专题09 三角函数学生版 高考数学(理科)艺术生百日冲刺复习

合集下载

高考音美艺术生冲刺学案之三角函数

高考音美艺术生冲刺学案之三角函数

1 cos =_____
______, sin
2
3 cos =______
辅助角公式 a sin x b cosx
a2 b2 (
a
sin x
a2 b2
b cosx) a2 b2
_____
a 2 b2 (cos sin x sin cos x) a 2 b2 sin( x )
cos15 4. sin 62 cos28 cos118 sin152 =__ _____;
sin(
)

第 - 5 - 页 共 17 页
cos( )
; tan(
)

2.公式的正用、逆用、变形用。
【 课后作业 】
1.若 tan
3 , tan
4 ,则 tan(
)=
3
2.在
ABC 中 ,若 cos A
4 , cos B
5 , 则 cos C 的值是 _________
5
13
3
3.化简:
sin
2
).
2
5
4
3
例 2:设 cos(
) 4 , cos( 5
求 cos 2 , cos2 的值 .
) 12 , 13
( , ), 2
( 3 ,2 ) , 2
例 3: 已知 cos(
) m , cos(
) n , (m n 0) ,求 tan tan .
【 课堂小结 】 1.两角和、差的正弦、余弦、正切公式
【 典型例题讲练 】
例 1:已知角 的终边过点 P(a, 2a)( a 0) ,求 tan ,sin cos ;
例 2:已知 sin
m3 ,cos

高考数学艺术生百日冲刺专题三角函数测试题

高考数学艺术生百日冲刺专题三角函数测试题

专题4三角函数测试题命题报告:高频考点:三角函数求值和化简、三角函数的图像和性质,三角函数恒等变换以及解三角形等。

考情分析:本单元再全国卷所占分值约15分左右,如果在客观题出现,一般三题左右,如果出现值解答题中,一般一题,难度不大重点推荐:第22题,是否存在问题,有一定难度。

21题数学文化题。

一.选择题1.若角600°的终边上有一点(﹣1,a),则a的值是()A.B.C.2 D.﹣2【答案】:B【解析】角600°的终边上有一点(﹣1,a),∴tan600°=tan(540°+60°)=tan60°==,∴a=﹣.故选:B2.(2018•贵阳二模)已知sin(π﹣α)=﹣,且α∈(﹣),则tan(2π﹣α)=()A.B.C.D.【答案】:B3.(2018•安徽二模)θ为第三象限角,,则sinθ﹣cosθ=()A.B.C.D.【答案】:B【解析】∵θ为第三象限角, =,∴tanθ==2,再根据sin2θ+cos2θ=1,sinθ<0,cosθ<0,∴sinθ=﹣,cosθ=﹣,∴sinθ﹣cosθ=﹣,故选:B.4.函数f(x)=sin(2x+φ)的图象向右平移个单位后所得的图象关于原点对称,则φ可以是()A.B.C.D.【答案】:B【解析】函数f(x)=sin(2x+φ)的图象向右平移个单位后,可得y=sin(2x﹣+φ).∵图象关于原点对称,∴φ﹣=kπ,k∈Z可得:φ=.当k=0时,可得φ=.故选:B.5.(2018•桂林三模)关于函数f(x)=2cos2+sinx(x∈[0,π]),则f(x)的最大值与最小值之差为()A.3 B.2 C.0 D.﹣2【答案】:A【解析】f(x)=2cos2+sinx=cosx+sinx+1=,∵x∈[0,π],∴x+∈[,],可得sin(x+)∈[﹣,1],∴函数f(x)∈[0,3],则f(x)的最大值与最小值之差为3.故选:A.不能靠近.欲测量P,Q两棵树和A,P两棵树之间的距离,现可测得A,B两点间的距离为100 m,∠PAB=75°,∠QAB=45°,∠PBA=60°,∠QBA=90°,如图所示.则P,Q两棵树和A,P两棵树之间的距离各为多少?【分析】△PAB中,∠APB=180°-(75°+60°)=45°,由正弦定理得=⇒AP=50.△QAB中,∠ABQ=90°,∴AQ=100,∠PAQ=75°-45°=30°,由余弦定理得PQ2=(50)2+(100)2-2×50×100cos30°=5000,∴PQ==50.因此,P,Q两棵树之间的距离为50 m,A,P两棵树之间的距离为50 m.18.(2018秋•重庆期中)已知函数f(x)=2cos2x+sin(2x﹣).(Ⅰ)求f(x)的最大值;(Ⅱ)在△ABC中,角A、B、C所对的边分别为a、b、c,若f(A)=f(B)且A≠B,a=1,c=,求b.【解析】:(Ⅰ) f ( x)=cos 2x+1+sin 2xcos﹣cos2xsin=sin2x+cos2x+1=sin(2x+)+1∴当sin(2x+)=时,可得f ( x)的最大值为 2;(Ⅱ) f ( A)=f (B)⇒sin(2A+)=sin(2B+),且 A≠B,∴2A++2B=π,即 A+B=,那么:C=π﹣A﹣B=,余弦定理:c2=a2+b2﹣2abcosC,即13=1+b2+b,∴b=3.19.函数f(x)=2sin2(+x)﹣cos2x.(1)请把函数f(x)的表达式化成f(x)=Asin(ωx+φ)+b(A>0,ω>0,|φ|<)的形式,并求f(x)的最小正周期;(2)求函数f(x)在x∈[,]时的值域.【解析】:(1)函数f(x)=2sin2(+x)﹣cos2x=1﹣cos()cos2x=sin2x﹣cos2x+1=2sin (2x﹣)+1,∴f(x)的最小正周期T=.(2)由(1)可知f(x)=2sin(2x﹣)+1∵x∈[,],∴2x﹣∈[,]∴≤sin(2x﹣)≤1,则2≤f(x)≤3故得函数f(x)在x∈[,]时的值域为[2,3].20.(2018春•金华期末)已知函数的最大值为3.(1)求a的值及f(x)的单调递减区间;(2)若,,求cosα的值.【解析】:(1)====.当时,f(x)max=2﹣1+a=3,∴a=2.由,k∈Z.得到,k∈Z.∴f(x)的单调递减区间为,k∈Z;(2)∵,,∴,又,∴,∴,∴==.21.已知函数,(ω>0).(Ⅰ)求函数f(x)的值域;(Ⅱ)若方程f(x)=﹣1在(0,π)上只有三个实数根,求实数ω的取值范围.【思路分析】(Ⅰ)利用三角恒等变换化简函数的解析式,再根据正弦函数的值域求得函数f(x)的值域.(Ⅱ)求出方程f(x)=﹣1在(0,π)上从小到大的4个实数根,再根据只有三个实数根,求出实数ω的取值范围.【解析】:(Ⅰ)函数=sinωx+2cos(﹣)sin(﹣)=sinωx+2cos(﹣)sin(﹣)=sinωx+sin(ωx﹣)=sinωx﹣cosωx=2sin (ωx﹣),故函数f(x)的值域为[﹣2,2].(Ⅱ)若方程f(x)=﹣1,即sin(ωx﹣)=﹣,∴ωx﹣=2kπ﹣,或ωx﹣=2kπ﹣,k∈Z.即x=,或 x=,(0,π)上,由小到大的四个正解依次为:x=,或x=,或x=,或x=,∵方程f(x)=﹣1在(0,π)上只有三个实数根,∴,解得<ω≤.22.已知函数f(x)=sinωx(sinωx+co sωx)﹣(ω>0)的图象相邻对称轴之间的距离为2π.(Ⅰ)求ω的值;(Ⅱ)当x∈[﹣π,π]时,求f(x)最大值与最小值及相应的x的值;(Ⅲ)是否存在锐角α,β,使a+2β=,f()•f(2)=同时成立?若存在,求出角α,β的值;若不存在,请说明理由.【思路分析】(Ⅰ)由已知利用三角函数恒等变换的应用可得函数解析式f(x)=sin(2ωx﹣),利用正弦函数的周期公式可求ω的值.(Ⅱ)由(Ⅰ)得f(x)=sin(x﹣),由﹣π≤x≤π,可求范围﹣≤﹣≤,根据正弦函数的图象和性质即可计算得解.(Ⅲ)由已知利用三角函数恒等变换的应用可求tan2β=,结合范围β为锐角,0<2β<π,可得β=,α=﹣2β=,即可得解.(Ⅱ)由(Ⅰ)得f(x)=sin(x﹣),由﹣π≤x≤π,得:﹣≤﹣≤,∴﹣1≤sin(x﹣)≤,∴f(x)min=﹣,此时x﹣=﹣,解得x=﹣;f(x)min=,此时x﹣=,解得x=π.………………………(7分)(Ⅲ)存在,理由如下:存在,理由如下:∵f(α+)=sin,f(2β+)=sin(β+)=cosβ,∴f(α+)•f(2β+)=sin cosβ=,∴sin cosβ=,………………………(9分)又a+2β=,a=﹣2β,∴sin cosβ=sin(﹣β)cosβ=,∴(cosβ﹣sinβ)cosβ=,∴cos2β﹣sinβcosβ=,∴×﹣sin2β=,即:cos2β﹣sin2β=0,∴tan2β=,又β为锐角,0<2β<π,∴2β=,β=,从而α=﹣2β=.………………………(12分)。

艺体生三角函数与解三角形高考数学百日突围

艺体生三角函数与解三角形高考数学百日突围

专题一三角函数与解三角形三角函数的图象和性质【背一背基础知识】1.同角三角函数的基本关系:(1)平方关系:22sin cos1αα+=,()2sin cos12sin cos1sin2ααααα±=±=±(2)商数关系:sintan,cos2k k Zαπααπα⎛⎫=≠+∈⎪⎝⎭.2.诱导公式:奇变偶不变,符号看象限.3.两角和与差的三角函数:(1)和角:()sin sin cos cos sinαβαβαβ+=+,()cos cos cos sin sinαβαβαβ+=-,()tan tantan1tan tanαβαβαβ++=-;(2)差角:()sin sin cos cos sinαβαβαβ-=-,()cos cos cos sin sinαβαβαβ-=+,()tan tantan1tan tanαβαβαβ--=+;4.二倍角公式:s i n2ααα=,2222cos2cos sin2cos112sinααααα=-=-=-,22tantan21tanααα=-.5.降幂公式:21cos2cos2αα+=,21cos2sin2αα-=,sin2sin cos2ααα=;6.辅助角公式:()()sin cos0a xb x x aϕ+=+>,其中ϕ由tanbaϕ=确定;7.三角函数的基本性质:8.三角函数图像变换(1)平移变换:siny x=0)((0))||ϕϕϕ><向左(向右平移单位sin()y xϕ=+siny xω=(0)ω>0)((0))||ϕϕϕω><向左(向右平移单位sin()y xωϕ=+(2)周期变换:sin y x =1ω向横坐标变为原来的单位,纵坐标不变sin y x ω=(0)ω>(3)振幅变换:sin y x =A 纵坐标变为原来的单位,横坐标不变sin (0)y A x A => 【讲一讲基本技能】1.必备技能:①在求解三角函数的基本性质时,首先一般要将三角函数解析式利用和差角公式、降幂公式和辅助角公式将三角函数解析式化为()s i n A x b ωϕ++或()cos A x b ωϕ++,然后利用整体法u x ωϕ=+并借助正弦函数或余弦函数进行求解;在求函数()()sin f x A x b ωϕ=++在x D ∈上的最值时,首先求出u =x ωϕ+的取值范围D ',然后作出正弦函数在区间D '的图象,确定sin u 的最值,然后代入解析式进行求解.②在解已知三角函数图像求解析式问题时,常有两种思路,思路1:先根据图像求出周期和振幅,利用周期公式求出ω,再由特殊点(常用最值点)求出ϕ;思路2:先根据图像求出振幅A ,再利用sin()y A x ωϕ=+“五点点作图法”列出关于ωϕ,的方程,即可求出ωϕ,.③在处理图像变换问题时,先把函数化成系数为正同名三角函数,再利用图像变换知识解题,注意用“加左减右,加上减下”判定平移方向,先平移后周期变换和先周期变换后平移平移单位不同. 2.典型例题例1【2017课标3,文6】函数1ππ()sin()cos()536f x x x =++-的最大值为( ) A .65B .1C .35D .15【答案】A例2【2017北京,文16】已知函数())2sin cos 3f x x -x x π=-.(I )f (x )的最小正周期; (II )求证:当[,]44x ππ∈-时,()12f x ≥-. 【答案】(Ⅰ)π ;(Ⅱ)详见解析. 【解析】试题解析:(Ⅰ)31π()2sin 2sin 2sin 22sin(2)22223f x x x x x x x =+-=+=+. 所以()f x 的最小正周期2ππ2T ==. (Ⅱ)因为ππ44x -≤≤, 所以ππ5π2636x -≤+≤.所以ππ1sin(2)sin()362x +≥-=-.所以当ππ[,]44x ∈-时,1()2f x ≥-. 【练一练趁热打铁】1.已知函数)2,0)(cos()(f πϕπωϕω<<>+=x x 为奇函数,且函数)(x f 的图象的一个对称中心到最近的对称轴的距离为2π.(1)求函数)(x f 的解析式.(2)若53)(=αf ,α为第二象限角,求)4(tan πα-的值.【答案】(1)x x f sin =)(;(2)7)4(tan -=-πα.2.【2018届湖北省武汉市高三二月调研】已知函数在上单调递减,且满足.(1)求的值; (2)将的图象向左平移个单位后得到的图象,求的解析式.【答案】(1);(2).【解析】试题分析:(1)利用辅助角公式把原函数化为,再利用对称轴为得到或,最后根据在上为减函数舎去.(2)利用左加右减求解的解析式.解析:(1).,则图象关于对称,在时,,,而,或,在时,在上单减,符合题意.可取.在时,在上单增,不合题意,舍去.因此,.(2)由(1)可知,将向左平移个单位得到,.解三角形【背一背基础知识】1.正弦定理:在一个三角形中,各边和它所对的角的正弦的比相等(设ABC ∆的内角A 、B 、C 所对的边分别为a 、b 、c ,则2sin sin sin a b cR A B C===(其中R 为ABC ∆的外接圆的半径长).变式:(1)2sin a R A =,2sin b R B =,2sin c R C =;(2)sin 2a A R =,sin 2b B R=,sin 2cC R=. 2.余弦定理:三角形中任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦乘积的两倍,即2222cos a b c bc A =+-,2222cos b a c ac B =+-,2222cos c a b ab C =+-.变式:222cos 2b c a A bc +-=,222cos 2a c b B ac +-=,222cos 2a b c C ab+-=;3.面积公式:111sin sin sin 222ABC S bc A ac B ab C ∆===,适用条件:两边及其夹角. 【讲一讲基本技能】1.必备技能:利用正弦定理与余弦定理解三角形,要根据题中边角的已知条件类型选择合适的定理求解.在已知条件中,若等式或分式中边的次数相同或正弦值的次数相等时,可以利用正弦定理将边与对应的角的正弦值进行互化,结合余弦定理或三角变换等知识进行计算;已知条件中,若给定的是三条边的平方关系或或两边的和,一般选择余弦定理进行求解;在已知三角形给定的条件中,若给定的条件是一边与其对角以及另外一边,一般选择余弦定理求解三角形较为方便;求三角形的面积时,要选择一个角及其两条邻边,围绕这三个元素来进行计算.2.典型例题例1【2017课标3,文15】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b,c =3,则A =_________.【答案】75°【解析】由题意:sin sin b c B C= ,即s i n 2s i n 3b C B c === ,结合b c < 可得45B = ,则18075A B C =--=.例2【2016高考新课标1卷】ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos ).C a B+b A c =(I )求C ;(II)若c ABC =∆,求ABC 的周长. 【答案】(I )C 3π=(II)5【解析】(I )由已知及正弦定理得,()2cosC sin cos sin cos sinC A B+B A =, 即()2cosCsin sinC A+B =. 故2sinCcosC sinC =. 可得1cosC 2=,所以C 3π=. (II )由已知,1sin C 2ab =. 又C 3π=,所以6ab =.由已知及余弦定理得,222cosC 7a b ab +-=. 故2213a b +=,从而()225a b +=.所以C ∆AB的周长为5+.【温馨提醒】解三角形问题,关键在于能利用三角公式化简三角恒等式,利用正弦定理、余弦定理实现边角转化;三角形中的求角问题,往往要利用余弦定理用边表示角的函数.【练一练趁热打铁】1. 【2017课标1,文11】△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a =2,c,则C =A .π12B .π6C .π4D .π3【答案】B【解析】2.【2016高考四川】在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos cos sin A B Ca b c+=. (I )证明:sin sin sin A B C =;(II )若22265b c a bc +-=,求tan B .【答案】(Ⅰ)证明详见解析;(Ⅱ)4. 【解析】(Ⅰ)根据正弦定理,可设sin a A =sin b B =sin cC=k (k >0). 则a =k sin A ,b =k sin B ,c =k sin C .代入cos A a +cos B b =sin C c 中,有cos sin A k A +cos sin B k B =sin sin Ck C,变形可得sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π–C )=sin C , 所以sin A sin B =sin C . (Ⅱ)由已知,b 2+c 2–a 2=65bc ,根据余弦定理,有 cos A =2222b c a bc +-=35.所以sin A=45. 由(Ⅰ),sin A sin B =sin A cos B +cos A sin B ,所以45sin B =45cos B +35sin B , 故sin tan 4cos BB B==.解答题(12*5=60分)1.【2018届广东省江门市高三3月模拟(一模)】在△中,,.(Ⅰ)求; (Ⅱ)△的面积,求△的边的长.【答案】(Ⅰ);(Ⅱ).【解析】试题分析: (Ⅰ)由得,所以,再由可得,从而可得.(Ⅱ)由和正弦定理得,根据面积可得,解得,然后根据余弦定理可得.试题解析: (Ⅰ)由得,,∴,∵,∴,∴,∴.(Ⅱ)设角、、所对边的长分别为、、由和正弦定理得,又,∴解方程组,得(负值舍去),在△中,由余弦定理得,∴.2.【2018届甘肃省高三第一次诊断性考试】中,三个内角的对边分别为,若,,且.(Ⅰ)求角的大小;(Ⅱ)若,,求的面积.【答案】(1)(2)【解析】试题分析:(1)根据题中向量垂直得到,再由正弦定理得到,从而得到角B;(2)由余弦定理得到,因为,∴,得到,从而求得面积.解析:(Ⅰ)∵,∴ ,∴∴,∴,∴.(Ⅱ)根据余弦定理可知,∴,又因为,∴,∴,∴,则.3.设函数()sin sin3f x x xπ⎛⎫=++⎪⎝⎭.(1)求()f x的最小值,并求使()f x取得最小值的x的集合;(2)不画图,说明函数()y f x=的图像可由siny x=的图象经过怎样的变化得到.【答案】(1)最小值为x的集合为22,3x x k k Zππ⎧⎫=-+∈⎨⎬⎩⎭;(2)详见解析.【解析】(1)()1sin sin sin sin cos cos sin sin cos cos33322f x x x x x x x x xπππ⎛⎫=++=++=++⎪⎝⎭3sin26x x xπ⎛⎫=+=+⎪⎝⎭,故当()262x k k Zπππ+=-+∈,即当()223x k k Zππ=-+∈,函数()f x取最小值,即()()min1f x-=此时,函数()f x取最小值时x的取值集合为22,3x x k k Zππ⎧⎫=-+∈⎨⎬⎩⎭;(2)解法一:先将函数siny x=的图象向左平移6π个单位长度得到函数()sin6g x xπ⎛⎫=+⎪⎝⎭的图象,然后再将函数()sin6g x xπ⎛⎫=+⎪⎝⎭的图象的纵坐标伸长为原()6f x xπ⎛⎫=+⎪⎝⎭的图象;解法二:先将函数sin y x =倍得到函数()h x x =的图象,然后再将函数()h x x =的图象向左平移6π个单位即可得到函数()6f x x π⎛⎫=+⎪⎝⎭的图象. 4.【2018届浙江省嵊州市高三第一学期期末】已知函数()2sin cos cos 3f x x x x π⎡⎤⎛⎫=⋅-+ ⎪⎢⎥⎝⎭⎣⎦, 02x π⎡⎤∈⎢⎥⎣⎦,(1)求6f π⎛⎫⎪⎝⎭; (2)求()f x 的最大值与最小值.【答案】(1)1;(2;最小值0. 【解析】试题分析:(1)将x 6π=代入函数解析式()2sin cos cos 3f x x x x π⎡⎤⎛⎫=⋅-+ ⎪⎢⎥⎝⎭⎣⎦,利用特殊角的三角函数求解即可;(2)利用两角差的余弦公式、二倍角的正弦公式、二倍角的余弦公式以及辅助角公式化简()262f x x π⎛⎫=-+ ⎪⎝⎭,由02x π⎡⎤∈⎢⎥⎣⎦,,求得52666x πππ⎡⎤-∈-⎢⎥⎣⎦,,结合正弦函数的图象,利用正弦函数的单调性可得()f x 的最大值与最小值.试题解析:(1)1cos 62π⎛⎫-= ⎪⎝⎭, 1sin 62π= 所以111216222f π⎛⎫⎛⎫=⨯⨯+=⎪ ⎪⎝⎭⎝⎭(2)()2sin cos cos 3f x x x x π⎡⎤⎛⎫=⋅-+ ⎪⎢⎥⎝⎭⎣⎦12sin cos cos 2x x x x ⎡⎤⎛⎫=⋅++⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦)3sin21cos22x x =+-262x π⎛⎫=-+⎪⎝⎭. 因为02x π⎡⎤∈⎢⎥⎣⎦,,所以52666x πππ⎡⎤-∈-⎢⎥⎣⎦,.又因为sin y z =在区间62ππ⎡⎤-⎢⎥⎣⎦,上是递增,在区间526ππ⎡⎤⎢⎥⎣⎦,上递减. 所以,当262x ππ-=,即3x π=时, ()f x; 当266x ππ-=-,即0x =时, ()f x 有最小值0.5.【2018届江西省赣州市寻乌中学高三上学期期末】已知函数()3(0)2f x x cos x ωωω=+>的周期为4.(1)求()f x 的解析式;(2)将()f x 的图象沿x 轴向右平移23个单位得到函数()g x 的图象, ,P Q 分别为函数()g x 图象的最高点和最低点(如图),求OQP ∠的大小. 【答案】(1) ()23f x x ππ⎛⎫=+ ⎪⎝⎭ (2) 6OQP π∠=试题解析:(1)()3cos 2f x x x ωω=+1sin cos 22x x ωω⎫=+⎪⎪⎭sin cos cos sin 33x x ππωω⎫=+⎪⎭3x πω⎛⎫=+ ⎪⎝⎭.∵4,0T ω=>,∴242ππω==. ∴()23f x x ππ⎛⎫=+⎪⎝⎭.(2)将()f x 的图象沿x 轴向右平移23个单位得到函数()2g x x π⎛⎫= ⎪⎝⎭. ∵,P Q 分别为该图象的最高点和最低点,∴((,3,P Q .∴2,4,OP PQ OQ ===∴222cos 22OQ PQ OP OQP OQ QP +-∠==⋅. ∴6OQP π∠=.。

