高一新生分班考试数学试卷含答案

合集下载

开学分班考试(一)-2020年秋季高一新生入学分班考试数学试卷及答案(新教材)

开学分班考试(一)-2020年秋季高一新生入学分班考试数学试卷及答案(新教材)

2020年秋季高一开学分班考试(衔接教材部分)(一)一、单选题(共8小题,满分40分,每小题5分) 1、下列式子计算正确的是( ) A .m 3•m 2=m 6 B .(﹣m )﹣2=C .m 2+m 2=2m 2D .(m +n )2=m 2+n 2【答案】C【解析】A 、m 3•m 2=m 5,故A 错误; B 、(﹣m )﹣2=B 错误;C 、按照合并同类项的运算法则,该运算正确.D 、(m +n )2=m 2+2mn +n 2,故D 错误. 2、若代数式1x−5有意义,则实数x 的取值范围是( )A . x =0B . x =5C . x ≠0D . x ≠5 【答案】D【解析】分数要求分母不为零。

5,05≠≠-x x3、已知关于x 的方程x 2+x ﹣a=0的一个根为2,则另一个根是( ) A .﹣3 B .﹣2 C .3 D .6【答案】A .【解析】设方程的另一个根为t , 根据题意得2+t=﹣1,解得t=﹣3, 即方程的另一个根是﹣3.故选A .4、关于二次函数,下列说法正确的是( ) A .图像与轴的交点坐标为B .图像的对称轴在轴的右侧C .当时,的值随值的增大而减小D .的最小值为-3 【答案】D【解析】∵y=2x 2+4x -1=2(x+1)2-3, ∴当x=0时,y=-1,故选项A 错误,该函数的对称轴是直线x=-1,故选项B 错误,2241y x x =+-y ()0,1y 0x <y x y当x<-1时,y随x的增大而减小,故选项C错误,当x=-1时,y取得最小值,此时y=-3,故选项D正确,故选D.5、若,则()A.1B.2C.3D.4【答案】C【解析】将不等式因式分解得,即或,无解或,所以√(2x−1)2+2|x−2|=2x−1+4−2x=3.故选C.6、已知ABC∆的三边a、b、c满足bcbaca-=-22,判断ABC∆的形状( )A.等边三角形B.等腰直角三角形C. 等腰三角形D.直角三角形【答案】C【解析】等腰三角形提示:因式分解得:(a-b)(a+b-c)=0,因为a、b、c为三角形得三边,所以a+b-c为非零数,所以a=b,故选C.7、若关于x的一元二次方程ax2+2x-1=0无解,则a的取值范围是()A.(-1, +∞)B.(-∞,-1)C.[-1,+∞)D.(-1,0)∪(0,+∞).【答案】B【解析】当{Δ=4+4a<0a≠0时,一元二次方程无解,解得a<-1,且a≠0,所以a的取值范围是a<-1.8、不等式的解集是( )A.{x|1<x≤5}B.{x|1<x<5}C.{x|1≤x<5 }D.{x|1≤x≤5 }【答案】A【解析】原不等式化为−x+5x−1≥0,x−5x−1≤0,解得1<x≤5.9、不等式2560x x+->的解集是()A.{}23x x x-或B.{}23x x-<<321xx+≥-C .{}61x x x -或 D .{}61x x -<<【答案】C【解析】因为2560x x +->,所以(1)(6)01x x x -+>∴>或6x <-,故选C 。

2022新高一入学分班考数学试卷12套(含答案)

2022新高一入学分班考数学试卷12套(含答案)

D.不能确定
α
β
B
D
C
10.如图为由一些边长为 1cm 正方体堆积在桌面形成的立方体的三视图,则该立方体露在外面部分的表面积是
________ cm2。
正视图 A. 11 B.15
左视图 C.18
俯视图 D.22
第Ⅱ卷(答卷)
二. 填空题(本大题共 5 小题, 小题 4 分,共 20 分)
11.函数 y
形 S3 ,以此类推,则 S2006 为(
A.是矩形但不是菱形; C.既是菱形又是矩形;
) B. 是菱形但不是矩形; D.既非矩形又非菱形.
9.如图 ,D 是直角△ABC 斜边 BC 上一点,AB=AD,记∠CAD= ,∠ABC= .若 10 ,则 的度数是 (
)
A
A.40
B. 50
C. 60
W=
20 30
2x 1 x
8
1 x 82
82
12
14
8
1 8
x
82
2x
40
1 x 6 6 x 11 12 x 16
化简得
W=
1 18
x2 x2
14 2x
1
26
x 6 6 x
11
………………10

8
1 8
x2
4x
48
12 x 16
①当 W= 1 x 2 14 时,∵ x ≥0,函数 y 随着 x 增大而增大,∵1≤ x ≤6 8
4
1
5
2
x

2 x 1 6 x

由①得:x>-1
由②得: x 4
所以原不等式组的解集为: 1 x 4

浙江省宁波市2023-2024学年高一上学期分班考试(创新班选拔)数学试题含答案

浙江省宁波市2023-2024学年高一上学期分班考试(创新班选拔)数学试题含答案

2023.6.29新高一分班考(创新班选拔)(答案在最后)1.已知12a b a b-=-+,则a b 的值为_____________.【答案】13【解析】【分析】变形给定等式即可得解.【详解】由12a b a b -=-+,得0b ≠,2()a b a b -=--,整理得3a b =,所以13a b =.故答案为:132.已知一圆锥的主视图和俯视图如图所示,则该圆锥的侧面积和侧面展开图的圆心角分别为_____________.【答案】15π;6π5【解析】【分析】根据题意,得到圆锥的底面圆的半径和母线,设侧面展开图的扇形所在圆的圆心角为α,结合弧长公式,列出方程,即可求解.【详解】根据给定的圆锥的三视图,可得圆锥的底面圆的半径为3r =,高为4,则母线长为5l =,可圆锥的侧面积为ππ3515πS rl ==⨯⨯=,底面圆的周长为2π2π36πr =⨯=,设侧面展开图的扇形所在圆的圆心角为α,则6πl α=,可得56πα=,解得6π5α=.故答案为:15π;6π5.3.如图中,O 的半径为20,则阴影部分的面积为_____________.【答案】200【解析】【分析】由图可知弓形AB 的面积等于扇形OAB 的面积减去AOB 的面积,所以阴影部分的面积等于以102为半径的半圆的面积减去弓形的面积,求解即可.【详解】由已知20OA OB ==,所以2AB =,所以2AP BP ==,120202002AOB S =⨯⨯= ,扇形OAB 的面积为21π20100π4⨯⨯=,所以阴影部分的面积为(()21π102100π2002002⨯--=.故答案为:200.4.已知二次函数2y ax bx c =++恒非负,0b a >>,0c ≠,则a b c b a++-的最小值为_____________.【答案】3【解析】【分析】根据题意,由二次函数恒非负可得,,a b c 的不等关系,然后将原式化简,结合基本不等式代入计算,即可求解.【详解】由于二次函数2y ax bx c =++恒非负,所以20Δ40a b ac >⎧⎨=-≤⎩,所以24ac b ≥,且0b a >>,则24b c a ≥,则()()22344b a b a b a a b c a b a b a a b a ++⎡⎤+-++⎣⎦≥=---()()4334b a aa b a -⋅≥=-,当且仅当23,4b a b a c a=-=时,即4c b a ==时,等号成立,所以a b c b a++-的最小值为3.故答案为:35.如图,在ABC 中,45A ∠=,BC =,点D E 、分别在边AC AB 、上,且1DE =,B C D E 、、、四点共圆,则该圆的半径为_____________.【答案】2【解析】【分析】根据等腰直角三角形的性质得到AD DF =,AF=,根据AED ACB ∽得到AB AD =,根据HFB EFD V V ∽得到HB ED=,然后利用勾股定理求HC 即可得到该圆的半径.【详解】过点B 作HB BC ⊥交圆于点H ,连接HD 交AB 于点F ,连接HC ,因为HB BC ⊥,所以HC 为直径,所以90HDC ∠=︒,因为45A ∠=︒,所以AD DF =,AF =,因为180AED DEF DEF ACB ∠+∠=∠+∠=︒,所以AED ACB ∠=∠,所以AED ACB ∽,所以CB AB ED AD==,在HFB 和EFD △中,HFB EFD ∠=∠,HBF EDF ∠=∠(同弧所对的圆周角相等),所以HFB EFD V V ∽,所以HB FB AB AF AB ED FD AD AD --====HB =,所以HC =,所以该圆的半径为2.故答案为:262.6.如图,在矩形ABCD 中,6AD =,4AB =,G 为CD 中点,将四边形ABFE 沿FE 折叠为A B FE '',,,D A B ''共线,,,A A G '共线,则BF 的长为_____________.【答案】43【解析】【分析】过A '作A I AD '⊥,过点B 作BH AG ⊥,设,A I x A E AE y =='=',利用勾股定理得到53x y =,则转化为经典的“3,4,5”直角三角形,最后再利用射影定理即可.【详解】过A '作A I AD '⊥,垂足为I ,过点B 作BH AG ⊥,与AD 交于点.H 于是ABH DAG ∠=∠,由~~AIA ADG BAH ' 可得,3,AB AI AD AH A I DG=='=于是43AH =,设,A I x A E AE y =='=',于是3,3AI x EI x y ==-,在A EI ' 中使用勾股定理()2223x x y y +-=,解得53x y =,记3,4,5,9A I x t EI t EA t AI t =='===,在直角EDA '△中,由射影定理,2A I IE ID ='⋅,于是294A I t ID EI ='=,因为9964t AD t =+=,所以8,15t =于是853AE t ==,因为BH AG ⊥,EF AG ⊥,则//BH EF ,因为//HE BF ,所以四边形BHEF 为平行四边形,因此844333BF AE AH =-=-=.故答案为:43.7.已知ABCD 为正方形,其内分别有长宽为1和3的矩形、边长为1的正方形,矩形R 的面积的所有取值之和为m n(,m n 为正整数且互质),则m n +=_____________.【答案】67【解析】【分析】先将每个矩形的顶点标上字母,然后求出必要的几何量,再设出右上角的直角三角形的两条直角边长,并列方程求解,最后通过解出的边长求出所有可能的面积,即可得到结果.【详解】如图,将三个矩形的顶点按图中所示标出字母,并分别过,,G H K 三点按图中所示像大正方形的边作垂线,垂足分别为,,P Q R .设KLA ϕ∠=,由几何关系可知:KLA KJB AIJ BML CNM NGP IHQ ϕ∠=∠=∠=∠=∠=∠=∠=,90RKL RKJ AJI BLM CMN PNG HIQ ϕ∠=∠=∠=∠=∠=∠=∠=︒-.从而cos sin 3cos sin BC BM MC LM MN ϕϕϕϕ=+=+=+,sin cos cos sin AB BL LR RJ JA LM KL KJ IJ ϕϕϕϕ=+++=+++3sin cos cos sin 2cos 4sin ϕϕϕϕϕϕ=+++=+.所以3cos sin 2cos 4sin ϕϕϕϕ+=+,得1tan 3ϕ=,从而10sin 10ϕ=,310cos 10ϕ=.故3cos sin 31010AB BC ϕϕ==+=⋅+=,且cos cos 10QH IH ϕϕ===,cos cos 10AI IJ ϕϕ===,sin sin 10IQ IH ϕϕ===,cos cos 10NC NM ϕϕ===.故1010ID AD AI AB AI =-=-=-=,10105QD ID IQ =-=-=,3107101010DN DC NC AB NC =-=-==.由于90HQE FPG ∠=︒=∠,9090QEH DEF DFE GFP PGF ∠=︒-∠=∠=︒-∠=∠,HE FG =,故QHE 全等于PFG △,所以PG QE =,31010PF QH ==.设DE x =,DF y =,则5PG QE QD DE x ==-=-.由于QHE 相似于DEF ,故QH DE QE DF =310105x y =,化简得到()36y x x =-.同时,有DF FP PN NC=+++tan cos 10y PG ϕϕ=+++1103510y x ⎛⎫=++-+ ⎪ ⎪⎝⎭135y x =-+,即35y x =+.所以有()36y x x =-,35y x =+,将第一式代入第二式得()65x x x +=-,解得10x =或5x =.再由35y x =+即知1031010x y ⎧=⎪⎪⎨⎪=⎪⎩或541015x y ⎧=⎪⎪⎨⎪=⎪⎩.而矩形R的面积R S EH EF =⋅===.分别代入即知,矩形R 的面积95R S =或53R S =.所以95525315m n =+=,故5215m n =⎧⎨=⎩,这就得到521567m n +=+=.故答案为:67.【点睛】关键点点睛:本题的关键点在于,利用直角三角形制造的互余关系下的相似三角形,可以得到相似比关系,从而求得相应线段的长度.8.已知9个正整数的中位数和平均数均为9,众数为1,则其中最大数的最小值为_____________.【答案】16【解析】【分析】根据题意,由条件可得前5个数是1,1,7,8,9,当后4个数是连续的4个正整数时,最大的数最小,即可得到结果.【详解】因为中位数是9,所以将这9个正整数从小到大排列,第5个数是9,因为众数为1,所以1至少有2个,要使这列数的最大数最小,则其他8个数要尽量大,所以前5个数是1,1,7,8,9,所以后4个数的和为()991178955⨯-++++=,当后4个数是连续的4个正整数时,最大的数最小,设最后一个数为x ,则()()()12355x x x x +-+-+-=,解得15.25x =,因为x *∈N ,则16x =.故答案为:169.抛物线222y x kx k =+-向右平移2个单位,向上平移1个单位,恰好过坐标原点,则k 的值为_____________.【答案】5-或1【解析】【分析】直接利用抛物线平移规律:上加下减,左加右减进而得出平移后的解析式,代入原点即可求解.【详解】将抛物线222y x kx k =+-向右平移2个单位,向上平移1个单位,得到的解析式为:()()222221y x k x k =-+--+,所以()222445y x k x k k =+---+,因为抛物线过坐标原点,所以2450k k --+=,解得5k =-或1k =.故答案为:5-或1.10.将一长方形折叠后恰好如图所示,则梯形ABDC 的面积为_____________.【答案】725##14.4【解析】【分析】根据折叠和平行得到三角形ACP 和三角形PBD 为等腰三角形,即可得到,CP PD 的长度,根据勾股定理和等面积得到梯形的高,然后求面积即可.【详解】如图,过点P 作PF AB ⊥于点F ,由题意得EAC CAP ∠=∠,因为四边形ABDC 为梯形,所以AB CD ,所以PCA EAC CAP ∠=∠=∠,所以三角形ACP 为等腰三角形,3CP AP ==,同理可得,4PD PB ==,因为222PA PB AB +=,所以PA PB ⊥,根据等面积的思路得到PF AB PA PB ⋅=⋅,所以341255PF ⨯==,所以()1234572525ABDC S ++⨯==.故答案为:725.11.如图,已知ABC 为等腰三角形,AB AC =,AB 为O 的直径,BC 交O 于点D ,//CE AB ,BE 交AC AD 、于点F G 、,5EF =,4FG =,则BG 的长为_____________.【答案】6【解析】【分析】连接GC ,根据已知条件证明EGC V 相似于CGF △,得2EG CG CG EG FG CG FG=⇒=⋅,即可求BG 的长.【详解】如图所示,连接GC ,因为ABC 为等腰三角形,AB AC =,且以AB 为直径的圆交BC 于D ,所以AD BC ⊥,即D 为BC 的中点,所以GCD GBD ∠=∠,BG CG =,又因为ACD ABD ∠=∠,所以ACG ABG ∠∠=,因为//CE AB ,所以CEG ABG ∠=∠,即CEG ACG FCG ∠=∠=∠,所以EGC V 相似于CGF △,即2EG CG CG EG FG CG FG=⇒=⋅,又因为5,4EF FG ==,所以2()36CG EG FG EF FG FG =⋅=+⋅=,所以6BG CG ==.故答案为:6.12.已知在Rt ABC △中,90B ∠= ,6AB =,8BC =,点D E 、分别在边AB BC 、上,F 为DE 的中点,则AF FC +的最小值为_____________.【答案】10【解析】【分析】在Rt ABC △中,由勾股定理求得AC ,再根据三角形三边关系及三点共线求得AF FC +的最小值.【详解】在Rt ABC △中,10AC ==,当、、A F C 三点不共线时,在AFC △中,AF FC AC +>;当、、A F C 三点共线时,AF FC AC +=,此时D 与A 重合,E 与C 重合,F 为AC 的中点.所以AF FC +的最小值为10AC =.故答案为:10.13.如图,正方形OABC 的顶点A C 、分别在y x 、轴上,点B 坐标为()6,6,将四边形AEDO 翻折至FEDO ',点O '在边BC 上,FO '与AB 相交于点G ,35AEDO EBCDS S =四边形四边形,反比例函数(0)ky k x=>过点G 且与BC 相交于点H ,则O H '的长为_____________.【答案】1【解析】【分析】如图,由对称图形的特征可得OM O M '=,根据题意和梯形的面积公式、中点公式可得9(,3)4M ,进而可得3O C O B ''==,求出CD ,利用相似三角形的性质求得4BG =,即(2,6)G ,由12y x=求得2CH =,即可求解.【详解】如图,取DE 的中点M ,连接,OM O M ',则OM O M '=,连接OO ',交DE 于N ,则DE OO '⊥,设(06),(06)AE a a OD b b =<<=<<,则,6O D b CD b '==-,因为35AEDO EBCDS S =四边形四边形,所以3273682AEDO S =⨯=四边形,即1276()22a b ⨯⨯+=,解得92a b +=,所以9(,3)(,3)24a b M +=,则154OM =,设(6,)(06)O c c '<<,则154O M '=,解得3c =,即(6,3)O '为CB 的中点,故3O C O B ''==.又//OM DO ',所以//,//O M OD OM O D '',所以四边形OMO D '为平行四边形,则154OD b O M '===,所以94CD =.由O BG DCO '' ,得O B BG DC CO '=',即3934BG=,解得4BG =,所以62AG BG =-=,得(2,6)G ,而点G 在函数ky x=图象上,故12k =,则12y x=,所以(6,2)H ,即2CH =,所以1O H O C CH ''=-=.故答案为:1【点睛】关键点点睛:解决本题的关键是利用面积之比和中点坐标公式求出点M 的坐标,进而求得O '的坐标,结合相似三角形的性质可得2CH =即为所求.14.已知二次函数2y x bx c=++(1)若1b =-,且二次函数图象过点()1,2-,求二次函数的解析式及顶点坐标;(2)若该二次函数顶点为(),m k ,且过点(,)k m ,求m k -;(3)若该二次函数过点111213(,),(,),(2,)(0)A x y B x t y C x t y t --≠,且21M y y =-,32N y y =-,试比较M N 、的大小.【答案】(1)22y x x =-+;17(,)24(2)0或1(3)M N <【解析】【分析】(1)根据题意,列出方程组,求得1,2b c =-=,得到函数的解析式,以及顶点坐标;(2)根据题意,可设抛物线的解析式为2()y x m k =-+,代入点(,)k m ,得到关于m k -的方程,即可求解;(3)根据题意,结合函数的解析式,求得2111y x bx c =++,2221112y x x t t bx bt c =-++-+和223111442y x x t t bx bt c =-++-+,求得,M N 的表达式,利用作差比较法,即可求解.【小问1详解】由题意知:1b =-,且二次函数图象过点()1,2-,可得112b bc =-⎧⎨++=⎩,解得1,2b c =-=,所以该函数的解析式为22y x x =-+,且函数图象的顶点坐标为17(,)24.【小问2详解】因为函数2y x bx c =++中,二次项系数为1,因为该函数图象的顶点坐标为(),m k ,可设抛物线的解析式为2()y x m k =-+,又因为2()y x m k =-+的图象进过另一点(,)k m ,可得2()m k m k =-+,即2()m k k m -=-,解得0m k -=或1m k -=.【小问3详解】因为函数2y x bx c =++的图象经过点111213(,),(,),(2,)A x y B x t y C x t y --三个不同点,所以2111y x bx c =++,222211111()()2y x t b x t c x x t t bx bt c =-+-+=-++-+,222311111(2)(2)442y x t b x t c x x t t bx bt c =-+-+=-++-+,所以2222111211112()2x x t t bx bt c x bx c y t M y x t bt -++-+-++=-+=-=-,322222*********(2)x x t t bx bt c x x t t bx bt c N y y =--++-+--++-+=2123x t t bt =-+-,因为0t ≠,可得2221123(2)20x t t bt x t t b M t t N -+---+-==>-,所以M N <.15.如图,一次函数()0y ax a =>与反比例函数()0ky k x=>相交于,A B 两点,点A 在第一象限,点C 是反比例函数ky x=第一象限上异于点A 的一点,AC 与x 轴交于点N ,BC 与x 轴交于点D .(1)若2a =,点C 坐标为()4,1,求证:CD CN =;(2)若,a k 为任意正实数,CD 是否等于CN ?(3)已知ABC S = ,60ACB ∠=︒,点D 坐标为(),求k .【答案】(1)证明见解析(2)是,理由见解析(3)【解析】【分析】(1)先将两个函数图象联立,解出A 和B 的坐标,然后通过解方程组的方法求出直线AC 和BC 的解析式,并得到N 和D 的坐标,最后根据坐标验证CD CN =即可;(2)设C 的坐标为,k t t ⎛⎫⎪⎝⎭,然后采取与(1)完全相同的方法即可证明CD CN =;(3)根据(2)求出的各点坐标,可从每个已知条件分别得到关于,,t a k 的一个方程,然后对方程进行代数变形,将k 用已知的表达式表示,即可求出k .【小问1详解】由()4,1C 可知414k =⨯=,再由2a =,联立24y x y x =⎧⎪⎨=⎪⎩,解得A,(B -.设直线AC 的解析式为y px q =+,则代入这两个点的坐标可得14p q q =+⎧⎪⎨=+⎪⎩,解得21p q ⎧=-⎪⎨⎪=+⎩.所以直线AC的解析式为12y x =-++,令0y =,得4x =+,所以()4N +.类似可以求出直线BC的解析式为12y x =-+,令0y =,得4x =()4D -.由()4D,()4N +,()4,1C ,可知CD ==CN ==.所以CD CN =.【小问2详解】设(),0k C t t t ⎛⎫> ⎪⎝⎭,联立y ax k y x =⎧⎪⎨=⎪⎩,解得A,B ⎛ ⎝.设直线AC 的解析式为y px q =+,则代入这两个点的坐标可得k tp q t q⎧=+⎪⎪=+,解得p t k q t ⎧=-⎪⎪⎨⎪=⎪⎩.所以直线AC的解析式为k y x t t =-+,令0y =,得x t =+,所以N t ⎛⎫ ⎪ ⎪⎝⎭.类似可以求出直线BC的解析式为k y x t t =+,令0y =,得x t =-D t ⎛⎫- ⎪ ⎪⎝⎭.由D t ⎛⎫ ⎪ ⎪⎝⎭,N t ⎛⎫+ ⎪ ⎪⎝⎭,,k C t t ⎛⎫⎪⎝⎭,可知CD ==,CN ==.所以CD CN =.【小问3详解】由于CD CN =,故CDN CND ∠=∠.而60CDN CND ACB ∠+∠=∠=︒,故30CDN CND ∠=∠=︒.之前已经求得A,B ⎛ ⎝,,k C t t ⎛⎫⎪⎝⎭,N t ⎛⎫+ ⎪ ⎪⎝⎭,D t ⎛⎫ ⎪ ⎪⎝⎭.现在由已知有()D,故t -=.同时我们有tan 30tan 3C C Dk y t CDN x x t=︒=∠==-.而11sin sin 60224ABC S AC BC ACB AC BC AC BC ==⋅⋅∠=⋅⋅︒=⋅ ,故32AC BC ⋅=.所以][2222222102432k k AC BC t t t t ⎡⎤⎛⎛⎛⎛⎢⎥==⋅=+⋅++ ⎢⎥⎝⎝⎝⎝⎣⎦][222222ak ak t t t t t t ⎡⎤⎛⎫⎛⎫⎢⎥=-+-⋅+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦2222222211ak t t t t t t ⎛⎫⎛⎛⎛⎫⎛⎛⎛⎫⎪=+-+=+-+ ⎪ ⎪⎪ ⎪⎝⎭⎝⎝⎝⎭⎝⎝⎝⎭.故我们最终得到:t -=,33t =,222211024t t t ⎛⎫⎛⎫⎛⎛⎪+-+= ⎪ ⎪ ⎪⎝⎭⎝⎝⎝⎭.从而(2222222226410241133t t t t t ⎛⎫⎛⎫⎛⎫⎛⎛⎛⎛⎛ ⎪ ⎪=+-+=++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎝⎝⎭⎝⎝⎝⎭⎝⎭,得248t ⎛+= ⎝,即t +=.所以有((222211443k t t t t t ⎛⎫⎛⎛⎛⎛⎫ ⎪=⋅=+--⋅=-⋅= ⎪⎪⎝⎭⎝⎝⎝⎝⎭综上,k的值为16.(1)如图,已知在ABC 中,60BAC ∠= ,I 为内心,,D E 分别在边,AB AC 上,且DE 过I ,AI DE ⊥,16BD =,9CE =,求BC的长;(2)如图,已知在等腰Rt ABC △中,D 是边BC 上一点,BDk CD=,E 是AD 上一点,135BEC ∠= ,CE 延长线交AB 于点F ,求BFAF的值.【答案】(1)37;(2【解析】【分析】(1)过点I 分别作,,AB BC CA 的垂线,记垂足为,,H F G .设DH x =,用两种方法表示出三角形ABC 的面积从而建立方程即可求解;(2)作出ABC 的外接圆,记CF 与外接圆交于点,G BE 与AC 交于点H ,与外接圆交于点P .结合相似三角形的性质以及赛瓦定理即可得解.【详解】(1)过点I 分别作,,AB BC CA 的垂线,记垂足为,,H F G .由题设,易知ADE V 为等边三角形,则有IHD IGE ≅ ,设DH x =,则有3,3HI x HA x ==,则16,BF BH x ==+9,416,49CF CG x AB x AC x ==+=+=+,因为ABC 在AB 上的高()3492h x =+,由等面积法,于是()()()13141649416492253222ABC S x x x x x x =⋅+⋅+=⋅+++++ ,解得6x =,于是22537BC x =+=.(2)作出ABC 的外接圆,记CF 与外接圆交于点,G BE 与AC 交于点H ,与外接圆交于点P .因为45,45AGC ABC APB ACB ∠∠∠∠==== ,结合135BEC PEG ∠=∠=︒,显然APEG 为平行四边形,于是//,//AG BP AP GC ,所以PAC ACG ∠=∠,GAB ABP ∠=∠,结合同圆中圆周角相等,对应弧、弦相等,则AG PC =,AP GB =,由上,GAB GCB ∠=∠,GBA EBC ∠=∠,进而有BAG BCE ~ ,由题意,易知BC 为直径,且GP AC =,则90BPC ∠=︒,45AGC PCG ∠=∠=︒,同理有90BGC ∠=︒,45GBC PCG ∠=∠=︒,所以22CE PC ==,22BG BE =,由~AHP CHE 且~AFG BFE,所以222CH CE AFHA AP BGBF ===.由赛瓦定理有1BD CH AF DC HA FB ⋅⋅=,即21AF AF k BF FB ⋅⋅=,因此BFAF=17.如图,点A B C 、、在O 上,AB AC =.(1)求证:BAO CAO ∠∠=;(2)作BD AC ⊥,延长AO 交BD 于点E ,求证:BE CD =;(3)在(2)的条件下:①已知3cos 5BAC ∠=,后面条件不全,征集中,联系人QQ:2853279698。

