知函数f(x)满足,则函数f(x)的解析式为.15.(5分)已知函数,则f(﹣26)+f(﹣25)+⋯+f(﹣1)+f (1)+⋯+f(26)+f(27)的值为.16.(5分)已知x,y>0且满足x+y=1,若不等式恒成立,记的最小值为n,则m+n的最小值为.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.21.(12分)已知a,b,c是实数,且满足a+b+c=0,证明下列命题:(1)“a=b=c=0”是“ab+bc+ac=0”的充要条件;(2)“abc=1,a≥b≥c”是“”的充分条件.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.2023-2024学年高一(上)期中数学试卷参考答案与试题解析一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3}【分析】结合交集的定义,即可求解.【解答】解:集合A={1,2,3},集合B={x||x﹣1|<1}={x|0<x<2},故A∩B={1}.故选:B.【点评】本题主要考查交集及其运算,属于基础题.2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据题意,解绝对值不等式得1<x<3,结合充要条件的定义加以判断,即可得到本题的答案.【解答】解:根据题意,|x﹣2|<1⇒﹣1<x﹣2<1⇒1<x<3,由|x﹣2|<1可以推出1<x<5,且由1<x<5不能推出|x﹣2|<1.因此,若p:|x﹣2|<1,q:1<x<5,则p是q的充分不必要条件.故选:A.【点评】本题主要考查不等式的性质、充要条件的判断等知识,考查了计算能力、逻辑推理能力,属于基础题.3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥0【分析】根据命题的否定的定义,即可求解.【解答】解:命题“∃x∈(1,+∞),x2+2<0”的否定是:∀x∈(1,+∞),x2+2≥0.故选:D.【点评】本题主要考查特称命题的否定,属于基础题.4.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,【分析】观察函数三要素,逐项判断是否同一函数.【解答】解:由题意得:选项A定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项B定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项C对应法则不同,g(x)=|x|;D项,三要素相同,为同一函数.故选:D.【点评】本题考查同一函数的判断,属于基础题.5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或【分析】由题意可知,a<0,方程ax2+bx+c=0的两个根分别为x1,x2,再结合韦达定理求解即可.【解答】解:根据题意:a<0,方程ax2+bx+c=0的两个根分别为x1,x2,所以,,,,解得,即不等式的解集为{x|}.故选:C.【点评】本题主要考查了韦达定理的应用,考查了一元二次不等式的解法,属于基础题.6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.3【分析】根据函数f(x)的定义可知,在一个坐标系中画出y=﹣x+1,y=x2﹣3x+2,y =x﹣1的图象,取最上面的部分作为函数f(x)的图象,由图象即可求出函数的最小值.【解答】解:根据题意,在同一个直角坐标系中,由﹣x+1=x2﹣3x+2,得x2﹣2x+1=0,解得x=1;由x2﹣3x+2=x﹣1,得x2﹣4x+3=0,解得x=3或x=1,所以f(x)=,同时画出函数y=﹣x+1,y=x2﹣3x+2,y=x﹣1,如图分析:所以函数f(x)的最小值为0.故选:A.【点评】本题考查利用函数的图象求函数的最值,属中档题.7.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.36【分析】由已知结合基本不等式先求出xy的范围,即可求a,然后利用乘1法,结合基本不等式可求b,进而可求a+b.【解答】解:∵xy=2x+y+6+6,当且仅当2x=y,即x=3,y=6时取等号,∴a=18.∵m+n=1,m>0,n>0.则=6,当且仅当n=3m且m+n=1,即m=,n=时取等号,∴,∴b=16;∴a+b=34.故选:C.【点评】本题主要考查了基本不等式在最值求解中的应用,属于基础题.8.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a【分析】由已知结合函数的对称性先求出函数的周期,然后结合对称性及周期性即可求解.【解答】解:根据题意:函数f(x)满足f(x)+f(4﹣x)=4,可得函数f(x)关于点(2,2)成中心对称,函数f(x)满足f(x+2)﹣f(﹣x)=0,所以函数f(x)关于x=1对称,所以函数f(x)既关于x=1成轴对称,同时关于点(2,2)成中心对称,所以f(2)=2,T=4,又因为f(1)=a,所以f(3)=4﹣a,f(4)=f(﹣2)=f(﹣2+4)=f(2)=2,所以f(1)+f(2)+f(3)+f(4)=a+2+4﹣a+2=8,所以f(1)+f(2)+f(3)+⋯+f(51)=12[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)+f(3)=12×8+a+2+4﹣a=102.故选:C.【点评】本题主要考查了函数的奇偶性,对称性及周期性在函数求值中的应用,属于中档题.二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0【分析】由已知举出反例检验选项A,D;结合不等式的性质检验B,C即可判断.【解答】解:当a=1,b=﹣1时,A显然错误;若,则=<0,所以ab>0,B正确;若,即b﹣a<0,则=>0,所以ab<0,所以b<0<a,C正确;当a=2,b=﹣1时,D显然错误.故选:BC.【点评】本题主要考查了不等式的性质在不等式大小比较中的应用,属于基础题.(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.【分析】根据二次函数的性质检验选项A,结合基本不等式检验选项BCD即可判断.【解答】解:根据题意:选项A,y=x2﹣4x+8,根据二次函数的性质可知,x=2时取最小值4,故选A;,当且仅当时取最小值,不在x∈(1,+∞)范围内,故选项B错误;选项C,=,当且仅当,即x=3时成立,故选项C正确;选项D,,令,原式为,当且仅当t=,即t=2时等式成立,不在范围内,故选项D错误.故选:AC.【点评】本题主要考查了基本不等式及二次函数性质在最值求解中的应用,属于中档题.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件【分析】根据充分必要条件的定义,对各个选项中的两个条件进行正反推理论证,即可得到本题的答案.【解答】解:对于选项A,a>1,b>1⇒a﹣1>0,b﹣1>0⇒(a﹣1)(b﹣1)>0,反之,若(a﹣1)(b﹣1)>0,则可能a=b=0,不能得出a>1,b>1.故“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件,A正确;对于选项B,ax2+ax+1>0在R上恒成立,当a=0时,可得1>0恒成立,而区间(0,4)上没有0,故“0<a<4”不是“ax2+ax+1>0在R上恒成立”的充要条件,B不正确;对于选项C,f(x)=x2﹣ax在(1,+∞)上单调递增,可以推出是a⩽2的子集,故“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的充分不必要条件,C不正确;对于选项D,a3+a2b﹣a2﹣ab+a+b=a2(a+b)﹣a(a+b)+(a+b)=(a+b)(a2﹣a+1),,ab>0⇎(a+b)>0,因此,“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件,D正确.故选:AD.【点评】本题主要考查了充分条件与必要条件的判断、不等式的性质、二次函数的单调性等知识,属于基础题.(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9【分析】将所给等式化简整理,得到(x+y)2=x2y2,结合x,y>0可得x+y=xy,.由此出发对各个选项逐一加以验证,即可得到本题的答案.【解答】解:根据题意,x2+y2+1=(xy﹣1)2,即x2+y2=x2y2﹣2xy,整理得x2+y2+2xy =x2y2,所以x2+y2+2xy=x2y2,即(x+y)2=x2y2,而x、y均为正数,故x+y=xy,可得.对于A,,两边平方得x2y2≥4xy,可得xy≥4,故A错误;对于B,由A的计算可知x+y=xy≥4,当且仅当x=y=2时取到等号,故B正确;对于C,x2+y2=x2y2﹣2xy=(xy﹣1)2+1≥32﹣1=8,当且仅当x=y=2时取到等号,故C正确;对于D,,当且仅当x=2y,即时取到等号,故D正确.故选:BCD.【点评】本题主要考查了不等式的性质、基本不等式及其应用等知识,考查了计算能力、逻辑推理能力,属于中档题.三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为[﹣2,1].【分析】根据函数的解析式,列出使函数解析式有意义的不等式组,求出解集即可.【解答】解:函数∴﹣x2﹣x+2⩾0,解得﹣2⩽x⩽1.∴函数的定义域为[﹣2,1].故答案为:[﹣2,1].【点评】本题主要考查函数定义域的求解,属于基础题.14.(5分)已知函数f (x )满足,则函数f (x )的解析式为.【分析】利用解方程组的方法求函数解析式即可.【解答】解:根据题意:①,令代替x ,可得②,①﹣②×2得:,∴函数f (x )的解析式为.故答案为:.【点评】本题考查求函数解析式,属于基础题.15.(5分)已知函数,则f (﹣26)+f (﹣25)+⋯+f (﹣1)+f(1)+⋯+f (26)+f (27)的值为.【分析】根据已知条件,结合偶函数的性质,即可求解.【解答】解:令函数,可得函数f (x )=g (x )+2,∵函数为奇函数,∴g (﹣x )=﹣g (x )⇒g (﹣x )+g (x )=0,f (﹣26)+f (﹣25)+⋯+f (﹣1)+f (1)+⋯+f (26)+f (27)=g (﹣26)+g (﹣25)+⋯+g (﹣1)+g (1)+⋯+g (26)+g (27)+2×53=g (27)+2×53=.故答案为:.【点评】本题主要考查函数值的求解,属于基础题.16.(5分)已知x ,y >0且满足x +y =1,若不等式恒成立,记的最小值为n ,则m +n 的最小值为.【分析】由恒成立,可知左边的最小值大于等于9,因此求的最小值,结合基本不等式求出m+n的最小值.【解答】解:∵实数x,y>0满足x+y=1,∴x+y+1=2,而=,当时,等号成立,所以,解得m⩾8.而=,令,则原式,当时,等号成立,∴实数n的值为,可得实数m+n的最小值为.故答案为:.【点评】本题主要考查基本不等式及其应用,考查了计算能力、逻辑推理能力,属于基础题.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.【分析】(1)把m=3代入求得B,再由并集运算求解;(2)“x∈A”是“x∈B”的必要不充分条件,得B⫋A,然后分B=∅和B≠∅分别求解m 的范围,取并集得答案.【解答】解:(1)∵集合A={x|x2﹣2x﹣3⩽0},由x2﹣2x﹣3⩽0,即(x+1)(x﹣3)⩽0,解得﹣1⩽x⩽3,∵集合B={x|m﹣1<x<2m+1},当m=3时,即B={x|2<x<7},∴A∪B={x|﹣1⩽x<7}.(2)“x∈A”足“x∈B”的必要不充分条件,可得集合B是集合A的真子集,当m﹣1⩾2m+1⇒m⩽﹣2时,集合B为空集,满足题意;当m﹣1<2m+1⇒m>﹣2时,集合B是集合A的真子集,可得,∴实数m的取值范围为{m|m⩽﹣2或0⩽m⩽1}.【点评】本题考查并集的运算,考查分类讨论思想,是中档题.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.【分析】(1)结合幂函数的性质,以及偶函数的性质,即可求解;(2)结合函数的性质,即可求解.【解答】解:(1)由题意可知,2m2﹣m=1,解得m=或1,又∵函数f(x)关于y轴对称,当,满足题意;当m=1⇒f(x)=x5,此时函数f(x)为奇函数,不满足题意,∴实数m的值为;(2)函数,分析可得该函数在(0,+∞)单调递减,∴由(a﹣1)m<(2a﹣3)m可得:.∴实数a的取值范围为.【点评】本题主要考查函数的性质,是基础题.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.【分析】(1)当x<0时,﹣x>0,代入已知函数解析式,对比函数解析式即可求解a,b;(2)结合奇函数的对称性及二次不等式的求法即可求解.【解答】解:(1)根据题意:当x<0时,﹣x>0,则f(x)=﹣f(﹣x)=﹣[(﹣x)2+2(﹣x)]=﹣x2+2x,故a=﹣1,b=2;(2)当x⩾0时,|f(x)|⩾3可得f(x)⩾3,即x2+2x⩾3⇒x2+2x﹣3⩾0,解得x⩾1,根据奇函数可得:|f(x)|⩾3的解集为{x|x⩾1或x⩽﹣1}.【点评】本题主要考查了奇函数的定义在函数解析式求解中的应用,还考查了奇函数的对称性在不等式求解中的应用,属于中档题.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.【分析】(1)根据单日销售额函数,列方程求出m的值,再利用利润=销售额﹣成本,即可得出日销售利润函数的解析式.(2)利用分段函数求出每个区间上的最大值,比较即可得出结论.【解答】解:(1)根据题意知,单日销售额为f(x)=,因为f(3)=+6+3=+9,解得m=,因为利润=销售额﹣成本,所以日销售利润为P(x)=,化简为P (x )=.(2)根据题意分析:①日销售利润P (x )=+x +3=+(x +1)+2,令t =x +1=2,3,4,所以函数为,分析可得当t =2时,取最大值,其最大值为;②日销售利润P (x )=+2x =+2x =﹣+2x ,该函数单调递增,所以当x =6时,P (x )取最大值,此最大值为15;③日销售利润P (x )=21﹣x ,该函数单调递减,所以当x =7时,P (x )取最大值,此最大值为14;综上知,当x =6时,日销售利润最大,最大值为15千元.【点评】本题考查了分段函数模型应用问题,也考查了运算求解能力,是中档题.21.(12分)已知a ,b ,c 是实数,且满足a +b +c =0,证明下列命题:(1)“a =b =c =0”是“ab +bc +ac =0”的充要条件;(2)“abc =1,a ≥b ≥c ”是“”的充分条件.【分析】(1)根据完全平方公式,等价变形,可证出结论;(2)利用基本不等式,结合不等式的性质加以证明,即可得到本题的答案.【解答】证明:(1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,充分性:若a =b =c =0,则ab +bc +ac =0,充分性成立;必要性:若ab +bc +ac =0,由a +b +c =0,得(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,所以a 2+b 2+c 2=0,可得a =b =c =0,必要性成立.综上所述,a =b =c =0是ab +bc +ac =0的充要条件;(2)由a ⩾b ⩾c ,且abc =1>0,可知a >0,b <0,c <0,由a +b +c =0,得,当且仅当b =c 时等号成立,由,得,a 3⩾4,可知≤a =﹣b ﹣c ≤﹣2c ,解得,因此,abc=1且a⩾b⩾c是的充分条件.【点评】本题主要考查等式的恒等变形、不等式的性质与基本不等式等知识,考查了计算能力、逻辑推理能力,属于基础题.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.【分析】(1)根据题意,由f(0)=1,f(1)=3分析可得f(x)=ax2+(2﹣a)x+1,由二次函数的最小值求出a的值,进而计算可得答案;(2)根据题意,由二次函数的性质分a>0与a<0两种情况讨论,分析g(a)的解析式,综合可得答案.【解答】解:(1)根据题意,函数f(x)=ax2+bx+c满足f(0)=1,f(1)=3,则有f(0)=c=1,f(1)=a+b+c=3,变形可得b=2﹣a,函数f(x)=ax2+(2﹣a)x+1,∵函数f(x)有最小值,∴a>0,函数f(x)的最小值为=,解可得:a=4或1,∴当a=4时,b=﹣2,函数f(x)的解析式为f(x)=4x2﹣2x+1;当a=1时,b=1,函数f(x)的解析式为f(x)=x2+x+1.(2)根据题意,由(1)的结论,f(x)=ax2+(2﹣a)x+1,是二次函数,分2种情况讨论:①当a>0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5,ii.当对称轴时,与a>0矛盾,故当a>0时,函数f(x)在区间[1,2]上的最大值g(a)=2a+5;②当a<0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(1)=3,ii.当对称轴时,函数f(x)在区间[1,2]上的最大值,iii.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5.综上所述,【点评】本题考查函数的最值,涉及二次函数的性质,属于中档题.。