艺考生文化课新高考数学百日冲刺复习课时分组冲关:第3章 三角函数、解三角形 第3节

艺考生文化课新高考数学百日冲刺复习课时分组冲关:第3章 三角函数、解三角形 第3节

第三章 第3节1.(2018·全国卷Ⅲ)函数f (x )=tan x 1+tan 2x的最小正周期为( ) A.π4 B.π2C .πD .2π 解析:C [f (x )=tan x 1+tan 2x =sin x cos x 1+sin 2x cos 2x=sin x cos x sin 2x +cos 2x =sin x cos x =12sin 2x ,∴f (x )的周期T =2π2=π.故选C.] 2.(2017·全国Ⅲ卷)函数f (x )=15sin ⎝⎛⎭⎫x +π3+cos ⎝⎛⎭⎫x -π6的最大值为( ) A.65 B .1 C.35D.15 解析:A [由诱导公式得cos ⎝⎛⎭⎫x -π6= cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫x +π3=sin ⎝⎛⎭⎫x +π3,则f (x )= 15sin ⎝⎛⎭⎫x +π3+sin ⎝⎛⎭⎫x +π3=65sin ⎝⎛⎭⎫x +π3,所以函数f (x )的最大值为65.故选A.] 3.函数f (x )=1-2sin 2⎝⎛⎭⎫x -π4是( ) A .最小正周期为π的偶函数B .最小正周期为π的奇函数C .最小正周期为π2的偶函数 D .最小正周期为π2的奇函数 解析:B [因为函数y =1-2sin 2⎝⎛⎭⎫x -π4= cos ⎝⎛⎭⎫2x -π2=sin 2x ,所以该函数是最小正周期为π的奇函数.故选B.] 4.(2019·昆明市一模)若直线x =a π(0<a <1)与函数y =tan x 的图象无公共点,则不等式tan x ≥2a 的解集为( )A.⎩⎨⎧⎭⎬⎫x |k π+π6≤x <k π+π2,k ∈Z B.⎩⎨⎧⎭⎬⎫x |k π+π4≤x <k π+π2,k ∈Z C.⎩⎨⎧⎭⎬⎫x |k π+π3≤x <k π+π2,k ∈ZD.⎩⎨⎧⎭⎬⎫x |k π-π4≤x ≤k π+π4,k ∈Z 解析:B [直线x =a π(0<a <1)与函数y =tan x 的图象无公共点,∴a =12,∴不等式化为tan x ≥1,解得k π+π4≤x <k π+π2,k ∈Z ;∴所求不等式的解集为{x |k π+π4≤x <k π+π2,k ∈Z }.]5.(2019·长春市一模)已知函数f (x )=2sin (2x +φ)(0<φ<π),且f (0)=1,则下列结论中正确的是( )A .f (φ)=2B.⎝⎛⎭⎫π6,0是f (x )图象的一个对称中心C .∅=π3D .x =-π6是f (x )图象的一条对称轴 解析:A [函数f (x )=2sin (2x +φ),且f (0)=2sin φ=1,∴sin φ=12.又0<φ<π,∴φ=π6或5π6; 当φ=π6时,f ⎝⎛⎭⎫π6=2sin ⎝⎛⎭⎫2×π6+π6=2,当φ=5π6时,f ⎝⎛⎭⎫5π6=2sin ⎝⎛⎭⎫2×5π6+5π6=2,故A 正确.]6.(2018·全国Ⅲ卷)函数f (x )=cos ⎝⎛⎭⎫3x +π6在[0,π]的零点个数为________. 解析:由f (x )=cos ⎝⎛⎭⎫3x +π6=0,有3x +π6=k π+π2(k ∈Z ),解得x =k 3π+π9,由0≤k 3π+π9≤π得k 可取0,1,2,∴f (x )=cos ⎝⎛⎭⎫3x +π6在[0,π]上有3个零点. 答案:37.函数f (x )=3+2cos x 的定义域为________.解析:要使函数f (x )=3+2cos x 有意义,则3+2cos x ≥0即cos x ≥-32,由余弦函数的图象,得在一个周期[-π,π]上,不等式cos x ≥-32的解集为⎩⎨⎧⎭⎬⎫x |-5π6≤x ≤56π, 所以,在实数集上不等式的解集为⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z , 即函数的定义域为⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z . 答案:⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z 8.(2019·鄂伦春自治旗一模)若函数f (x )=1+a sin (ax +π6(a >0))的最大值为3,则f (x )的最小正周期为______.解析:函数f (x )=1+a sin ⎝⎛⎭⎫ax +π6的最大值为3, ∴1+a =3,解得a =2.∴f (x )=1+2sin ⎝⎛⎭⎫2x +π6, ∴f (x )的最小正周期为T =2πω=π. 答案:π9.(2019·玉溪市模拟)设函数f (x )=2sin x cos x -cos 2x +1(1)求f ⎝⎛⎭⎫π2(2)求f (x )的最大值和最小正周期.解:(1)函数f (x )=2sin x cos x -cos 2x +1=sin 2x -cos 2x +1=2sin ⎝⎛⎭⎫2x -π4+1, ∴f ⎝⎛⎭⎫π2=2sin ⎝⎛⎭⎫2×π2-π4+1=2×22+1=2. (2)由f (x )=2sin ⎝⎛⎭⎫2x -π4+1, 当2x -π4=π2+2k π,k ∈Z ,即x =3π8+k π,k ∈Z 时, f (x )取得最大值为2+1,最小正周期为T =2πω=π. 10.(2019·泸州市模拟)已知函数f (x )=sin x cos x -cos 2x +a 的最大值为22. (1)求a 的值;(2)求使f (x )≥0成立的x 的集合.解:(1)∵f (x )=sin x cos x -cos 2x +a =12sin 2x -1+cos 2x 2+a =22sin ⎝⎛⎭⎫2x -π4+a -12,∴f (x )max =22+a -12=22,∴a =12. (2)由(1)知,f (x )=22sin ⎝⎛⎭⎫2x -π4. 由f (x )≥0,得22sin ⎝⎛⎭⎫2x -π4≥0, 即2k π≤2x -π4≤π+2k π,k ∈Z , ∴π8+k π≤x ≤5π8+k π,k ∈Z , ∴f (x )≥0成立的x 的集合为⎣⎡⎦⎤π8+k π,5π8+k π,k ∈Z .。

专题09三角函数的概念、诱导公式与三角恒等变换(解析版)

专题09三角函数的概念、诱导公式与三角恒等变换(解析版)

专题09三角函数的概念、诱导公式与三角恒等变换(解析版)考查同角三角函数基本关系及三角恒等变换历来都是高考热点问题之一,题型一般为选择题或填空题,难度为基础题或中档题.易错点1:不能正确理解三角函数的定义当角的终边在一条直线上时,应注意到角的终边为两条射线,所以应分两种情况处理而错解中没有对两种情况进行讨论导致错误。

根据已知条件确定角的大小,没有通过确定角的三角函数值再求角的意识或确定角的三角函数名称不适当造成错解。

易错点2:单位圆中的三角函数线在解题中一方面学生易对此知识遗忘,应用意识不强,另—方面易将角的三角函数值所对应的三角函数线与线段的长度二者等同起来,产生概念性的球易错点3:不瞄常数T的代换1=sin2a+cos2 a=sec2a-tan2a=tancrcotcr=tan—=sin—=cos()这些统称42为1的代换。

易错点4:易遗忘关于sin。

和cos。

齐次式的处理方法弦切互化,异名化同名,异角化同角,降皋或升皋.在三角函数式的化简中“次降角升”和“次升角降"是基本的规律,根号中含有三角函数式时,一般需要升次.易错点5:不能准确运用诱导公式进行化简求值三角化简的通性通法…奇变偶不变,符号看象限(切化弦、降慕公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次):易错点6:没有挖掘题目中的确隐含条件,忽视对角的范围的限制而造成增解现象;易错点7:不重视弧度制下弧长公式和扇形面积公式的记忆(/=1q I r.5扇形=§/尸)。

题组一:三角函数的定义1.(2014新课标I)若tana>0,则()A.sin>0B.cosa>0C.siii2tZ>0D.cos2tz>0【解析】tana>()w匚第一象限或第三象限.此时sinaL cosa|“E.故sin la=2sin acosa>01选C.2.(2011新课标)已知角0的顶点与原点重合,始边与X轴的正半轴重合,终边在直线y=2a上,则cos2^=()4 A.—5B.——53C.-54D.-5【解析】由角。

2020年高考理科数学三角函数与解三角形备考艺体生百日冲刺系列典型试题答案解析(27页)

2020年高考理科数学三角函数与解三角形备考艺体生百日冲刺系列典型试题答案解析(27页)