分班测试题型及答案高一

分班测试题型及答案高一

分班测试题型及答案高一一、选择题(每题3分,共30分)1. 下列哪项不是高一数学必修一的内容?A. 函数的概念B. 指数函数C. 几何图形的面积计算D. 线性方程组的解法答案:C2. 在高一化学中,下列哪种物质不是碱?A. 氢氧化钠B. 氨水C. 碳酸钠D. 硫酸答案:D3. 英语中,表示“在...之后”的介词是?A. inB. onC. afterD. before答案:C4. 高一物理中,下列哪项不是牛顿第一定律的内容?A. 物体在没有外力作用下,将保持静止或匀速直线运动B. 物体的运动状态改变需要外力作用C. 物体的惯性与质量有关D. 物体的运动状态与外力无关5. 高一生物中,细胞分裂过程中,染色体数目加倍发生在哪个阶段?A. 有丝分裂前期B. 有丝分裂中期C. 有丝分裂后期D. 减数分裂第一次分裂答案:C6. 在高一历史课程中,下列哪项不是文艺复兴时期的代表人物?A. 达芬奇B. 米开朗基罗C. 莎士比亚D. 贝多芬答案:D7. 地理学中,地球的自转周期是多久?A. 24小时B. 12小时C. 48小时D. 7天答案:A8. 高一政治课程中,社会主义核心价值观包括哪些方面?A. 富强、民主、文明、和谐B. 自由、平等、公正、法治C. 爱国、敬业、诚信、友善D. 所有选项答案:D9. 语文中,下列哪项不是诗歌的基本特征?B. 押韵C. 形象性D. 逻辑性答案:D10. 计算机科学中,二进制数“1010”转换为十进制数是多少?A. 8B. 10C. 4D. 2答案:B二、填空题(每题2分,共20分)1. 高一数学中,函数的值域是指函数值的________。

答案:集合2. 化学中,元素周期表的第七周期元素的原子序数范围是______。

答案:81-1183. 英语中,动词的过去式通常在词尾加上________。

答案:-ed4. 物理中,光的折射定律是由________提出的。

答案:斯涅尔5. 生物学中,细胞膜的主要功能是________。

开学分班考试(三)-2020年秋季高一新生入学分班考试数学试卷及答案(新教材)

开学分班考试(三)-2020年秋季高一新生入学分班考试数学试卷及答案(新教材)