大学高数期中考试试卷

大学高数期中考试试卷

大学高数期中考试试卷一、选择题(每题2分,共20分)1. 函数f(x)=\(\frac{1}{x}\)在x=0处:A. 连续B. 可导C. 不连续D. 可积2. 若函数f(x)在闭区间[a,b]上连续,则:A. 必存在最大值B. 必存在最小值C. 必存在零点D. 以上都不对3. 微分方程\(\frac{dy}{dx} + y = e^x\)的解是:A. \(y = e^x - xe^x\)B. \(y = e^x + ce^{-x}\)C. \(y = e^x - ce^x\)D. \(y = e^x\)4. 曲线y=x^3在点(1,1)处的切线斜率是:A. 0B. 1C. 3D. 无法确定5. 函数\(\sin(x)\)的原函数是:A. \(x\)B. \(\cos(x)\)C. \(-\cos(x)\)D. \(\sin(x)\)6. 若f(x)在区间(a,b)内可导,则f(x)在该区间内:A. 必定单调递增B. 必定单调递减C. 必定连续D. 以上都不对7. 曲线y=\(\sqrt{x}\)与直线x=4所围成的面积是:A. \(\frac{16}{3}\)B. \(\frac{32}{3}\)C. \(\frac{64}{3}\)D. \(\frac{128}{3}\)8. 函数\(\ln(x)\)的泰勒展开式是:A. \(x - 1 + \frac{1}{2}x^2 - \frac{1}{3}x^3 + \cdots\)B. \(x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \cdots\)C. \(x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \cdots\)D. \(\frac{1}{x} - \frac{1}{2x^2} + \frac{1}{3x^3} -\cdots\)9. 若\(\int_{0}^{1} f(x)dx = 2\),则\(\int_{0}^{1} x f(x)dx\)的值是:A. 0B. 1C. 2D. 无法确定10. 函数\(\frac{1}{1+x^2}\)的不定积分是:A. \(\ln(1+x^2)\)B. \(\arctan(x)\)C. \(\ln|x|\)D. \(\ln|x+1|\)二、填空题(每空1分,共10分)1. 若\(\frac{dy}{dx} = 3x^2\),则\(dy\) = __________。