2020年高考理科数学三角函数与解三角形备考艺体生百日冲刺系列典型试题命题规律三角函数与解三角形这部分内容,高考一般命制一大两小或一大一小. 考查的主要方向有:1.三角恒等变换为主的化简、求值问题;2.三角函数的图象和性质;3.三角恒等变换与三角函数的图象和性质结合考查,先化简、后研究函数的性质;4.正弦定理、余弦定理的应用问题,往往与三角恒等变换相结合,近几年,综合考查正弦定理与余弦定理应用问题,呈现一种新趋势. 本专题主要围绕主观题进行讲练.基本技能一、同角三角函数的基本关系式(1)平方关系:sin 2α+cos 2α=1(α∈R ). (2)商数关系:tan α=sin αcos α⎝⎛⎭⎫α≠k π+π2,k ∈Z 二、六组诱导公式对于角“k π2±α”(k ∈Z )的三角函数记忆口诀“奇变偶不变,符号看象限”,“奇变偶不变”是指“当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变”.“符号看象限”是指“在α的三角函数值前面加上当α为锐角时,原函数值的符号” 三、三角函数的图象和性质 1.三角函数的基本性质:2.三角函数图象变换(1)平移变换:(2)周期变换:(3)振幅变换:四、两角和与差的三角函数公式的应用 两角和与差的正弦、余弦、正切公式 C (α-β):cos(α-β)=cos αcos β+sin αsin β; C (α+β):cos(α+β)=cos αcos_β-sin_αsin β; S (α+β):sin(α+β)=sin αcos β+cos αsin β;sin y x =0)((0))||ϕϕϕ><u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u r 向左(向右平移单位sin()y x ϕ=+sin y x ω=(0)ω>0)((0))||ϕϕϕω><u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u r向左(向右平移单位sin()y x ωϕ=+sin y x =1ωu u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u uu u u u u u u u r向横坐标变为原来的单位,纵坐标不变sin y x ω=(0)ω>sin y x =A u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u r 纵坐标变为原来的单位,横坐标不变sin (0)y A x A =>S (α-β):sin(α-β)=sin_αcos_β-cos αsin β; T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.变形公式:tan α±tan β=tan(α±β)(1∓tan αtan β);.sin αsin β+cos(α+β)=cos αcos β, cos αsin β+sin(α-β)=sin αcos β,函数f(α)=acos α+bsin α(a,b 为常数),可以化为f(α)=a 2+b 2sin(α+φ)或f(α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定. 五、二倍角的正弦、余弦、正切公式: S 2α:sin 2α=2sin_αcos_α;C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; T 2α:tan 2α=2tan α1-tan 2α.变形公式:降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2配方变形:1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)21±sin α=⎝ ⎛⎭⎪⎫sin α2±co s α22,1+cos α=2cos 2α2,1-cos α=2sin 2α2六、正弦定理 正弦定理:a sin A =b sin B =csin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为: a ∶b ∶c =sin A ∶sin B ∶sin C ;a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;sin A =a 2R ,sin B =b 2R ,sin C =c2R 等形式,以解决不同的三角形问题.面积公式S =12ab sin C =12bc sin A =12ac sin B七、余弦定理余弦定理: , , .)4sin(2cos sin πααα±=±2222cos a b c ab C +-=2222cos b c a ac A +-=2222cos c a b ac B +-=变形公式cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,os C =a 2+b 2-c 22ab技能点拨【典例1】(2018·浙江高考真题)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P (3455--,). (Ⅰ)求sin (α+π)的值;(Ⅱ)若角β满足sin (α+β)=513,求cos β的值. 【答案】(Ⅰ)45;(Ⅱ)5665- 或1665.【解析】分析:(Ⅰ)先根据三角函数定义得sin α,再根据诱导公式得结果,(Ⅱ)先根据三角函数定义得cos α,再根据同角三角函数关系得()cos αβ+,最后根据()βαβα=+-,利用两角差的余弦公式求结果. 详解:(Ⅰ)由角α的终边过点34,55P ⎛⎫-- ⎪⎝⎭得4sin 5α=-, 所以()4sin πsin 5αα+=-=. (Ⅱ)由角α的终边过点34,55P ⎛⎫-- ⎪⎝⎭得3cos 5α=-,由()5sin 13αβ+=得()12cos 13αβ+=±. 由()βαβα=+-得()()cos cos cos sin sin βαβααβα=+++, 所以56cos 65β=-或16cos 65β=.【典例2】(2018·江苏高考真题)已知,αβ为锐角,4tan 3α=,cos()αβ+=. (1)求cos2α的值;(2)求tan()αβ-的值. 【答案】(1)725-;(2)211- 【解析】分析:先根据同角三角函数关系得2cos α,再根据二倍角余弦公式得结果;(2)先根据二倍角正切公式得tan2α,再利用两角差的正切公式得结果.详解:解:(1)因为4tan 3α=,sin tan cos ααα=,所以4sin cos 3αα=. 因为22sin cos 1αα+=,所以29cos 25α=,因此,27cos22cos 125αα=-=-.(2)因为,αβ为锐角,所以()0,παβ+∈.又因为()cos αβ+=()sin αβ+== 因此()tan 2αβ+=-. 因为4tan 3α=,所以22tan 24tan21tan 7ααα==--,因此,()()()()tan2tan 2tan tan 21+tan2tan 11ααβαβααβααβ-+⎡⎤-=-+==-⎣⎦+. 【规律方法】应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等. (3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.【典例3】(2019·北京北理工附中高三)已知函数()22sin cos 23f x x x π⎛⎫=-+ ⎪⎝⎭.(I)求()f x 的最小正周期;(Ⅱ)求()f x 在区间02π⎡⎤⎢⎥⎣⎦,上的最大值.【答案】(Ⅰ) πT =1. 【解析】分析:(Ⅰ)利用降幂公式和两角和的余弦公式把()f x 化成3sin 2cos 2122x x -+,再用辅助角公式把213x π⎛⎫-+ ⎪⎝⎭,从而可求()f x 的最小正周期等.(Ⅱ)直接计算出22333x πππ-≤-≤,利用正弦函数的性质得到()f x 的最大值. 详解:(Ⅰ)因为2()2sin sin(2)3f x x x π=-+1cos 2(cos 2cossin 2sin )33x x x ππ=---32cos2122x x =-+213x π⎛⎫=-+ ⎪⎝⎭,所以()f x 的最小正周期22T ππ==.(Ⅱ)因为02x π≤≤,所以22333x πππ-≤-≤.当232x ππ-=,即512x π=时,()f x1. 【典例4】(2019·浙江高考真题)设函数()sin ,f x x x =∈R . (1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124y f x f x ππ=+++ 的值域. 【答案】(1)3,22ππ;(2)1⎡+⎢⎣⎦. 【解析】分析:(1)由函数的解析式结合偶函数的性质即可确定θ的值;(2)首先整理函数的解析式为()sin y a x b ωϕ=++的形式,然后确定其值域即可. 详解:(1)由题意结合函数的解析式可得:()()sin f x x θθ+=+,函数为偶函数,则当0x =时,()02k k Z πθπ+=+∈,即()2k k Z πθπ=+∈,结合[)0,2θ∈π可取0,1k =,相应的θ值为3,22ππ.(2)由函数的解析式可得:22sin sin 124y x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭1cos 21cos 26222x x ππ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭=+ 11cos 2cos 2226x x ππ⎡⎤⎛⎫⎛⎫=-+++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦111cos 2sin 2sin 2222x x x ⎛⎫=--- ⎪ ⎪⎝⎭1312sin 222x x ⎫=--⎪⎪⎝⎭1226x π⎛⎫=+- ⎪⎝⎭.据此可得函数的值域为:1,122⎡-+⎢⎣⎦. 【总结提升】①在求解三角函数的基本性质时,首先一般要将三角函数解析式利用和差角公式、降幂公式和辅助角公式将三角函数解析式化为或,然后利用整体法并借助正弦函数或余弦函数进行求解;②已知三角函数图象求解析式问题,常有两种思路,思路1:先根据图象求出周期和振幅,利用周期公式求出,再由特殊点(常用最值点)求出;思路2:先根据图象求出振幅,再利用“五点点作图法”列出关于的方程,即可求出.③在处理图象变换问题时,先把函数化成系数为正同名三角函数,再利用图象变换知识解题,注意用“加左减右,加上减下”判定平移方向,先平移后周期变换和先周期变换后平移平移单位不同. 【典例5】(2019·全国高考真题(理))ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sinsin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 【答案】(1) 3B π=;(2). 【解析】分析:(1)利用正弦定理化简题中等式,得到关于B 的三角方程,最后根据A,B,C 均为三角形内角解得3B π=.(2)根据三角形面积公式1sin 2ABC S ac B =⋅V ,又根据正弦定理和1c =得到ABC S V 关于C 的函数,由于ABC V 是锐角三角形,所以利用三个内角都小于2π来计算C 的定义域,最后求解()ABC S C V 的值域.详解:(1)根据题意sin sin 2A C a b A +=,由正弦定理得sin sin sin sin 2A CA B A +=,因为0A π<<,故sin 0A >,消去sin A 得sin sin 2A CB +=. ()sin A x b ωϕ++()cos A x b ωϕ++u x ωϕ=+ωϕA sin()y A x ωϕ=+ωϕ,ωϕ,0<B π<,02A C π+<<因为故2A C B +=或者2A CB π++=,而根据题意A BC π++=,故2A C B π++=不成立,所以2A C B +=,又因为A B C π++=,代入得3B π=,所以3B π=. (2)因为ABC V 是锐角三角形,由(1)知3B π=,A B C π++=得到23A C π+=,故022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<.又应用正弦定理sin sin a cA C=,1c =, 由三角形面积公式有:222sin()111sin 3sin sin sin 222sin 4sin ABC C a A S ac B c B c B c C Cπ-=⋅=⋅=⋅=V 22sin cos cos sin 2123133(sin cos )sin 3tan 38tan C C C C C ππππ-==-=又因,tan 62C C ππ<<>318tan C <+<故82ABC S <<V . 故ABC S V的取值范围是 【典例6】(2019·全国高考真题(理))V ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C . 【答案】(1)3A π=;(2)sin 4C =【解析】分析:(1)利用正弦定理化简已知边角关系式可得:222b c a bc +-=,从而可整理出cos A ,根据()0,A π∈可求得结果;(2sin 2sin A B C +=,利用()sin sin B A C =+、两角和差正弦公式可得关于sin C 和cos C 的方程,结合同角三角函数关系解方程可求得结果. 详解:(1)()2222sin sin sin 2sin sin sin sin sin sin B C B B C C A B C -=-+=- 即:222sin sin sin sin sin B C A B C +-= 由正弦定理可得:222b c a bc +-=2221cos 22b c a A bc +-∴==()0,πA ∈Q 3A π\=(2)2b c +=Q sin 2sin A B C += 又()sin sin sin cos cos sin B A C A C A C =+=+,3A π=1sin 2sin 222C C C ++=整理可得:3sin C C =22sin cos 1C C +=Q (()223sin 31sin C C ∴=-解得:sin C =因为sin 2sin 2sin 0B C A C ==->所以sin C >,故sin C =(2)法二:2b c +=Q sin 2sin A B C += 又()sin sin sin cos cos sin B A C A C A C =+=+,3A π=1sin 2sin 2C C C +=整理可得:3sin C C =,即3sin 6C C C π⎛⎫=-= ⎪⎝⎭sin 62C π⎛⎫∴-=⎪⎝⎭由2(0,),(,)3662C C ππππ∈-∈-,所以,6446C C ππππ-==+sin sin()46C ππ=+=. 【规律方法】利用正弦定理与余弦定理解三角形,要根据题中边角的已知条件类型选择合适的定理求解.在已知条件中,若等式或分式中边的次数相同或正弦值的次数相等时,可以利用正弦定理将边与对应的角的正弦值进行互化,结合余弦定理或三角变换等知识进行计算;已知条件中,若给定的是三条边的平方关系或或两边的和,一般选择余弦定理进行求解;在已知三角形给定的条件中,若给定的条件是一边与其对角以及另外一边,一般选择余弦定理求解三角形较为方便;求三角形的面积时,要选择一个角及其两条邻边,围绕这三个元素来进行计算.【典例7】(2020·天津南开中学高三月考)设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,tan a b A =,且B 为钝角. (1)证明:2B A π-=; (2)求sin sin A C +的取值范围.【答案】(1)见解析;(2)9]28. 【解析】(Ⅰ)由tan a b A =及正弦定理,得sin sin cos sin A a AA b B==,∴sin cos B A =, 即sin sin()2B A π=+,又B 为钝角,因此(,)22A πππ+∈, 故2B A π=+,即2B A π-=;(Ⅱ)由(1)知,()C A B π=-+(2)2022A A πππ-+=->,∴(0,)4A π∈,于是sin sin sin sin(2)2A C A A π+=+-2219sin cos 22sin sin 12(sin )48A A A A A =+=-++=--+,∵04A π<<,∴0sin 2A <<,因此21992(sin )2488A <--+≤,由此可知sin sin A C +的取值范围是9]8.【典例8】(2019·北京北师大实验中学高三月考)已知向量(cos ,sin )x x =a ,(3,=b ,[0,]x π∈. (1)若a b ∥,求x 的值;(2)记()f x a b =⋅,求()f x 的最大值和最小值以及对应的x 的值.【答案】(1) 56x π=.(2) 0x =时,()f x 取到最大值3;当56x π=时,()f x 取到最小值- 【解析】(1)因为(cos ,sin )x x =a ,(3,=b ,a b ∥,所以3sin x x =. 若cos 0x =,则sin 0x =,与22sin cos 1x x +=矛盾,故cos 0x ≠.于是tan x =又[0,]x π∈,所以56x π=.(2)()(cos ,sin )(3,3cos 6f x x x x x x π⎛⎫=⋅=⋅==+⎪⎝⎭a b .因为[0,]x π∈,所以7,666x πππ⎡⎤+∈⎢⎥⎣⎦,从而1cos 62x π⎛⎫-+ ⎪⎝⎭剟. 于是,当66x ππ+=,即0x =时,()f x 取到最大值3;当6x ππ+=,即56x π=时,()f x 取到最小值-【方法技巧】确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法:(1)求A ,b ,确定函数的最大值M 和最小值m ,则A =2M m -,b =2M m +;(2)求ω,确定函数的最小正周期T ,则可得ω=2πω;(3)求φ,常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②特殊点法:确定φ值时,往往以寻找“最值点”为突破口.具体如下:“最大值点”(即图象的“峰点”)时ωx +φ=2π;“最小值点”(即图象的“谷点”)时ωx +φ=32π. 【典例9】(2018·天津高考真题(理))在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin cos 6b A a B π⎛⎫=- ⎪⎝⎭.(1)求角B 的大小;(2)设a =2,c =3,求b 和()sin 2A B -的值.【答案】(Ⅰ)3π;(Ⅱ)b =【解析】分析:(Ⅰ)由题意结合正弦定理边化角结合同角三角函数基本关系可得tanB =,则B =π3.(Ⅱ)在△ABC 中,由余弦定理可得b .结合二倍角公式和两角差的正弦公式可得()2sin A B -= 详解:(Ⅰ)在△ABC 中,由正弦定理a bsinA sinB=,可得bsinA asinB =, 又由π6bsinA acos B ⎛⎫=-⎪⎝⎭,得π6asinB acos B ⎛⎫=- ⎪⎝⎭,即π6sinB cos B ⎛⎫=-⎪⎝⎭,可得tanB = 又因为()0πB ∈,,可得B =π3. (Ⅱ)在△ABC 中,由余弦定理及a =2,c =3,B =π3,有22227b a c accosB =+-=,故b .由π6bsinA acos B ⎛⎫=- ⎪⎝⎭,可得sinA =a <c ,故cosA =.因此22sin A sinAcosA ==212217cos A cos A =-=.所以,()222sin A B sin AcosB cos AsinB -=-=11727214⨯-⨯= 【典例10】(2017·上海高考真题)已知函数221()cos sin ,(0,)2f x x x x p =-+?. (1)求()f x 的单调递增区间;(2)设ABC V 为锐角三角形,角A 所对边a =,角B 所对边5b =,若()0f A =,求ABC V 的面积.【答案】(1),2p p 轹÷ê÷÷êøë;(2【解析】(1)依题意()()2211()cos sin cos 20,π22f x x x x x =-+=+?,由2ππ22πk x k -≤≤得πππ2k x k -≤≤,令1k =得ππ2x ≤≤.所以()f x 的单调递增区间,2p p 轹÷ê÷÷êøë. (2)由于a b <,所以A 为锐角,即π0,02π2A A <<<<.由()0f A =,得11cos 20,cos 222A A +==-,所以2ππ2,33A A ==. 由余弦定理得2222cos a b c bc A =+-⋅,2560c c -+=,解得2c =或3c =.当2c =时,222cos 02a c b B ac +-==<,则B 为钝角,与已知三角形ABC 为锐角三角形矛盾.所以3c =.所以三角形ABC 的面积为11sin 532224bc A =⨯⨯⨯=. 【规律方法】1.解三角形与三角函数的综合应用主要体现在以下两方面: (1)利用三角恒等变形化简三角函数式进行解三角形。

三角函数(原卷版)-五年(2018-2022)高考数学真题分项汇编(全国通用)

三角函数(原卷版)-五年(2018-2022)高考数学真题分项汇编(全国通用)

专题09三角函数1.【2022年全国甲卷】将函数op =sin B (>0)的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则的最小值是()A .16B .14C .1D .122.【2022年全国甲卷】设函数op =sin B +(0,π)恰有三个极值点、两个零点,则的取值范围是()A B ,6C D 3.【2022年全国乙卷】函数=cos ++1sin +1在区间0,2π的最小值、最大值分别为()A .−π2,π2B .−3π2,π2C .−π2,π2+2D .−3π2,π2+24.【2022年新高考1卷】记函数op =sin(B +4)+o >0)的最小正周期为T .若23<<,且=op 的图象关于点(32,2)中心对称,则o2)=()A .1B .32C .52D .35.【2022年新高考2卷】若sin(+p +cos(+p =22cos +sin ,则()A .tan(−p =1B .tan(+p =1C .tan(−p =−1D .tan(+p =−16.【2021年甲卷文科】若cos 0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=()A 15B C .3D .37.【2021年乙卷文科】函数()sin cos 33x xf x =+的最小正周期和最大值分别是()A .3πB .3π和2C .6πD .6π和28.【2021年乙卷文科】22π5πcos cos 1212-=()A .12B C .2D 9.【2021年乙卷理科】把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像,则()f x =()A .7sin 212x π⎛⎫- ⎪⎝⎭B .sin 212x π⎛⎫+ ⎪⎝⎭C .7sin 212x π⎛⎫- ⎪⎝⎭D .sin 212x π⎛⎫+ ⎪⎝⎭10.【2021年新高考1卷】下列区间中,函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭单调递增的区间是()A .0,2π⎛⎫⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫⎪⎝⎭11.【2021年新高考1卷】若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+()A .65-B .25-C .25D .6512.【2021年新高考2卷】北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为22(1cos )S r πα=-(单位:2km ),则S 占地球表面积的百分比约为()A .26%B .34%C .42%D .50%13.【2020年新课标1卷理科】设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为()A .10π9B .7π6C .4π3D .3π214.【2020年新课标1卷理科】已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=()A B .23C .13D15.【2020年新课标2卷理科】若α为第四象限角,则()A .cos2α>0B .cos2α<0C .sin2α>0D .sin2α<016.【2020年新课标3卷理科】已知2tan θ–tan(θ+π4)=7,则tan θ=()A .–2B .–1C .1D .217.【2020年新课标3卷文科】已知πsin sin =31θθ⎛⎫++ ⎪⎝⎭,则πsin =6θ⎛⎫+ ⎪⎝⎭()A .12B .3C .23D .218.【2020年新课标3卷文科】在△ABC 中,cos C =23,AC =4,BC =3,则tan B =()AB .C .D .19.【2019年新课标1卷理科】函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .20.【2019年新课标1卷理科】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点④f (x )的最大值为2其中所有正确结论的编号是A .①②④B .②④C .①④D .①③21.【2019年新课标1卷文科】tan255°=A .-2B .-C .2D .22.【2019年新课标2卷理科】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )=sin│x │23.【2019年新课标2卷理科】已知α∈(0,π2),2sin2α=cos2α+1,则sinα=A .15BC D 24.【2019年新课标2卷文科】若x 1=4π,x 2=34π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω=A .2B .32C .1D .1225.【2019年新课标3卷理科】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增④ω的取值范围是[1229510,)其中所有正确结论的编号是A .①④B .②③C .①②③D .①③④26.【2019年新课标3卷文科】函数()2sin sin2f x x x =-在[]0,2π的零点个数为A .2B .3C .4D .527.【2018年新课标1卷文科】已知函数()222cos sin 2f x x x =-+,则A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为428.【2018年新课标1卷文科】已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos23α=,则a b -=A .15B .5C .5D .129.【2018年新课标2卷理科】若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是A .4πB .2πC .34πD .π30.【2018年新课标3卷理科】若1sin 3α=,则cos2α=A .89B .79C .79-D .89-31.【2018年新课标3卷文科】函数()2tan 1tan xf x x=+的最小正周期为A .4πB .2πC .πD .2π32.【2022年新高考2卷】已知函数op =sin(2+p(0<<π)0中心对称,则()A .op 在区间0,12B .op 在区间−π12C .直线=7π是曲线=op 的对称轴D .直线=是曲线=op 的切线33.【2020年新高考1卷(山东卷)】下图是函数y =sin(ωx +φ)的部分图像,则sin(ωx +φ)=()A .πsin(3x +)B .πsin(2)3x -C .πcos(26x +)D .5πcos(2)6x -34.【2022年全国乙卷】记函数op =cos(B +p(>0,0<<π)的最小正周期为T ,若op ==9为op 的零点,则的最小值为____________.35.【2021年甲卷文科】已知函数()()2cos f x x ωϕ=+的部分图像如图所示,则2f π⎛⎫= ⎪⎝⎭_______________.36.【2021年甲卷理科】已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x 为________.37.【2020年新课标2卷文科】若2sin 3x =-,则cos 2x =__________.38.【2020年新高考1卷(山东卷)】某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,//BH DG ,EF =12cm ,DE=2cm ,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为________cm 2.39.【2019年新课标1卷文科】函数3π()sin(2)3cos 2f x x x =+-的最小值为___________.40.【2018年新课标2卷理科】已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________.41.【2018年新课标2卷文科】已知51tan 45πα⎛⎫-= ⎪⎝⎭,则tan α=__________.42.【2018年新课标3卷理科】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.43.【2019年新课标1卷文科】已知函数f (x )=2sin x -x cos x -x ,f′(x )为f (x )的导数.(1)证明:f′(x )在区间(0,π)存在唯一零点;(2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.。