2020年秋季高一开学分班考试(三)一、单选题(共8小题,满分40分,每小题5分)1、已知集合{|0}A x x a =-,若2A ∈,则a 的取值范围为( ) A .(,2]-∞- B .(,2]-∞C .[2,)+∞D .[2,)-+∞【答案】C【解析】因为集合{|0}A x x a =-,所以{}|A x x a =, 又因为2A ∈,则2a ,即[2,)a ∈+∞,故选:C .2、函数()12f x x =-的定义域为( ) A .[)0,2B .()2,+∞C .()1,22,2⎡⎫⋃+∞⎪⎢⎣⎭D .()(),22,-∞+∞【答案】C【解析】由21020x x -≥⎧⎨-≠⎩,解得x ≥12且x ≠2.∴函数()12f x x =-的定义域为()1,22,2⎡⎫⋃+∞⎪⎢⎣⎭.故选:C . 3、下列命题正确的是( ) A .若>a b ,则11a b< B .若>a b ,则22a b > C .若>a b ,c d <,则>a c b d -- D .若>a b ,>c d ,则>ac bd【答案】C【解析】A.若>a b ,则11a b<,取1,1a b ==- 不成立 B.若>a b ,则22a b >,取0,1a b ==- 不成立 C. 若>a b ,c d <,则>a c b d --,正确D. 若>a b ,>c d ,则>ac bd ,取1,1,1,2a b c d ==-==- 不成立,故答案选C4、已知函数2,01,()2,12,1,2,2x x f x x x ⎧⎪≤≤⎪=<<⎨⎪⎪≥⎩,则3[()]2f f f ⎧⎫⎨⎬⎩⎭的值为( )A .1B .2C .3-D .12【答案】A【解析】由题意得,3()=22f ,1(2)=2f ,1()=2=1122f ⨯, 所以3[()]=[(2)]=()=1212f f f f f f ⎧⎫⎨⎬⎩⎭,故选:A. 5、已知2x >,函数42y x x =+-的最小值是( ) A .5 B .4C .8D .6【答案】D【解析】因为该函数的单调性较难求,所以可以考虑用不等式来求最小值,,因为,由重要不等式可知,所以,本题正确选项为D.6、下列函数既是偶函数,又在(),0-∞上单调递减的是( ) A .2x y = B .23y x -=C .1y x x=- D .()2ln 1y x =+【答案】A【解析】对于A 选项,2xy =为偶函数,且当0x <时,122xx y -==为减函数,符合题意. 对于B 选项,23y x -=为偶函数,根据幂函数单调性可知23y x -=在(),0-∞上递增,不符合题意. 对于C 选项,1y x x=-为奇函数,不符合题意. 对于D 选项,()2ln 1y x =+为偶函数,根据复合函数单调性同增异减可知,()2ln 1y x =+在区间(),0-∞上单调递减,符合题意.故选:A 7、若正数,x y 满足220x xy +-=,则3x y +的最小值是( )A .4B.C .2D.【答案】A【解析】因为正数,x y 满足220x xy +-=,所以2=-y x x,所以2324+=+≥=x y x x ,当且仅当22x x =,即1x =时,等号成立. 故选:A8、函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(1)1f =-,则满足1(2)1f x -≤-≤的x 取值范围是( ) A .[2,2]- B .[1,1]-C .[0,4]D .[1,3]【答案】D 【解析】()f x 为奇函数,()()f x f x ∴-=-.(1)1f =-,(1)(1)1f f ∴-=-=.故由1(2)1f x -≤-≤,得(1)(2)(1)f f x f ≤-≤-.又()f x 在(,)-∞+∞单调递减,121x ∴-≤-≤,13x ∴≤≤.故选:D二、多选题(共4小题,满分200分,每小题5分) 9、下列各式既符合分数指数幂的定义,值又相等的是( ) A .13(1)-和26(1)-B .20-和12C .122和414D .324-和312-⎛⎫ ⎪⎝⎭ E.343和4313- 【答案】CE【解析】A 不符合题意,13(1)-和26(1)-均符合分数指数幂的定义,但13(1)1-==-,26(1)1-==;B 不符合题意,0的负分数指数幂没有意义; C符合题意,114242==;D 不符合题意,324-和312-⎛⎫ ⎪⎝⎭均符合分数指数幂的定义,但233211484-==,331282-⎛⎫== ⎪⎝⎭; E 符合题意,4343133-=.故选:CE.10、对任意实数a ,b ,c ,给出下列命题,其中真命题是( ) A .“a b =”是“ac bc =”的充要条件 B .“a b >”是“22a b >”的充分条件C .“5a <”是“3a <”的必要条件D .“5a +是无理数”是“a 是无理数”的充要条件【答案】CD【解析】对于A ,因为“a b =”时ac bc =成立,ac bc =,0c时,a b =不一定成立,所以“a b =”是“ac bc =”的充分不必要条件,故A 错,对于B ,1a =-,2b =-,a b >时,22a b <;2a =-,1b =,22a b >时,a b <,所以“a b >”是“22a b >”的既不充分也不必要条件,故B 错,对于C ,因为“3a <”时一定有“5a <”成立,所以“5a <”是“3a <”的必要条件,C 正确;对于D“5a +是无理数”是“a 是无理数”的充要条件,D 正确.故选:CD11、下面命题正确的是( ) A .“1a >”是“11a<”的充分不必要条件 B .命题“若1x <,则21x <”的否定是“ 存在1x <,则21x ≥”.C .设,x y R ∈,则“2x ≥且2y ≥”是“224x y +≥”的必要而不充分条件D .设,a b ∈R ,则“0a ≠”是“0ab ≠”的必要不充分条件 【答案】ABD【解析】选项A:根据反比例函数的性质可知:由1a >,能推出11a <,但是由11a<,不能推出1a >,例如当0a <时,符合11a<,但是不符合1a >,所以本选项是正确的; 选项B: 根据命题的否定的定义可知:命题“若1x <,则21x <”的 否 定 是“ 存 在1x <,则21x ≥”.所以本选项是正确的;选项C:根据不等式的性质可知:由2x ≥且2y ≥能推出224x y +≥,本选项是不正确的;选项D: 因为b 可以等于零,所以由0a ≠不能推出0ab ≠,再判断由0ab ≠能不能推出0a ≠,最后判断本选项是否正确.故选:ABD12、已知函数()()2lg 1f x x ax a =+--,给出下述论述,其中正确的是( )A .当0a =时,()f x 的定义域为()(),11,-∞-+∞B .()f x 一定有最小值;C .当0a =时,()f x 的值域为R ;D .若()f x 在区间[)2,+∞上单调递增,则实数a 的取值范围是{}4|a a ≥- 【答案】AC【解析】对A ,当0a =时,解210x ->有()(),11,x ∈-∞-+∞,故A 正确 对B ,当0a =时,()()2lg 1f x x =-,此时()(),11,x ∈-∞-+∞,()210,x -∈+∞,此时()()2lg 1f x x =-值域为R ,故B 错误.对C ,同B ,故C 正确.对D , 若()f x 在区间[)2,+∞上单调递增,此时21y x ax a =+--对称轴22ax =-≤. 解得4a ≥-.但当4a =-时()()2lg 43f x x x =-+在2x =处无定义,故D 错误.故选AC三、填空题(共4小题,满分20分,每小题5分,一题两空,第一空2分)13、正实数,x y 满足:21x y +=,则21x y+的最小值为_____.【答案】9【解析】()21212225559y x x y x y x y x y +=++=++⎛⎫≥+≥+ ⎝⎭=⎪, 当且仅当13x y ==时取等号.故答案为:9. 14、若幂函数图像过点(8,4),则此函数的解析式是y =________. 【答案】23x【解析】设幂函数的解析式为y x α=,由于函数图象过点(8,4),故有48α=,解得23α=, 所以该函数的解析式是23y x =,故答案为:23x .15、函数()2436x x f x x ++=-的值域为__________.【答案】(),161667,⎡-∞-++∞⎣【解析】设21663636,6,()16t t x t x t g t t t t++-==+==++,当0t >时,()16g t ≥,当且仅当6t x ==时等号成立;同理当0t <时,()16g t ≤-,当且仅当6t x =-=-时等号成立;所以函数的值域为(),161667,⎡-∞-++∞⎣.故答案为: (),161667,⎡-∞-++∞⎣. 16、已知函数()()1123121x a x a x f x x -⎧-+<=⎨≥⎩的值域为R ,则实数a 的取值范围是_____. 【答案】10,2⎡⎫⎪⎢⎣⎭【解析】当1x ≥时,()12x f x -=,此时值域为[)1,+∞ 若值域为R ,则当1x <时.()()123f x a x a =-+为单调递增函数,且最大值需大于等于1,即1201231a a a ->⎧⎨-+≥⎩,解得102a ≤<,故答案为:10,2⎡⎫⎪⎢⎣⎭四、解答题(共6小题,满分70分,第17题10分,其它12分)17、已知集合A ={x|2a≤x≤a +3},B ={x|x 2+x -6≤0}.若A ∪B =B ,求实数a 的取值范围. 【解析】 B ={x|x 2+x -6≤0} ={x|(x +3)(x -2)≤0} ={x|-3≤x≤2} =[-3,2].因为A ∪B =B ,所以A ⊆B. ①当A =∅时,2a>a +3, 解得a>3;②当A≠∅,即a≤3时, 因为A =[2a ,a +3],所以⎩⎪⎨⎪⎧2a≥-3,a +3≤2,解得-32≤a≤-1,综上,实数a 的取值范围为⎣⎡⎦⎤-32,-1∪(3,+∞). 18、已知{}22|320,0A x x ax a a =-+>>,{}2|60B x x x =--≥,若x A ∈是x B ∈的必要不充分条件,求实数a 的取值范围.【解析】解出{}|23B x x x =≤-≥或,{}|20A x x a x a a =<>>或, 因为x A ∈是x B ∈的必要不充分条件,所以B 是A 的真子集.所以2323020a a a a >-⎧⎪<⇒<<⎨⎪>⎩故答案为:302a <<19、化简下列各式:【解析】 (1) 原式=lg 1100×10=-2×10=-20.(2) 原式=lg25lg2×lg4lg3×lg9lg5=2lg5lg2×2lg2lg3×2lg3lg5=8.(3) 原式=lg 427-lg4+lg75=lg(427×14×75)=12.20、判断下列函数的奇偶性: (1) f(x)=xlg(x +x 2+1); (2) f(x)=(1-x) 1+x1-x; (3) f(x)=⎩⎪⎨⎪⎧-x 2+2x +1,x >0,x 2+2x -1, x <0;(4) f(x)=4-x 2|x +3|-3.【解析】 (1) 因为x +x 2+1>0恒成立, 所以函数f(x)的定义域为R ,关于原点对称,所以f(x)-f(-x)=x[lg(x +x 2+1)+lg(-x +x 2+1)]=0, 所以f(x)=f(-x),所以f(x)为偶函数. (2) 由题意得,⎩⎪⎨⎪⎧1+x 1-x ≥0,1-x≠0,解得-1≤x<1, 所以定义域不关于原点对称, 所以f(x)为非奇非偶函数.(3) f(x)定义域为(-∞,0)∪(0,+∞)关于原点对称. 不妨设x>0,所以f(x)+f(-x)=-x 2+2x +1+x 2-2x -1=0, 所以f(x)=-f(-x),所以f(x)为奇函数.(4) 由题意得,⎩⎪⎨⎪⎧4-x 2≥0,|x +3|≠3,解得x ∈[-2,0)∪(0,2]关于原点对称,所以f(x)+f(-x)=4-x 2x -4-x 2x =0,所以f(x)=-f(-x), 所以f(x)为奇函数. 21、已知函数()log ax bf x x b-=+ ()0,0,0a a b >≠≠. (1)求函数()f x 的定义域;(2)判断函数()f x 的奇偶性,并说明理由; 【解析】(1)由x bx b->+0,化为:()()0x b x b -+>. 当0b >时,解得x b >或x b <-;0b <时,解得x b >-或x b <. ∴函数()f x 的定义域为:0b >时,()),(,x b b ∈-∞-+∞,0b <时,()),(,x b b ∈-∞-+∞.(2)∵定义域关于原点对称,()()log aa xb x bf x log f x x b x b----==-=--++,∴函数()f x 为奇函数.22、已知奇函数()2121x xa f x ⋅-=+的定义域为[]2,3ab --. (1)求实数a ,b 的值;(2)若[]2,3x a b ∈--,方程()()20f x f x m +-=⎡⎤⎣⎦有解,求m 的取值范围.【解析】(1)因为奇函数定义域关于原点对称,所以230a b --+=.又根据定义在0x =有定义,所以()00210021a f ⋅-==+,解得1a =,1b =. (2)[]3,3x ∈-,令()2121x x f x t -==+,7799t ⎛⎫-≤≤ ⎪⎝⎭则方程()()20f x f x m +-=⎡⎤⎣⎦有解等价于20t t m +-= 7799t ⎛⎫-≤≤ ⎪⎝⎭有解 也等价于2y t t =+ 7799t ⎛⎫-≤≤ ⎪⎝⎭与y m =有交点.画出图形根据图形判断:由图可知:1112481m -≤≤时有交点,即方程()()20f x f x m +-=⎡⎤⎣⎦有解.。

2023-2024学年北京牛栏山一中高一分班考数学试题及答案

2023-2024学年北京牛栏山一中高一分班考数学试题及答案

2023北京牛栏山一中高一分班考数 学本试卷共100分.考试时90分钟.考生务必将答案答在答题卡上,在试卷上作答无效. 一、选择题(本题共4小题,每小题3分,共12分.下面各题均有四个选项,其中只有一个是符合题意的)1. 2299x x +−等于( ) A. ()()911x x −+ B. ()()911x x +− C. ()()911x x −−D. ()()911x x ++2. 已知110x y x y −−+=+≠,则xy 的值为( ) A. 1− B. 0C. 1D. 23. 一次函数33y x b ,0b ≠的图象分别与x 轴、y 轴交于点A ,B ,则ABO ∠=( ) A. 45︒B. 60︒C. 120︒D. 150︒4. 一元二次方程20(0)ax bx c a ++=≠有两个实根1x ,2x ,且12x x <,则1x 是( )A. 22b a a−−B. 22b a a−+C. 22b a a −−D. 22b a a−−二、填空题(本题共10小题,每小题4分,共40分)5. 已知关于x 的一元二次方程214x x m −=有两个不相等的实数根,则m 的取值范围是______. 6. 将抛物线24y x x =+向右平移2个单位,所得抛物线的表达式是______.7. 计算4sin 60︒+______.8. 设0x <,0y <,则化简为______. 9. 已知点()2,0A ,O 为坐标原点,点B 在第一象限且在反比例函数的图象上,若OAB 为等边三角形,则此反比例函数的解析式是______.10. 对任意两个实数a ,b ,规定一种新运算“*”:()*a b a a b b =++,若已知*2.528.5a =,则实数a 的值是______.11. 若多项式3231x kx −+的一个因式为31x −,则k =______.12. 若方程210x bx ++=与20x x b −−=,有一个公共根,则b =______. 13. 已知关于x 的方程22222x x a x x x x x−−+=−−,只有一个实根,则=a ______. 14. 对非负实数x “四舍五入”到个位的值记为x ,即当n 为非负整数时,若1122n x n −≤<+,则x n =(如0=0.480=,0.64 1.4931==). 给出下列关于x 的结论:①若x ,y 为非负实数,则 x y x y +=+; ②若213x −=,则实数x 的取值范围为7944x ≤<; ③当0x ≥,m 为非负整数时,有 x m m x +=+. 其中,正确的结论有______(填写所有正确的序号)三、解答题:本大题共6小题,共48分.解答应写出文字说明,证明过程或演算步骤.15. 如图,已知平面直角坐标系xoy ,抛物线2y x bx c =−++过点()4,0A 、()1,3B(1)求该抛物线的表达式; (2)画出该抛物线的图像;(3)根据抛物线图像写出0y <时x 的取值范围. 16. 设函数2y x =与4y x=的两个交点为11(,)A x y ,()22,B x y ()12x x >,点C −.求ABC 的面积.17. (1)已知222x x −=,求()()()()()213331x x x x x −++−+−−的值; (2)已知1x =,求221121x x x x x x x+⎛⎫−÷⎪−−+⎝⎭的值. 18. 满足关于x 的不等式组261540x xmx m +⎧>+⎪⎨⎪+>⎩的x 的取值范围是4x <,求m 的取值范围.19.已知平面直角坐标系xoy ,抛物线224y ax ax =−+(0a >) (1)求证:抛物线经过两个定点;(2)若()11,A m y −,()2,B m y ,()323,C m y −为抛物线上三点,且满足123y y y <<,求实数m 的取值范围.20. 在“□1□2□3□4□5□6□7□8□9”的小方格中填上“+”“-”号,如果可以使其代数和为n ,就称数n 是“可被表出的数”,否则,就称数n 是“不可被表出的数”(如1是可被表出的数,这是因为123456789++−−++−−+是1的一种可能被表出的方法).(1)求证:7是可被表出的数,而8是不可被表出的数; (2)求25可被表出的不同的方法种数.参考答案一、选择题(本题共4小题,每小题3分,共12分.下面各题均有四个选项,其中只有一个是符合题意的)1. 【答案】A【分析】直接因式分解即可.【详解】()()2299911x x x x +−=−+.故选:A 2. 【答案】C【分析】变换11x yx y x y xy−−++=+=,0x y +≠,得到答案. 【详解】11x yx y x y xy−−++=+=,0x y +≠,故1xy =. 故选:C 3. 【答案】B【分析】确定()0,B b ,),0A,计算得到tan OA ABO OB∠==.【详解】33yx b ,取0x =,则y b =,即()0,B b ,取0y =,则x =,即),0A .tan OA ABO OB∠===,90ABO ︒<∠<︒,故60ABO ∠=︒.故选:B 4. 【答案】C【分析】确定240b ac ∆=−>,得到222424b b ac x a a −⎛⎫+= ⎪⎝⎭,解得答案. 【详解】一元二次方程20(0)ax bx c a ++=≠有两个实根1x ,2x ,故240b ac ∆=−>,20ax bx c ++=,即20b c x x a a ++=,即222424b b ac x a a −⎛⎫+= ⎪⎝⎭,12x x <,故12b a x −=. 故选:C二、填空题(本题共10小题,每小题4分,共40分)5. 【答案】1m >−【分析】确定2104x x m −−=,计算10m ∆=+>得到答案. 【详解】214x x m −=,即2104x x m −−=,10m ∆=+>,解得1m >−. 故答案为:1m >−. 6. 【答案】24y x =−【分析】配方得到顶点式,利用左加右减得到答案. 【详解】()22424y x x x =+=+−,向右平移2个单位得到()222244y x x =+−−=−. 故答案为:24y x =− 7. 【答案】3−【分析】直接计算得到答案.【详解】4sin 60433︒=+=−.故答案为:3−.8. 【答案】−【分析】根据根式的性质即可求解. 【详解】由于0x <,0y <,所以((1y x y=−−==−故答案为:−9. 【答案】()f x x=【分析】设反比例函数为()kf x x=,确定(B ,代入计算得到答案.【详解】设反比例函数为()kf x x=,0k >,()2,0A ,OAB 为等边三角形,故(B ,()1f k ==()f x =.故答案为:()f x x=. 10. 【答案】4或132−【分析】直接根据公式计算即可.【详解】()*2.5 2.5 2.528.5a a a =++=,解得4a =或132a =−. 故答案为:4或132−. 11. 【答案】10【分析】设()323131x kx x A −+=−,取13x =计算得到答案. 【详解】()323131x kx x A −+=−,其中A 是一个二次多项式, 取13x =得到11099k −+=,解得10k =.故答案为:10 12. 【答案】2【分析】联立方程即可求解.【详解】()()22101110x bx bx x b b x b x x b ⎧++=⇒+=−−⇒+=−+⎨−−=⎩, 若10b +=,则两个方程均为210x x −+=,而该方程无解,与题设矛盾, 所以10b +≠,所以=1x −,进而将=1x −代入20x x b −−=可得2b =, 故答案为:2 13. 【答案】72,4或8 【分析】变换得到22240x x a −+−=,考虑Δ0=和0∆>两种情况,考虑方程两个根中有一个是增根,计算得到答案. 【详解】22222x x a x x x x x−−+=−−,即()2222x x a x +−=−,整理得到22240x x a −+−=, ①若()4840a ∆=−−=,解得72a =,此时方程的解为12x =,满足; ②若()4840a ∆=−−>,解得72a >,此时方程有解0或者2, 若有解0x =,则4a =,此时方程的解为0x =(增根)或1x =,满足; 若有解2x =,则8a =,此时方程的解为2x =(增根)或=1x −,满足; 综上所述:72a =,4a =或8a =. 故答案为:72,4或8. 14. 【答案】②③【分析】取0.5x y ==验证①错误,根据定义确定572122x ≤−<,解得②正确,m 为非负整数时,不影响四舍五入,③正确,得到答案.【详解】对①:取0.5x y ==,则 1x y +=,2x y +=,错误; 对②:213x −=,则572122x ≤−<,解得7944x ≤<,正确; 对③:0x ≥,m 为非负整数时,不影响四舍五入,正确; 故答案为:②③三、解答题:本大题共6小题,共48分.解答应写出文字说明,证明过程或演算步骤.15. 【答案】(1)24y x x =−+ (2)图像见解析 (3)0x <或>4x【分析】(1)将点代入抛物线方程,解得答案; (2)直接画出函数图像即可; (3)根据图像直接得到答案. 【小问1详解】抛物线2y x bx c =−++过点()4,0A 、()1,3B , 故0164b c =−++,31b c =−++,解得4b =,0c ,故24y x x =−+;【小问2详解】 函数图像如图所示:【小问3详解】根据图像知:当0x <或>4x 时,0y <. 16.【答案】8【分析】计算交点得到A,(B −,再计算面积得到答案.【详解】24y x y x =⎧⎪⎨=⎪⎩,解得x y ⎧=⎪⎨=⎪⎩x y ⎧=⎪⎨=−⎪⎩,故A,(B −,C−,画出函数图像,如图所示:11822ABC S BC AC =⨯⨯=⨯=△.17. 【答案】(1)1;(2)12−. 【分析】(1)根据题意,化简原式2365x x =−−,代入即可求解; (2)先化简原式21(1)x =−−,代入即可求解. 【详解】解:(1)由()()()()()2213331365x x x x x x x −++−+−−=−−, 因为222x x −=,所以()223653253251x x x x −−=−−=⨯−=, 即()()()()213311x x x x x −++−+−−=.(2)由2222222111111[]21(1)(1)(1)(1)x x x x x x x x x x x x x x x x x x x ++−−⎛⎫−÷=−÷=⋅=− ⎪−−+−−−−⎝⎭,因为1x =,可得211(1)2x −==−−, 即22111212x x x x x x x+⎛⎫−÷=−⎪−−+⎝⎭ 18. 【答案】4m ≤− 【分析】解不等式6154x x+>+得到4x <,确定0m <且4m −≥,解得答案. 【详解】6154x x+>+,故()46520x x +>+,解得4x <, 不等式组261540x xmx m +⎧>+⎪⎨⎪+>⎩的x 的取值范围是4x <,故0m <,20mx m +>得到x m <−,且4m −≥,解得4m ≤−,综上所述:m 的取值范围为4m ≤−. 19. 【答案】(1)()()0,4,2,4 (2)35,23m <<或3m > 【分析】(1)根据题意得到()224044,y a x x a =−+=⋅+=从而确定定点;(2)利用绝对值的几何意义,离对称轴的距离越远,函数值越大,从而得到不等式,解出即可. 【小问1详解】结合题意:()222424,y ax ax a x x =−+=−+当220x x −=时,即0,x =或2x =,此时()224044,y a x x a =−+=⋅+= 所以抛物线经过两个定点()()0,4,2,4. 【小问2详解】()()2222242414,y ax ax a x x a x a =−+=−+=−−+0a >所以对称轴1x =,因为()11,A m y −,()2,B m y ,()323,C m y −为抛物线上三点,且满足123y y y <<, 所以111231m m m −−<−<−−,即1231111m m m m ⎧−<−−⎪⎨−−<−⎪⎩,将上式用平方法解得:3523m <<3m >. 20. 【答案】(1)证明见解析 (2)9【分析】(1)直接列举1234567897++−+++−+−=,再考虑计算结果为奇数,得到证明. (2)计算12345678945++++++++=,故减号后的数和为10,列举得到答案. 【小问1详解】1234567897++−+++−+−=,故7是可被表出的数,5个奇数和4个偶数相加减,结果为奇数,故结果不可能为8,即8是不可被表出的数. 【小问2详解】12345678945++++++++=,要使结果为25,则加号后的数和为35,减号后的数和为10, 考虑减号,不同的方法有9种:()1,9,()2,8,()3,7,()4,6,()1,2,7,()1,3,6,()1,4,5,()2,3,5,()1,2,3,4,故25可被表出的不同的方法种数为9.。