大一高数期中必背知识点汇总

大一高数期中必背知识点汇总

大一高数期中必背知识点汇总大学的数学课程无疑是新生们的一大挑战。

其中,高等数学作为一门重要的基础学科,为今后各种专业课程打下了坚实的数学基础。

而在大一高等数学的期中考试中,学生们需要掌握一些必备的知识点。

本文将为大家总结一些重要的高数知识点。

一、函数与极限在大一高数中,函数与极限是最基础的概念之一。

理解函数的概念对于后续学习数学是至关重要的。

函数是一种特殊的映射关系,它将一个自变量映射到一个因变量。

常见的函数有线性函数、二次函数、指数函数和对数函数等。

而极限则是函数的重要性质之一。

学生们需要掌握函数极限的定义及其性质,包括左极限、右极限和无穷大极限。

同时需要通过求极限的方法来求解函数的极限值,如利用夹逼定理、洛必达法则等。

二、导数与微分导数是函数的变化率,也是微分学的核心概念。

大一高数中,学生们需要深入了解导数的定义及其求解方法。

特别是常见函数的导数公式,如多项式函数、指数函数、对数函数和三角函数等。

在研究函数的变化趋势和性质时,导数起着关键作用。

通过求导可以判断函数的单调性、极值和凹凸性等。

掌握导数的性质和运算法则,可以使学生更好地理解微分学的概念和应用。

三、微分中值定理微分中值定理是微积分中的一个重要定理,也是导数应用的基础。

知道函数在某一区间内可导,可以根据微分中值定理推导出函数在这个区间的某一点上的导数等于这个区间内的函数增量与自变量增量之商的极限。

此定理有三种形式:罗尔定理、拉格朗日中值定理和柯西中值定理。

这些定理的应用非常广泛,比如求函数的零点、证明不等式和计算曲线的弧长等。

在学习微分中值定理时,学生们还需要理解极大和极小值、最大和最小值的概念,以及求极值的方法。

四、不定积分与定积分在大一高数中,学生们要学习的内容还包括不定积分和定积分。

不定积分是积分的一种形式,含有常数项。

学生们需要学会求解常见函数的不定积分,如多项式函数、三角函数和指数函数等。

而定积分是积分的另一种形式,它表示函数f(x)在区间[a, b]上的面积。

大一高等数学上学期期中考(3套)

大一高等数学上学期期中考(3套)

课程名称:高等数学(一、一)(期中考试)学 院: 专 业: 学号: 姓名:―――――――――――――装――――――――――――订――――――――――――线――――――――――――――一、填空题(每小题2分,共20分)1.数列 ,41,0,31,0,21,0,1,0的一般项=n x . 答:nn)1(1-+.2. 极限0sin 3lim tan 5x xx→= .答:35. 3. 极限=-→xx x 10)1(lim .答:1e. 4. 设函数1()cos f x x=,则[(1)]f '= . 答:0.5. 函数()ln ||f x x =的导数()f x '= .答:1x . 注:答为1||x 不给分 6. 已知x y sin =,则(20)y = . 答:sin x . 7. 已知21()1df x dx x =+, 则()f x = . 答: arctan x C +. 注:答为arctan x 扣1分8.当∞→n 时,如果nk1sin 与n1为等价无穷小,则k = . 答:2.9. 若函数31,1(), 1.x x f x a x -+<⎧=⎨≥⎩,在),(+∞-∞上连续,则a = .答:2-.10. 设函数)(x f 在闭区间[]b a ,上连续,在开区间()b a ,内可导,根据拉格朗日定理,则在开区间()b a ,内至少存在一点ξ,使得)(ξf '= .答:()()f b f a b a--.二、单项选择题(每小题3分,共18分)1. 若极限0lim =∞→n n x ,而数列}{n y 有界,则数列}{n n y x ( A ).(A) 收敛于0; (B) 收敛于1; (C) 发散; (D) 收敛性不能确定. 2. 0=x 是函数1()12xf x =-的( C )间断点. (A) 可去; (B) 跳跃; (C) 无穷; (D) 振荡. 3.设函数()(1)(2)(2011)f x x x x x =+++ ,则=')0(f ( C ). (A) !n ; (B) 2010!; (C) 2011!; (D) 2012!. 4.若函数)(x f 、()g x 都可导,设[()]y f g x =,则d d yx=( B ). (A) {[()]}()f g x g x ''⋅; (B) [()]()f g x g x ''⋅; (C) [()]()f g x g x '⋅; (D) [()]f g x '.5.若函数)(x f 与)(x g 对于开区间),(b a 内的每一点都有)()(x g x f '=',则在开区间),(b a 内必有( D )(其中C 为任意常数).(A) )()(x g x f =; (B) C x g x f =+)()(; (C) 1)()(=+x g x f ; (D) C x g x f +=)()(. 6.下列函数中,在区间]1,1[-上满足罗尔定理条件的是( A ).课程名称:高等数学(一、一)(期中考试)学 院: 专 业: 学号: 姓名:―――――――――――――装――――――――――――订――――――――――――线――――――――――――――(A) 21x -; (B) xe ; (C) x ln ; (D)211x -.三、求下列极限(每小题6分,共24分)1. xx x 11lim-+→. 解:0011limlim(11)x x x xxx x →→+-=++ (2分) 011lim211x x →==++. (6分)2. 1lim 1xx x x →∞+⎛⎫ ⎪-⎝⎭解:211212lim lim 111x x x xx x x x x --→∞→∞⎡⎤+⎛⎫⎛⎫⎢⎥=+ ⎪ ⎪⎢⎥--⎝⎭⎝⎭⎣⎦(4分)2e = (6分)3. xxx ln cot ln lim 0+→ 解:原式=x x x xx x x x cos sin lim 1)sin 1(cot 1lim 020++→→-=-⋅ (3分)1cos 1lim sin lim 00-=⋅-=++→→xx x x x .(6分)4. 222111lim 12n nn n n →∞⎛⎫+++⎪+++⎝⎭解:设22212111nn nnx n ++++++=,(1分)则,≤n xn y nnn ==+++1111222; (2分) ≥n xn z nnn n nn nn nn =+=+=++++++/1111112222,(3分) 因为1lim lim ==∞→∞→n n n n z y ,(4分)由夹逼定理112111lim 222=⎪⎪⎭⎫⎝⎛++++++∞→n n n n n . (6分)课程名称:高等数学(一、一)(期中考试)学 院: 专 业: 学号: 姓名:―――――――――――――装――――――――――――订――――――――――――线――――――――――――――四. 求导数或微分(每小题6分,共18分)1.已知)1sin(ln x y -=,求y d 解:cos(1)(1)sin(1)x dy dx x -=-- (4分)cot(1)x dx =--. (6分)2.求由参数方程2arctan ,ln(1)x t y t =⎧⎨=+⎩所确定的函数()y y x =的导数dydx .解:2[ln(1)][arctan ]dy t dx x '+='(2分) 2221/211t t t t==++ .(6分)3. 设函数)(x y y =由方程y x y e 1+=确定, 求)(x y y =在0x =处的切线方程. 解:当0, 1.x y ==(1分)方程yx y e 1+=两边对x 求导,有xy x x y y y d d e e d d +=,(3分) 得d e d 1eyy y x x =-(4分) 所以,x dy e dx==. (5分)因此,所求的切线方程为1y e x =+. (6分)五.(8分)已知函数2arcsin(),0,()2b,0ax x f x x x x >⎧=⎨++≤⎩在0x =点可导, 求常数ba 、的值.解:要使)(x f 在0x =处可导,必须)(x f 在0x =处连续,(1分)而0(0)lim arcsin()0x f ax ++→==;(0)f b =.(2分) 由(0)(0)f f +=,有0b =. (3分) 又 000()(0)arcsin()(0)lim lim lim 0x x x f x f a x a xf a x x x++++→→→-'====-,(4分) 200()(0)2(0)lim lim 20x x f x f x xf x x---→→-+'===-.(5分)由)(x f 在0x =处可导,有(0)(0)f f -+''=(6分), 得2a =.(7分) 故当0,2a b ==时,函数)(x f 在0x =处可导. (8分)六.证明题(12分)若函数)(x f 在闭区间[0,1]上连续,在开区间(0,1)内可导,且(0)0f =,(1)1f =.证明: (1) 存在(0,1)ξ∈,使得()1f ξξ=-;(2) 存在两个不同的点,(0,1)a b ∈,使得()()1f a f b ''=. 证明:(1) 令()()1g x f x x =+-, (1分) 则()g x 在[0,1]上连续, (2分)又(0)10g =-<,(1)10g =>(3分),由零点定理知,存在(0,1)ξ∈,使得()()10g f ξξξ=+-=(5分), 即()1f ξξ=-.(6分)(2) 分别在[0,]ξ和[,1]ξ上应用拉格朗日中值定理 (7分),课程名称:高等数学(一、一)(期中考试)学 院: 专 业: 学号: 姓名:―――――――――――――装――――――――――――订――――――――――――线――――――――――――――存在(0,)a ξ∈,(,1)b ξ∈使得()(0)1()f f f a ξξξξ--'==, (9分)(1)()1(1)()111f f f b ξξξξξξ---'===---, (11分)因此()()1f a f b ''=. (12分)附加题(10分,不计入总成绩,只作为参考) 如果)(x f 和()g x 满足下列三个条件:(1)在闭区间[]b a ,上连续;(2)在开区间()b a ,内可导;(3)对任意(),x a b ∈,均有()0g x '≠.则存在一点(),a b ξ∈,使得()()()()()()f a f fg g b g ξξξξ'-='-.证明:令()[()()][()()]F x f a f x g x g b =--.(2分)因为()F x 在闭区间[]b a ,上连续,在开区间()b a ,内可导,且()()0F a F b ==,(3分)由罗尔定理, 存在一点(),a b ξ∈,使得()0F ξ'=. (5分)由于()[()()]()[()()]()F x f a f x g x g x g b f x '''=-⋅--⋅, (6分)所以()[()()]()[()()]()0F f a f g g g b f ξξξξξ'''=-⋅--⋅=,(8分)整理,得()()()()()()f a f fg g b g ξξξξ'-='-.(10分)大一上学期高数期末考试卷一、单项选择题 (本大题有4小题, 每小题4分, 共16分)1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点;(D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。