高考数学真题09 三角函数的图象与性质问题(学生版)

高考数学真题09 三角函数的图象与性质问题(学生版)

专题09 三角函数的图象与性质问题【高考真题】1.(2022·北京)已知函数f (x )=cos 2x -sin 2x ,则( )A .f (x )在(-π2,-π6)上单调递减B .f (x )在(-π4,π12)上单调递增C .f (x )在(0,π3)上单调递减D .f (x )在(π4,7π12)上单调递增2.(2022·浙江) 为了得到函数y =2sin3x 的图象,只要把函数y =2sin ⎝⎛⎭⎫3x +π5图象上所有的点( ) A .向左平移π5个单位长度 B .向右平移π5个单位长度C .向左平移π15个单位长度D .向右平移π15个单位长度3.(2022·全国甲文) 将函数f (x )=sin(ωx +π3)(ω>0)的图像向左平移π2个单位长度后得到曲线C ,若C 关于y轴对称,则ω的最小值是( )A .16B .14C .13D .124.(2022·全国乙理) 记函数f (x )=cos(ωx +φ)(ω>0,0<φ<π)的最小正周期为T ,若f (T )=32,x =π9为f (x ) 的零点,则ω的最小值为____________.5.(2022·新高考Ⅰ)记函数f (x )=sin(ωx +π4)+b (ω>0),的最小正周期为T .若2π3<T <π,且y =f (x )的图象关于点(3π2,2)中心对称,则f (π2)=( )A .1B .32C .52D .36.(2022·全国甲理)设函数f (x )=sin(ωx +π3)在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是( )A .[53,136)B .[53,196)C .(136,83]D .(136,196]【知识总结】1.三种三角函数的图象和性质2.函数y =A sin(ωx +φ)(ω>0,A >0)的图象 (1)“五点法”作图设z =ωx +φ,令z =0,π2,π,3π2,2π,求出相应的x 的值与y 的值,描点、连线可得.(2)由三角函数的图象确定解析式时,一般利用五点中的零点或最值点作为解题突破口. (3)图象变换y =sin x ―――――――――→向左(φ>0)或向右(φ<0)平移|φ|个单位长度y =sin(x +φ) ――――――――――――→横坐标变为原来的1ω(ω>0) 倍纵坐标不变y =sin(ωx +φ) ――――――――――――→纵坐标变为原来的A (A >0)倍横坐标不变y =A sin(ωx +φ). 【同类问题】题型一 三角函数的性质1.(2017·山东)函数y =3sin 2x +cos 2x 的最小正周期为( )A .π2B .2π3 C .π D .2π2.函数f (x )=(3sin x +cos x )(3cos x -sin x )的最小正周期是( )A .π2B .πC .3π2D .2π3.(2018·全国Ⅰ)函数f (x )=tan x1+tan 2x的最小正周期为( )A .π4B .π2C .πD .2π4.已知函数f (x )=3sin ωx -cos ωx (ω>0)的最小正周期为2π,则f (x )的单调递增区间是( )A .⎣⎡⎦⎤2k π-π6,2k π+π6(k ∈Z ) B.⎣⎡⎦⎤2k π-π3,2k π+2π3(k ∈Z ) C .⎣⎡⎦⎤2k π-2π3,2k π+π3(k ∈Z ) D.⎣⎡⎦⎤2k π-π6,2k π+5π6(k ∈Z ) 5.(2018·全国Ⅰ)若f (x )=cos x -sin x 在[-a ,a ]上是减函数,则a 的最大值是( )A .π4B .π2C .3π4D .π6.已知函数f (x )=sin ωx +3cos ωx (ω>0),f (π6)+f (π2)=0,且f (x )在区间(π6,π2)上递减,则ω=( )A .3B .2C .6D .57.(2019·全国Ⅰ)函数f (x )=sin ⎝⎛⎭⎫2x +3π2-3cos x 的最小值为________. 8.(2017·全国Ⅰ)函数f (x )=sin 2x +3cos x -34⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的最大值是________. 9.(2013·全国Ⅰ)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=________. 10.已知ω>0,函数f (x )=sin ωx cos ωx +3cos 2ωx -32的最小正周期为π,则下列结论正确的是( ) A .函数f (x )的图象关于直线x =π3对称B .函数f (x )在区间⎣⎡⎦⎤π12,7π12上单调递增C .将函数f (x )的图象向右平移π6个单位长度可得函数g (x )=cos2x 的图象D .当x ∈⎣⎡⎦⎤0,π2时,函数f (x )的最大值为1,最小值为-32题型二 三角函数的图象变换11.(2021·全国乙)把函数y =f (x )图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y =sin ⎝⎛⎭⎫x -π4的图象,则f (x )等于( ) A .sin ⎝⎛⎭⎫x 2-7π12 B .sin ⎝⎛⎭⎫x 2+π12 C .sin ⎝⎛⎭⎫2x -7π12 D .sin ⎝⎛⎭⎫2x +π12 12.(2016·四川)为了得到函数y =sin ⎝⎛⎭⎫2x -π3的图象,只需把函数y =sin2x 的图象上所有的点( ) A .向左平行移动π3个单位长度 B .向右平行移动π3个单位长度C .向左平行移动π6个单位长度D .向右平行移动π6个单位长度13.(2017·全国Ⅰ)已知曲线C 1:y =cos x ,C 2:y =sin ⎝⎛⎭⎫2x +2π3,则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 214.(2018·天津)将函数y =sin ⎝⎛⎭⎫2x +π5的图象向右平移π10个单位长度,所得图象对应的函数( ) A .在区间⎣⎡⎦⎤3π4,5π4上单调递增 B .在区间⎣⎡⎦⎤3π4,π上单调递减 C .在区间⎣⎡⎦⎤5π4,3π2上单调递增 D .在区间⎣⎡⎦⎤3π2,2π上单调递减 15.函数y =3sin 2x -cos 2x 的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位长度后,得到函数g (x )的图象,若函数g (x ) 为偶函数,则φ的值为( )A .π12B .π6C .π4D .π315.将函数f (x )=tan ⎝⎛⎭⎫ωx +π3(0<ω<10)的图象向右平移π6个单位长度后与函数f (x )的图象重合,则ω=( ) A .9 B .6 C .4 D .817.若函数f (x )=cos ⎝⎛⎭⎫2x -π6,为了得到函数g (x )=sin2x 的图象,则只需将f (x )的图象( ) A .向右平移π6个单位长度 B .向右平移π3个单位长度C .向左平移π6个单位长度D .向左平移π3个单位长度18.(2019·天津)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)是奇函数,且f (x )的最小正周期为π,将y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g (x ).若g ⎝⎛⎭⎫π4=2,则f ⎝⎛⎭⎫3π8=( )A .-2B .-2C .2D .219.(2016·全国)若将函数y =2sin 2x 的图象向左平移π12个单位长度,则平移后图象的对称轴为( )A .x =k π2-π6(k ∈Z )B .x =k π2+π6(k ∈Z )C .x =k π2-π12(k ∈Z )D .x =k π2+π12(k ∈Z )20.将函数f (x )的图象向右平移π6个单位长度,再将所得函数图象上的所有点的横坐标缩短到原来的23,得到函数g (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的图象.已知函数g (x )的部分图象如图所示,则函数A .最小正周期为23π,最大值为2 B .最小正周期为π,图象关于点⎝⎛⎭⎫π6,0中心对称 C .最小正周期为23π,图象关于直线x =π6对称 D .最小正周期为π,在区间⎣⎡⎦⎤π6,π3上单调递减 题型三 关于ω的取值范围21.已知函数()sin (0)f x x ωω=>在3[,]44ππ-上单调递增,则ω的取值范围是( )A .[2,)+∞B .(0,2]C .2[,)3+∞D .2(0,]322.将函数()cos()(0)4f x x πωω=+>的图象向右平移4π个单位长度后得到函数()g x 的图象,若()g x 在5(,)44ππ上单调递减,则ω的最大值为( ) A .14 B .34 C .12D .1 23.函数()sin()(0)6f x x πωω=+>图象向右平移4π个单位后所得函数图象与函数()f x 的图象关于x 轴对称,则ω最小值为( )A .2B .3C .4D .624.已知函数()3sin()f x x ωϕ=+,(0,0)2πωϕ><<,()03f π-=,2()()3f x f x π-=,且函数()f x 在区间(,)124ππ上单调,则ω的最大值为( ) A .274 B .214 C .154 D .9425.已知函数()sin()f x x ωϕ=+,0ω>,若()19f π=,(449)0f π=,()f x 在(,)93ππ上单调递减,那么ω的取值个数是( )A .2019B .2020C .2021D .202226.已知函数()sin()(0)6f x x πωω=->,若函数()f x 在区间(0,)π上有且只有两个零点,则ω的取值范围为( )A .713(,)66B .713(,]66C .611(,)56D .611(,]5627.已知函数()2sin()sin()(0)63f x x x ππωωω=-+>,若函数3()()2g x f x =+在[0,]2π上有且只有三个零点,则ω的取值范围为( ) A .[2,11)3 B .11(2,)3 C .710[,)33 D .710(,)3328.已知函数()3sin cos (0)f x x x ωωω=+>在区间[,]43ππ-上恰有一个最大值点和最小值点,则实数ω的 取值范围为( )A .8[,7)3B .8[,4)3C .20[4,)3D .20(,7)329.已知函数1()sin (sin cos )(0)2f x x x x ωωωω=+->在区间(0,)π上恰有1个最大值点和1个最小值点,则ω的取值范围是( )A .711(,)88B .711(,]88C .79(,]88D .79(,)8830.已知函数3()sin()sin()(0)21472xxf x ωππωω=+->在[0,)π上恰有6个零点,则ω的取值范围是 ( ) A .4148(,]77B .3441(,]77C .4148[,)77D .3441[,)77。

高考理科数学复习专题09三角函数(教师版)

高考理科数学复习专题09三角函数(教师版)