高一入学分班考数学试题含答案

高一入学分班考数学试题含答案

高一入学分班考试一、选择题:本大题共10小题,每小题6分,共60分.在每小题列出的四个选项中,选出符合题目要求的一项.1.下列运算正确的是()A 、932=-B、()842=-C 、()932-=-D、16214=⎪⎭⎫ ⎝⎛--2.函数x y 2=与xy 18=的的图象相交于A 、B 两点(其中A 在第一象限),过A 作AC 垂直于x 轴,垂足为C ,则△ABC 的面积等于()A 、18B、9C、12D、63.若a,b 为实数,满足b b a a +-=-+1111,则(1+a +b)(2-a-b)的值是()A 、-1B、0C、1D、24.如图1所示,把一个正方形三次对折后沿虚线剪下,则所得的图形是()5.如图,己知直角三角形ABC 中,斜边AB=35,一个边长为12的正方形CDEF 内接于△ABC,则△ABC 的周长为()A 、81B、84C、85D、886.有20个同学排成一行,若从左往右隔1人报数,小李报8号,若从右往左隔2人报数,小陈报6号,那么,小陈开始向小李逐一报数,小李报的号数是()A 、11B、12C、13D 、147.图中不是正方形的侧面展开图的个数为()A 、l B、2C、3D、48.张华同学从家里去学校,开始选匀速步行,走了一段路后,发觉照这样走下去会迟到,于是匀速跑完余下的路程,下面坐标系中,横轴表示该同学从家出发后的时间t ,纵轴表示张华离学校的路程S ,则S 与t 之间函数关系的图像大致是()9.令a=0.12345678910111213……998999,其中的数字是由依次写下正整数1至999得到的,则小数点右边第2008位数字是()A、0B、5C、7D、910.若不等式ax2+7x -1>2x +5对11≤≤-a 恒成立,则x 的取值范围是()A 、-1<x<1B、-1≤x≤1C、2<x<3D、2≤x≤3二、填空题:本大题共6小题,每小题6分,共36分.把答案填在题中横线上.11.计算:()()202260tan 13321---+-=。

区高一新生入学分班考试数学试题及答案

区高一新生入学分班考试数学试题及答案

区高一新生入学分班考试数学试题及答案高一新生入学分班考试数学试题总分:150分,时长:120分钟第Ⅰ卷一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.下列运算正确的是()。

A。

a·a=aB。

a÷a4=a2C。

a3+a3=2a6D。

(a3)2=a62.一元二次方程2x2-7x+k=0的一个根是x1=2,则另一个根和k的值是()A。

x2=1,k=4B。

x2=-1,k=-4C。

x2=2/3,k=6D。

x2=-2/3,k=-63.如果关于x的一元二次方程x-kx+2=0中,k是投掷骰子所得的数字(1,2,3,4,5,6),则该二次方程有两个不等实数根的概率P=()A。

2/3B。

1/2C。

1/3D。

1/64.二次函数y=-x2-4x+2的顶点坐标、对称轴分别是()A。

(-2,6),x=-2B。

(2,6),x=2C。

(2,-6),x=-2D。

(-2,-6),x=25.已知关于x的方程5x-4+a=0无解,4x-3+b=0有两个解,3x-2+c=0只有一个解,则化简a-c+c-b-a-b的结果是()A。

2aB。

2bC。

2cD。

06.在物理实验课上,XXX用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是()见原图)7.下列图中阴影部分的面积与算式|3/1|+(4/2)+2-1的结果相同的是(见原图)8.已知四边形S1的两条对角线相等,但不垂直,顺次连结S1各边中点得四边形S2,顺次连结S2各边中点得四边形S3,以此类推,则S2006为()A。

是矩形但不是菱形;B。

是菱形但不是矩形;C。

既是菱形又是矩形;D。

既非矩形又非菱形。

9.如图,D是直角△ABC斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β。

高一新生分班考试数学试卷含答案

高一新生分班考试数学试卷含答案

P DCB A 高一新生分班考试数学试卷含答案满分150分,考试时间120分钟题号 一二三总分得分一、选择题每题5分,共40分 1.化简=-2a a A .a B .a -C .a D .2a2.分式1||22---x x x 的值为0,则x 的值为A .21或-B .2C .1-D .2-3.如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点;若EF =2,BC =5,CD =3, 则tanC 等于A .43B .35C .34D .454.如图,PA 、PB 是⊙O 切线,A 、B 为切点,AC 是直径,∠P =40°,则∠BAC = A .040B .080C .020D .0105.在两个袋内,分别装着写有1、2、3、4四个数字的4张卡片,今从每个袋中各任取一张卡片,则所取两卡片上数字之积为偶数的概率是A .21B .165C .167D .43 6.如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为.4 C 如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是A →D →C →B →A ,设P 点经过的路程为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是8.若直角坐标系内两点P 、Q 满足条件①P 、Q 都在函数y 的图象上②P 、Q 关于原点对称,则称点对P,Q 是函数y 的一个“友好点对”点对P,Q 与Q,P 看作同一个“友好点对”;已知函数⎪⎩⎪⎨⎧>≤++=02101422x xx x x y ,,,则函数y 的“友好点对”有个 A ..1 C 注意:请将选择题的答案填入表格中;二、 填空题每题5分,共50分题号 12345678得分评卷人答案4题图 O C B A P6题图 AB CDF E 3题图9.已知a 、b 是一元二次方程2210x x --=的两个实数根,则代数式()()2a b a b ab -+-+的值等于10.有一个六个面分别标上数字1、2、3、4、5、6的正方体,甲、乙、丙三位同学从不同的角度观察的结果如图所示.如果记2的对面的数字为m ,3的对面的数字为n ,则方程1x m n +=的解x 满足1+<<k x k ,k 为整数,则k =11.如图,直角梯形纸片ABCD中,AD y x ()f x 2y x =2()f x x =1x =(1)1f =||)(x x x f =c b a >>0=++c b a 0≠b )()()(c f b f a f ++111C B A ABC-2,1==BC AB 31=AA M 1BB 1MC AM +BM 图,AB 是半圆O 的直径,四边形CDMN 和DEFG 都是正方形,其中C,D,E 在AB 上,F,N 在半圆上;若AB=10,则正方形CDMN 的面积与正方形DEFG 的面积之和是 16.如图,CD 为直角ΔABC 斜边AB 上的高,BC 长度为1,DE ⊥AC;设ΔADE,ΔCDB,ΔABC 的周长分别是12,,p p p ;当12p p p+取最大值时,AB=17.如图放置的等腰直角∆ABC 薄片2,900==∠AC ACB 沿x 轴滚动,点A 的运动轨迹曲线与x 轴有交点,则在两个相邻交点间点A 的轨迹曲线与x 轴围成图形面积为___ 18.如图是一个数表,第1行依次写着从小到大的正整数,然后把每行相邻的两个数的和写在这两数正中间的下方,得到下一行,数表从上到下与从左到右均为无限项,则这个数表中的第11行第7个数为用具体数字作答1234567… … 4… … 486480…注意:请将填空题的答案填在下面的横线上; 三、解答题共60分19.本小题满分12分如图,抛物线1417452++-=x x y 与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C 3,0. 1求直线AB 的函数关系式;2动点P 在线段OC 上从原点出发以每秒一个单位的速度向C 移动,过点P 作PN ⊥x 轴,交直线AB 于点M ,交抛物线于点N ;设点P 移动的时间为t 秒,MN 的长度为s 个单位,求s 与t 的函数关系式,并写出t 的取值范围;3设在2的条件下不考虑点P 与点O ,点C 重合的情况,连接CM ,BN ,当t 为何值时,四边形BCMN 为平行四边形 问对于所求的t 值,平行四边形BCMN 能否为菱形 请说明理由.20.本小题满分12分函数)(x f ,若自变量x 00(,)x x 为坐标的点为函数()f x 得分 评卷人11题图B CE D AF 5 23 3 2 1 2 6 1 甲 乙 丙10题图 oxy C AB题图17ABC M1A 1B 1C 题图141若函数bx ax x f ++=3)(有两个关于原点对称的不动点,求a,b 应满足的条件; 2在1的条件下,若a=2,直线1)1(:-+-=b x a y l 与y 轴、x 轴分别相交于A 、B 两点,在xb y =的图象上取一点PP 点的横坐标大于2,过P 作PQ ⊥x 轴,垂足是Q ,若四边形A BQP 的面积等于2,求P 点的坐标3定义在实数集上的函数)(x f ,对任意的x 有)()(x f x f -=-恒成立;下述命题“若函数)(x f 的图像上存在有限个不动点,则不动点有奇数个”是否正确 若正确,给予证明;若不正确,举反例说明;21.本小题满分12分已知圆O轴于A 点,交y 轴正半轴于B 点 1求BAO ∠2设圆O 与x 轴的两交点是12,F F ,1F 射出经反射到2F 经过的路程3点P 是x 轴负半轴上一点,从点P 发出的光线经l 反射后与圆O 相切.若光线从射出经反射到相切经过的路程最短,求点P 的坐标 22.本小题满分12分在金融危机中,某钢材公司积压了部分圆钢,经清理知共有2009根.现将它们堆放在一起. 1若堆放成纵断面为正三角形每一层的根数比上一层根数多1根,并使剩余的圆钢尽可能地少,则剩余了多少根圆钢2若堆成纵断面为等腰梯形每一层的根数比上一层根数多1根,且不少于七层, Ⅰ共有几种不同的方案Ⅱ已知每根圆钢的直径为10cm ,为考虑安全隐患,堆放高度不得高于4m ,则选择哪个方案,最能节省堆放场地23.本小题满分12分试求出所有正整数a 使得关于x 的二次方程22(21)4(3)0ax a x a +-+-=至少有一个整数根.数学试卷答案一、选择题每题5分,共40分三、 填空题每题5分,共50分 9.1-10.011.612.1或-113.614.115.2516.217.24+π18.12288 三、解答题共60分19.解:1易知A0,1,B3,,可得直线AB 的解析式为y =121+x ……………3分2)121(1417452+-++-=-==t t t MP NP MN s)30(415452≤≤+-=t t t ………………6分3若四边形BCMN 为平行四边形,则有MN =BC ,此时,有25415452=+-t t ,解得11=t ,22=t 所以当t =1或2时,四边形BCMN 为平行四边形.………………8分①当t =1时,23=MP ,4=NP ,故25=-=MP NP MN ,又在Rt △MPC中,2522=+=PC MP MC ,故MN =MC ,此时四边形BCMN 为菱形…………10分②当t =2时,2=MP ,29=NP ,故25=-=MP NP MN ,又在Rt △MPC中,522=+=PC MP MC ,故MN ≠MC ,此时四边形BCMN 不是菱形.…………12分 20.解:1由题得x bx ax =++3有两个互为相反数的根0x ,0x -)0(0≠x 即)(0)3(2b x a x b x -≠=--+有两个互为相反数的根0x ,0x -……1分根带入得⎪⎩⎪⎨⎧=---+=--+0))(3(0)3(020020a x b x a x b x ,两式相减得0)3(20=-x b ,3=∴b ……3分方程变为)3(02-≠=-x a x 90≠>∴a a 且…………4分 2由1得3,2==b a ,所以2:+-=x y l ,即A0,2B2,0……5分设x y 3=上任意一点)2)(3,(>t tt P ,所以)2)(0,(>t t Q ……6分 又因为2-=∆AOB AOQP S S 四边形,所以22221)32(21=⨯⨯-+t t 25=∴t ……8分)56,25(P ∴……………………9分3正确①在)()(x f x f -=-令0=x 得)0()0(f f -=所以0)0(=f所以)0,0(为函数的不动点……………………10分 ②设00(,)x x 为函数()f x 图像上的不动点,则00)(x x f = 所以000)()(x x f x f -=-=-,所以),(00x x --也为函数()f x 图像上的不动点……………………12分 21.解:1由题|OA|=4,|OB|=334,所以33tan =∠BAO ,所以030=∠BAO 2分 2如图1由对称性可知,点1F 关于l 的对称点/1F 在过点()4,0A -且倾斜角为060的直线/l 上在/21AF F ∆中,0'160=∠AO F ,3811'1=-==O F AO AF AF ,3162=AF所以/21AF F ∆为直角三角形,02'190=∠F AF ;所以光线从1F 射出经反射到2F 经过的路程为3382'12'121==+=+F F MF M F MF M F …………………………6分 2如图2由对称性可知,点P 关于l 的对称点'P 在过点()4,0A -且倾斜角为060的直线/l 上Q P MQ M P MQ PM ''=+=+,所以路程最短即为/l 上点/P 到切点Q 的切线长最短; 连接',OP OQ ,在'OQP Rt ∆中,只要'OP 最短,由几何知识可知,/P 应为过原点O 且与/l 垂直的直线与/l 的交点,这一点又与点P 关于l 对称,∴260cos 0'===AO AP AP ,故点P 的坐标为()2,0-……………12分22.解:1设纵断面层数为n ,则321++即20092)1(≤+n n ,040182≤-+n n ,当62=n 时,此时剩余的圆钢为562)162(622009=+-2当纵断面为等腰梯形时,设共堆放n 层)1(.....)2()1(=-+++++++n x x x x 即4177220092)12(⨯⨯⨯=⨯=-+n x n ,……………………6分因1-n 与n 的奇偶性不同,所以12-+n x 与n 的奇偶性也不同,且12-+<n x n ,从而由上述等式得:⎩⎨⎧=-+=574127n x n 或⎩⎨⎧=-+=2871214n x n 或⎩⎨⎧=-+=981241n x n 或⎩⎨⎧=-+=821249n x n ,所以共有4种方案可供选择;-----------------------------8分3因层数越多,最下层堆放得越少,占用面积也越少,所以由2可知:若41=n ,则29=x ,说明最上层有29根圆钢,最下层有69根圆钢,两腰之长为400cm,上下底之长为280cm 和680cm,从而梯形之高为3200cm, 而400103200<+,所以符合条件;………………10分若49=n ,则17=x ,说明最上层有17根圆钢,最下层有65根圆钢,两腰之长为480cm,上下底之长为160cm 和640cm,从而梯形之高为3240cm, 显然大于4m,不合条件,舍去;综上所述,选择堆放41层这个方案,最能节省堆放场地………………12分 23.解:原方程可化为122)2(2+=+x a x ,易知2-≠x ,此时2)2(122++=x x a ……2分 因为a 是正整数,即1)2(1222≥++x x 为正整数;又0)2(2>+x ,则122)2(2+≤+x x 即0822≤-+x x ,解得24≤≤-x ;因为2-≠x 且x 是整数,故x 只能取-4,-3,-1,0,1,2,…………………………6分依次带入a 的表达式得⎩⎨⎧=-=14a x ⎩⎨⎧=-=63a x ⎩⎨⎧=-=101a x ⎩⎨⎧==3a x 从而满足题意的正整数a 的值有4个,分别为1,3,6,10…………………………12分。