大一期中高数复习题

大一期中高数复习题

大一期中高数复习题一、选择题(每题3分,共15分)1. 函数f(x)=x^2+3x-2的定义域是:A. RB. [0, +∞)C. (-∞, 0]D. (-∞, 0) ∪ [1, +∞)2. 已知函数f(x)=2x-1,求f(a+h)-f(a)的极限当h趋于0时的值是:A. 0B. 1C. 2D. -13. 函数f(x)=sin(x)在x=0处的导数是:A. 0B. 1C. -1D. 24. 若f(x)=x^3-2x^2+x-5,求f'(x)的值:A. 3x^2-4x+1B. 3x^2-4x+2C. 3x^2-4x+3D. 3x^2-4x+45. 曲线y=x^3-6x^2+9x在x=2处的切线斜率是:A. -3B. 0C. 3D. 6二、填空题(每题2分,共10分)1. 若f(x)=x^2+1,则f'(x)=________。

2. 函数g(x)=x^3在x=-1处的导数为________。

3. 若f(x)=ln(x),则f'(x)=________。

4. 函数h(x)=e^x的导数是________。

5. 若f(x)=sin(x)+cos(x),则f'(x)=________。

三、计算题(每题10分,共20分)1. 求函数f(x)=x^3-6x^2+11x-6在区间[1,3]上的最大值和最小值。

2. 求曲线y=x^2-4x+7在x=2处的切线方程。

四、证明题(每题15分,共30分)1. 证明:若f(x)在[a,b]上连续,则f(x)在[a,b]上可积。

2. 证明:若函数f(x)在x=c处可导,则f(x)在x=c处连续。

五、应用题(每题10分,共10分)1. 某公司生产的产品成本函数为C(x)=5x+1000,其中x为生产量。

求该公司生产100件产品时的平均成本。

六、综合题(每题10分,共10分)1. 假设某函数f(x)满足f'(x)=2x+1,且f(0)=0,求f(x)的表达式。

高等数学(上)期中考试试卷

高等数学(上)期中考试试卷

(A ) 可去间断点 (B ) 跳跃间断点 (C ) 无穷间断点 (D ) 振荡间断点装订线内不要答题自觉遵 守考 试规 则,诚 信 考 试,绝 不 作弊(3)设函数)(x f 二阶可导,且0)(>'x f ,0)(>''x f ,则当0>∆x 时,有( )(A )0>>∆dy y (B )0<<∆dy y (C )0>∆>y dy (D )0<∆<y dy(4)函数q x x x f ++=2)(3的零点的个数为 ( )(A ) 1 (B ) 2 (C ) 3 (D ) 与q 取值有关(5)若函数)(x f 满足)( )()(+∞<<-∞=-x x f x f ,且在)0,(-∞内,0)(>'x f ,0)(<''x f ,则在),0(+∞内 ( )(A ) )(x f 单调增加且其图象是凸的; (B ) )(x f 单调增加且其图象是凹的;(C ) )(x f 单调减少且其图象是凸的; (D ) )(x f 单调减少且其图象是凹的。

(6)设)(x f 在),0(δU 内具有连续的二阶导数,0)0(='f ,)0( 1)(lim 0<=-''→a a e x f x x 则 ( )(A ) 0=x 是函数)(x f 的极小值点; (B ) 0=x 是函数)(x f 的极大值点;(C ) ))0(,0(f 是曲线)(x f y =的拐点; (D ) ))0(,0(f 不是曲线)(x f y =的拐点。

(7)曲线1)3)(2(2)(2-+-=x x x x f ( ) (A ) 没有渐近线; (B ) 仅有水平渐近线;(C ) 仅有铅直渐近线; (D ) 既有水平渐近线又有铅直渐近线。

三、计算下列极限 (每题5分,共20分)(1))||sin 12(lim 410x x e e x x x +++→(2))1ln()cos 1(1cos11lim 230x x x x x x -++-+→(3))tan 11(lim 20xx x x -→(4) x x x )arctan 2(lim π+∞→四、计算下列各题(每题6分,共24分)(1)设x e x x y -=1sin sin x x +,求y '.( 2 )设函数)(x y 由方程组⎪⎩⎪⎨⎧=+-++=01sin 3232y t e t t x y 确定,试求0t 22=dx y d( 3 ) 21)(2-+=x x x f , 试求)()(x f n( 4 ) 已知方程)ln()(2y x y x x y --=-确定y 是x 的函数,求dy .五.(6分)证明:当1<x 时,xe x ≥-11六.(5分)设)(),(x g x f 在],[b a 上二阶可导,且0)(≠''x g ,)()(b f a f ==,0)()(==b g a g 证明:(1)在),(b a 内,0)(≠x g ;(2)至少存在一点),(b a ∈ξ,使得)()()()(ξξξξg f g f ''''=成立.。

大学高等数学高数期中考试试卷与答案 (1)

大学高等数学高数期中考试试卷与答案 (1)

安徽大学2008—2009学年第一学期《高等数学A (三)》考试试卷(A 卷)(闭卷 时间120分钟)一、单项选择题(每小题2分,共10分)1、下列陈述正确的是( )。

(A) 若方程组0m n A x ⨯=有唯一解,则方程组m n A x b ⨯=有唯一解(B) 若方程组m n A x b ⨯=有唯一解,则方程组0m n A x ⨯=有唯一解(C) 若方程组0m n A x ⨯=有无穷多解,则方程组m n A x b ⨯=有无穷多解(D) 若方程组m n A x b ⨯=无解,则方程组0m n A x ⨯=无解2、已知n 维向量组12,,,(2)s s ααα≥线性相关,则下列选项中必正确的是( )。

(A) 对于任何一组不全为零的数12,,,s k k k ,使得11220s s k k k ααα+++=(B) 12,,,s ααα中任何两个向量线性相关 (C) 存在一组不全为零的数12,,,s k k k ,使得11220s s k k k ααα+++=(D) 对于每一个i α都可以由其余向量线性表出3、设0()1,0()1P A P B <<<<,且(|)(|)1P A B P A B +=,则 ( )。

(A) 事件A 与事件B 互不相容 (B) 事件A 与事件B 对立 (C) 事件A 与事件B 不独立 (D) 事件A 与事件B 独立4、设~()X E λ(指数分布),n X X X ,,,21 是总体X 的样本,则参数λ的矩估计是( )。

(A) }{max 1i ni X ≤≤ (B) X 2 (C) X (D) 1/X5、设n X X X ,,,21 是来自正态总体2(,)N μσ的样本,则下列结论正确的是( )。

(A) 22211()~()n i i X n μχσ=-∑ (B) 2211()~(1)ni i X X n nχ=--∑(C) 22211()~()ni i X X n χσ=-∑ (D) 2211()~(1)1nii X X n n χ=---∑院/系 年级 专业 姓名 学号答 题 勿 超 装 订 线------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------二、填空题(每小题2分,共10分)6、若齐次线性方程组1231231230020kx x x x kx x x x x +-=⎧⎪--=⎨⎪-+=⎩ 有非零解,则k = 。

大一高等数学a期中试题及答案

大一高等数学a期中试题及答案

大一高等数学a期中试题及答案一、选择题(每题3分,共30分)1. 函数f(x)=x^2在x=0处的导数是()。

A. 0B. 1C. 2D. 0答案:B2. 极限lim(x→0) (sin x)/x的值是()。

A. 0B. 1C. 2D. 3答案:B3. 以下哪个选项是不定积分∫x^2 dx的解()。

A. x^3B. x^3 + CC. 3x^2 + CD. 3x^2答案:C4. 以下哪个选项是定积分∫(0 to 1) x dx的值()。

A. 0C. 1D. 2答案:B5. 函数y=e^x的原函数是()。

A. e^xB. e^x + CC. ln(x)D. ln(x) + C答案:B6. 以下哪个选项是微分方程dy/dx + y = 0的通解()。

A. y = e^(-x)B. y = e^xC. y = sin(x)D. y = cos(x)答案:A7. 以下哪个选项是函数y=x^3的二阶导数()。

A. 3x^2B. 6xC. 18xD. 6答案:B8. 以下哪个选项是函数y=ln(x)的一阶导数()。

B. xC. ln(x)D. e^x答案:A9. 以下哪个选项是函数y=x^2 - 4x + 4的最小值()。

A. 0B. 1C. 4D. -4答案:A10. 以下哪个选项是函数y=x^3 - 3x的拐点()。

A. x = 0B. x = 1C. x = -1D. x = 2答案:B二、填空题(每题4分,共20分)1. 函数f(x)=x^3的一阶导数是____。

答案:3x^22. 函数f(x)=x^2+2x+1的极值点是____。

答案:x = -13. 函数f(x)=sin(x)的不定积分是____。

答案:-cos(x) + C4. 函数y=e^x的二阶导数是____。

答案:e^x5. 函数y=ln(x)的二阶导数是____。

答案:1/x^2三、解答题(每题10分,共50分)1. 求函数f(x)=x^3-6x+8在x=2处的切线方程。

大一高数期中复习题

大一高数期中复习题
1 1 π f (π − ) + f (π + ) = (π + 1) + ( −1) = . 2 2 2
3.设 f ( x ) 是以 2π 周期的周期函数,且在 [ −π , π ) 上的表达式 . 周期的周期函数, 0, −π ≤ x < 0 , f ( x) = 可展开成下列的傅里叶级数: 若 f ( x ) 可展开成下列的傅里叶级数: x, 0 ≤ x < π , a0 ∞ + ∑ ( an cos nx + bn sin nx ) . 2 n =1