2.专题09三角函数【2021年高考全国I卷理数】函数sinxf(x)=一cosxx—在[,]的图像大致为xA.-ITC.门Tsin( x) ( x)【斛析】由 f ( x) 2cos( x) ( x)称,排除A.又fsin x x2cosx x- 1,f(力f(x),得f(x)是奇函数,其图象关于原点对立.........——2 0 ,排除B, C,应选D.1冗【名师点睛】此题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养,采取性质法或赋值法,利用数形结合思想解题.解答此题时,A,再注意到选项的区别,利用特殊值得正确答案.【2021年高考全国I卷理数】关于函数f(x)先判断函数的奇偶性,得f(x)是奇函数,排除sin |x| |sin x|有下述四个结论:①f(x)是偶函数③f(x)在[,]有4个零点②f(x)在区间(一,)单调递增2④f(x)的最大值为2其中所有正确结论的编号是A.①②④B.②④C.①④D.①③冗当一x2/时,fx九时,fsin sin x sin2sinx,它在区间一22sinx ,它有两个零点:sin x f x , f x为偶函数,故①正确.单调递减,故②错误.0 ;当兀x 0时,f x sin x sinx当 x 2k ,2k k N 时,f x 2sin x ;当 x 2k , 2k 2 k N 时,f x sinx sinx 0,又f x 为偶函数,f x 的最大值为2,故④正确.综上所述,①④正确,应选 C. 【名师点睛】此题也可画出函数f x sin x sinx 的图象(如以下图),由图象可得①④正确.3.【2021年高考全国n 卷理数】以下函数中,以3为周期且在区间(7, 3)单调递增的是A . f(x)=|cos2x|B . f(x)=|sin2x| C. f(x)=cos|x| D . f(x)=sin|x|【答案】A【解析】作出由于 y sin |x|的图象如以下图1,知其不是周期函数,排除 D ;由于y cos|x| cosx,周期为2兀,排除C ; 作出ycos2x|图象如图2,由图象知,其周期为 -,在区间(一,一)单调递增,A 正确;24 2....一 一 一一一,一___ __________ 兀 •一、一作出y sin2x 的图象如图3,由图象知,其周期为 一,在区间(一,一)单调递减,排除 B,2 4 2应选A.2sin x ,它有一个零点:冗,故f x 在有3个零点:,故③错误.图3【名师点睛】此题主要考查三角函数的图象与性质,渗透直观想象、逻辑推理等数学素养,画出各 函数图象,即可作出选择.此题也可利用二级结论:①函数 y f (x)的周期是函数y f(x)周期 的一半;②y sin x 不是周期函数2222I2sin a cos a,又sin cos 1, 5sin a 1,sin a 一,又 sin 0, sin 5B.【名师点睛】此题是对三角函数中二倍角公式、同角三角函数根本关系式的考查,中等难度,判断 正余弦的正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出 三角函数值的正负很关键,切记不能凭感觉.解答此题时,先利用二倍角公式得到正余弦关系,再利用角范围及正余弦平方和为1关系得出答案.5.【2021年高考全国 出卷理数】设函数f x =sin ( x —)( >0),f X 在0,2有且仅有5个零点,下述四个结论:①f x 在(0,2 )有且仅有3个极大值点 ②f x 在(0,2 )有且仅有2个极小值点4. 2021年高考全国n 卷理数】(0, —),2sin2 a=cos2 o+1,贝U sin OF2B.Q2sin2 a cos2 a 1,4sin c cos 2 2cos a.Q 瓜cos 0 0 , sin0,图2③f x在(0, —)单调递增10④的取值范围是[但,29) 5 10其中所有正确结论的编号是A.①④B.②③C.①②③D.①③④【解析】①假设f(x)在[0,2句上有5个零点,可画出大致图象,由图1可知,f(x)在(0,2时有且仅有3个极大值点.故①正确;②由图1、2可知,f (x)在(0,2时有且仅有2个或3个极小值点.故②错误;④当f x =sin ( x -)=0 时, x —=k Tt (kC Z)5 5,所以x由于f(x)在[0,2 句上有5个零点,所以当k=5时,* 2/当k=6时,12,解得—529w —,10故④正确.③函数f x =sin x 一)5 的增区间为:2k z 九10 130 2k7t取k=0,7,12 ,〜71当 一时,单调递增区间为 一冗x 一冗, 5 24 829 ....................... 7 3当 —时,单倜递增区间为 —x x —%,10 29 29一. 一 _.冗 ........... .. .综上可得,f X 在0,— 单调递增.故③正确.所以结论正确的有①③④.故此题正确答案为 D.【名师点睛】此题为三角函数与零点结合问题,难度大,可数形结合,分析得出答案,要求高,理 解深度高,考查数形结合思想.注意此题中极小值点个数是动态的, 易错,正确性考查需认真计算,易出错.6.【2021年高考天津卷理数】函数 f(x) Asin( x )(A 0,0,| | )是奇函数,将f X 的图象上所有点的横坐标伸长到原来的 2倍(纵坐标不变),所得图象对应的函数为C.x .假设g x 的最小正周期为2私且g"那么f,2【解析】••• f(x)为奇函数,,f (0) Asin 0, Z, k 0, 0;g(x)八. 1-I- 2冗Asin - x, T -- 2 区22,f(x)32sin2x, f (一)V 2.应选 C.8【名师点睛】此题主要考查函数的性质和函数的求值问题,解题关键是求出函数 g x ,再根据函数性质逐步得出A,,的值即可.17 .【2021年局考全国 出卷理数】假设sin -,那么cos27 - 98 - 9 819 7-9♦ ♦B D1 9 7【解析】cos2 1 2sin 2 1 2 (―)2 —3 9应选B.【名师点睛】此题主要考查三角函数的求值,考查考生的运算求解水平,考查的核心素养是数学运 算.8.【2021年高考全国卷II 理数】假设f x cosx sinx 在 a,a 是减函数,那么a 的最大值是 花A . 一43冗 C.—— 4【答案】A(2)周期T求对称轴.⑶由 2k 冗 2ku k Z花求增区间;由一 2k :t23冗—2ku k Z 求 2减区间 9.【2021年高考天津理数】将函数 y sin(2x一)的图象向右平移 一个单位长度,所得图象对应的函5 103 5 ............A,在区间[3—,5—]上单调递增4 4,一一 .3 一B .在区间[,]上单调递减4【解析】由于fcosxsinx A /2cos x —,4所以由0 2k/花2kXk Z)得一43冗——2kXk Z), 4因此 a,a兀 ................ TT 一,从而a 的取大值为一, 4应选A.【名师点睛】 解答此题时,先确定三角函数单调减区间, 再根据集合包含关系确定a 的最大值 .函数y Asin B(A 0,.)的性质:⑴ y max =A+B, y min AB .令k 1可得一个单调递增区间为令k 1可得一个单调递减区间为:应选A.【名师点睛】此题主要考查三角函数的平移变换,三角函数的单调区间的判断等知识,意在考查学 生的转化水平和计算求解水平10.【2021年高考浙江卷】函数 y=2"sin2x 的图象可能是C.在区间[3 ......... ,3-]上单调递增D.在区间3 -[斗[万,2 ]上单调递减【解析】由函数图象平移变换的性质可知:sin 2x的图象向右平移二个单位长度之后10的解析式为y sin 2 x7t 10 7t5sin2x .那么函数的单调递增区间满足 2k%2x 2ku花,即 k :t — x4.......................... 冗函数的单调递减区间满足: 2 k 冗22x 3冗2k 冗—k Z , IP k u — x243冗 k k ——k4A . 【答案】DB.D.f x2忸sin2x 为奇函数,排除选项 A, B ;...兀. 一_ 一一 ... . . .由于x —,冗时,f x 0,所以排除选项C, 2应选D.............. ....................... ............ 冗 ................................ 【名师点睛】解答此题时,先研究函数的奇偶性,再研究函数在 一,冗上的符号,即可作出判断2有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置; (2)由函数的单调性,判断图象的变化趋势; (3)由函数的奇偶性,判断图象的对称性; (4)由函数的周期性,判断图象的循环往复.C1: y=cos x, C2: y=sin (2x+ 2^),那么下面结论正确的选项是3得到曲线C 2得到曲线C 2得到曲线C 2得到曲线C 2【解析】由于 C I ,C 2函数名不同,所以先将 C 2利用诱导公式转化成与 C I 相同的函数名,那么_ _ 2 7t _ 27t 冗 _ 冗 . .一 .................................. 1 C 2: y sin(2x ——)cos(2x —— 一)cos(2x —),那么由C 1上各点的横坐标缩短到原来的 一3 3 2 6 2,、、. _ . ....... .. 兀. .............. 4 倍变为y cos2x,再将曲线向左平移 一个单位长度得到c 2,应选D.12【名师点睛】对于三角函数图象变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,【解析】令f x 2l x sin2x ,由于x R, f x2 x sin2 x2〞sin2 x11.【2021年高考全国 出理数】曲线 把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变, 再把得到的曲线向右平移 」个单位长度,6B. 把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变, 再把得到的曲线向左平移—个单位长度,12C. 把C 1上各点的横坐标缩短到原来的1 ............. ....... 一倍,纵坐标不变, 2再把得到的曲线向右平移 」个单位长度, 6 D .把C 1上各点的横坐标缩短到原来的1 ............. .......一倍,纵坐标不变, 2再把得到的曲线向左平移—个单位长度,12y Asin x 或 y Acos x b 的形式...,、一...、_ ____________________________ _ 冗(2)求f x Asin( x ) 0的对称轴,只需令 x ku - k Z,求x ;求f(x)的2对称中央的横坐标,只需令 xkXk Z)即可.5.一.一 —兀 兀 . ..需要重点记住sin cos( -),cos sin( -);另外,在进行图象变换时,提倡先平移后伸 2 2缩,而先伸缩后平移在测试中也经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.12.【2021年高考全国出理数】设函数 f x cos(x1,那么以下结论错误的选项是A. f(x)的一个周期为 2几8B. y f(x)的图象关于直线x 8^对称 3C. f (x 花)的一个零点为x -6D. f(x)在(/)单调递减【答案】D____ _ _ _…… 2兀 _ _ 【解析】函数f (x)的最小正周期为T —— 2/,那么函数f(x)的周期为T 2k :tk Z ,取k 1,1可得函数f x 的一个周期为 2任,选项A 正确;一…,―......TT函数f (x)图象的对称轴为 x — k u k Z,即x 38关于直线x —对称,选项B 正确;3冗一 一 .一 ..一,ku — k Z ,取k 3,可得y=f(x)的图象 37tcos x37tcos x —,函数f(x)的零点满足x — ku k Z ,即332, 冗. _ 「I x k 冗—k Z,取 k 60,可得f (x-- -一TT ... .冗)的一个零点为x -,选项C 正确;6-,冗时,x -52,4』,函数f (x)在该区间内不单调,选项 D 错误.23 6 3应选D. 【名师点睛】1)求最小正周期时可先把所给三角函数式化为y Asin( x )或 y Acos( x)的形式,那么最小正周期为T奇偶性的判断关键是解析式是否为13.【2021年高考天津卷理数】设函数f(x) 2sin( x ) , x R ,其中0, | | •假设f (一)2,8【解析】由题意得11 8又T 2- 2 ,所以0 1,所以 2,2k 1—,3 12由 得 —,应选A. 12【名师点睛】关于 y Asin( x )的问题有以下两种题型: ①提供函数图象求解析式或参数的取值范围, 一般先根据图象的最高点或最低点确定A,再根据最小正周期求,最后利用最高点或最低点的坐标满足解析式,求出满足条件的的值;②题目用文字表达函数图象的特点,如对称轴方程、曲线经过的点的坐标、最值等,根据题意自己 画出大致图象,然后寻求待定的参变量,题型很活,一般是求 或 的值、函数最值、取值范围等.【2021年高考北京卷理数】函数 f (x) =sin 22x 的最小正周期是 . , 冗 【答案】- 2【解析】函数f x sin 22x 1 co s4x ,周期为-.2 2【名师点睛】此题主要考查二倍角的三角函数公式 ?三角函数的最小正周期公式,属于根底题 .将所 给的函数利用降哥公式进行恒等变形,然后求解其最小正周期即可f( .) 0,且f(x)的最小正周期大于 2 ,那么12B.12C.24D.2414.2k l 一12............ _,其中k 1,k 2 Z ,所以k215. 【2021年高考江苏卷】tan tan —4一,那么sin 2 一 的值是 ▲3 410tan 21类讨论和转化与化归思想解题.由题意首先求得tan 的值,然后利用两角和的正弦公式和二倍角公 式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可 16.【2021年高考全国I 理数】 函数f x 2sinx sin2x,那么f x 的最小值是21【斛析】f x 2cos x 2cos 2x 4cos x 2cos x 2 4 cosx 1 cosx 一 ,21 (1)所以当cosx -时函数单调递减,当 cosx 一时函数单调递增,从而得到函数的递减区间为 2 2 2k :t 55,2kTt - k Z ,函数的递增区间为 2ku -, 2k u - k Z , 33 33tantan tan 1 tan2 「 九 tan 1 tan 13'tan 一—41 tan2 ,或 tan1 .3【解析】由解得tan得 3tan 2 5tan 2 0,sin 2 sin 2花cos- 4 cos2 冗 sin 一4工~2~sin 2 cos2 2sin 2cos cos_■ 2sin2tan1 tan2 2 sin 2 cos当tan2时,上式=立 2 2 2 22 1 221W ;当tan1 ,,, 一时,上式= 32 [—〔3〕2〔J 〕213一10综上,sin、210【名师点睛】 此题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养.采取转化法,利用分_冗 _ . __ ... .x 2k u — ,k Z 时,函数f x 取得最小值,此时 sinx3【名师点睛】该题考查的是有关应用导数研究函数的最小值问题,在求解的过程中,需要明确相关 的函数的求导公式, 需要明白导数的符号与函数的单调性的关系,确定出函数的单调增区间和单调减区间,进而求得函数的最小值点,从而求得相应的三角函数值,代入求得函数的最小值_........................................ .... ................ 7t..7t ........................................... ..17.【2021年高考北京卷理数】设函数 f (x) =cos( x -)(0),假设f(x)f(-)对任意白^实数x 都成64立,那么3的最小值为【名师点睛】此题主要考查三角函数的图象和性质,考查考生的逻辑推理水平以及运算求解水平, 考查的核心素养是逻辑推理、数学运算查的核心素养是数学运算所以当 所以f x .2min二垓",故答案是空3sin2 x 2由于f对任意白^实数x 都成立,所以f -取最大值,4所以-42ku6由于0,所以当 0时,..... ............. 2 w 取取小值为一318.【2021年高考全国出理数】函数cos兀的零点个数为Q0 x花3x619 7t由题可知3x解得xx4」,或7J ,故有3个零点.【名师点睛】 此题主要考查三角函数的图象与性质, 考查数形结合思想和考生的运算求解水平,考19.【2021年高考江苏卷】 函数y sin 2x一〕的图象关于直线x —对称, 23值是减区间.【解析】化简三角函数的解析式:【名师点睛】此题经三角函数式的化简将三角函数的问题转化为二次函数的问题,二次函数、二次 方程与二次不等式统称 三个二次〞,它们常结合在一起,有关二次函数的问题,数形结合,密切联 系图象是探求解题思路的有效方法 .一般从:①开口方向;②对称轴位置;③判别式;④端点函数值 符号四个方面分析.21.【2021年高考北京卷理数】在平面直角坐标系xOy 中,角〞与角3均以Ox 为始边,它们的终边关1于y 轴对称.右sin-,贝U cos( ) =.【解析】由题意可得 sin kXk Z),由于花所以20,【名师点睛】 由对称轴得kXk Z),再根据限制范围求结果.函数y Asin(A>0,3>0)的性质:(1) ymaxAB, y min(2)最小正周期 ⑶由 x-ku k Z~. 一冗 ~2k u k Z 求增区间;由一2k/2 3冗—2k 冗 k 220.【2021年高考全国n 理数】函数x sin 2 x \ 3 cosx3 4(x花0,一2)的最大值是 f x 1 cos 2 x \ 3 cosx cos 2 x _ 3 cosxcosx由自变量的范围:0 -可得: ’2cosx 0,1 ,当cosx 立时, 2函数f x 取得最大值1.1,cos 2是数学运算.23.【2021年高考江苏卷】假设tan(」) 4【考点】两角和的正切公式【名师点睛】三角函数求值的三种类型(2)给值求值:关键是找出式与待求式之间的联系及函数的差异.一般有如下两种思路: ①适当变换式,进而求得待求式的值;②变换待求式,便于将式的值代入,从而到达解题的目的. (3)给值求角:实质是转化为“给值求值〞,先求角的某一函数值, 再求角的范围,进而确定角.24.【2021年高考浙江卷】设函数 f(x) sinx,x R .【解析】 由于和 关于y 轴对称,所sinsincoscos2.2 3(或 cos cos2J ) 3 所以coscos cos sin sin2. 2c • 2/cossin2sin 1【名师点睛】此题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:假设 边关于y 轴对称,那么冗2ku,k Z ,假设 与 的终边关于x 轴对称,那么2kRk Z ,假设 与 的终边关于原点对称,那么22.【2021年高考全国n 理数】 sin a cos 3 1, cos a sin 3 0 ,那么sin( a3)【解析】由于sin cos 1, cos sin0, 所以sincos1,所以sin因止匕sin1sin cos cos sin 一22cos. 2sin【名师点睛】 此题主要考查三角恒等变换,考查考生分析问题、解决问题的水平, 4考查的核心 【解析】tan tan[( 4)-]tan( ) tan — 4 41 tan( ) tan —4 41 16_ 1」 6(1)给角求值:关键是正确选用公式, 以便把非特殊角的三角函数转化为特殊角的三角函数.(1) [0,2工函数f (x )是偶函数,求 的值;;(2) [1即 sinxcos cosxsin sinxcos cosxsin ,故 2sinxcos 0 , 所以cos 0 . 又 [0, 2冗),1 3cos 2x 『2 3【名师点睛】此题主要考查三角函数及其恒等变换等根底知识,同时考查运算求解水平25.【2021年高考浙江卷】函数f (x) sin 2 x cos 2 x 2V3sin xcosx(x f(—)的值.3f(x)的最小正周期及单调递增区间.单调递增区间是[—k ,2 6 3(2)求函数y[f(x万『[f(x产值域・【解析】(1)由于 f(x sin(x )是偶函数,所以,对任意实数x 都有sin(x ) sin( x ),(1)由.2sin 一3.32 , cos —2.3 2 1 2“于(万)(2)得f (23 )2.(2)由 cos2x.2sin x 与 sin 2x2sin xcosx 得 f (x)cos2x、、3sin2x]•因此,或上7tx127t4sin 27tx 一12sin 2 xcos 2xcos 2x&os2x 2久in2x2因此,函数的值域是[1,3 .3 y ,1 一 ]•(1)求 (2)求2sin(2 x -). 6所以 ^3cosx 3sin x .于是tan x又x 0,冗即x 0时,f x 取到最大值3;5工时,f x 取到最小值 266所以f(x)的最小正周期是 .由正弦函数的性质得 一 2k2-2斛得一k x — k , k63所以,f(x)的单调递增区间是32x -——2k ,k Z , 6 2Z ,[-k ,— k ], k Z . 6 3【名师点睛】此题主要考查了三角函数的化简,以及函数y Asin x的性质,是高考中的常考知识点,属于根底题,强调根底的重要性;三角函数解做题中,涉及到周期,单调性,单调区间 以及最值等考点时,都属于考查三角函数的性质,首先应把它化为三角函数的根本形式即y Asin x ,然后利用三角函数 y Asin u 的性质求解.26.【2021年高考江苏卷】向量a (cosx, sin x),b (3,扃x [0,4(1)假设 a// b,求x 的值; (2)记f(x) a b ,求f (x)的最大值和最小值以及对应的一 5冗 _(1) x ——;(2) x 0 时, 6x 取到最大值3;5冗x ——时,f x 取到最小值 2 J3 . 6(1)由于 a (cosx,sin x),(3, V 3) , all b,假设 cosx 0, 那么 sin x 0 ,与 sin 2 xcos 2 x 1 矛盾,故 cosx0.(2) f (x)a b (cos x,sin x) (3,、3) 3cos x \ 3 sin x「 兀2,3cos(x -).6由于x0,所以 冗 冗7冗x -[-,-],6 6 6从而cos(x27.【2021年高考浙江卷】角 a 的顶点与原点 O 重合,始边与x 轴的非负半轴重合,它的终边过点45)(1)求sin ( a+兀)的值;5 〜(2)右角3满足sin ( a+优=一,求cos 3的值.134【答案】(1) — ; (2) COS5【解析】(1)由角 的终边过点 所以sin( 访 sin【名师点睛】此题主要考查三角函数的定义、诱导公式、两角差的余弦公式,考查考生分析问题、 解决问题的水平,运算求解水平,考查的数学核心素养是数学运算求解三角函数的求值问题时,需综合应用三角函数的定义、诱导公式及三角恒等变换 (1)首先利用三角函数的定义求得 sin ,然后利用诱导公式,计算 sin (妙兀)的值;结合同角三角函数的根本关系,计算 cos( )的值,要注意该值的,利用两角差的余弦公式,通过分类讨论,求得 cosB 的值(1)求cos2的值;(2)求tan( )的值.【答案】(1)—;(2)-.25 11【解析】(1)由于tan 4 , tan §n 一3cos4— cos 356T 16 瓦或cos —3 4『P( -, 一Win5 5(2)由角 由 sin( 由 ( 34的终边过点P( 一,一)得cos 5 5 、5 3 , 、 12)而得.问)行) 得 cos cos( )cossin()sin ,所以cos史或cos6516 65(2)根据sin (廿3)的值, 正负,然后根据 28.【2021年高考江苏卷】为锐角,tan4一,cos( 3所以sin 由于sin 22cos因此tan(因此,tan( ) tan[2 (tan 2 tan( )2"1 tan 2 tan( )11由于tan4-, 八一,所以tan 2 3 2 tan 1 tan 2 24一,7【名师点睛】本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求 解水平.三角函数求值的三种类型:(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出式与待求式之间的联系及函数的差异. 般有如下两种思路:①适当变换式,进而求得待求式的值;②变换待求式,便于将式的值代入,从而到达解题的目的.(3)给值求角:实质是转化为 给值求值〞,先求角的某一函数值, 再求角的范围,进而确定角. _ .............. .... ... 冗29.【2021年局考山东卷理数】设函数 f(x) sin( x —) sin( x 6」),其中0 2 3. 花 f(-) 0. 6 (1)求 (2)将函数y f (x)的图象上各点的横坐标伸长为原来的 2倍 (纵坐标不变),再将得到的图象 向左平移」个单位,得到函数y g(x)的图象,求g(x)在[-,3」]上的最小值 44 4 3 【答案】(1) 2 ; (2)最小值为 一. 2_ __ 冗冗【斛析】(1)由于 f (x) sin( x —) sin( x —), 62一, o 9 所以cos——,因此,cos2 2cos 2 17 25(2)由于,为锐角,所以(0, ).又由于cos(所以sin(...1 cos 2(2、5 ----- , 5所以f(x) .3 1——sin x cos x cos x 2 23;「 3 ———sin x —cos x2 23(』sin x -cos x)2 2、.3sin( x -). 3,-.一. Tt由题设知f (-) 0,6- Tt Tt . 一所以」」ku, k Z.6 3故6k 2 , k Z ,又0 3 ,所以2.(2)由(1)得f (x) >/3sin 2x —3所以g (x) . 3 sin x ——4 3 ?3 sin x —12所以x122 3, 3〜…,.,、 3所以当x 一一,即x 一时,g(x)取得最小值一.12 3 4 2【名师点睛】此类题目是三角函数问题中的典型题目,可谓相当经典.解答此题时,关键在于能利用三角公式化简函数、进一步讨论函数的性质,此题易错点在于一是图象的变换与解析式的对应,二是无视设定角的范围.难度不大,能较好地考查考生的根本运算求解水平及复杂式子的变形水平(1) 2; (2) f(x)的最小正周期是。

专题09 解直角三角形的运用-方向角问题(解析版)

专题09 解直角三角形的运用-方向角问题(解析版)

二、解直角三角形的运用--仰角与俯角知识点1 解直角三角形1. 解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形. 2.解直角三角形要用到的关系 (1)锐角直角的关系:∠A+∠B=90° (1)三边之间的关系:a 2+b 2=c 2(3)边角之间的关系:c a A ==斜边对边sin ,c b A ==斜边邻边cos ,baA ==邻边对边tan (a ,b ,c 分别是∠A 、∠B 、∠C 的对边) 知识点2 方向角方向角的概念:是指采用某坐标轴方向作为标准方向所确定的方位角。