高一分班考试数学试卷(含答案)

高一分班考试数学试卷(含答案)

高一数学预科清北班入学考试试卷(时量:60分钟) 学校姓名 得分一、每题20分,共100分1、设,αβ是方程24420,()x mx m x R -++=∈的两实根,当m 为何值时, 22αβ+有最小值?求出 这个最小值2、已知函数2()23(0)f x ax ax b a =-+->在[1,3]有最大值5和最小值2,求a 、b 的值3、将圆心角为0120,面积为3π的扇形,作为圆锥的侧面,求圆锥的表面积和体积4、(07资阳)一座建于若干年前的水库大坝的横断面如图7所示,其中背水面的整个坡面是长为90米、宽为5米的矩形. 现需将其整修并进行美化,方案如下:① 将背水坡AB 的坡度由1∶0.75改为1∶3;② 用一组与背水坡面长边垂直的平行线将背水坡面分成9块相同的矩形区域,依次相间地种草与栽花 . ⑴ 求整修后背水坡面的面积;⑵ 如果栽花的成本是每平方米25元,种草的成本是每平方米20元,那么种植花草至少需要多少元?图75、在三角形ABC 中, 60,24,16B BA cm BC cm ∠===.现有动点P 从点A 出发, 沿射线AB 向点 B 方向运动; 动点Q 从点C 出发, 沿射线CB 也向点B 方向运动. 如果点P 的速度是4cm /秒, 点 Q 的速度是2cm /秒, 它们同时出发, 求:(1)几秒钟以后, PBQ ∆的面积是ABC ∆的面积的一半?(2)这时, ,P Q 两点之间的距离是多少?二、附加题(20分)6、(荆门市)某校初中三年级270名师生计划集体外出一日游,乘车往返,经与客运公司联系,他们有座位数不同的中巴车和大客车两种车型可供选择,每辆大客车比中巴车多15个座位,学校根据中巴车和大客车的座位数计算后得知,如果租用中巴车若干辆,师生刚好坐满全部座位;如果租用大客车,不仅少用一辆,而且师生坐完后还多30个座位.⑴求中巴车和大客车各有多少个座位?⑵客运公司为学校这次活动提供的报价是:租用中巴车每辆往返费用350元,租用大客车每辆往返费用400元,学校在研究租车方案时发现,同时租用两种车,其中大客车比中巴车多租一辆,所需租车费比单独租用一种车型都要便宜,按这种方案需要中巴车和大客车各多少辆?租车费比单独租用中巴车或大客车各少多少元?高一数学预科清北班入学考试参考答案一、1、解:21616(2)0,21,m m m m ∆=-+≥≥≤-或 222222min 1()21211,()2m m m αβαβαβαβ+=+-=--=-+=当时 2、解:对称轴1x =,[]1,3是()f x 的递增区间,max ()(3)5,335f x f a b ==-+=即min ()(1)2,32,f x f a b ==--+=即 ∴3231,.144a b a b a b -=⎧==⎨--=-⎩得 3、解:设扇形的半径和圆锥的母线都为l ,圆锥的半径为r ,则 21203,3360l l ππ==;232,13r r ππ⨯==; 24,S S S rl r πππ=+=+=侧面表面积底面2111333V Sh π==⨯⨯⨯= 4、解:⑴ 作AE ⊥BC 于E .∵ 原来的坡度是1∶0.75,∴ 10.75AE EB =43. 设AE =4k ,BE =3k ,∴ AB =5k ,又 ∵ AB =5米,∴k =1,则AE =4米 . 设整修后的斜坡为AB ,由整修后坡度为13AE EB ,∴∠AB E =30°. ∴ 2AB AE 8米 . ∴ 整修后背水坡面面积为90×8=720米2 .⑵ 将整修后的背水坡面分为9块相同的矩形,则每一区域的面积为80米2 .解法一:∵ 要依次相间地种植花草,有两种方案:第一种是种草5块,种花4块,需要20×5×80+25×4×80=16000元;第二种是种花5块,种草4块,需要20×4×80+25×5×80=16400元 .∴ 应选择种草5块、种花4块的方案,需要花费16000元 .解法二:∵ 要依次相间地种植花草,则必然有一种是5块,有一种是4块,而栽花的成本是每平方米25元,种草的成本是每平方米20元,∴ 两种方案中,选择种草5块、种花4块的方案花费较少 .即:需要花费20×5×80+25×4×80=16000元 .5、解:(1) 设t 秒后, PBQ ∆的面积是ABC ∆的面积的一半,则2,4CQ t AP t ==, 根据题意, 列出方程11222(162)(244)sin 601624sin 60t t ⨯--⋅=⨯⨯⨯,化简, 得214240t t -+=,解得122,12t t ==. 所以2秒和12秒均符合题意;(2) 当2t =时, 12,16,BQ BP ==在PBQ ∆中,作/QQ BP ⊥于/Q ,在/Rt QQ B ∆和/Rt QQ P ∆中, //6QQ BQ ==,所以/10,PQ PQ ==当12t =时, 18,24,BQ BP == 同理可求得11PQ =二、6、解:⑴设每辆中巴车有座位x 个,每辆大客车有座位(x +15)个,依题意有11530270270+++=x x 解之得:x 1=45,x 2=-90(不合题意,舍去)答:每辆中巴车有座位45个,每辆大客车有座位60个.⑵解法一:①若单独租用中巴车,租车费用为45270×350=2100(元) ②若单独租用大客车,租车费用为(6-1)×400=2000(元)③设租用中巴车y 辆,大客车(y +1)辆,则有45y +60(y +1)≥270解得y ≥2,当y =2时,y +1=3,运送人数为45×2+60×3=270合要求这时租车费用为350×2+400×3=1900(元)故租用中巴车2辆和大客车3辆,比单独租用中巴车的租车费少200元,比单独租用大客车的租车费少100元.解法二:①、②同解法一③设租用中巴车y 辆,大客车(y +1)辆,则有350y +400(y +1)<2000解得:1532<y .故y =1或y =2 以下同解法一.(解法二的评分标准参照解法一酌定)。

2024-2025学年第一学期杭州学军中学新高一分班考 数学卷(含答案)

2024-2025学年第一学期杭州学军中学新高一分班考 数学卷(含答案)

学军中学新高一分班考数学卷一、选择题:本大题有8个小题,每小题3分,共24分。

1. 下列四个命题:①平分弦的直径垂直于弦;②在同圆或等圆中,相等的弦所对的圆周角相等;③三角形有且只有一个外接圆;④垂直于弦的直径平分弦所对的两条弧。

其中真命题的个数有()A. 1个B. 2个C. 3个D. 4个2. 如图,在2014年的体育中年高考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是()A. 28,28,1B. 28,27.5,3C. 28,28,3D. 28,27.5,13. 已知方程组{3x−2y=3a−42x−3y=2a−1的解满足x>y,则a的取值范围是()A. a>1B. a<1C. a>5D. a<54. 如图,在直角△BAD中,延长斜边BD到点C,使BD=2DC,连接AC,tanB=53,则tan∠CAD的值是()A. 33B. 35C. 13D. 155. 如图,在Rt△ABC中,AC=4,BC=3,∠ACB=90°,四边形DEFG、GHIJ均为正方形,点E在AC上,点I在BC上,J为边DG的中点,则GH的长为()A. 1921B. 1 C. 6077D. 1802596. 如图,正方形OABC的一个顶点O是平面直角坐标系的原点,顶点A,C分别在y轴和x轴上,P为边OC上的一个动点,且BP⊥PQ,BP=PQ,当点P从点C运动到点O时,可知点Q始终在某函数图象上运动,则其函数图象是()A. 线段B. 圆弧C. 抛物线的一部分D. 不同于以上的不规则曲线7. 如图,以点M(-5,0)为圆心,4为半径的圆与x轴交于A,B两点,P是☉M上异于A,B的一动点,直线PA,PB分别交y轴于点C,D,以CD为直径的☉N与x轴交于点E,F则EF的长为()A. 42B. 43C. 6D. 随P点位置而变化8. 已知二次函数图象的对称轴为x=1,且过点A(3,0)与B(0,1.5),则下列说法中正确的是()①当0≤x≤22+1时,函数有最大值2;②当0≤x≤22+1时,函数有最小值-2;③P是第一象限内抛物线上的一个动点,则△PAB面积的最大值为32;④对于非零实数m,当x>1+1m 时,y都随着x 的增大而减小。

2024年秋季高一入学分班考试数学试题与答案

2024年秋季高一入学分班考试数学试题与答案

(考试时间:120分钟 试卷满分:1502024年秋季高一入学分班考试数学试题分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.若集合{}1,2,3A =,{}2,3,4B =,则A B = ( ) A .{}1,2,3,4 B .{}1,4C .{}2,3D .∅22x =−,则x 的值可以是( )A .2−B .1−C .1D .23.“2x =”是“24x =”的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件4.已知二次函数2y ax bx c ++的图象的顶点坐标为(2,1)−,与y 轴的交点为(0,11),则( )A .3,12,11a b c ==−=B .3,12,11a b c === C .3,6,11a b c ==−= D .1,4,11a b c ==−= 5.把2212x xy y −++分解因式的结果是( ) A .()()()112x x y x y +−++ B .()()11x y x y ++−− C .()()11x y x y −+−−D .()()11x y x y +++−6.已知命题p :1x ∃>,210x ,则p ¬是( ) A .1x ∀>,210x B .1x ∀>,210x +≤ C .1x ∃>,210x +≤ D .1x ∃≤,210x +≤7.函数y =) A .[]3,3−B .()3,1(1,3)−∪C .()3,3−D .()(),33,−∞−+∞8.若实数a b ,且a ,b 满足2850a a −+=,2850b b −+=,则代数式1111b a a b −−+−−的值为( ) A .-20B .2C .2或-20D .2或20二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分. 9.下列坐标系中的曲线或直线,能作为函数()y f x =的图象的是( )A .B .C .D .10.下列命题中是全称量词命题并且是真命题的是( ) A .x ∀∈R ,2210x x ++≥ B .x ∃∈N ,2x 为偶数 C .所有菱形的四条边都相等 D .π是无理数11.下列结论中,错误的结论有( )A .()43y x x =−取得最大值时x 的值为1 B .若1x <−,则11x x ++的最大值为-2C .函数()f x =的最小值为2D .若0a >,0b >,且2a b +=,那么12a b+的最小值为3+三、填空题:本题共3小题,每小题5分,共15分.12.若多项式3x x m ++含有因式22x x −+,则m 的值是 .13.不等式20ax bx c ++>的解集是(1,2),则不等式20cx bx a ++>的解集是(用集合表示) . 14.对于每个x ,函数y 是16y x =−+,22246y x x =−++这两个函数的较小值,则函数y 的最大值是 .四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15.(13分)解下列不等式:(1)2320x x −+−≥; (2)134x x −+−≥; (3)11.21x x −≤+16.(15分)设全集R U =,集合{}|15Ax x =≤≤,集合{|122}B x a x a =−−≤≤−.(1)若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围; (2)若命题“x B ∀∈,则x A ∈”是真命题,求实数a 的取值范围.17.(15分)已知集合{}{}210,20A x ax B x x x b =−==−+=.(1)若{}3A B ∩=,求实数,a b 的值及集合,A B ; (2)若A ≠∅且A B B ∪=,求实数a 和b 满足的关系式.18.(17分)已知22y x ax a =−+.(1)设0a >,若关于x 的不等式23y a a <+的解集为{},12|A Bx x =−≤≤,且x A ∈的充分不必要条件是x B ∈,求a 的取值范围;(2)方程0y =有两个实数根12,x x , ①若12,x x 均大于0,试求a 的取值范围;②若22121263x x x x +=−,求实数a 的值.19.(17分)我国是用水相对贫乏的国家,据统计,我国的人均水资源仅为世界平均水平的14.因此我国在制定用水政策时明确提出“优先满足城乡居民生活用水”,同时为了更好地提倡节约用水,对水资源使用进行合理配置,对居民自来水用水收费采用阶梯收费.某市经物价部门批准,对居民生活用水收费如下:第一档,每户每月用水不超过20立方米,则水价为每立方米3元;第二档,若每户每月用水超过20立方米,但不超过30立方米,则超过部分水价为每立方米4元;第三档,若每户每月用水超过30立方米,则超过部分水价为每立方米7元,同时征收其全月水费20%的用水调节税.设某户某月用水x立方米,水费为y元.(1)试求y关于x的函数;(2)若该用户当月水费为80元,试求该年度的用水量;(3)设某月甲用户用水a立方米,乙用户用水b立方米,若,a b之间符合函数关系:247530=−+−.则当b a a两户用水合计达到最大时,一共需要支付水费多少元?一、单项选择题:本题共8小题,每小题5分,共402024年秋季高一入学分班考试数学答案分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1 2 3 4 5 6 7 8 CDBADBCA二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9 10 11 BDACABCD三、填空题:本题共3小题,每小题5分,共15分. 12.2 13.1|12x x <<6四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 16.(13分)【解析】(1)2320x x −+−≥可化为2320,(1)(2)0x x x x −+≤∴−−≤, 所以解为1 2.x ≤≤(3分)(2)当1x <时,不等式可化为134x x −+−+≥,此时不等式解为0x ≤; 当13x ≤≤时,不等式可化为134x x −−+≥,此时不等式无解; 当3x >时,不等式可化为134x x −+−≥,此时不等式解为4x ≥; 综上:原不等式的解为0x ≤或4x ≥.(9分) (3)原不等式可化为211021x x x +−+≥+,(11分)与()()2120210x x x ++≥+≠同解, 所以不等式的解为:2x ≤−或12x >−.(13分)16.(15分)【解析】(1)由“x A ∈”是“x B ∈”的充分不必要条件,得A B ,(2分)又{}|15Ax x =≤≤,{|122}B x a x a =−−≤≤−,因此12125a a −−< −≥ 或12125a a −−≤ −> ,解得7a ≥,所以实数a 的取值范围为7a ≥.(7分)(2)命题“x B ∀∈,则x A ∈”是真命题,则有B A ⊆,(9分) 当B =∅时,122a a −−>−,解得13a <,符合题意,因此13a <;(11分)当B ≠∅时,而{}|15{|122}A x x B x a x a =≤≤=−−≤≤−,, 则11225a a ≤−−≤−≤,无解,(14分) 所以实数a 的取值范围13a <.(15分)17.(15分)【解析】(1)若{}3∩=A B , 则{}{}2310,320x ax x x x b ∈−=∈−+=,(2分) 所以310,960a b −=−+=,解得1,33a b ==−,(4分) 所以{}{}{}{}2110103,2301,33A x ax x x B x xx =−==−===−−==−,综上:1,33a b ==−,{}{}3,1,3A B ==−;(7分)(2)若A ≠∅,则0a ≠,此时{}110A x ax a=−==,(9分) 又A B B ∪=,所以A B ⊆, 即{}2120x x x b a ∈−+=,(12分)所以2120440b a ab −+= ∆=−≥ , 所以实数a 和b 满足的关系式为212b a a=−+.(15分)18.(17分)【解析】(1)由23y a a <+,得2223x ax a a a −+<+, 即22230x ax a −−<,即()()30x a x a −+<, 又0a >,∴3a x a −<<,即{}|3A x a x a =−<<,(3分)∵x A ∈的充分不必要条件是x B ∈,∴B 是A 的真子集,则0132a a a >−<− > ,解得0123a a a> > >,则1a >, 即实数a 的取值范围是1a >.(6分) (2)方程为220y x ax a =−+=, ①若12,x x 均大于0则满足21212440200a a x x a x x a ∆=−≥ +=> => ,解得10a a a a ≥≤> > 或, 故1a ≥,即a 的取值范围为1a ≥.(10分)②若22121263x x x x +=−,则()2121212263x x x x x x +−=−, 则()21212830x x x x +−+=,即24830a a −+=,(13分) 即()()21230a a −−=,解得12a =或32a =, 由0∆≥,得1a ≥或0a ≤. 所以32a =,即实数a 的值是32.(17分)19.(17分)【解析】(1)因为某户该月用水x 立方米, 按收费标准可知, 当020x <≤时,3y x =;当2030x <≤时,()203420420y x x ×+−−;当30x >时,[2034(3020)7(30)] 1.28.4132y x x =×+×−+−×=−.(5分)所以3,020420,20308.4132,30x x y x x x x <≤=−<≤ −>(6分)(2)由题可得,当该用户水费为80元时,处于第二档,所以42080x −=, 解得25x =. 所以该月的用水量为25立方米.(10分) (3)因为247530b a a =−+−,所以()2248530244646a b a a a +=−+−=−−+≤.(13分)当24a =时,()46max a b +=,此时22b =.(15分)所以此时两户一共需要支付的水费是4242042220144y =×−+×−=元.(17分)。