( −1)
3n +1
n
1 =− . 12
5.使用间接展开方法将函数 f ( x ) = 2sin 2 x 展开成幂级数. . 展开成幂级数.
( −1) 4n x 2 n −∞, +∞ cos 解: f ( x ) = 2sin 2 x = 1 − cos 2 x = 1 − ∑ ,( ). n = 0 ( 2n ) !
n −1

原级数收敛,即条件收敛. 级数收敛, 条件收敛.
2 n +1 ⑤ ∑ ( −1) 2 ; n ( n + 1) n =1 ∞ 2n + 1 n →∞ 2 1 收敛,原级数绝对收敛 绝对收敛. 解: u n = 2 ,且 ∑ 2 收敛,原级数绝对收敛. 2 n ( n + 1) n n =1 n
② ∑ nx n −1 .
n =1

解: R = 1 .收敛区间 ( −1,1) .和函数 S ( x) = 三、傅里叶级数
1
(1 − x )
2
, x ∈ ( −1,1) .
1.若 x = ∑ bn sin nx ( −π < x < π ) ,则 b2 = .

大一高等数学(上)期中测试

大一高等数学(上)期中测试

高等数学(上)期中测试题一 填空题:(每小题4分,共32分,要求:写出简答过程,并且把答案填在横线上)1.设1(1),0(),0x x x f x x a x ⎧⎪-<=⎨⎪+≥⎩在(,)-∞+∞上处处连续,则a =-1e。

解()()111100lim 1lim 1xxx x x x e -----→→⎧⎫⎡⎤-=+-=⎨⎬⎣⎦⎩⎭()0lim x x a a +→+=,有连续性有a =-1e2. 已 知 (3)2f '=,则0(3)(3)lim2h f h f h →--=1-。

解 已知()0(3)(3)3lim2h f f h f h→--'== 则00(3)(3)1(3)(3)lim lim 22h h f h f f f h h h →→----=-()1132122f '=-⋅=-⨯=-3.函数()2cos f x x x =+在[0,]2π上的最大值为6π+解 令()12sin 0f x x '=-=得6x π=()026622f f f ππππ⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭则最大值为6π+4. 设5(sin )5(1cos )x t t y t =+⎧⎨=-⎩ , 则 0t dydx ==0,22t d ydx==120解()05sin 051cos t t t dy dy t dt dx dxt dt======+220t t t dy d dy dx d d y dx dt dx dxdxdt===⎛⎫ ⎪⎛⎫⎝⎭ ⎪⎝⎭==()()()22cos 1cos sin 1cos 151cos 20t t t tt t =+++==+5. 设1(0)xy xx +=>,则y '=()1ln xx x x x ++解 两边取对数有()ln 1ln y x x =+两边关于x 求导得1ln y xx y x'+=+,整理后即得结果 6. 设函数()y y x =由方程cos()0x y xy ++=确定,则dy =sin 11sin y xy dx x xy --。

高等数学上册期中考试试卷

高等数学上册期中考试试卷
' '' '''
1
1
1
1
1
1
2 1
1
1 48
f ( 1 )
'''
'''
1 48
f ( 2 )
'''
'''
f ( 1 ) f ( 2 ) 48
''' ''' ''' ''' '''
2 | f ( ) | | f ( 1 ) | | f ( 2 ) | | f ( 1 ) f ( 2 ) | 48
dy dx
3
y( x )
由方程
y
2
2 ln y x
4
所确定,则

2x y y 1
2
8.设函数
f ( 2 x ) ln x
,则
f ( x )
1 x
9.曲线
y x e
x
在 x 0 处的切线方程是 y 2 x 1
10.若函数 f ( x ) x 1 在区间[ 1 , 4 ] 上满足拉格朗日中值定理的条件,则定理结论中的ຫໍສະໝຸດ e e 2x

e
x
lim
x
2 2
1 a rc ta n x
1 x
2

2 所以 lim a rc ta n n e n
n

4.设函数
所确定,求
x 1 t y y ( x ) 由参数方程 y cos t 2 d y

高一上学期期中考试数学试卷含答案(新课标)

高一上学期期中考试数学试卷含答案(新课标)