一.选择题(共7小题)1.如图为东西流向且河岸平行的一段河道,点A ,B 分别为两岸上一点,且点B 在点A 正北方向,由点A 向正东方向走a 米到达点C ,此时测得点B 在点C 的北偏西55°方向上,则河宽AB 的长为( )方向角知识导航A.a tan55°米B.米C.米D.米【解答】解:连接AB,BC,由题意得,∠BAC=90°,∠ABC=55°,AC=a米,∴tan∠ABC=tan55°=,∴AB==,故选:D.2.如图,一艘海伦位于灯塔P的南偏东37°方向,距离灯塔40海里的A处,它沿正北方向航行一段时间后,到达位于灯塔的正东方向上的B处,这时,B处与灯塔P的距离PB 的长可以表示为()A.40海里B.40sin37°海里C.40cos37°海里D.40tan37°海里【解答】解:∵一艘海轮位于灯塔P的南偏东37°方向,∴∠BAP=37°,∵AP=40海里,∴BP=AP•sin37°=40sin37°海里;故选:B.3.如图,一艘轮船在A处测的灯塔C在北偏西15°的方向上,该轮船又从A处向正东方向行驶20海里到达B处,测的灯塔C在北偏西60°的方向上,则轮船在B处时与灯塔C之间的距离(即BC的长)为()A.40海里B.(20+10)海里C.40海里D.(10+10)海里【解答】解:过A作AD⊥BC于D,如图所示:在Rt△ABD中,∠ABD=90°﹣60°=30°,AB=20海里,∴AD=AB=10(海里),BD=AD=AB=10(海里),∵∠ABC=90°﹣60°=30°,∠BAC=90°+15°=105°,∴∠C=180°﹣105°﹣30°=45°,∴△ACD是等腰直角三角形,∴CD=AD=10(海里),∴BC=BD+CD=(10+10)海里,故选:D.4.如图,一般客轮从小岛A沿东北方向航行,同时一艘补给船从小岛A正东方向相距(100+100)海里的港口B出发,沿北偏西60°方向航行,与客轮同时到达C处给客轮进行补给,则客轮与补给船的速度之比为()A.:2 B.:1 C.:2 D.:1【解答】解:过C作CD⊥AB于D,设AD=x,由题意得∠CAD=45°,∠NBC=60°,在Rt△ACD中,∠ACD=90°﹣45°=45°,∴∠ACD=∠CAD,∴CD=AD=x,∴AC==x,在Rt△BCD中,∠CBD=90°﹣60°=30°,∴BC=2CD=2x,∴BD==x,∵AB=100+100,∴AD+BD=x+x=100+100,∴(1+)x=100(1+),∴x=100,即AD=100海里,∴AC=100海里,BC=200海里,∵时间一定时速度与路程成正比,∴客轮与补给船的速度之比为100:200=:2,故选:A.5.如图,一渔船以32海里/时的速度向正北航行,在A处看到灯塔S在渔船的北偏东30°,半小时后航行到B处看到灯塔S在船的北偏东60°,若渔船继续向正北航行到C处时,此时渔船在灯塔S的正西方向,此时灯塔S与渔船的距离()A.16海里B.18海里C.8海里D.8海里【解答】解:由题意得,AB=32×=16(海里),∠ACS=90°,∵∠A=30°,∠CBS=60°,∴∠ASB=∠CBS﹣∠A=30°,∴∠ASB=∠A,∴BS=AB=16(海里),在Rt△CBS中,sin∠CBS=,∴CS=BS•sin∠CBS=16×=8(海里),故选:D.6.如图,有一轮船在A处测得南偏东30°方向上有一小岛P,轮船沿正南方向航行至B处,测得小岛P在南偏东45°方向上,按原方向再航行10海里至C处,测得小岛P在正东方向上,则A,B之间的距离是()A.10海里B.(10﹣10)海里C.(10﹣10)海里D.10海里【解答】解:由题意得:∠CAP=30°,∠CBP=45°,BC=10海里,在Rt△APC中,∵∠CAP=30°,∴AC===10(海里),∴AB=AC﹣BC=(10﹣10)海里.故选:C.7.如图,在A处测得点P在北偏东60°方向上,在B处测得点P在北偏东30°方向上,若AP=6千米,则A,B两点的距离为()千米.A.4 B.4C.2 D.6【解答】解:由题意知,∠P AB=30°,∠PBC=60°,∴∠APB=∠PBC﹣∠P AB=60°﹣30°=30°,∴∠P AB=∠APB,∴AB=PB,在Rt△P AC中,∵AP=6千米,∴PC=P A=3千米,在Rt△PBC中,∵sin∠PBC=,∴PB===6千米.故选:D.二.解答题(共8小题)8.一辆小汽车在某城市道路上自西向东行驶,某“玩转数学”活动小组在距路边20米的点C处放置了“检测仪器”,测得该车从北偏西60°方向的点A行驶到东北方向的点B,所用时间为6秒.(1)求AB的长;(2)求该车的速度约为多少米/秒?(精确到0.1,参考数据:≈1.414,≈1.732)【解答】解:(1)由题意可知,CD=20m,∠ACD=60°,∠BCD=45°,在Rt△ACD中,∠ACD=60°,CD=20m,∴AD=tan∠ACD•CD=20(m),在Rt△BCD中,∠BCD=45°,CD=20m,∴BD=CD=20m,∴AB=AD+BD=(20+20)m,答:AB的长度为(20+20)m;(2)该车的速度为(20+20)÷6≈9.1(米/秒),答:该车的速度约为9.1米/秒.9.如图,某海岸线M的方向为北偏东75°,甲、乙两船同时出发向C处海岛运送物资.甲船从港口A处沿北偏东45°方向航行,乙船从港口B处沿北偏东30°方向航行,其中乙船的平均速度为v.若两船同时到达C处海岛,求甲船的平均速度.(结果用v表示.参考数据:≈1.4,≈1.7)【解答】解:过点C作CD⊥AM,垂足为D,由题意得,∠CAD=75°﹣45°=30°,∠CBD=75°﹣30°=45°,设CD=a,则BD=a,BC=a,AC=2CD=2a,∵两船同时到达C处海岛,∴t甲=t乙,即=,∴=,∴V甲==v≈1.4v.10.小张早起在一条东西走向的笔直马路上晨跑,他在A处时,D处学校和E处图书馆都在他的东北方向,当小张沿正东方向跑了600m到达B处时,E处图书馆在他的北偏东15°方向,然后他由B处继续向正东方向跑600m到达C处,此时D处学校在他的北偏西63.4°方向,求D处学校和E处图书馆之间的距离.(结果保留整数)(参考数据:sin63.4°≈0.9,cos63.4°≈0.4,tan63.4°≈2.0,≈1.4,≈1.7,≈2.4)【解答】解:过D作DM⊥AC于M,设MD=x,在Rt△MAD中,∠MAD=45°,∴△ADM是等腰直角三角形,∴AM=MD=x,∴AD=x,在Rt△MCD中,∠MDC=63.4°,∴MC≈2MD=2x,∵AC=600+600=1200,∴x+2x=1200,解得:x=400,∴MD=400m,∴AD=MD=400,过B作BN⊥AE于N,∵∠EAB=45°,∠EBC=75°,∴∠E=30°,在Rt△ABN中,∠NAB=45°,AB=600,∴BN=AN=AB=300,∴DN=AD﹣AN=400﹣300=100,在Rt△NBE中,∠E=30°,∴NE=BN=×300=300,∴DE=NE﹣DN=300﹣100≈580(m),即临D处学校和E处图书馆之间的距离是580m.11.如图,线段EF与MN表示某一段河的两岸,EF∥MN.综合实践课上,同学们需要在河岸MN上测量这段河的宽度(EF与MN之间的距离),已知河对岸EF上有建筑物C、D,且CD=60米,同学们首先在河岸MN上选取点A处,用测角仪测得C建筑物位于A 北偏东45°方向,再沿河岸走20米到达B处,测得D建筑物位于B北偏东55°方向,请你根据所测数据求出该段河的宽度,(用非特殊角的三角函数或根式表示即可)【解答】解:如图,过C、D分别作CP⊥MN、DQ⊥MN垂足为P、Q,设河宽为x米.由题意知,△ACP为等腰直角三角形,∴AP=CP=x(米),BP=x﹣20(米),在Rt△BDQ中,∠BDQ=55°,∴,∴tan55°⋅x=x+40,∴(tan55°﹣1)⋅x=40,∴,所以河宽为米.答:河宽为米.12.小明在A点测得C点在A点的北偏西75°方向,并由A点向南偏西45°方向行走到达B点测得C点在B点的北偏西45°方向,继续向正西方向行走2km后到达D点,测得C 点在D点的北偏东22.5°方向,求A,C两点之间的距离.(结果保留0.1km.参数数据≈1.732)【解答】解:过点A作AM∥BD,过B点作BM⊥BD,AM与BM交于点M,∵在A点测得C点在A点的北偏西75°方向,∴∠NAC=75°,∴∠CAM=15°,∵由A点向南偏西45°方向行走到达B点,∴∠MAB=45°,∴∠MBA=45°,∵C点在B点的北偏西45°方向,∴∠CBM=45°,∴∠CBA=90°,∠CBD=45°,∵C点在D点的北偏东22.5°方向,∴∠PDC=22.5°,∴∠DCB=67.5°,∴∠BDC=180°﹣67.5°﹣45°=67.5°,∴BD=BC,由题可得DB=2km,∴BC=2km,在Rt△ABC中,∠CAB=15°+45°=60°,BC=2,∴AC=≈1.3km.13.如图,一段河流自西向东,河岸笔直,且两岸平行.为测量其宽度,小明在南岸边B处测得对岸边A处一棵大树位于北偏东60°方向,他以1.5m/s的速度沿着河岸向东步行40s后到达C处,此时测得大树位于北偏东45°方向,试计算此段河面的宽度(结果取整数,参考数据:≈1.732)【解答】解:如图,作AD⊥BC于D.由题意可知:BC=1.5×40=60(m),∠ABD=90°﹣60°=30°,∠ACD=90°﹣45°=45°,在Rt△ACD中,∵tan∠ACD=tan45°==1,∴AD=CD,在Rt△ABD中,∵tan∠ABD=tan30°=,∴BD=,∵BC=BD﹣CD=﹣AD=60(m),∴AD=30(+1)≈82(m),答:此段河面的宽度约82m.14.时代中学组织学生进行红色研学活动.学生到达爱国主义教育基地后,先从基地门口A 处向正南方向走300米到达革命纪念碑B处,再从B处向正东方向走到党史纪念馆C处,然后从C处向北偏西37°方向走200米到达人民英雄雕塑D处,最后从D处回到A处.已知人民英雄雕塑在基地门口的南偏东65°方向,求革命纪念碑与党史纪念馆之间的距离(精确到1米).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)【解答】解:过D作DE⊥AB于E,DF⊥BC于F,如图所示:由题意得:∠CDF=37°,CD=200米,在Rt△CDF中,sin∠CDF==sin37°≈0.60,cos∠CDF==cos37°≈0.80,∴CF≈200×0.60=120(米),DF≈200×0.80=160(米),∵AB⊥BC,DF⊥BC,DE⊥AB,∴∠B=∠DFB=∠DEB=90°,∴四边形BFDE是矩形,∴BF=DE,BE=DF=160米,∴AE=AB﹣BE=300﹣160=140(米),在Rt△ADE中,tan∠DAE==tan65°≈2.14,∴DE≈AE×2.14=140×2.14=299.60(米),∴BF=DE≈299.60(米),∴BC=BF+CF=299.60+120≈420(米),答:革命纪念碑与党史纪念馆之间的距离约为420米.15.如图,一艘货船在灯塔C的正南方向,距离灯塔257海里的A处遇险,发出求救信号.一艘救生船位于灯塔C的南偏东40°方向上,同时位于A处的北偏东60°方向上的B处,救生船接到求救信号后,立即前往救援.求AB的长(结果取整数)参考数据:tan40°≈0.84,取1.73.【解答】解:如图,过点B作BH⊥AC,垂足为H,由题意得,∠BAC=60°,∠BCA=40°,AC=257海里,在Rt△ABH中,∵tan∠BAH=,cos∠BAH=,∴BH=AH•tan60°=AH,AB==2AH,在Rt△BCH中,∵tan∠BCH=,∴CH==,又∵CA=CH+AH,∴257=+AH,所以AH=,∴AB=≈=168(海里),答:AB的长约为168海里.。

高考数学真题分项汇编专题09 三角函数填空题(理科)(原卷版)

高考数学真题分项汇编专题09  三角函数填空题(理科)(原卷版)

十年(2014-2023)年高考真题分项汇编—三角填空题目录题型一:三角函数的概念 ............................................. 1 题型二:三角恒等变换 .............................................. 1 题型三:三角函数的图像与性质 ....................................... 2 题型四:正余弦定理 ................................................ 4 题型五:三角函数的综合应用 .. (6)题型一:三角函数的概念1.(2020年浙江省高考数学试卷·第14题)已知圆锥展开图的侧面积为2π,且为半圆,则底面半径为_______. 2.(2021高考北京·第14题)若点(cos ,sin )A θθ关于y 轴对称点为(cos(),sin())66B ππθθ++,写出θ的一个取值为___.3.(2023年北京卷·第13题)已知命题:p 若,αβ为第一象限角,且αβ>,则tan tan αβ>.能说明p为假命题的一组,αβ的值为α=__________,β= _________.4.(2020年浙江省高考数学试卷·第13题)已知tan 2θ=,则cos 2θ=________;πtan()4θ−=______. 5.(2014高考数学陕西理科·第13题)设20πθ<<,向量(sin 2,cos 2),(cos ,1)a b θθθ=,若a∥b ,则=θtan _______.题型二:三角恒等变换1.(2022年浙江省高考数学试题·第13题)若3sin sin 2παβαβ−=+=,则sin α=__________,cos 2β=_________.2.(2020江苏高考·第8题)已知22sin ()43πα+= ,则sin 2α的值是____. 3.(2019·江苏·第13题)已知tan 2π3tan 4αα=− +,则πsin 24α+ 的值是 .4.(2018年高考数学课标Ⅱ卷(理)·第15题)已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________. 5.(2014高考数学江苏·第5题) 已知函数x y cos =与)2sin(ϕ+=x y (ϕπ<0≤),它们的图象有一个横坐标为3π的交点,则ϕ的值是 .6.(2015高考数学四川理科·第12题)°°sin15sin 75+的值是________7.(2015高考数学江苏文理·第8题)已知tan 2α=−,1tan()7αβ+=,则tan β的值为_______. 8.(2017年高考数学江苏文理科·第5题)若 则______. 9.(2017年高考数学北京理科·第12题)在平面直角坐标系中,角与角均以为始边,它们的终边关于轴对称.若,则___________. 【10.(2016高考数学浙江理科·第10题)已知22cos sin2sin()(0)x x A x b A ωϕ+=++>,则A = ,b = .11.(2016高考数学四川理科·第11题)22cos sin 88ππ−=_________. 12.(2016高考数学上海理科·第7题)方程3sin 1cos 2x x =+在区间[]π2,0上的解为___________.13.(2016高考数学课标Ⅱ卷理科·第13题)ABC ∆的内角,,A B C 的对边分别为,,a b c ,若4cos 5A =,5cos 13C =,1a =,则b = .14.(2016高考数学江苏文理科·第14题)在锐角三角形ABC 中,sin 2sin sin A B C =,则tan tan tan A B C的最小值是 .15.(2017年高考数学上海(文理科)·第15题)设、,且,则的最小值等于 .题型三:三角函数的图像与性质1.(2021年高考全国甲卷理科·第16题)已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ−−−> 的最小正整数x 为________. π1tan(),46α−=tan α=xOy αβOx y 1sin 3α=cos()αβ−=1a 2a ∈R 121122sin 2sin(2)αα+=++12|10|παα−−2.(2020年高考课标Ⅲ卷理科·第16题)关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图像关于y 轴对称. ②f (x )的图像关于原点对称. ③f (x )的图像关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________.3.(2020江苏高考·第10题)将函数πsin(32)4y x =﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____.4.(2020北京高考·第14题)若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为________.5.(2022年高考全国乙卷数学(理)·第15题)记函数()()cos (0,0π)f x x ωϕωϕ=+><<的最小正周期为T ,若()f T =9x π=为()f x 的零点,则ω的最小值为____________.6.(2019·北京·理·第9题)函数f (x )=sin 22x 的最小正周期是__________. 7.(2018年高考数学江苏卷·第7题)已知函数sin(2)()22y x ϕϕππ=+−<<的图象关于直线3x π=对称,则ϕ的值是 .8.(2018年高考数学北京(理)·第11题)设函数()cos()(0)6f x x πωω=−>,若()()4f x f π≤对任意的实数x 都成立,则ω的最小值为__________.9.(2014高考数学上海理科·第12题)设常数a 使方程sin x x a =在闭区间[]0,2π上恰有三个解123,,x x x ,则123________x x x ++=.10.(2014高考数学上海理科·第1题)函数()212cos2y x =−的最小正周期是_____________.11.(2014高考数学课标2理科·第14题)函数()sin(2)-2sin cos(+)f x x x =+ϕϕϕ的最大值为_________.12.(2014高考数学北京理科·第14题)设函数()sin()f x A x ωϕ=+(,,A ωϕ 是常数,0,0A ω>>).若()f x 在区间[,]62ππ上具有单调性,且2()()()236f f f πππ==−, 则()f x 的最小正周期为 .13.(2014高考数学安徽理科·第11题)若将函数()sin(2)4f x x π=+的图象向右平移ϕ个单位,所得图象关于y 轴对称,则ϕ的最小正值是 .14.(2015高考数学浙江理科·第11题)函数2()sin sin cos 1f x x x x =++的最小正周期是 ,单调递减区间是 .15.(2017年高考数学课标Ⅱ卷理科·第14题)函数()的最大值是 .16.(2018年高考数学课标Ⅲ卷(理)·第15题)函数()πcos 36f x x=+在[]0,π的零点个数为 . 17.(2016高考数学课标Ⅲ卷理科·第14题)函数sin y x x =的图像可由函数sin y x x=+的图像至少向右平移_____________个单位长度得到.18.(2016高考数学江苏文理科·第9题)定义在区间[]0,3π上的函数sin 2y x =的图象与cos y x =的图象的交点个数是 .题型四:正余弦定理1.(2021年高考全国乙卷理科·第15题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c60B =°,223a c ac +=,则b =________.2.(2021年高考浙江卷·第14题)在ABC 中,60,2B AB ∠=°=,M 是BC中点,AM =则AC =___________,cos MAC ∠=___________.3.(2020年高考课标Ⅰ卷理科·第16题)如图,在三棱锥P –ABC 的平面展开图中,AC =1,AB AD ==,AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB =______________.()23sin 4f x x x =+−0,2x π∈的4.(2019·浙江·第14题)在ABC △中,90ABC ∠=°,4AB =,3BC =,点D 在线段AC 上.若45BDC ∠=°,则BD = ,cos ABD ∠=. 5.(2019·全国Ⅱ·理·第15题)ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若6b =,2a c =,3B π=,则ABC △的面积为 .6.(2018年高考数学浙江卷·第13题)在ABC △中,角,,A B C 所对的边分别为,,a b c ,若2,60a b A ===°,则sin B = ,c = .7.(2014高考数学天津理科·第12题)在ABC ∆中,内角,,A B C 所对的边分别是,,a b c .已知14b c a −=,2sin 3sin B C =,则cos A 的值为_________.8.(2014高考数学四川理科·第13题)如图,从气球A 上测得正前方的河流的两岸B,C 的俯角分别为67°,30°,此时气球的高度是46m ,则河流的宽度BC 约等于 m .(用四舍五入法将结果精确到个位.参考数据:67673737sin cos sin cos °≈0.92,°≈0.39,°≈0.60,°≈≈1.73 )9.(2014高考数学山东理科·第12题)在ABC ∆中,已知tan AB AC A ⋅=,当6A π=时,ABC ∆的面积为 .10.(2014高考数学课标1理科·第16题)已知分别为的三个内角的对边,=2,且,则面积的最大值为__________.11.(2014高考数学广东理科·第12题)在ABC ∆中,角C B A ,,所对应的边分别为c b a ,,,已知b Bc C b 2cos cos =+,则ab=12.(2014高考数学江苏·第14题)若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是 . 13.(2014高考数学福建理科·第12题)在ABC ∆中,,3,2,60===bc AC A 则ABC ∆的面积等于__________.14.(2015高考数学重庆理科·第13题)在ABC ∆中,120o B =,AB =,A的角平分线AD =,则AC =_______. 15.(2015高考数学新课标1理科·第16题)在平面四边形ABCD 中,75A B C ∠=∠=∠= ,B 2BC =,则AB 的取值范围是 . 16.(2015高考数学天津理科·第13题)在 中,内角 所对的边分别为 ,已知的面积为 , 则的值为 . 17.(2015高考数学广东理科·第11题)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =1sin 2B =,6C =π,则b = .,,a b c ABC ∆,,A B C a (2)(sin sin )()sin b A B c b C +−=−ABC ∆ABC ∆,,A B C ,,a b c ABC∆12,cos ,4b c A −==−a18.(2015高考数学福建理科·第12题)若锐角ABC ∆的面积为,且5,8AB AC == ,则BC 等于________.19.(2015高考数学北京理科·第12题)在ABC △中,4a =,5b =,6c =,则sin 2sin AC= .20.(2017年高考数学浙江文理科·第14题)已知,,点为延长线上一点,,连结,则的面积是_______,_______.21.(2017年高考数学浙江文理科·第11题)我国古代数学家刘徽创立的“割圆术”可以估算圆周率,理论上能把的值计算到任意精度.祖冲之继承并发展了“割圆术”,将的值精确到小数点后七位,其结果领先世界一千多年.“割圆术”的第一步是计算单位圆内接正六边形的面积,_______.22.(2016高考数学上海理科·第9题)已知ABC ∆的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.题型五:三角函数的综合应用1.(2023年全国甲卷理科·第16题)在ABC中,60,2,BAC AB BC ∠=°=,BAC ∠的角平分线交BC 于D ,则AD =_________.2.(2016高考数学上海理科·第13题)设[)π2,0,,∈∈c R b a ,若对任意实数x 都有()c bx a x +=−sin 33sin 2π,则满足条件的有序实数组()c b a ,,的组数为 .3.(2022年浙江省高考数学试题·第17题)设点P 在单位圆的内接正八边形128A A A 的边12A A 上,则222182PA PA PA +++ 的取值范围是_______.2.(2014高考数学浙江理科·第17题)如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若AB =15 m ,AC =25 m ,∠BCM =30°,则tan θ的最大值是__________.(仰角θ为直线AP 与平面ABC 所成角)5.(2023年新课标全国Ⅰ卷·第15题)已知函数()cos 1(0)f x x ωω=−>在区间[]0,2π有且仅有3个零点,则ω的取值范围是________.6.(2023年新课标全国Ⅱ卷·第16题)已知函数()()sin f x x ωϕ=+,如图A ,B 是直线12y =与曲线ABC ∆4,2ABAC BC ===D AB 2BD =CD BDC ∆cos BDC ∠=πππ6S 6S=()y f x =的两个交点,若π6AB =,则()πf =______.7.(2015高考数学湖北理科·第13题)如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30 的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD = m .8.(2015高考数学上海理科·第13题)已知函数()sin f x x =⋅若存在12,,,m x x x 满足1206m x x x π≤<<<≤ ,且()()()()()()()*12231122,m m f x f x f x f x f x f x m m N −−+−++−=≥∈ ,则m 的最小值为 .。