高一分班数学试题及答案

高一分班数学试题及答案

高一分班数学试题及答案一、选择题(每题4分,共40分)1. 若函数f(x)=x^2-6x+8,下列哪个选项是f(x)的对称轴?A. x=-2B. x=3C. x=1D. x=-32. 已知集合A={x|x<0},B={x|x>1},则A∩B为:A. {x|x<0}B. {x|x>1}C. {x|0<x<1}D. 空集3. 若a,b,c是等差数列,且a+c=10,b=4,则a+b+c的值为:A. 14B. 16C. 18D. 204. 函数y=f(x)=x^3+1的导数f'(x)为:A. 3x^2+1B. 3x^2C. x^2+1D. 3x^2-15. 已知双曲线x^2/a^2 - y^2/b^2 = 1的渐近线方程为y=±(b/a)x,则a和b的关系为:A. a=bB. a=-bC. a=2bD. a=-b/26. 已知向量a=(3,-2),b=(-1,4),则向量a+b的坐标为:A. (2,2)B. (2,-2)C. (4,2)D. (-4,2)7. 已知等比数列{an}的公比为q,且a1=2,a4=16,则q的值为:A. 2B. 4C. 1/2D. -1/28. 函数y=f(x)=x^2-4x+3的最小值出现在x=:A. 1B. 2C. 3D. 49. 已知三角形ABC的三边长分别为a,b,c,且满足a^2+b^2=c^2,三角形ABC的形状为:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定10. 已知函数f(x)=x^3-3x,求f'(1)的值为:A. 0B. -2C. 2D. -6二、填空题(每题4分,共20分)11. 已知函数f(x)=x^2-4x+3,求f(2)的值为______。

12. 已知等差数列{an}的首项a1=3,公差d=2,求a5的值为______。

13. 已知向量a=(1,2),b=(3,-1),求向量a·b的值为______。

2024年浙江重点高中高一分班考试数学试卷含答案解析

2024年浙江重点高中高一分班考试数学试卷含答案解析

浙江重点高中高一分班考试数学试卷注意:(1)试卷共有三大题21小题,满分150分,考试时间100分钟.(2)请把解答写在答题卷的对应题次上,做在试题卷上无效.一、选择题(5×8=40分)1.如图, ABC 中,D 、E 是BC 边上点,BD :DE :EC =3:2:1,M 在AC 边上,CM :MA =1:2,BM 交AD 、AE 于H 、G ,则BH :HG :GM 等于( )A.3:2:1B.5:3:1C.25:12:5D.51:24:10【答案】D【解析】【分析】连接EM ,根据已知可得,~BHD BME CEM CDA △△△△,根据相似比从而不难得到答案. 【详解】连接EM ,::1:3CE CD CM CA ==,EM ∴平行于AD .,~BHD BME CEM CDA ∴ △△△△.:3:5,:1:3HD ME ME AD ∴==.335AH ME ∴=−,:12:5AH ME ∴=, ::12:5HG GM AH EM ∴==,::3:5BH BM BD BE ∴==,::51:24:10BH HG GM ∴=.故选:D2.已知ABC 是O 的内接正三角形,ABC 的面积等于a ,DEFG 是半圆O 的内接正方形,面积等于的b ,a b的值为( )A. 2B.C.D. 【答案】D【解析】【分析】根据圆内接正三角形的性质以及正方形的性质分别用圆的半径表示出两图形面积,即可得出答案.【详解】如图所示,连接OG ,CO ,过点O 作OM BC ⊥于点M ,设O 的半径为r ,ABC 是O 的内接正三角形,30OCM °∴∠=,1122OM CO r ∴==,CM =,ABC ∴ 的高的长度为32r ,且BC =,21322a r ∴=×=,设正方形DEFG 的边长为x , 则2xOF =,2222x r x∴=+, 解得:2245x r =,245b r ∴=,45a b ∴==. 故选:D.3. 抛物线2y ax =与直线1x =,2x =,1y =,2y =围成的正方形有公共点,则实数a 的取值范围是( ) A. 114a ≤≤ B. 122a ≤≤ C. 112a ≤≤ D. 124a ≤≤ 【答案】D【解析】【分析】建立平面直角坐标系,画出四条直线围成的正方形,进一步判定其开口方向,再代入点的坐标即可解答.【详解】由下图可知:(1,2),(2,1)A B ,再根据抛物线的性质,||a 越大开口越小,把A 点代入2y ax =得2a =,把B 点代入2y ax =得14a =, 则a 的范围介于两者之间,故 124a ≤≤. 故选:D.4. 若1x >,0y >,且满足y xy x =,3y x x y=,则x y +的值为( ). A. 1 B. 2 C. 92 D. 112【答案】C【解析】【分析】由已知可得24y x x =,解得12y =,再代回已知等式求出x ,可得x y +的值. 【详解】由y xy x =,3y x x y =,得3y y x xy x x y ⋅=⋅,即24y x x =,解得12y =,把12y =代入y xy x =,得1212x x =,即x =24x x =,由1x >得4x =, 则19422x y +=+=. 故选:C5. 设3333111112399S =++++ ,则4S 的整数部分等于( ) A. 4B. 5C. 6D. 7 【答案】A【解析】【分析】由()()()32111112111k k k k k k k <=− −+− ,由此可以得到3331111115111239922991004S <=+++…+<+−< × ,然后即可求出4S 的整数部分. 【详解】当2,3,99k = ,因()()()32111112111k k k k k k k <=− −+− ,所以331111151112322991004S <=+++…++−< × , 即445S <<,故4S 的整数部分等于4故选:A .6. 如图,正方形ABCD 的边1AB =, BD 和 AC 都是以1为半径的圆弧,则无阴影部分的两部分的面积之差是( )A. 12π− B. 14π− C. 13π− D. 16π− 【答案】A【解析】【分析】图中1,2,3,4图形的面积和为正方形的面积,1,2和两个3的面积和是两个扇形的面积,因此两个扇形的面积的和减去正方形的面积等于无阴影两部分的面积之差.求解即可.详解】如图所示,1234S S S S S =+++正方形,31222S S S S =++扇形,两式相减,得到3490π12π213602S S S S ××−=−=−正方形扇形-1= 故选:A. 7. 在等边ABC 所在平面内有一点P ,使得,,PBC PAC PAB 都是等腰三角形,则具有该性质的点有( )A. 1个B. 7个C. 10个D. 无数个【答案】C【解析】【分析】过B 点作ABC 的中垂线,可知在三角形内有一点P 满足PBC 、PAC △、PAB 都是等腰三角形,根据等腰三角形的性质可以做两个圆,圆B 和圆A ,从而可以得出一条中垂线上有四个点满足PBC 、PAC △、PAB 都是等腰三角形,而三角形内部的一点是重合的,所以可以得出共有10个点.【详解】作三边的中垂线,交点P 肯定是其中之一,以B 为圆心,BA 为半径画圆,交AC 的中垂线于1P 、2P 两点,作2P AB △、2P BC △、2P AC △,如图,【则2P AB △、2P BC △、2P AC △都是等腰三角形,同理1P 具有题目所说的性质的点, 以A 为圆心,BA 为半径画圆,交AC 的中垂线于点3P ,该点也必具有题目所说的性质. 依此类推,在ABC 的其余两条中垂线上也存在这样性质的点,所以这些点一共有:33110×+=个. 故选:C8. 某工厂第二季度的产值比第一季度的产值增长了%x ,第三季度的产值又比第二季度的产值增长了%x ,则第三季度的产值比第一季度增长了( )A. 2%xB. 12%x +C. ()1%%x x +⋅D. ()2%%x x +⋅【答案】D【解析】【分析】平均增长率问题,可直接用公式解题即可.【详解】假设第一季度产值为a ,则第二季度产值为(1%)a x +,第二季度产值为2(1%)a x +. 第三季度的产值比第一季度增长了2(1%)(2%)%a x a x x a+−=+⋅. 故选:D .二、填空题(5×8=40分)9.方程226x y =+=的解是__________. 【答案】11260x y == 或22228x y =− = 【解析】【分析】利用换元法,借助立方和公式展开,求解方程组可得答案.a b ,则33 2,26a b a b +=+=, 因为()()()()233223a b a b a ab b a b a b ab +=+−+=++−,【所以2(43)26ab −=,即3ab =−,与2a b +=联立可得31a b = =− 或13a b =− =; 当31a b = =−1==−,解得260x y = =; 当13a b =− =3=−=,解得22228x y =− = . 故答案为:11260x y = = 或22228x y =− = 10. 若对任意实数x 不等式ax b >都成立,那么a 、b 的取值范围为__________.【答案】0a =,0b <【解析】【分析】分情况讨论不等式恒成立的条件.【详解】当0x =时,0b <,R a ∈;当0x ≠时,若0a =,则0b <;若0a >,则b x a>,不能恒成立; 若a<0,则b x a<,不能恒成立; 即当0x ≠时,若0a =,0b <综上所述,若使不等式恒成立,则0a =,0b <.11. 设12x −≤≤,则1222x x x −−++的最大值与最小值之差为__________. 【答案】1【解析】【分析】根据自变量的范围先去绝对值再求出最大值及最小值即可.【详解】因为12x −≤≤,所以11122224222x x x x x x x −−++=−−++=−, 因为02x ≤≤,所以当0x =时,1222x x x −−++取最大值为4, 当2x =时,1222x x x −−++取最小值3, 所以1222x x x −−++的最大值与最小值之差为431−=. 故答案为:1.12. 两个反比例函数3y x =,6y x=在第一象限内的图象点1232007,,,,P P P P 在反比例函数6y x =上,它们的横坐标分别为1232007,,,,x x x x ,纵坐标分别是1、3、5 共2007个连续奇数,过1232007,,,,P P P P 分别作y 轴的平行线,与3y x =的图象交点依次为()()()'''111222200720072007,,,,,,Q x y Q x y Q x y ,则20072007P Q =__________. 【答案】40132##2006.5 【解析】【分析】由点2007P 的纵坐标结合6y x=得出其横坐标,进而由3y x =得出点2007Q 纵坐标,从而得出20072007P Q .【详解】由题可知()20072007,4013P x ,因为点2007P 在6y x =的图象上,所以200764013x =, 又()200720072007,Q x y 在3y x =的图象上,所以200740136240313y ==, 所以20072007P Q =40134013401322−=. 故答案为:40132. 13. 如图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是__________.【答案】【解析】【分析】沿过A 点母线把圆锥侧面剪开摊平,得出圆锥侧面展开图,如图.线段1AA 的长就是所求最短距离.【详解】如图所示,在圆锥的侧面展开图中,1AA 的长就是所求最短距离.过点S 作1SB AA ⊥,则12AA AB =.因为 1AA 为圆锥底面圆的周长,即2π, 由弧长公式得12π3ASA ∠=,.所以1π22sin,3AA AB AS ==⋅=,故答案为:14. 有一张矩形纸片ABCD ,9AD =,12AB =,将纸片折叠使A 、C 两点重合,那么折痕长是__________. 【答案】454【解析】【分析】首先由勾股定理求出AC 的长,设AC 的中点为E ,折线FG 与AB 交于F ,然后求证AEF △∽ABC ,求出EF 的长.【详解】如图,由勾股定理易得15AC ===,设AC 的中点为E ,折线FG 与AB 交于F ,(折线垂直平分对角线AC ),7.5AE =. 由AEF △∽ABC ,得912EFBC AE AB ==,22.54EF ∴=∴折线长22.522.54522424EF ==×==, 故答案为:45415. 已知3、a 、4、b 、5这五个数据,其中a 、b 是方程2320x x −+=的两个根,则这五个数据的标准差是__________.【解析】【分析】先解方程得到a ,b 的值,计算出平均数和方差后,再计算方差的算术平方根,即为标准 差.【详解】2320x x −+=,解得1,2a b ==或2,1a b ==,这组数据为14253,,,,. 平均值()13142535x =++++=; 方差()()()()()2222221[3313432353]25S =−+−+−+−+−=;..16. 若抛物线2241y x px p =−++中不管p 取何值时都通过定点,则定点坐标为___________.【答案】()4,33【解析】【分析】若抛物线2241y x px p =−++中不管p 取何值时都通过定点,则含p 的项的系数为0,由此求出x 的值,再求y 的值,得出定点坐标.【详解】2241y x px p =−++可化为()2241y x p x =−−+, 当4x =时,33y =,且与p 的取值无关, 所以不管p 取何值时都通过定点()4,33. 故答案为:()4,33三、解答题17. 设m 是不小于1−的实数,使得关于x 的方程222(2)330x m x m m +−+−+=有两个不相等的实数根1x 、2x .(1)若22126x x +=,求m 的值. (2)求22121211mx mx x x +−−的最大值. 【答案】(1)m =(2)10. 【解析】【分析】(1)根据判别式可得11m −≤<,再利用韦达定理代入即可得答案;(2)将问题转化为关于m 的一元二次函数,再利用函数的性质求最值;【详解】∵方程有两个不相等的实数根,()22244(2)433440,1b ac m m m m m ∴∆=−=−−−+=−+>∴<结合题意知:11m −≤<(1)()()22222212121224(2)233210106x x x x x x m m m m m +=+−=−−−+=−+=11,m m m ∴=−≤<∴= (2)()()()()322222121212122121228821111m m m m m x x x x x x mx mx x x x x m m −+−+−+ +==−−−−− ()()2222(1)31352312(11)(1)22m m m m m m m m m m −−+ ==−+=−−−< − ∴当1m =−时,式子取最大值为10.【点睛】本题考查一元二次方程中韦达定理、一元二次函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.18. 如图,开口向下的抛物线2812y ax ax a =−+与x 轴交于A 、B 两点,抛物线上另有一点C 在第一象限,且使OCA OBC ∽△△,(1)求OC的长及BC AC的值;(2)设直线BC 与y 轴交于P 点,点C 是BP 的中点时,求直线BP 和抛物线的解析式.【答案】(1)(2)y x −+,2y x x −【解析】【分析】(1)首先求出抛物线与x 轴交点的坐标,再由三角形相似计算可得;(2)首先求出C 点坐标,利用待定系数法求出BP 的解析式,再将C 点坐标代入抛物线方程,求出a ,即可得解.【小问1详解】由题设知a<0,且方程28120ax ax a −+=有两实数根12x =,26x =,即()2,0A ,()6,0B ,所以2OA =,6OB =, OCA OBC ∽,OC OA AC OB OC BC∴==, 212OC OA OB ∴=⋅=,则OC =,所以BCOB AC OC ==;【小问2详解】因为C 是BP 的中点,所以C 点的横坐标为3,又OC =,解得C y =或C y =(舍去),(C ∴, 设直线BP 的解析式为y kx b =+,因其过点()6,0B,(C ,则有063k b k b =+ +,解得k b = =,所以y x −+;又点(C在抛物线上,92412a a a =−+,解得a =, ∴抛物线解析式为2y x x +−19. 某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表 家电名称 空调 彩电 冰箱问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少(以千元为单位)?【答案】空调30,彩电270,冰箱30,最高产值1050.【解析】【分析】设每周应生产空调、彩电、冰箱的数量分别为x 台、y 台、z 台,建立三元一次方程组,则总产值432A x y z =++.由于每周冰箱至少生产60台,即60z ≥,所以300x y +≤.又生产空调器、彩电、冰箱共360台,故有30x ≥台,即可求得,具体的x ,y ,z 的值.【详解】解:设每周应生产空调、彩电、冰箱的数量分别为x 台、y 台、z 台,则有()36011111209032341260x y z x y z x y z ++= ++==++ ≥ 总产值()()()4322272031080A x y z x y z x y x y x x ++++++++−−60,300z x y ≥∴+≤ ,而3360x y +=, 3603300,30x x x ∴+−≤∴≥ 1050A ∴≤ 即30,27060x y z ===,. 故每周生产空调30,彩电270,冰箱30,最高产值1050.20. 一个家庭有3个孩子,(1)求这个家庭有2个男孩和1个女孩的概率;(2)求这个家庭至少有一个男孩概率.【答案】(1)38; (2)78. 【解析】【分析】(1)用树状图列出所有结果,再根据古典概型计算所求;(2)根据(1)树状图列出的所有结果,再根据计算所求;【小问1详解】用B 和G 分别代表男孩和女孩,用“树状图”列出所有结果为:,的∴这个家庭有2个男孩和1个女孩的概率为38【小问2详解】由(1)可知,这个家庭至少有一个男孩的概率78. 21. 如图,已知O 和O 相交于A 、B 两点,过点A 作O 的切线交O 点C ,过点B 作两圆的割线分别交O 、O 于E 、F ,EF 与AC 相交于点P ,(1)求证:PA PE PC PF ⋅=⋅;(2)求证:22PE PF PC PB=; (3)当O 与O 为等圆时,且::3:4:5PC CE EP =时,求PEC 与FAP 的面积的比值.【答案】(1)证明见解析;(2)证明见解析; (3)49625. 【解析】【分析】(1)利用切线角与同弧所对角的性质得到CEB F ∠=∠,从而得到//AF CE ,由此得证; (2)结合(1)中结论,利用切割线定理即可得证;(3)利用三角形相似与勾股定理证得90C CAF ∠=∠=°,从而得到,x y 的比值,再利用面积比与相似比的关系即可得解.【小问1详解】连接AB ,CA 切O ′于A ,CAB F ∴∠=∠, 又CAB CEB ∠=∠,CEB F ∴∠=∠, //AF CE ∴,PE PC PF PA∴=, PA PE PC PF ∴⋅=⋅.【小问2详解】由(1)得2222,PE PC PE PC PF PA PF PA=∴=,则2222PE PF PC PA =, 再根据切割线定理,得2PA PB PF =⋅,22PE PF PC PB ∴=. 【小问3详解】连接AE ,由(1)知//AF CE PEC PFA , 而::3:4:5PC CE EP =,::3:4:5PA FA PF ∴=,不妨设3=PC x ,3PA y =,则4,5CE x EP x ==,4,5FA y PF y ==, 222222,EP PC CE PF PA FA ∴=+=+,90C CAF °∴∠=∠=, AE ∴为O 的直径,AF 为O ′的直径, 因为O 与O ′ 为等圆,4AE AF y ∴==,222AC CE AE += ,222(33)(4)(4)x y x y ∴++=,22251870x xy y +−=, 7(257)()0,25x x y x y y ∴−+=∴=,222249:625ECP FAP x PC PA S S y ∴=== .。