2022-2023学年广东高一上学期数学期中考试试题一.选择题(共8小题,满分40分,每小题5分)1.(5分)如图,U 是全集,M 、P 是U 的子集,则阴影部分所表示的集合是( )A .()U MPB .M PC .()U M PD .()()U U M P2.(5分)函数1()x f x -=的定义域为( ) A .(1,)+∞B .[1,)+∞C .[1,2)D .[1,2)(2⋃,)+∞3.(5分)已知集合{2A =-,1},{|2}B x ax ==,若A B B =,则实数a 值集合为( )A .{1}-B .{2}C .{1-,2}D .{1-,0,2}4.(5分)函数()f x 为R 上奇函数,且()1(0)f x x x =>,则当0x <时,()(f x = ) A .1xB .1x --C 1x -D 1x -5.(5分)下列命题中为假命题的是( ) A .x R ∃∈,21x <B .22a b =是a b =的必要不充分条件C .集合2{(,)|}x y y x =与集合2{|}y y x =表示同一集合D .设全集为R ,若A B ⊆,则()()R R B A ⊆ 6.(5分)函数2y x x =+-( ) A .[0,)+∞B .[2,)+∞C .[4,)+∞D .[2)+∞7.(5分)已知()f x 定义在R 上的偶函数,且在[0,)+∞上是减函数,则满足(1)f a f ->(2)的实数a 的取值范围是( ) A .(-∞,3] B .(1,3)-C .(1,)-+∞D .(1,3)8.(5分)已知函数2(1)2,0()2,0a x a x f x x x x -+<⎧=⎨-⎩有最小值,则a 的取值范围是( )A .1[2-,1)B .1(2-,1)C .1[2-,1]D .1(2-,1]二.多选题(共4小题,满分20分,每小题5分) 9.(5分)若110a b<<,则下列不等式中,错误的有( ) A .a b ab +< B .||||a b > C .a b < D .2b a a b+ 10.(5分)下列说法正确的有( ) A .函数1()f x x=在其定义域内是减函数 B .命题“x R ∃∈,210x x ++>”的否定是“x R ∀∈,210x x ++” C .两个三角形全等是两个三角形相似的必要条件 D .若()y f x =为奇函数,则()y xf x =为偶函数11.(5分)若0a >,0b >,2a b +=,则下列不等式对一切满足条件的a ,b 恒成立的是( ) A .1abB .2a b+ C .222a b + D .112a b+ 12.(5分)数学的对称美在中国传统文化中多有体现,譬如如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的和谐美.如果能够将圆的周长和面积同时平分的函数称为这个圆的“优美函数“,下列说法正确的是( )A .对于任意一个圆,其“优美函数“有无数个B .3()f x x =可以是某个圆的“优美函数”C .,0(),0x x f x x x =--<⎪⎩可以同时是无数个圆的“优美函数”D .函数()y f x =是“优美函数”的充要条件为函数()y f x =的图象是中心对称图形三.填空题(共4小题,满分20分,每小题5分)13.(5分)已知函数1(0,1)x y a a a -=>≠的图象恒过定点A ,若点A 在一次函数y mx n =+的图象上,其中m ,0n >,则11m n+的最小值为 . 14.(5分)已知2(2)f x x x =+,则f (1)= ;()f x 的解析式为 .15.(5分)定义在[1-,1]上的函数()y f x =是增函数,且是奇函数,若(1)(45)0f a f a -+->,求实数a 的取值范围是 .16.(5分)已知函数()(||2)f x x x =-,4()1xg x x =+,对于任意1(1,)x a ∈-,总存在2(1,)x a ∈-,使得12()()f x g x 成立,则实数a 的取值范围为 . 四.解答题(共6小题,满分70分) 17.(10分)已知函数()f x =的定义域是集合A ,集合{|1B x x =或3}x .(1)求AB ,AB ;(2)若全集U R =,求()U A B .18.(12分)已知命题:P x R ∃∈,使240x x m -+=为假命题. (1)求实数m 的取值集合B ;(2)设{|34}A x a x a =<<+为非空集合,若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围.19.(12分)已知0a >,0b >,31a b +=. (1)求13a b+的最小值; (2)若2297m a b ab >++恒成立,求实数m 的取值范围.20.(12分)已知函数()f x 是定义域为R 的偶函数,当0x 时,2()2f x x x =-(如图). (1)请补充完整函数()f x 的图象; (2)求出函数()f x 的解析式; (3)求不等式()3f x 的解集;(4)若函数()y f x =与y m =有两个交点,直接写出实数m 的取值范围.21.(12分)已知函数2()1x af x x +=+. (1)若1a =时,判断并证明函数()f x 在[2,3]上的单调性,并求函数()f x 在[2,3]上的最大值和最小值; (2)探究:是否存在实数a ,使得函数()f x 为奇函数?若存在,求出a 的值;若不存在,说明理由.22.(12分)已知函数1()2f x x x=+-. (1)若不等式(2)20x x f k -在[1-,1]上有解,求k 的取值范围; (2)若方程2(|21|)30|21|x x kf k -+-=-有三个不同的实数解,求实数k 的取值范围.答案及解析2022-2023学年广东高一上学期数学期中检测仿真卷(1)一.选择题(共8小题,满分40分,每小题5分)1.(5分)如图,U 是全集,M 、P 是U 的子集,则阴影部分所表示的集合是( )A .()U MPB .M PC .()U M PD .()()U U M P【答案】A【详解】由已知中阴影部分在集合M 中,而不在集合P 中, 故阴影部分所表示的元素属于M ,不属于P (属于P 的补集), 即()U C P M ,故选:A .2.(5分)函数1()x f x -=的定义域为( ) A .(1,)+∞ B .[1,)+∞ C .[1,2)D .[1,2)(2⋃,)+∞【答案】D 【详解】由题意得:1020x x -⎧⎨-≠⎩,解得:1x 且2x ≠, 故函数的定义域是[1,2)(2⋃,)+∞, 故选:D .3.(5分)已知集合{2A =-,1},{|2}B x ax ==,若A B B =,则实数a 值集合为( )A .{1}-B .{2}C .{1-,2}D .{1-,0,2}【答案】D 【详解】AB B B A =⇒⊆,{2A =-,1}的子集有φ,{2}-,{1},{2-,1},当B φ=时,显然有0a =;当{2}B =-时,221a a -=⇒=-;当{1}B =时,122a a ⋅=⇒=;当{2B =-,1},不存在a ,符合题意,∴实数a 值集合为{1-,0,2},故选:D .4.(5分)函数()f x 为R 上奇函数,且()1(0)f x x =>,则当0x <时,()(f x = )A .1B .1C 1D 1【答案】B【详解】函数()f x 为R 上奇函数,可得()()f x f x -=-,又()1(0)f x x >, 则当0x <时,0x ->,()()1)1f x f x =--=-=.即0x <时,()1f x =. 故选:B .5.(5分)下列命题中为假命题的是( ) A .x R ∃∈,21x <B .22a b =是a b =的必要不充分条件C .集合2{(,)|}x y y x =与集合2{|}y y x =表示同一集合D .设全集为R ,若A B ⊆,则()()R R B A ⊆ 【答案】C【详解】A .x R ∃∈,取12x =,则2114x =<,因此是真命题; B .由22a b a b =⇒=,反之不成立,例如取1a =,1b =-,满足22a b =,但是a b ≠,因此22a b =是a b=的必要不充分条件,因此是真命题;C .集合2{(,)|}x y y x =表示点的集合,而集合2{|}y y x =表示数的集合,它们不表示表示同一集合,因此是假命题;D .全集为R ,若A B ⊆,则()()R R B A ⊆,是真命题.故选:C .6.(5分)函数y x =+( )A .[0,)+∞B .[2,)+∞C .[4,)+∞D .)+∞【答案】B【详解】函数的定义域为[2,)+∞, 又函数为单调增函数, 当2x =时,取得最小值为2.∴值域是[2,)+∞.故选:B .7.(5分)已知()f x 定义在R 上的偶函数,且在[0,)+∞上是减函数,则满足(1)f a f ->(2)的实数a 的取值范围是( ) A .(-∞,3] B .(1,3)- C .(1,)-+∞ D .(1,3)【答案】B【详解】根据题意,()f x 定义在R 上的偶函数,且在[0,)+∞上是减函数, 则(1)f a f ->(2)(|1|)f a f ⇒->(2)|1|2a ⇒-<, 解可得:13a -<<,即a 的取值范围为(1,3)-, 故选:B .8.(5分)已知函数2(1)2,0()2,0a x a x f x x x x -+<⎧=⎨-⎩有最小值,则a 的取值范围是( )A .1[2-,1)B .1(2-,1)C .1[2-,1]D .1(2-,1]【答案】C【详解】当0x 时,2()(1)1f x x =--, 此时()min f x f =(1)1=-, 而当0x <时,①1a =时,()2f x =为常函数,此时在R 上满足函数()f x 有最小值为1-, ②1a ≠时,函数()f x 此时为单调的一次函数,要满足在R 上有最小值, 只需10(1)021a a a -<⎧⎨-⨯+-⎩,解得112a -<,综上,满足题意的实数a 的取值范围为:112a -, 故选:C .二.多选题(共4小题,满分20分,每小题5分) 9.(5分)若110a b<<,则下列不等式中,错误的有( ) A .a b ab +< B .||||a b > C .a b < D .2b a a b+ 【答案】BCD 【详解】由110a b<<,得0b a <<,则0a b ab +<<,选项A 正确,选项C 错误; 根据0b a <<可得||||b a >,所以选项B 错误; 由0b a <<,得0b a >,0a b >,则22b a b a a b a b +⋅=,当且仅当b aa b=时等号成立,又a b ≠, 所以b aa b+不能取得最小值2,选项D 错误. 故选:BCD .10.(5分)下列说法正确的有( ) A .函数1()f x x=在其定义域内是减函数 B .命题“x R ∃∈,210x x ++>”的否定是“x R ∀∈,210x x ++” C .两个三角形全等是两个三角形相似的必要条件 D .若()y f x =为奇函数,则()y xf x =为偶函数 【答案】BD【详解】对于A :函数1()f x x=的定义域为(-∞,0)(0⋃,)+∞,所以函数在(0,)+∞和(,0)-∞上都为单调递减函数,故A 错误;对于B :命题“x R ∃∈,210x x ++>”的否定是“x R ∀∈,210x x ++”故B 正确;对于C :两个三角形全等,则两个三角形必相似,但是两个三角形相似,则这两个三角形不一定全等,则两个三角形全等是两个三角形相似的充分不必要条件,故C 错误;对于D :若()y f x =为奇函数,且函数y x =也为奇函数,则函数则()y xf x =为偶函数,故D 正确. 故选:BD .11.(5分)若0a >,0b >,2a b +=,则下列不等式对一切满足条件的a ,b 恒成立的是( )A .1abB 2bC .222a b +D .112a b+ 【答案】ACD【详解】对于命题1ab :由221a b ab ab =+⇒,A 正确;对于命题2a b +:令1a =,1b =时候不成立,B 错误;对于命题222222:()2422a b a b a b ab ab ++=+-=-,C 正确; 对于命题111122:2a b a b a b ab ab+++==,D 正确. 故选:ACD .12.(5分)数学的对称美在中国传统文化中多有体现,譬如如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的和谐美.如果能够将圆的周长和面积同时平分的函数称为这个圆的“优美函数“,下列说法正确的是( )A .对于任意一个圆,其“优美函数“有无数个B .3()f x x =可以是某个圆的“优美函数”C .,0(),0x x f x x x =--<⎪⎩可以同时是无数个圆的“优美函数”D .函数()y f x =是“优美函数”的充要条件为函数()y f x =的图象是中心对称图形 【答案】ABC【详解】根据题意,依次分析选项:对于A :对于任意一个圆,任意的一条直径均可以平分周长和面积,故圆的“优美函数”有无数个,A 正确;对于B :由于3()f x x =的图象关于原点对称,而单位圆也关于原点对称,故3()f x x =可以是单位圆的“优美函数”, B 正确;对于C ,,0(),0x x f x x x =--<⎪⎩为奇函数,且经过原点,若圆的圆心在坐标原点,则()f x 是这个圆的“优美函数”, C 正确,对于D :函数图象是中心对称图形的函数一定是“优美函数”,但反之“优美函数”不一定是中心对称的函数,如图,故D 错误;故选:ABC .三.填空题(共4小题,满分20分,每小题5分)13.(5分)已知函数1(0,1)x y a a a -=>≠的图象恒过定点A ,若点A 在一次函数y mx n =+的图象上,其中m ,0n >,则11m n+的最小值为 . 【答案】4【详解】函数1(0,1)x y a a a -=>≠的图象恒过定点A , 可得(1,1)A ,点A 在一次函数y mx n =+的图象上, 1m n ∴+=,m ,0n >,12m n ∴+=mn ,14mn ∴, 111()4m n m n mn mn +∴+==(当且仅当12n =,12m =时等号成立), 故答案为:4.14.(5分)已知2(2)f x x x =+,则f (1)= ;()f x 的解析式为 . 【答案】34;211()42f x x x =+ 【详解】由21x =,得12x =,f ∴(1)2113()224=+=; 令2x t =,得2t x =,2211()()2242t t f t t t ∴=+=+, 211()42f x x x ∴=+. 故答案为:34;211()42f x x x =+. 15.(5分)定义在[1-,1]上的函数()y f x =是增函数,且是奇函数,若(1)(45)0f a f a -+->,求实数a 的取值范围是 .【答案】6(5,3]2【详解】由题意,(1)(45)0f a f a -+->,即(1)(45)f a f a ->--, 而又函数()y f x =为奇函数,所以(1)(54)f a f a ->-. 又函数()y f x =在[1-,1]上是增函数, 有1111451154a a a a --⎧⎪--⎨⎪->-⎩⇒0231265a a a ⎧⎪⎪⎪⎨⎪⎪>⎪⎩⇒6352a < 所以,a 的取值范围是6(5,3]2.故答案为:6(5,3]2.16.(5分)已知函数()(||2)f x x x =-,4()1xg x x =+,对于任意1(1,)x a ∈-,总存在2(1,)x a ∈-,使得12()()f x g x 成立,则实数a 的取值范围为 . 【答案】1[,3]3【详解】函数()(||2)f x x x =-,4()1xg x x =+, 因为44()411x g x x x ==-++在(1,)a -上单调递增, 所以()g x g <(a )41aa =+, 又222,0()(||2)2,0x x x f x x x x x x ⎧-=-=⎨--<⎩,因为(1)1f -=,由221x x -=,1x =±①当11a -<<+()f x f <(1)1=,因为对于任意1(1,)x a ∈-,总存在2(1,)x a ∈-,使得12()()f x g x 成立, 所以411aa +,解得13a ,故1123a <+ ②当12a +时,()f x f <(a )22a a =-,因为对于任意1(1,)x a ∈-,总存在2(1,)x a ∈-,使得12()()f x g x 成立, 所以2421aa aa -+,可得260a a --,解得23a -, 故123a .综上所述,实数a 的取值范围为1[,3]3.故答案为:1[,3]3.四.解答题(共6小题,满分70分) 17.(10分)已知函数()f x =的定义域是集合A ,集合{|1B x x =或3}x .(1)求AB ,AB ;(2)若全集U R =,求()U A B .【答案】(1){|41AB x x =-<或34}x <;AB R =;(2)(){|4U A B x x =-或4}x【详解】(1)因为函数()f x =的定义域是2{|160}{|44}A x x x x =->=-<<,集合{|1B x x =或3}x , 所以{|41AB x x =-<或34}x <;A B R =;(2)因为全集U R =,所以{|4UA x x =-或4}x ,所以(){|4U A B x x =-或4}x .18.(12分)已知命题:P x R ∃∈,使240x x m -+=为假命题. (1)求实数m 的取值集合B ;(2)设{|34}A x a x a =<<+为非空集合,若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围. 【答案】(1)(4,)B =+∞;(2)4[3,2)【详解】(1)由题意,得关于x 的方程240x x m -+=无实数根, 所以△1640m =-<,解得4m >, 即(4,)B =+∞;(2)因为{|34}A x a x a =<<+为非空集合, 所以34a a <+,即2a <,因为x A ∈是x B ∈的充分不必要条件,所以A 是B 的真子集,则2a <且34a , 即423a <, 综上所述,实数a 的取值范围为4[3,2).19.(12分)已知0a >,0b >,31a b +=. (1)求13a b+的最小值; (2)若2297m a b ab >++恒成立,求实数m 的取值范围. 【答案】(1)16;(2)13(12,)+∞【详解】(1)0a >,0b >,且31a b +=,∴1313333(3)()1010216a b a b a b a b b a b +=++=+++=,当且仅当33a b b a =,即14a b ==时,等号成立, ∴13a b+的最小值为16. (2)2297m a b ab >++恒成立,22(97)max m a b ab ∴>++,222197(3)133a b ab a b ab a b ++=++=+⨯⋅,2(3)1344a b a b +⋅=,当且仅当3a b =,即12a =,16b =时,等号成立,2211139713412a b ab ∴+++⨯=,1312m ∴>, 即实数m 的取值范围为13(12,)+∞.20.(12分)已知函数()f x 是定义域为R 的偶函数,当0x 时,2()2f x x x =-(如图). (1)请补充完整函数()f x 的图象; (2)求出函数()f x 的解析式; (3)求不等式()3f x 的解集;(4)若函数()y f x =与y m =有两个交点,直接写出实数m 的取值范围.【答案】(1)见解析;(2)2220()20x xx f x x xx ⎧-=⎨+<⎩(3)(x ∈-∞,3][3-,)+∞;(4)0m >或1m =-【详解】(1)完整图:(2)0x <,顶点(1,1)--,过点(0,0),(2,0)- 顶点式:2()(1)1f x a x =+-代入(0,0),(2,0)-, 得1a =,2()2f x x x ∴=+, ∴2220()20x xx f x x xx ⎧-=⎨+<⎩, (3)()3f x ,当0x 时,2233x x x -⇒, 当0x <时,由对称性3x ⇒-, (x ∴∈-∞,3][3-,)+∞,(4)由图可知,0m >或1m =-. 21.(12分)已知函数2()1x af x x +=+. (1)若1a =时,判断并证明函数()f x 在[2,3]上的单调性,并求函数()f x 在[2,3]上的最大值和最小值; (2)探究:是否存在实数a ,使得函数()f x 为奇函数?若存在,求出a 的值;若不存在,说明理由. 【答案】(1)最大值为f (2)35=,最小值为f (3)25=;(2)见解析【详解】(1)21()1x f x x +=+在[2,3]上单调递减.证明:令12121212221211,[2,3],,()()11x x x x x x f x f x x x ++∀∈<-=-++ 2112212212()(1)(1)(1)x x x x x x x x -++-=++,因为1223x x <,所以210x x ->,124x x >,124x x +>,121210x x x x ++->, 所以12()()f x f x >,所以()f x 在[2,3]上单调递减;()f x 在[2,3]的最大值为f (2)35=,最小值为f (3)25=;(2)若()f x 为奇函数,且x R ∈,则(0)00f a =⇒=. 下面证明:因为2()1x f x x =+,所以2()()1xf x f x x --==-+, 所以存在0a =.22.(12分)已知函数1()2f x x x=+-. (1)若不等式(2)20x x f k -在[1-,1]上有解,求k 的取值范围; (2)若方程2(|21|)30|21|x x kf k -+-=-有三个不同的实数解,求实数k 的取值范围.【答案】(1)1k ;(2)0k > 【详解】(1)()211222201222x x x xx k k =+--⋅⇒-+原式, 11,222x t ⎡⎤=∈⎢⎥⎣⎦令,则221k t t -+, 令2()21g t t t =-+,()[0g t ∈,1],()k g t 有解,()max k g t ∴,1k ∴.(2)12212302121x x x kk -+-+-=--原式可化为,令|21|(0)x t t =->,12230kt k t t+-+-=原式可化为2(32)210t k t k ⇒-+++=,若原方程有三个不同的实数解,等价于方程2(32)210t k t k -+++=的两根分别位于(0,1)和(1,)+∞之间, 令2()(32)21g t t k t k =-+++, 只需1(0)02(1)00g k g k ⎧>>-⎧⎪⇒⎨⎨<⎩⎪>⎩,0k ∴>.。