百日冲刺 2016年高考数学主干知识突破专题二:三角函数

百日冲刺 2016年高考数学主干知识突破专题二:三角函数

百日冲刺 2016年高考数学主干知识突破专题二:三角函数与向量高考对数学基础知识的主干考查,既全面又突出重点,扎实的数学基础是成功解题的关键。

针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。

以不变应万变,所以主干知识的内容是高考的重点内容,也是高考的得分点。

三角函数与向量是高考的必考的主干知识。

一般在选择题、填空题有1、2道题目,解答题有一道题目,与数列轮换出现,主要考查三角函数的化简、求值,图象与性质,解三角形,三角函数中的实际问题,以及三角函数和向量的综合应用,在二轮中要力求突破。

一、2016年考试大纲分析 1、基本初等函数Ⅱ(三角函数) 1.任意角的概念、弧度制(1)了解任意角的概念和弧度制的概念. (2)能进行弧度与角度的互化. 2.三角函数(1)理解任意角三角函数(正弦、余弦、正切)的定义.(2)能利用单位圆中的三角函数线推导出π2α±,π± α 的正弦、余弦、正切的诱导公式,能画出sin y x =,cos y x =,tan y x =的图像,了解三角函数的周期性.(3)理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值、图像与 x 轴交点等),理解正切函数在区间ππ(,)22-内的单调性.(4)理解同角三角函数的基本关系式: 22sin cos 1x x +=,sin tan cos xx x=. (5)了解函数sin()y A x ωϕ=+的物理意义;能画出sin()y A x ωϕ=+的图像,了解参数A ωϕ,,对函数图像变化的影响.(6)会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型. 2、平面向量1.平面向量的实际背景及基本概念 (1)了解向量的实际背景.(2)理解平面向量的概念和两个向量相等的含义. (3)理解向量的几何表示.2.向量的线性运算(1)掌握向量加法、减法的运算,并理解其几何意义.(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义. (3)了解向量线性运算的性质及其几何意义. 3.平面向量的基本定理及坐标表示(1)了解平面向量的基本定理及其意义. (2)掌握平面向量的正交分解及其坐标表示.(3)会用坐标表示平面向量的加法、减法与数乘运算. (4)理解用坐标表示的平面向量共线的条件. 4.平面向量的数量积(1) 理解平面向量数量积的含义及其物理意义. (2) 了解平面向量的数量积与向量投影的关系.(3) 掌握数量积的坐标表达式,会进行平面向量数量积的运算.(4) 能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.向量的应用(1)会用向量方法解决某些简单的平面几何问题.(2)会用向量方法解决简单的力学问题与其他一些实际问题. 三、三角恒等变换1.两角和与差的三角函数公式(1)会用向量的数量积推导出两角差的余弦公式.(2)会用两角差的余弦公式推导出两角差的正弦、正切公式.(3)会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式,了解它们的内在联系. 2.简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但不要求记忆). 四、解三角形1.正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. 2.应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.二、核心知识点精讲 1.三角函数公式⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈ZP xyAOM T 第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域.5、长度等于半径长的弧所对的圆心角叫做1弧度.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lr α=.7、弧度制与角度制的换算公式:2360π= ,1180π= ,180157.3π⎛⎫=≈ ⎪⎝⎭. 8、若扇形的圆心角为()αα为弧度制,半径为r 则l r α=,,21122S lr r α==.9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()220r r x y =+>,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .12、同角三角函数的基本关系:()221sin cos 1αα+=;αα22sec tan 1=+;()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.(3)1cot tan =∙αα;1sec cos =∙αα;1csc sin =∙αα 13、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭cos sin 2παα⎛⎫+=- ⎪⎝⎭口诀:奇变偶不变,符号看象限.诱导公式中常如此变形。

2016年高考数学备考艺体生百日突围系列 强化训练09(理)解析版

2016年高考数学备考艺体生百日突围系列 强化训练09(理)解析版

2106届艺体生强化训练模拟卷九(理)一.选择题.1. 设集合A ={x|0≤x≤3},B ={x|x 2-3x +2≤0,x ∈Z},则A ∩B 等于( )A .(-1,3)B .[1,2]C .{0,1,2}D .{1,2}【答案】D【解析】由题意,得{}{}{}2,1,21|,0)1)(2(|=∈≤≤=∈≤--=Z x x x Z x x x x B ,又因为{}30|≤≤=x x A ,所以{}2,1=B A I ;故选D . 2. 若a 为实数,且231aii i+=++,则a=( ) A . 一4 B . 一3 C . 3 D . 4 【答案】D【解析】232(3)(1)22441aii ai i i ai i a i+=+⇒+=++⇒+=+⇒=+,选D. 3. 已知||3a =r ,||2b =r ,若3a b ⋅=-r r ,那么向量,a b r r的夹角等于( )A .23πB .3πC .34πD .4π 【答案】A 【解析】123,cos ,6cos ,3cos ,,23a b a b a b a b a b a b a b π⋅=-∴⋅=⋅<>=<>=-∴<>=-∴<>=r r r r r r r r r r r r r r Q ,故选A .4. 下列判断错误的是( )A .若q p Λ为假命题,则p ,q 至少之一为假命题B .命题“01,23≤--∈∀x x R x ”的否定是“01,23>--∈∃x x R x ”C .若a ∥c 且b ∥c ,则b a //是真命题D .若 22bm am <,则a < b 否命题是假命题 【答案】C 【解析】5. 函数()sin()(0,0,0)f x A x A ωϕωϕπ=+>><<的图象如图所示,为了得到()cos g x A x ω=-的图象,可以将()f x 的图象( )A.向右平移12π个单位长度 B.向右平移512π个单位长度C.向左平移12π个单位长度 D.向左平移512π个单位长度【答案】B 【解析】6.若曲线21-=xy 在点12(,)a a -处切线与坐标轴围成的三角形的面积为18,则a = ( )A. 64B. 32C. 16D. 8 【答案】A【解析】3'212y x -=-,∴3212k a -=-,∴切线方程为13221()2y a a x a ---=--,即31221322y a x a --=--,与坐标轴围成的三角形面积121331822S a a -=⨯⨯=,∴64a =.7.一个几何体的的三视图如右图所示,则该几何体的体积为A. 2B.13C. 23D. 43【答案】C【解析】由三视图可知:该空间几何体为四棱锥且底面面积为22221=⨯⨯,高为1,所以321231=⨯⨯=V .8.设k 是一个正整数,1+)kxk(的展开式中第四项的系数为116,记函数2y x =与y kx =的图象所围成的阴影部分为S ,任取[0,4]x ∈,[0,16]y ∈,则点(,)x y 恰好落在阴影区域S 内的概率是( ) A .23 B .13 C .25D .16【答案】D .【解析】9.若数列{}n a 的通项公式为()()()()()()*122111...11n na n N f n a a a n =∈=---+,记,试通过计算()()()1,2,3f f f 的值,推测出()f n =_________.A.222n n ++ B.()211n + C. 23n n ++ D. 2122n n -+ 【答案】A【解析】由题意得()43111=-=a f ,()()()6432984311221==⨯=--=a a f ,()()()()3211113a a a f ---=8516159843=⨯⨯=,所以由此可得()222++=n n n f ,故选A. 10.已知双曲线的方程为()222210,0x y a b a b-=>>,双曲线的一个焦点到一条渐近线的距(c 为双曲线的半焦距长),则双曲线的离心率e 为( ) A .23B .94C .54D.2【答案】A【解析】由题意可得:双曲线的渐近线方程为x aby ±=,所以双曲线的一个焦点到一条渐近线的距离为b cbc b a bc ==+22,即23943522=⇒=⇒=e a c c b . 二、填空题.11. 命题“02016,10200>-+->∃x x x ”的否定是 .【答案】02016,12≤-+->∀x x x【解析】命题“02016,10200>-+->∃x x x ”的否定是“02016,12≤-+->∀x x x ”.12.已知定义在R 上的函数()f x ,满足1(1)5f =,且对任意的x 都有1(3)()f x f x +=-,则(2014)f = . 【答案】-5 【解析】13. 已知实数,x y 满足约束条件203501x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,则212x y z +-⎛⎫= ⎪⎝⎭的最大值时为 .【答案】8【解析】要求目标函数的最大值,即求2-+=y x t 的最小值.首先画出可行域,由图知在直线053=+-y x 和直线1=y 的交点()1,2-处取得最小值,即3212min -=-+-=t ,所以212x y z +-⎛⎫= ⎪⎝⎭的最大值为8213=⎪⎭⎫⎝⎛-.三.解答题14.已知数列{}n a 是等差数列,且12a =,12312a a a ++=. (1)求数列{}n a 的通项公式;(2)令3()n n n b a n N *=⋅∈,求数列{}n b 的前n 项和. 【解析】15. 袋中装有4个白棋子,3个黑棋子,从袋中随机地取出棋子,若取到一个白棋子得2分,取到一个黑棋子得1分,现从袋中任取4个棋子. (1)求得分X 的分布列; (2)求得分大于6的概率. 【解析】X5 6 7 8P435 835 1235 135(2)根据的分布列,可得到得分大于6的概率为12113(6)(7)(8)353535P X P X P X >==+==+=. 16. 如图1,直角梯形ABCD 中,AD ∥,BC 90ABC ∠=o,BC AB AD 21==,E 是底边BC 上的一点,且BE EC 3=.现将CDE ∆沿DE 折起到DE C 1∆的位置,得到如图2所示的四棱锥,1ABED C -且AB A C =1.ABCDE 图1BEADMC 1图2(1)求证:⊥A C 1平面ABED ; 【证明】(1)设121===BC AB AD ,则2,111==D C A C 21221D C AD A C =+Θ,∴AD A C ⊥1.又Θ21=BE ,231=E C ,45222=+=∴BE AB AE , ∴2122149E C AE A C ==+,∴AE A C ⊥1.又AD ∩A AE = ∴⊥A C 1平面ABED17. 如图,椭圆)0(1:2222>>=+b a by a x C 的右焦点为F ,右顶点、上顶点分别为点A 、B ,且BF AB 25=.(1)求椭圆C 的离心率; 【解析】(1)由已知BF AB 25=,即a b a 2522=+,222544a b a =+, 22225)(44a c a a =-+,∴23==a c e .18. 已知函数()323f x ax bx x =+-在1x =±处取得极值.(1)讨论()1f 和()1f -是函数()f x 的极大值还是极小值; 【解析】请考生在第19、20、21三题中任选一题做答,如果多做,则按所做的第一题记分. 19. 如图,正方形ABCD 边长为2,以D 为圆心、DA 为半径的圆弧与以BC 为直径的半圆O 交于点F ,连结CF 并延长交AB 于点E .FC(Ⅰ)求证:AE EB =; (Ⅱ)求EF FC ⋅的值. 【解析】20. 已知曲线C 的参数方程是⎩⎨⎧+=+=θθsin 2cos 1y x (θ为参数),直线l 的极坐标方程为24sin =⎪⎭⎫ ⎝⎛+πθρ.(其中坐标系满足极坐标原点与直角坐标系原点重合,极轴与直角坐标系x 轴正半轴重合,单位长度相同.) (Ⅰ)将曲线C 的参数方程化为普通方程,将直线l 的极坐标方程化为直角坐标方程; (Ⅱ)设M 是直线l 与x 轴的交点,N 是曲线C 上一动点,求MN 的最大值.【解析】(Ⅰ)曲线C 的参数方程可化为 ()()12122=-+-y x ………………(2分)直线l 的方程为24sin =⎪⎭⎫⎝⎛+πθρ展开得 2sin cos =+θρθρ…………(4分)直线l 的直角坐标方程为 02=-+y x ………………………………………(5分)(Ⅱ)令0y =,得2x =,即M 点的坐标为(2,0)………………………(6分) 又曲线C 为圆,圆C 的圆心坐标为()2,1,半径1r =,则5MC =(8分) 所以51MN MC r +=+≤,MN ∴51.…………………(10分) 21. 已知函数122)(--+=x x x f .(Ⅰ)求不等式2)(-≥x f 的解集;(Ⅱ)对任意[)+∞∈,a x ,都有)(x f a x -≤成立,求实数a 的取值范围. 【解析】。

2019年高考数学艺术生百日冲刺专题全册合集(含答案)

2019年高考数学艺术生百日冲刺专题全册合集(含答案)

专题1集合与常用逻辑测试题命题报告:1.高频考点:集合的运算以及集合的关系,集合新定义问题以及集合与其他知识的交汇,逻辑用语重点考查四种命题的关系,充要条件的判断以及全称命题存在命题等知识。