新高一入学分班考数学卷(参考答案)

新高一入学分班考数学卷(参考答案)

新高一入学分班考数学卷(名校版)参考答案一、选择题1.当m<﹣1时,方程(m3+1)x2+(m2+1)x=m+1的根的情况是()A.两负根B.两异号根,且正根的绝对值较大C.两正根D.两异号根,且负根的绝对值较大【分析】首先将方程整理为一般形式,进而利用根据根与系数的关系以及因式分解的应用,分析各式子的符号,进而得出答案.【解答】解:∵(m3+1)x2+(m2+1)x=m+1,∴(m3+1)x2+(m2+1)x﹣(m+1)=0,∴x1x2====,∵m<﹣1,∴m2﹣m+1>0,∴x1x2<0,∴方程由两异号根,∵x1+x2=﹣=,∵m<﹣1,∴m2﹣m+1>0,m+1<0,﹣(m2+1)<0,∴x1+x2>0,∴正根的绝对值较大.故选:B.2.对于数x,符号[x]表示不大于x的最大整数例如[3.14]=3,[﹣7.59]=﹣8,则关于x的方程[]=4的整数根有()A.4个B.3个C.2个D.1个【分析】根据取整函数的定义可知,4≤<5,解此方程组即可.【解答】解:∵[]=4,∴4≤<5,∴,∴,即7≤x<,故x的正数值为7,8,9.故选B.3.+的最小值为()A.B. C. D.均不是【分析】根据题意结合两点之间距离求法,利用轴对称求出最短路线进而得出答案.【解答】解:原式=+,即x轴上的点到(﹣1,1)和(2,4)的距离之和的最小值画图可知,点(4,2)关于x轴的对称点(4,﹣2)与(﹣1,1)连线与x轴的交点即为所求,此时最小值为:=.故选:B.4.在下列图形中,各有一边长为4cm的正方形与一个8cm×2cm的长方形相重叠.问哪一个重叠的面积最大()A.B.C.D.【分析】A、阴影部分是长方形,所以长方形的面积等于长和宽的乘积;B、如图,设阴影部分等腰直角的腰为x,根据勾股定理求出x的值,所以,阴影部分的面积等于正方形的面积减去俩个空白三角形的面积;C、图C,逆时针旋转90°从后面看,可与图D对比,因为图C阴影部分的倾斜度比图D阴影部分的倾斜度小,所以,图C中四边形的底比图D中四边形的底小,两图为等高不等底,所以图C阴影部分的面积小于图D阴影部分的面积;D、图D,设阴影部分平行四边形的底为x,根据正方形的面积=阴影部分的面积+两个空白三角形的面积,求出x的值,再得出阴影部分的面积;图A、图C、图D中阴影部分四边形为等高不等底,因为倾斜度不同,所以图D中阴影部分的底最大,面积也就最大;因此,只要比较图B和图D阴影的面积大小,可得到图B阴影部分的面积最大.【解答】解:A、S阴影=2×4=8(cm2);5.(2016•衡水校级模拟)设全集U=R,集合A={x|},B={x|1<2x<8},则(C U A)∩B等于()A.[﹣1,3)B.(0,2]C.(1,2]D.(2,3)【分析】分别解出集合A,B,然后根据集合的运算求解即可.【解答】解:因为集合A={x|}=(﹣∞,﹣1]∪(2,+∞),B={x|1<2x<8}=(0,3),又全集U=R,∴C U A=(﹣1,2],∴(C U A)∩B=(0,2],故选B.6.已知函数f(x)=,则f(f(2))等于()A.B.2 C.﹣1 D.1【分析】先由解析式求得f(2),再求f(f(2)).【解答】解:f(2)=,f(﹣1)=2﹣1=,所以f(f(2))=f(﹣1)=,故选A.7.设a,b是常数,不等式+>0的解集为x<,则关于x的不等式bx﹣a>0的解集是()A.x>B.x<﹣C.x>﹣D.x<8.对于任意的两个实数对(a,b)和(c,d),规定:①(a,b)=(c,d),当且仅当a=c,b=d;②运算“⊗”为:(a,b)⊗(c,d)=(ac+bd,bc﹣ad);③运算“θ”为:(a,b)θ(c,d)=(a﹣c,b﹣d).设p,q∈R,若(1,2)⊗(p,q)=(11,2),则(1,2)θ(p,q)()A.(﹣2,﹣2)B.(3,4)C.(2,1)D.(﹣1,﹣2)【分析】先根据(1,2)⊗(p,q)=(11,2),列方程组求p、q的值,再由规定运算“θ”求(1,2)θ(p,q)的结果.【解答】解:由规定②,得(1,2)⊗(p,q)=(p+2q,2p﹣q),∵(1,2)⊗(p,q)=(11,2),∴(p+2q,2p﹣q)=(11,2),由规定①,得,解得,由规定③,可知(1,2)θ(p,q)=(1,2)θ(3,4)=(1﹣3,2﹣4)=(﹣2,﹣2).故选A.二、填空题9.已知a2+4a+1=0,且,则m=.【分析】由a2+4a+1=0,得a2=﹣4a﹣1,代入所求的式子化简即可.【解答】解:∵a2+4a+1=0,∴a2=﹣4a﹣1,=====5,∴(16+m)(﹣4a﹣1)+8a+2=5(m﹣12)(﹣4a﹣1),原式可化为(16+m)(﹣4a﹣1)﹣5(m﹣12)(﹣4a﹣1)=﹣8a﹣2,即[(16+m)﹣5(m﹣12)](﹣4a﹣1)=﹣8a﹣2,∵a≠0,∴(16+m)﹣5(m﹣12)=2,解得m=.故答案为.10.已知(x﹣3)2+(y﹣4)2=4,则x2+y2的最大值为49.【分析】运用几何意义解答,x2+y2的最大值就是方程(x﹣3)2+(y﹣4)2=4所代表的圆周上的点到坐标原点的距离最大值的平方,从而可得出答案.【解答】解:x2+y2的最大值就是方程(x﹣3)2+(y﹣4)2=4所代表的圆周上的点到坐标原点的距离最大值的平方,连接坐标原点与圆心(3,4)所得的直线与圆的交点,则(x2+y2)min时,|ON|取最小,(x2+y2)max时,|OM|取最大,∵原点与圆心(3,4)的距离+半径(PM)=+2=7,∴(x2+y2)max=72=49.故答案为:49.11.如图正方形ABCD中,E是BC边的中点,AE与BD相交于F点,△DEF的面积是1,那么正方形ABCD的面积是6.【分析】先设△BEF的面积是x,由于E是BC中点,那么S△DBE=S△DCE,易求S正方形=4(1+x),又四边形ABCD是正方形,那么AD∥BC,AD=BC,根据平行线分线段成比例定理的推论可得△BEF∽△DAF,于是S△BEF:S△DAF=()2,E是BC中点可知BE:AD=1:2,于是S△DAF=4x,进而可得S正方形=S△ABF+S△BEF+S△ADF+S△DEF+S△DCE=1+x+4x+1+1+x,等量代换可得4(1+x)=1+x+4x+1+1+x,解可求x,进而可求正方形的面积.【解答】解:如右图,设△BEF的面积是x,∵E是BC中点,∴S△DBE=S△DCE,∴S△BCD=2(1+x),∴S正方形=4(1+x),∵四边形ABCD是正方形,∴AD∥BC,AD=BC,∴△BEF∽△DAF,∴S△BEF:S△DAF=()2,∵E是BC中点,∴BE=CE,∴BE:AD=1:2,∴S△DAF=4x,∵S△ABE=S△BED,∴S△ABF=S△DEF=1,∴S正方形=S△ABF+S△BEF+S△ADF+S△DEF+S△DCE=1+x+4x+1+1+x,∴4(1+x)=1+x+4x+1+1+x,解得x=0.5,∴S正方形=4(1+x)=4(1+0.5)=6.12.如图,ABCD、CEFG是正方形,E在CD上,且BE平分∠DBC,O是BD中点,直线BE、DG交于H.BD,AH交于M,连接OH,则OH=AB,BM=AB.【分析】易得△BCE≌△DCG,得到∠1=∠2,B,C,H,D四点共圆,得出OH=BD=AB,由E关于BD的对称E′,得到△BEE′是等腰三角形,BM⊥E′E于M,由角平分线到角两边的距离相等得出BM=AB.【解答】解:如图,设EE′与BD交于点M′,∵AD=CD∴AE′=CE=EF,∵∠E′AM′=∠EFM′,∠AM′E′=∠FM′F,∴△AM′E′≌△FM′E(AAS),∴EM′=E′M′,∵ME′=ME∴M与M′重合,∵BC=DC,EC=CG,∠BCE=∠DCG,在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴∠1=∠2,∴B,C,H,D四点共圆,∴OH=BD=AB,∵E关于BD的对称E′,∵∠3=∠4,BE=BE′,∴△BEE′是等腰三角形,∴BM⊥E′E于M,∴BM=AB.故答案为:AB,AB.13.函数f(x)=λx2+(λ﹣3)x+1对于任意实数x都有f(x)≤f(λ),则函数f(x)的最大值是.【分析】根据函数有最值,首先判断出λ<0,进而利用二次函数的最值得出f(x)的最大值,使这个最大值与f(λ)相等,解方程即可得出λ的值,进而代入求出f(x)最大值.【解答】解:由题意得,f(x)有最大值,则可得λ<0,又∵f(x)=λ(x+)2+1﹣,∴f(x)的最大值为1﹣,又∵f(x)≤f(λ),∴f(λ)=λ3+(λ﹣3)λ+1=1﹣,解得:λ=1(舍去)或λ=﹣,将λ=﹣,代入可得f(x)的最大值为.故答案为:.三、解答题14.在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.【分析】(1)根据待定系数法即可解决问题.(2)求出直线BC与对称轴的交点H,根据S△BDC=S△BDH+S△DHC即可解决问题.(3)由,当方程组只有一组解时求出b的值,当直线y=﹣x+b经过点C时,求出b的值,当直线y=﹣x+b经过点B时,求出b的值,由此即可解决问题.【解答】解:(1)由题意解得,∴抛物线解析式为y=x2﹣x+2.(2)∵y=x2﹣x+2=(x﹣1)2+.∴顶点坐标(1,),∵直线BC为y=﹣x+4,∴对称轴与BC的交点H(1,3),∴S△BDC=S△BDH+S△DHC=•3+•1=3.(3)由消去y得到x2﹣x+4﹣2b=0,当△=0时,直线与抛物线相切,1﹣4(4﹣2b)=0,∴b=,当直线y=﹣x+b经过点C时,b=3,当直线y=﹣x+b经过点B时,b=5,∵直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,∴<b≤3.15.如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.(1)求证:△ABC是等边三角形;(2)若∠PAC=90°,AB=2,求PD的长.【分析】(1)由圆周角定理可知∠ABC=∠BAC=60°,从而可证得△ABC是等边三角形;(2)由△ABC是等边三角形可得出“AC=BC=AB=2,∠ACB=60°”,在直角三角形PAC 和DAC通过特殊角的正、余切值即可求出线段AP、AD的长度,二者作差即可得出结论.【解答】(1)证明:∵∠ABC=∠APC,∠BAC=∠BPC,∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC是等边三角形.(2)解:∵△ABC是等边三角形,AB=2,∴AC=BC=AB=2,∠ACB=60°.在Rt△PAC中,∠PAC=90°,∠APC=60°,AC=2,∴AP==2.在Rt△DAC中,∠DAC=90°,AC=2,∠ACD=60°,∴AD=AC•tan∠ACD=6.∴PD=AD﹣AP=6﹣2=4.2.(2013•济宁)阅读材料:若a,b都是非负实数,则a+b≥.当且仅当a=b时,“=”成立.证明:∵()2≥0,∴a﹣+b≥0.∴a+b≥.当且仅当a=b时,“=”成立.举例应用:已知x>0,求函数y=2x+的最小值.解:y=2x+≥=4.当且仅当2x=,即x=1时,“=”成立.当x=1时,函数取得最小值,y最小=4.16问题解决:汽车的经济时速是指汽车最省油的行驶速度.某种汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油(+)升.若该汽车以每小时x公里的速度匀速行驶,1小时的耗油量为y升.(1)求y关于x的函数关系式(写出自变量x的取值范围);(2)求该汽车的经济时速及经济时速的百公里耗油量(结果保留小数点后一位).【分析】(1)根据耗油总量=每公里的耗油量×行驶的速度列出函数关系式即可;(2)经济时速就是耗油量最小的形式速度.【解答】解:(1)∵汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油(+)升.∴y=x×(+)=(70≤x≤110);(2)根据材料得:当时有最小值,解得:x=90∴该汽车的经济时速为90千米/小时;当x=90时百公里耗油量为100×(+)≈11.1升.17.正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是CH=AB;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.【分析】(1)首先根据全等三角形判定的方法,判断出△ABF≌△CBE,即可判断出∠1=∠2;然后根据EH⊥BF,∠BCE=90°,可得C、H两点都在以BE为直径的圆上,判断出∠4=∠HBC,即可判断出CH=BC,最后根据AB=BC,判断出CH=AB即可.(2)首先根据全等三角形判定的方法,判断出△ABF≌△CBE,即可判断出∠1=∠2;然后根据EH⊥BF,∠BCE=90°,可得C、H两点都在以BE为直径的圆上,判断出∠4=∠HBC,即可判断出CH=BC,最后根据AB=BC,判断出CH=AB即可.(3)首先根据三角形三边的关系,可得CK<AC+AK,据此判断出当C、A、K三点共线时,CK的长最大;然后根据全等三角形判定的方法,判断出△DFK≌△DEH,即可判断出DK=DH,再根据全等三角形判定的方法,判断出△DAK≌△DCH,即可判断出AK=CH=AB;最后根据CK=AC+AK=AC+AB,求出线段CK长的最大值是多少即可.【解答】解:(1)如图1,连接BE,,在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,∵点E是DC的中点,DE=DF,∴点F是AD的中点,∴AF=CE,在△ABF和△CBE中,∴△ABF≌△CBE,∴∠1=∠2,∵EH⊥BF,∠BCE=90°,∴C、H两点都在以BE为直径的圆上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC,∴CH=BC,又∵AB=BC,∴CH=AB.故答案为:CH=AB.(2)当点E在DC边上且不是DC的中点时,(1)中的结论CH=AB仍然成立.如图2,连接BE,,在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,∵AD=CD,DE=DF,∴AF=CE,在△ABF和△CBE中,∴△ABF≌△CBE,∴∠1=∠2,∵EH⊥BF,∠BCE=90°,∴C、H两点都在以BE为直径的圆上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC,∴CH=BC,又∵AB=BC,∴CH=AB.(3)如图3,,∵CK≤AC+AK,∴当C、A、K三点共线时,CK的长最大,∵∠KDF+∠ADH=90°,∠HDE+∠ADH=90°,∴∠KDF=∠HDE,∵∠DEH+∠DFH=360°﹣∠ADC﹣∠EHF=360°﹣90°﹣90°=180°,∠DFK+∠DFH=180°,∴∠DFK=∠DEH,在△DFK和△DEH中,∴△DFK≌△DEH,∴DK=DH,在△DAK和△DCH中,∴△DAK≌△DCH,∴AK=CH又∵CH=AB,∴AK=CH=AB,∵AB=3,∴AK=3,AC=3,∴CK=AC+AK=AC+AB=,即线段CK长的最大值是.。