大一上学期高数期中考试试题

大一上学期高数期中考试试题
f f
( A) (C )
x x
c
(B) ( D)
f x
f x c
) 。
5、设 a , b 为实数,函数 f ( x )

x2 , x 1 ,则 f x 在 x 1 可导时,必有( ax b, x 1
( B ) a 2, b 1
高等数学 A1 第 1 页 共 2页

x2
0
f t dt
2
sin x
(6 分)
四、求函数的导数 1、已知 y ln x

x 2 2 ,求

dy (6 分) dx
2、已知 y
x 1 x 2 dy (其中 x 4 ) ,求 (6 分) dx x 3 x 4
x a cost, dy d2y (其中 0 t 2 )确定的函数 y f x ,求 , 2 dx dx y b sin t ,
4、曲线 y x 3 在点 1,1 处的切线方程是 ___________________ 。 5、求由方程 x 2 y 2 1 所确定的函数 y y x 的微分 dy 二、单项选择题(本题共 5 小题,每小题 3 分) 1、当 x 1 时, 1 x是1 x 的 (
( A) a 1, b 2
(C ) a 1, b 2
三、求下列函数的极限 1、 lim
( D ) a 2, b 1
ln 1 2 x (5 分) x 0 sin x
x 3
1 2、 0
2
___________________ 。
) 。
( A) (C )
高阶无穷小 同阶非等价无穷小