2.考情分析:高考主要以选择题填空题形式出现,考查集合的运算以及充要条件和其它知识的交汇,题目一般属于容易题。

3.重点推荐:9题,创新题,注意灵活利用所给新定义进行求解。

一.选择题(共12小题,每一题5分)1.集合A={1,2,3},B={(x,y)|x∈A,y∈A,x+y∈A},则集合B的真子集的个数为()A.5 B.6 C.7 D.8【答案】C【解析】:B={(1,1),(1,2),(2,1)};-=:.故选:C.∴B的真子集个数为32172已知集合M=,则M∩N=()A.{x|﹣3≤x≤1} B.{x|1≤x<6} C.{x|﹣3≤x<6} D.{x|﹣2≤x≤6} 【答案】:B【解析】y=x2﹣2x﹣2的对称轴为x=1;∴y=x2﹣2x﹣2在x∈(2,4)上单调递增;∴﹣2<y<6;∴M={y|﹣2<y<6},N={x|x≥1};∴M∩N={x|1≤x<6}.故选:B.3已知集合A={x|ax﹣6=0},B={x∈N|1≤log2x<2},且A∪B=B,则实数a的所有值构成的集合是()A.{2} B.{3} C.{2,3} D.{0,2,3}【答案】:D【解析】B={x∈N|2≤x<4}={2,3};∵A∪B=B;∴A⊆B;∴①若A=∅,则a=0;②若A≠∅,则;∴,或;∴a=3,或2;∴实数a所有值构成的集合为{0,2,3}.故选:D.4(2018秋•重庆期中)已知命题p:∀x∈R,x2﹣x+1>0,命题q:若a<b,则>,下列命题为真命题的是()A.p∧q B.(¬p)∧q C.(¬p)∨q D.(¬p)∨(¬q)【答案】:D【解析】命题p:∀x∈R,x2﹣x+1>0,∵x2﹣x+1=+>0恒成立,∴p是真命题;命题q:若a<b,则>,当a<0<b时,不满足>,q是假命题;∴¬q是真命题,¬q是假命题,则(¬p)∨(¬q)是真命题,D正确.故选:D.5. (2018 •朝阳区期末)在△ABC中,“∠A=∠B“是“acosA=bcosB”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】:A6. (2018•抚州期末)下列有关命题的说法错误的有()个①若p∧q为假命题,则p、q均为假命题②命题“若x2﹣3x+2=0则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0③对于命题p:∃x∈R,使得x2+x+1<0则:¬p:∀x∈R,均有x2+x+1≥0A.0 B.1 C.2 D.3【答案】:B【解析】①若p∧q为假命题,则p、q均为假命题,不正确,因为两个命题中,由一个是假命题,则p∧q为假命题,所以说法错误.②命题“若x2﹣3x+2=0则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0,满足逆否命题的定义,正确;③对于命题p:∃x∈R,使得x2+x+1<0则:¬p:∀x∈R,均有x2+x+1≥0,符号命题的否定形式,正确;所以说法错误的是1个.故选:B.7(2018•金安区校级模拟)若A={x∈Z|2≤22﹣x<8},B={x∈R|log2x<1},则A∩(∁R B)中的元素有()A.0个B.1个C.2个D.3个【答案】:B【解析】A={x∈Z|2≤22﹣x<8}={x∈Z|1≤2﹣x<3}={x∈Z|﹣1<x≤1}={0,1},B={x∈R|log2x<1}={x∈R|0<x<2},则∁R B={x∈R|x≤0或x≥2},∴A∩(∁R B)={0},其中元素有1个.故选:B.8(2018•大观区校级模拟)已知全集U=R,集合,N={x|x2﹣2|x|≤0},则如图中阴影部分所表示的集合为()A.[﹣2,1)B.[﹣2,1] C.[﹣2,0)∪(1,2] D.[﹣2,0]∪[1,2]【答案】:B【解析】∵全集U=R,集合={x|x>1},N={x|x2﹣2|x|≤0}={x|或}={x|﹣2≤x≤2},∴C U M={x|x≤1},∴图中阴影部分所表示的集合为N∩(C U M)={x|﹣2≤x≤1}=[﹣2,1].故选:B.9.设集合S n={1,2,3,…,n},X⊆S n,把X的所有元素的乘积称为X的容量(若X中只有一个元素,则该元素的数值即为它的容量,规定空集的容量为0).若X的容量是奇(偶)数,则称X为S n的奇(偶)子集,若n=3,则S n的所有偶子集的容量之和为()A.6 B.8 C.12 D.16【答案】:D【解析】由题意可知:当n=3时,S3={1,2,3},所以所有的偶子集为:∅、{2}、{1,2}、{2,3}、{1,2,3}.所以S3的所有偶子集的容量之和为0+2+2+6+6=16.故选:D.10. (2018•商丘三模)下列有四种说法:①命题:“∃x∈R,x2﹣3x+1>0”的否定是“∀x∈R,x2﹣3x+1<0”;②已知p,q为两个命题,若(¬p)∧(¬q)为假命题,则p∨q为真命题;③命题“若xy=0,则x=0且y=0”的逆否命题为真命题;④数列{a n}为等差数列,则“m+n=p+q,m,n,p,q为正整数”是“a m+a n=a p+a q”的充要条件.其中正确的个数为()A.3个B.2个C.1个D.0个【答案】:C11.(2018•嘉兴模拟)已知函数f(x)=x2+ax+b,集合A={x|f(x)≤0},集合,若A=B≠∅,则实数a的取值范围是()A.B.[﹣1,5] C.D.[﹣1,3]【思路分析】由题意可得b=,集合B可化为(x2+ax+)(x2+ax+a+)≤0,运用判别式法,解不等式即可得到所求范围.【答案】:A【解析】设集合A={x∈R|f(x)≤0}={x|x2+ax+b≤0},由f(f(x))≤,即(x2+ax+b)2+a(x2+ax+b)+b﹣≤0,②A=B≠∅,可得b=,且②为(x2+ax+)(x2+ax+a+)≤0,可得a2﹣4×≥0且a2﹣4(a+)≤0,即为,解得≤a≤5,故选:A.12.( 2018•漳州二模)“a≤0”是“关于x的方程ax+axcosx﹣sinx=0与方程sinx=0在[﹣3π,3π]上根的个数相等”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件[答案]:A【解析】∵方程sinx=0在[﹣3π,3π]上根有7个,则方程ax+axcosx﹣sinx=0也应该有7个根,由方程ax+axcosx﹣sinx=0得ax(1+cosx)﹣sinx=0,即ax•2cos2﹣2sin cos=2cos(axcos﹣sin)=0,则cos=0或axcos﹣sin=0,则x除了﹣3π,﹣π,π,3π还有三个根,由axcos﹣sin=0,得axcos=sin,即ax=tan,由图象知a≤0时满足条件,且a>0时,有部分a是满足条件的,故“a≤0”是“关于x 的方程ax+axcosx﹣sinx=0与方程sinx=0在[﹣3π,3π]上根的个数相等”的充分不必要条件,故选:A.(2)设命题p:“函数y=2f(x)﹣t在(﹣∞,2)上有零点”,命题q:“函数g(x)=x2+t|x ﹣2|在(0,+∞)上单调递增”;若命题“p∨q”为真命题,求实数t的取值范围.【思路分析】(1)方程f(x)=2x有两等根,通过△=0,解得b;求出函数图象的对称轴.求解a,然后求解函数的解析式.(2)求出两个命题是真命题时,t的范围,利用p∨q真,转化求解即可.【解析】:(1)∵方程f(x)=2x有两等根,即ax2+(b﹣2)x=0有两等根,∴△=(b﹣2)2=0,解得b=2;∵f(x﹣1)=f(3﹣x),得,∴x=1是函数图象的对称轴.而此函数图象的对称轴是直线,∴,∴a=﹣1,故f(x)=﹣x2+2x……………………………………………(6分)(2),p真则0<t≤2;;若q真,则,∴﹣4≤t≤0;若p∨q真,则﹣4≤t≤2.……………………………………………(12分)21. (2018春•江阴市校级期中)已知集合A={x|≤0},B={x|x2﹣(m﹣1)x+m﹣2≤0}.(1)若A∪[a,b]=[﹣1,4],求实数a,b满足的条件;(2)若A∪B=A,求实数m的取值范围.【思路分析】本题涉及知识点:分式不等式和含参的一元二次不等式的解法,集合的并集运算.22. (2018•南京期末)已知命题p:指数函数f(x)=(a﹣1)x在定义域上单调递减,命题q:函数g(x)=lg(ax2﹣2x+)的定义域为R.(1)若q是真命题,求实数a的取值范围;(2)若“p∧q”为假命题“p∨q”为真命题,求实数a的取值范围.【思路分析】(1)若命题q是真命题,即函数g(x)=lg(ax2﹣2x+)的定义域为R,对a 分类讨论求解;(2)求出p为真命题的a的范围,再由“p∧q”为假命题“p∨q”为真命题,可得p与q 一真一假,然后利用交、并、补集的混合运算求解.【解析】:(1)若命题q是真命题,则有:①当a=0时,定义域为(﹣∞,0),不合题意.②当a≠0时,由已知可得,解得:a>,故所求实数a的取值范围为(,+∞);…………6分(2)若命题p为真命题,则0<a﹣1<1,即1<a<2,由“p∧q”为假命题“p∨q”为真命题,可得p与q一真一假.若p为真q为假,则,得到1<a≤,若p为假q为真,则,得到a≥2.综上所述,a的取值范围是1<a≤或a≥2.………………12分专题2函数测试题命题报告:3.高频考点:函数的性质(奇偶性单调性对称性周期性等),指数函数、对数函数、幂函数的图像和性质,函数的零点与方程根。

艺术生百日冲刺数学课件 2.3

艺术生百日冲刺数学课件  2.3

【概念方法微思考】 1.如果已知函数f(x),g(x)的奇偶性,那么函数f(x)±g(x),f(x)·g(x)的奇偶性有 什么结论? 提示 在函数f(x),g(x)公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇 =偶,偶×偶=偶,奇×偶=奇.
2.已知函数f(x)满足下列条件,你能得到什么结论? (1)f(x+a)=-f(x)(a≠0).
123456

2.已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值是
A.-13
1 B.3
1 C.2
D.-12
123456
思维升华
判断函数的奇偶性,其中包括两个必备条件: (1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首 先考虑定义域; (2)判断f(x)与f(-x)是否具有等量关系. 在判断奇偶性的运算中,可以转化为判断奇偶性的等价关系式f(x)+f(-x) =0(奇函数)或f(x)-f(-x)=0(偶函数)是否成立.
课时作业
提示 T=2|a|; (2)f(x+a)=f1x(a≠0). 提示 T=2|a|; (3)f(x+a)=f(x+b)(a≠b). 提示 T=|a-b|.
基础自测
JICHUZICE
题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数y=x2,x∈(0,+∞)是偶函数.( × ) (2)偶函数的图象不一定过原点,奇函数的图象一定过原点.( × ) (3)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.( √ )
1.函数的奇偶性
奇偶性
定义
图象特点
偶函数
一般地,如果对于函数f(x)的定义域内任意一个x, 都有 f(-x)=f(x) ,那么函数f(x)就叫做偶函数

高考数学三角函数知识点总结计划及练习

高考数学三角函数知识点总结计划及练习

三角函数总结及统练一 .教课内容:三角函数总结及统练(一)基础知识1.与角终边同样的角的会合S {2k, k Z}2.三角函数的定义(六种)——三角函数是x 、y、 r 三个量的比值3.三角函数的符号——口诀:一正二弦,三切四余弦。

4.三角函数线正弦线 MP=sin余弦线 OM=cos正切线 AT=tan5.同角三角函数的关系平方关系:商数关系:倒数关系: tan cot1sin csc1cos sec1口诀:凑一拆一;切割化弦;化异为同。

6.引诱公式——口诀:奇变偶不变,符号看象限。

正弦余弦正切余切7.两角和与差的三角函数8.二倍角公式——代换:令sin 2 1 cos22 cos 21 cos2降幂公式21 cos1 cos1 cossincostan1 cos半角公式:22;2 2;29.三角函数的图象和性质函 数 图 象 定义RR域值x2k/ 2 时x 2k 时R域ymax1ymax1x2k/ 2 时x 2k无最大值最时无最小值值 ymin1ymin1周期周期为 2周期为 2周期为性奇偶奇函数偶函数奇函数性[ 2k,2k ] 在[ 2k,2k ] 上k , k单一在22都是增函数,在在22性上都是增函数;在[2k ,2k]上都内都是增函数[ 2k,2k 3是减函数( k Z )( k Z )]22上都是减函数( k Z )10.函数 y A sin( x) 的图象变换A0,0函数yAsin( x)的图象能够经过以下两种方式获得:( 1)ysin x图象左移y sin(x)横坐标缩短到本来的 1 倍横坐标缩短到本来的1倍图象左移( 2)ysin x y sin(x)(二)数学思想与基本解题方法1.式子变形原则:凑一拆一;切割化弦;化异为同。

2.引诱公式原则:奇变偶不变,符号看象限。

3.估用公式原则:一看角度,二看名称,三看特色。

4.角的和与差的相对性如:()-角的倍角与半角的相对性2,2如: 2 245.升幂与降幂:升幂角减半,降幂角加倍。

高考数学艺体生文化课总复习第四章三角函数第5节三角函数的图象与性质综合训练点金课件

高考数学艺体生文化课总复习第四章三角函数第5节三角函数的图象与性质综合训练点金课件

D.关于点( 3π ,0)对称 8
【答案】 D
【解析】 由最小正周期为得,T π 2π ,则 2,所以f (x) sin(2x+ π ),
4
由f ( π ) 2 0且 1,可知A,C错误; 42
由f (3π ) 0 1,可知B错误, D正确. 8
3.如果函数f(x)=cos[2(x+φ)]是偶函数,那么φ的值可以为 ( )
4
4
结合图象得 π .
4
所以f (x) cos(πx π ),由2kπ πx π 2kπ π得2k 1 x 2k 3 ,
4
4
4
4
k Z.故选D.
10.(2019新课标Ⅰ卷,文)函数f(x)=
sin(2x
3π 2
)
-3cos
x的最小值

.
【答案】 10
【解析】 f (x) sin(2x 3π ) 3cos x cos 2x 3cos x 2
B.( π ,0) 6
C.( π ,0) 6
D.( π ,0) 4
【答案】B 【解析】由函数图象可知, A 2.
由于函数图象过点(0, 3),所以2sin 3,即sin 3 ,
2
由于 π π ,所以 π ,则有f (x) 2sin(2x π ).
2
2
3
3
由2x π k , k Z可解得x kπ π , k Z,
2
2
x π 对称,且图象上相邻最高点的距离为π. 3
1求f ( π)的值;
4
2将函数y f (x)的图象向右平移 π 个单位后,得到y g(x)的图象,
12
求g ( x)的单调递减区间.
【解析】 (1)因为f (x)的图象上相邻最高点的距离为π,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题09 三角函数
1.【2019年高考全国Ⅰ卷理数】函数f (x )=
在[,]-ππ的图像大致为
A .
B .
C .
D .
2.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论:
①f (x )是偶函数
②f (x )在区间(
2
π,π)单调递增
③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2
其中所有正确结论的编号是 A .①②④ B .②④ C .①④
D .①③
3.【2019年高考全国Ⅱ卷理数】下列函数中,以2
π为周期且在区间(
4
π,
2
π)单调递增的是
A .f (x )=|cos2x |
B .f (x )=|sin2x |
C .f (x )=cos|x |
D .f (x )=sin|x |
4.【2019年高考全国Ⅱ卷理数】已知α∈(0,
2
π),2sin2α=cos2α+1,则sin α=
A .
15
B

5
C
3
D
5
5.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5
x ωπ
+
)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:
①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点
2
sin cos ++x x
x x
③()f x 在(0,
10
π
)单调递增 ④ω的取值范围是[1229
510
,)
其中所有正确结论的编号是 A .①④ B .②③ C .①②③
D .①③④
6.【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的
最小正周期为2π,且4g π⎛⎫
= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭
A .2-
B .
C
D .2
7.【2018年高考全国Ⅲ卷理数】若1
sin 3
α=,则cos2α=
A .89
B .
79 C .79
-
D .89
-
8.【2018年高考全国卷II 理数】若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是
A .
π
4 B .
π2
C .3π4
D .π
9.【2018年高考天津理数】将函数sin(2)5y x π
=+的图象向右平移
10
π
个单位长度,所得图象对应的函数 A .在区间35[
,]44
ππ
上单调递增 B .在区间3[
,]4
π
π上单调递减 C .在区间53[,]42
ππ
上单调递增 D .在区间3[
,2]2
π
π上单调递减 10.【2018年高考浙江卷】函数y =2x
sin2x 的图象可能是
A .
B .
C .
D .
11.【2017年高考全国Ⅲ理数】已知曲线C 1:y =cos x ,C 2:y =sin (2x +

3
),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π
6
个单位长度,得
到曲线C 2
B .把
C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π
12
个单位长度,得到曲线C 2
C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π
6个单位长度,得到曲线C 2
D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π
12
个单位长度,得到曲线C 2
12.【2017年高考全国Ⅲ理数】设函数()π
(3cos )f x x =+,则下列结论错误的是
A .()f x 的一个周期为2π-
B .()y f x =的图象关于直线8π
3
x =对称 C .(π)f x +的一个零点为π6
x =
D .()f x 在(π
2
,π)单调递减
13.【2017年高考天津卷理数】设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5(
)28
f π
=,
()08f 11π=,且()f x 的最小正周期大于2π,则 A .23ω=
,12
ϕπ= B .23ω=
,12
ϕ11π
=-
C .13ω=,24ϕ11π
=-
D .13
ω=,24ϕ7π
=
14.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________. 15.【2019年高考江苏卷】已知
tan 2π3tan 4αα=-⎛⎫+ ⎪⎝
⎭,则πsin 24α⎛
⎫+ ⎪⎝⎭的值是 ▲ . 16.【2018年高考全国Ⅰ理数】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.
17.【2018年高考北京卷理数】设函数f (x )=πcos()(0)6x ωω->,若π
()()4
f x f ≤对任意的实数x 都成立,
则ω的最小值为__________.
18.【2018年高考全国Ⅲ理数】函数()πcos 36f x x ⎛
⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.
19.【2018年高考江苏卷】已知函数()ππsin 2()22y x =+-
<<ϕϕ的图象关于直线π
3
x =对称,则ϕ的值是________.
20.【2017年高考全国Ⅱ理数】函数(
)2
3sin 4f x x x =+-
(π0,2x ⎡⎤
∈⎢⎥⎣⎦
)的最大值是 . 21.【2017年高考北京卷理数】在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1
sin 3
α=
,则cos()αβ-=___________. 22.【2018年高考全国Ⅱ理数】已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________.
23.【2017年高考江苏卷】若π1
tan(),46α-=则tan α= ▲ .
24.【2019年高考浙江卷】设函数()sin ,f x x x =∈R .
(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124
y f x f x ππ
=+++的值域.
25.【2017
年高考浙江卷】已知函数22
sin cos cos ()()x x x f x x x =--∈R .
(1)求2(
)3
f π
的值. (2)求()f x 的最小正周期及单调递增区间.
26.【2017年高考江苏卷】已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a ∥b ,求x 的值;
(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.
27.【2018年高考浙江卷】已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P
(34
55
-,-).
(1)求sin (α+π)的值; (2)若角β满足sin (α+β)=5
13
,求cos β的值.
28.【2018年高考江苏卷】已知,αβ为锐角,4
tan 3
=
α,cos()5+=-αβ.
(1)求cos2α的值;
(2)求tan()-αβ的值.
29.【2017年高考山东卷理数】设函数π
π()sin()sin()62f x x x ωω=-+-,其中.已知π()06
f =.
(1)求;
(2)将函数的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移
π4个单位,得到函数的图象,求在π3π
[,]44
-上的最小值. 03ω<<ω()y f x =()y g x =()g x。

相关文档
最新文档