高数大一期中知识点总结

高数大一期中知识点总结

高数大一期中知识点总结大家好,今天我将为大家总结一下高等数学大一期中考试的重点知识。

高等数学作为大学数学的第一门课程,是培养学生数学思维能力和分析解决实际问题的能力的基础。

下面,我将从函数、导数、极限和微分等方面进行总结。

一、函数函数是高等数学的基石,因此在期中考试中占据了重要的地位。

在函数的学习中,我们需要掌握函数的定义及其图像、常见函数的性质和性质的应用等。

首先,函数的定义是我们学习的基础。

函数定义为自变量与因变量之间的一种关系,其中自变量的取值范围必须是定义域。

对于函数的图像部分,我们需要熟悉常见函数的图像特点,如线性函数、二次函数、指数函数和对数函数等。

其次,我们需要了解函数的性质及其应用。

例如,对于偶函数和奇函数,我们需要掌握它们的定义和图像特点,能够求解分段函数的值,以及在对称轴两侧的关系。

此外,函数的单调性和极值也是需要掌握的知识点。

了解函数的单调性可以帮助我们找到函数的极值点,从而更好地解决实际问题。

二、导数导数是高等数学中非常重要的一部分,它与函数的定义和性质紧密相关。

在导数的学习中,我们需要了解导数的定义、导数的计算法则以及导数的应用等。

首先,导数的定义是我们学习的基础。

导数定义为函数变化率的极限,表示函数在某一点的瞬时变化率。

我们需要掌握导数的定义并能够根据定义求解。

其次,我们需要了解导数的计算法则。

例如,常数函数的导数为零,幂函数的导数等于幂次乘以常数,指数函数和对数函数的导数互为逆运算等。

熟练掌握这些计算法则可以帮助我们更快地求解导数。

导数的应用是我们学习导数的重要目的之一。

在应用中,我们常常需要求函数的极值、判断函数的凹凸性以及求曲线与坐标轴的交点等。

了解导数在实际问题中的应用可以帮助我们更好地理解数学概念,并能够运用数学方法解决实际问题。

三、极限和微分极限和微分是高等数学中的两个重要概念,它们是导数的基础。

在极限和微分的学习中,我们需要了解极限的定义、极限的计算法则以及微分的定义和微分的性质等。

同济大一高数期中复习题

同济大一高数期中复习题

② 5n n 1! ;
n1 2n!
解:un1
5n1
n
2!
2n!
5n 2
n
0 1,级数收敛.
un
2n 2! 5n n 1! 2n 12n 2 第2页/共25页
③ 3n n! ;
nn
n 1
解: un1 un
3n1 n 1! nn
n 1 n1
3n n!
3
1 1 /
nn
n
3 e
1
4a 5b a
b

i jk
解:① a b 3, 2, 11, 1, 2 3 2 1 3, 7, 5 .
1 1 2
② ∵ 4a 5b 43, 2, 1 51, 1, 2 17,3,6,
a b 3,2,1 1, 1,2 2,3, 3 .
i jk
∴ 4a 5b a b 17 3 6 27,63, 45.
1 1 1
所求的平面的方程为 x 1 2 y 2 3z 1 0 ,即
x 2y 3z 8 0 .
第20页/共25页
7.求过点
M0
1,1,1
且平行于直线
L0
:
2x 5x
y z 1 0 3y z 7
, 0
的直线的
对称式方程.
i jk
解: s0 n1 n2 2 1 1 = 2, 7, 11 ,取
,级数发散.

5n

n1 n 2n
解: un1 un
5n1
n 1 2n1
n 2n 5n
5n
n
5
2n 1 2
1
,级数发散.
8.判断下列级数收敛性,若收敛,问是条件收敛还是绝对收敛?

东南大学大一公共课高等数学期中考试卷及答案2

东南大学大一公共课高等数学期中考试卷及答案2

共 7 页 第 1 页东 南 大 学 考 试 卷( A 卷)(共4页第1页)课程名称高等数学(B )期中考试学期X -3 得分适用专业 选学高数(B )的各专业 考试形式闭卷考试时间长度 120分钟一、 填空题(本题共5小题,每小题4分,满分20分)1.设{}{}1,4,5,1,1,2==a b ,若()()λλ+⊥-a b a b ,则λ= ; 2.函数222ln()u x y z =++在点(1,2,2)M -处的方向导数的最大值是 ;3.曲线22390x z y ⎧+=⎨=⎩绕z 轴旋转一周所生成的旋转曲面的方程为 ;4.曲线22222241644x y z x y z ⎧+-=⎨++=⎩在xOy 平面上投影曲线的方程为 ; 5.幂级数()2124nnn x n ∞=-∑的收敛域为 。

二.选择题(本题共4小题,每小题4分,满分16分) 6.级数()1(1)1cos 0n n n λλ∞=⎛⎫--> ⎪⎝⎭∑常数 [ ](A ) 绝对收敛;(B )条件收敛;(C )发散;(D )敛散性与λ的取值有关. 7.已知两直线12412113::235324x y z x y z L L -+++--====-和,则1L 与2L [ ] (A ) 相交; (B )异面; (C )平行但不重合; (D )重合.8.设二元函数(,)z x y =在点(),x y 处可微,下列结论不正确的是 [ ](A ) (),f x y 在点(),x y 连续;(B )(),f x y 在点(),x y 的某邻域内有界; (C ) (),f x y 在点(),x y 处两个偏导数()(),,,x y f x y f x y 都存在; (D )(),f x y 在点(),x y 处两个偏导数()(),,,x y f x y f x y 都连续.共 7 页 第 2 页9.设函数2(),f x x =101,()sin ,nn x S x bn x π+∞=≤<=∑而,x -∞<<+∞其中 (第2页)102()sin d ,(1,2,...),n b f x n x x n π==⎰则12S ⎛⎫-= ⎪⎝⎭[ ](A) 12-(B) 14- (C) 14 (D) 12三.计算下列各题(本题共5小题,每小题7分,满分35分)10.求点()4,1,2A -到直线50240x y z x z -++=⎧⎨+-=⎩的距离。

武汉大学动力与机械学院2018级大一第一学期期中考试 《高等数学B1》试题

武汉大学动力与机械学院2018级大一第一学期期中考试 《高等数学B1》试题

武汉大学动力与机械学院2018~2019学年大一第一学期期中考试《高等数学B1》试题1.(10分)计算:limx→0arctan x−x ln(1+2x3).2.(10分)设y =1x2+3x+2,求y(n).3.(10分)设y = x31−x √2−x(2+x)25+e4x,求y′.4.(10分)判断函数f (x) =x2−xx2−1√1+1x2的间断点,并说明是可去间断点,跳跃间断点,无穷间断点还是振荡间断点.5.(12分)已知函数y =x3+4x2,求:(1)函数f (x)的单调增加、单调减少区间,极大、极小值;(2)函数图形的凸性区间、拐点、渐近线.6.(12分)设f (x)具有二阶连续导数,且f (a) = 0,g(x) = {f(x)x−ax≠a A x=a.(1)试确定A的值,使g(x)在x = a处连续;(2)求g′(x);(3)证明g′(x)在x = a处连续.7.(10分)求曲线y = x2−5x−3的渐近线方程.8.(10分)设x1= 1,x n+1=1+x n1+x n (n = 1,2,…),试证明数列{x n}收敛,并求limn→∞x n.9.(6分)设f (x)在[a, b]上连续,在(a, b)内二阶可导,且f (a) = f (b) ≥ 0,又有f (c) < 0(a < c < b).试证:在(a, b)内至少存在两点ξ1,ξ2,使f ′′(ξ1) > 0,f ′′(ξ2) > 0.10.(10分)设f (x)在[0, 1]上二阶可导,f (0) = 0,f (1) = 1,求证:存在ε∈(0, 1),使得εf ''(ε) + (1 + ε) f '(ε) = 1 + ε.(2018.11.4)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f (0) 0 ,证明:在(-1,1)内至少存在一点 ,使 f ( ) 3
无穷小.
3
4
二、填空题(本大题有 4 小题,每小题 4 分,共 16 分)
2
5
lim (1 3 x ) sin x
x 0

.
6
已知 cos x 是 x
f ( x) 的一个原函数
,

f ( x) cos x d x x

7.
lim
(cos2
cos2 2
L
cos2
n1)
11

ax lim(

bx

cx
1
)x
(a 0,b 0,c 0)
x 0
3
12 lim (sin x 1 sin x ) x
13 判别间断的类型,对可去间断点,将间断点去掉。 设
四、 解答题(本大题 7 分)
f (x) 1 1 1 e1x
14 将一个边长为 a 的正方形铁皮,从每个角截去同样的小方块,然后把四边折起来,能做
大一上学期高数期中考试
一、单项选择题 (本大题有 4 小题, 每小题 4 分, 共 16 分)
1. 设 f ( x ) cos x ( x sin x ), 则在 x 0处有 (
ቤተ መጻሕፍቲ ባይዱ
) .
(A) f (0) 2 (B) f (0) 1 (C) f (0) 0 (D) f ( x) 不可导.
16 、( 本 小题 7 分 ) 设 f (x) 在 闭区 间 a,b 上 连续, 在开区 间 (a,b) 内 可导, 且 ,
f (0) f (1) 0 , f (1) 1 ,证明:存在 (0,1) ,使 f ( ) 1 2
17、(本小题 7 分)设 f (x) 在区间 1,1上具有三阶连续导数,且 f (1) 0, f (1) 1,
设 ( x) 1 x , ( x) 3 33 x,则当x 1时( )
2.
1 x
.
(A)(x)与 (x) 是同阶无穷小,但不是等价无穷小; (B)(x)与 (x)
是等价无穷小;
(C) (x) 是比 (x) 高阶的无穷小;
(D) (x) 是比 (x) 高阶的
成一个无盖的方盒,为了使这个方盒的体积最大,问应截去多少。
五、解答题(本大题 7 分) 15、已知 f (x) 是周期为 5 的连续函数,它在 x 0 的某个邻域内满足关系式
f (1 sin x) 3 f (1 sin x) 8x o(x)
且 f (x) 在 x 1处可导,求曲线 y f (x) 在点 (6, f (6)) 处的切线方程。 六、证明题(本大题有 2 小题,每小题 7 分,共 14 分)
n n
n
n
n
.
8 设 f (ex ) 1 x , 则 f (x)
三、解答题(本大题有 5 小题,每小题 8 分,共 40 分) 9 设函数 y y(x)由方程 e x y sin(xy) 1确定,求 y( x ) 以及 y (0 ) .
10
1 x7
求 x(1 x 7 ) dx.
相关文档
最新文档