高一新生入学分班考试数学模拟试卷(附答案)

高一新生入学分班考试数学模拟试卷(附答案)

高一新生入学分班考试数学 模 拟 试 题(试题满分:150分,考试时间:120分钟)一、选择题(本题共12小题,每小题4分,共48分.在每小题的四个选项中,只有一个符合题目要求) 1.下列计算:①(-2006)0=1;②44m21m2=-;③x 4+x 3=x 7;④(ab 2)3=a 3b 6; ⑤()35352=-,正确的是( )A.① B.①②③ C.①③④ D.①④⑤2.一次函数y=kx+b 满足kb >0,且y随x的增大而减小,则此函数的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.一个底面半径为5cm ,母线长为16cm 的圆锥,它的侧面展开图的面积是( )A. 80πcm 2 B. 40πcm 2 C. 80cm 2 D. 40cm 24.以下五个图形中,既是轴对称又是中心对称的图形共有( )A. 1个 B. 2个 C. 3个 D. 4个5.在△ABC 中,∠C=90o ,AB=15,sinA=31,则BC 等于( )A.45 B. 5 C.15 D. 1456.如图,已知PA 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠P =40°,则∠BAC 的大小是( ) A. 70° B. 40° C. 50° D. 20°7.若不等式组 的解集为空集,则a 的取值范围是( )A. a>3 B. a ≥3 C. a < 3 D. a ≤ 38.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得正面朝上的点数为奇数的概率为( )A.61 B. 31 C. 41 D. 21 9.已知两圆的半径分别为6cm 和8cm ,圆心距为2cm ,那么这两圆的公切线有( )A. 1条 B. 2条 C. 3条 D. 4条 10. 设a, b, c, d 都是非零实数,则四个数:-ab, ac, bd, cd ( )A.都是正数 B.都是负数C.是两正两负 D.是一正三负或一负三正⎪⎩⎪⎨⎧>->+-a x x x 54252ABC D11. 函数y = k (1-x) 和y =xk( k ≠0) 在同一平面直角坐标系中的图像可能是 xyxyxyxyA. B. C. D.12.如图,△ABC 和△DEF 是两个形状大小完全相同的等腰直角三角形,∠B=∠DEF=90°,点B 、C 、E 、F 在同一直线上.现从点C 、E 重合的位置出发,让△ABC 在直线EF 上向右作匀速运动,而△DEF 的位置不动.设两个三角形重合部分的面积为y ,运动的距离为x .下面表示y 与x 的函数关系式的图象大致是( )二、填空题(本题共6小题,每小题5分,共30分.把答案填写在题中横线上) 13.不等式组⎪⎩⎪⎨⎧≤--+<+-1312412x x x x 的整数解为14.分解因式212213122x x x x x +--=15. 如图,△ABC 中,BD 平分∠ABC, AD ⊥BD 于D, F 为AC 中点,AB = 5,BC = 7, 则DF = 16.已知二次函数图象过点A (2,1)、B (4,1)且最大值为2,则二次函数的解析式为17.如图,已知Rt △ABC 中,∠C=ο90,AC=2,BC=1,若以C 为圆心,CB为半径的圆交AB 于点P ,则AP=_____________18. 如图,直线834+-=x y 与x 轴、y 轴分别交于点A 和B ,M 是 OB上的一点,若将∆ABM 沿AM 折叠,点B 恰好落在x 轴上的点B '处,则直线AM 的解析式为PBCA BCF DB'OMB xyA三、 解答题(本题共有7小题,共72分)19.(本小题满分8分)化简:xx x x x x x x x 4)44122)(4(222-÷+----+- 20.(本小题满分8分)解分式方程:22+x x -23-x =221.(本小题满分8分)如图,在△ABC 中,D 是AC 的中点,E 是线段BC 延长线上一点,过点A 作BE的平行线与线段ED 的延长线交于点F ,连结AE 、CF .(1)求证:AF =CE ;(2)若 AC =EF ,试判断四边形AFCE 是什么样的四边形, 并证明你的结论.22.(本小题满分10分)为了鼓励居民节约用水,我市某地水费按下表规定收取:每户每月用水量不超过10吨(含10吨)超过......10..吨的部分水费单价1.30元/吨2.00元/吨(1)某用户用水量为x吨,需付水费为y元,则水费y(元)与用水量x(吨)之间的函数关系式是:(0≤x≤10);y=(x>10);(2)若小华家四月份付水费17元,问他家四月份用水多少吨?(3)已知某住宅小区100户居民五月份交水费1682元,且该月每户用水量均不超过15吨(含15吨),求该月用水量不超过10吨的居民最多可能有多少户?23.(本小题满分12分)如图1,在直角梯形ABCD中,AD∥BC,顶点D,C分别在AM,BN上运动(点D不与A重合,点C不与B重合),E是AB上的动点(点E不与A,B重合),在运动过程中始终保持DE⊥CE,且AD+DE=AB=a.(1)求证:△ADE∽△BEC;(2)设AE=m,请探究:△BEC的周长是否与m值有关,若有关请用含m的代数式表示△BEC的周长;若无关请说明理由.24.(本小题满分12分)已知抛物线25=-+-.y x kx k(1)求证:不论k为何实数,此抛物线与x轴一定有两个不同的交点;(2)若此二次函数图像的对称轴为x=1,求它的解析式;(3)在(2)的条件下,设抛物线的顶点为A,抛物线与x轴的两个交点中右侧交点为B,若P为x轴上一点,且△PAB为等腰三角形,求点P的坐标.25.(本小题满分14分)如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH的中点,连接AE并延长交BD于点F,直线CF交直线AB于点G.(1)求证:点F是BD的中点;(2)求证:CG是⊙O的切线;(3)若FB=FE=2,求⊙O的半径.参考答案一、 选择题(本题共有12小题,每小题4分,共48分)二、填空题(本题共有6小题,每小题5分,共30分)13. 0,1,2,3,4 14. )1)(1)(2(1121-+-x x x x 15. 1 16. 762)3(22-+-=+--=x x x y17.33 18. 321+-=x y 三、解答题(本题共有7小题,共72分)19.22-+x x (8分) 20.x=72(8分)21.(1)证明:在△ADF 和△CDE 中, ∵AF ∥BE , ∴∠FAD =∠ECD .又∵D 是AC 的中点, ∴AD =CD . ∵∠ADF =∠CDE , ∴△ADF ≌△CDE . ∴AF =CE . (4分)(2)解:若AC=EF ,则四边形AFCE 是矩形.由(1)知AF ∥CE , ∴四边形AFCE 是平行四边形, 又∵AC=EF ∴四边形AFCE 是矩形. (4分)22.解:(1) 1.3x ,13+2(x -10). (4分)(2)设小华家四月份用水量为x 吨.∵17>1.30×10,∴小华家四月份用水量超过10吨,由题意得:1.30×10+(x -10) ×2=17,∴2x =24,∴x =12(吨). 即小华家四月份的用水量为12吨. (3分) (3)设该月用水量不超过10吨的用户有a 户,则超过10吨不超过15吨的用户为(100-a)户.由题意得:13 a +[13+(15-10) ×2](100- a)≥1682, 化简的:10 a ≤618,∴a ≤61.8,故正整数a 的最大值为61. 即这个月用水量不超过10吨的居民最多可能有61户. (3分)23. (1)证明:∵∠DEC =90°, ∴∠AED+∠BEC=90°,又 ∵∠AED+∠ADE=90°,∴∠BEC=∠ADE , 而∠A=∠B=90°,∴△ADE ∽△BEC . (6分)(2) 结论:△BEC 的周长与m 无关.在△EBC 中,由AE =m ,AB =a ,得BE =a -m ,设AD =x ,因为△ADE ∽△BEC ,所以AD AE DE BE BC EC ==, 即:x m a xa m BC EC-==-, 解得:a m m a m a x BC EC .x x(-)(-)(-)=,=所以△BEC 的周长=BE +BC +EC =a m m a m a x a m x x(-)(-)(-)(-)++=m a x a m 1x x ⎛⎫⎪⎝⎭-(-)++=a m a m x g +(-)=22a m x - ① 因为AD =x ,由已知AD+DE =AB=a 得DE =a -x ,又AE =m在Rt △AED 中,由勾股定理得:222x m a x +=(-)化简整理得:22a m 2ax -= ②把②式代入①,得△BEC 的周长=BE +BC +EC =2ax2a x=, 所以△BEC 的周长与m 无关. (6分) 24. (1) 证明:∵⊿=k 2-4k+20=(k-2)2+16>0 ,∴不论k 为何实数,此抛物线与x 轴一定有两个不同的交点 . (4分)(2) 解:由已知得2k=1,∴k=2,∴所求函数的解析式为y=x 2-2x-3.(4分)(3)(-2,0), (3-0), (3+0), (-1,0) . (4分)25.(1)证明:∵CH ⊥AB ,DB ⊥AB ,∴△AEH ∽AFB ,△ACE ∽△ADF∴FDCEAF AE BF EH ==,∵HE =EC ,∴BF =FD ,即点F 是BD 的中点(4分)(2)方法一:连结CB 、OC .∵AB 是直径,∴∠ACB =90°,∵F 是BD 中点, ∴∠BCF=∠CBF=90°-∠CBA=∠CAB=∠ACO , ∴∠OCF=∠OCB +∠BCF =∠OBC +∠ACO = 90°, ∴CG 是⊙O 的切线. (5分)方法二:可证明△OCF ≌△OBF .(3)解:由FC=FB=FE 得:∠FCE=∠FEC ,又由已知可得CH ∥DB , 所以∠AFB=∠BFG ,从而可证得:FA =FG ,且AB =BG .由切割线定理得:(2+FG )2=BG ×AG=2BG 2 ○1在Rt△BGF中,由勾股定理得:BG2=FG2-BF2○2由○1、○2得:FG2-4FG-12=0解之得:FG1=6,FG2=-2(舍去)∴AB=BG=24∴⊙O半径为22.(5分)。

上海新高一分班数学试卷及答案(含9份)

上海新高一分班数学试卷及答案(含9份)
7. 商场的自动扶梯在匀速上升,一男孩与一女孩在这自动扶梯上往上爬,已知 男孩往上爬的速度是女孩往上爬的速度的 2 倍,男孩爬了 27 级到楼上,女孩爬 18 级到楼上,则从楼下到楼上自动扶梯的级数是__________. 8. 相交两圆的公共弦长为 16cm,若两圆的半径长分别为 10cm 和 17cm,则这 两圆的圆心距为__________cm
2. 一 元二次方程2x2-7x+k=O的 一 个根是X1=2则 , 另一 个根和k的值是


A. X2=l , k=4
B. X2= - 1k= -4
C . X2= -3 k=6 2
D. X2= 一-k=-6
2
3.如果关于x的 一 元二次方程x2 -k:x+ 2 = 0中,k是投掷假子所得的数字(1, 2, 3, 4, 5, 6),则该二次方程
的表面积是
cm 2 。
门 I I [丑
门 ||||
正视图
左视图
A. 11 B. 15
c. 18
俯视图 D. 22
第H卷〈答卷〉 二. 填空题〈本大题共5小题, 每小题4分, 共20分〉
11.
函数
’y

丘三中,自变量x的取值范围是
x-2
12.在Rt卒ABC中,正ACB=90 。 , CD1-AB于D, AC=lO, CD=6,则sinB的值为
有两个不等实数根的概率 P= (
)
A.
-2 3
B.
-1 2
c.
3
4. 二次函数y=-x2-4x+2的顶点坐标、 对称轴分别是(
A. (-2, 6) , x=-2 B. (2, 6) , x=2
C. (2, 6) , x=-2

2019年清华附中新高一分班考试数学试题-真题-含详细解析全文

2019年清华附中新高一分班考试数学试题-真题-含详细解析全文

2019年清华附中新高一分班考试数学试题-真题一、选择题(本大题共12小题,共36分)1. 下表为小洁打算在某电信公司购买一支MAT 手机与搭配一个号码的两种方案.此公司每个月收取通话费与月租费的方式如下:若通话费超过月租费,只收通话费;若通话费不超过月租费,只收月租费.若小洁每个月的通话费均为x 元,x 为400到600之间的整数,则在不考虑其他费用并使用两年的情况下,x 至少为多少才会使得选择乙方案的总花费比甲方案便宜?( )A. 500B. 516C. 517D. 6002. 如图,矩形ABCD 中,M 、E 、F 三点在AD .上,N 是矩形两对角线的交点.若AB .=24,AD .=32,MD .=16,ED .=8,FD .=7,则下列哪一条直线是A 、C 两点的对称轴?( )A. 直线MNB. 直线ENC. 直线FND. 直线DN3. 如图,在正方形ABCD 中,AB =3,点E ,F 分别在边AB ,CD 上,∠EFD =60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为( )A. 1B. √2C. √3D. 24. 如图,抛物线y =ax 2+bx +c 的对称轴是x =1,下列结论:①abc >0;②b 2−4ac >0;③8a +c <0;④5a +b +2c >0, 正确的有( )A. 4个B. 3个C. 2个D. 1个5.如图,△ABC中,D点在BC上,将D点分别以AB、AC为对称轴,画出对称点E、F,并连接AE、AF.根据图中标示的角度,求∠EAF的度数为何?()A. 113B. 124C. 129D. 1346.如图,有一三角形ABC的顶点B、C皆在直线L上,且其内心为I.今固定C点,将此三角形依顺时针方向旋转,使得新三角形A′B′C的顶点A′落在L上,且其内心为I′.若∠A<∠B<∠C,则下列叙述何者正确?()#JYA. IC和I′A′平行,II′和L平行B. IC和I′A′平行,II′和L不平行C. IC和I′A′不平行,II′和L平行D. IC和I′A′不平行,II′和L不平行7.如图,矩形ABCD中,AC,BD相交于点O,过点B作BF⊥AC交CD于点F,交AC于点M,过点D作DE//BF交AB于点E,交AC于点N,连接FN,EM.则下列结论:①DN=BM;②EM//FN;③AE=FC;④当AO=AD时,四边形DEBF是菱形.其中,正确结论的个数是()A. 1个B. 2个C. 3个D. 4个8.如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为()A. √2+1B. √2+12C. 2√2+1D. 2√2−129.如图,圆内接正六边形的边长为4,以其各边为直径作半圆,则图中阴影部分的面积为()A. 24√3−4πB. 12√3+4πC. 24√3+8πD. 24√3+4π10.如图,将一张面积为14的大三角形纸片沿着虚线剪成三张小三角形纸片与一张平行四边形纸片.根据图中标示的长度,求平行四边形纸片的面积为何?()A. 215B. 425C. 247D. 48711.如图,坐标平面上有一顶点为A的抛物线,此抛物线与方程式y=2的图形交于B、C两点,△ABC为正三角形.若A点坐标为(−3,0),则此抛物线与y轴的交点坐标为何?()A. (0,92)B. (0,272)C. (0,9)D. (0,19)12.如图,正六边形ABCDEF中,P、Q两点分别为△ACF、△CEF的内心.若AF=2,则PQ的长度为何?()A.1B. 2C. 2√3−2D. 4−2√3二、填空题(本大题共6小题,共18分)13.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为______m.14.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为______.图象上的任意四点,现有以下结论:15.设A,B,C,D是反比例函数y=kx①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是______.(写出所有正确结论的序号)16.矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A′处,展平后得到折痕BE,同时得到线段BA′,EA′,不再添加其它线段.当图中存在30°角时,AE的长为______厘米.17.已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如下表:下列结论:①a>0;②当x=−2时,函数最小值为−6;③若点(−8,y1),点(8,y2)在二次函数图象上,则y1<y2;④方程ax2+bx+c=−5有两个不相等的实数根.其中,正确结论的序号是______.(把所有正确结论的序号都填上)18.如图,在矩形ABCD中,AB=√3+2,AD=√3.把AD沿AE折叠,使点D恰好落在AB边上的D′处,再将△AED′绕点E顺时针旋转α,得到△A′ED″,使得EA′恰好经过BD′的中点F.A′D″交AB于点G,连接AA′.有如下结论:①A′F 的长度是√6−2;②弧D′D″的长度是5√312π;③△A′AF ≌△A′EG ;④△AA′F ∽△EGF.上述结论中,所有正确的序号是______.三、解答题(本大题共9小题,共46分)19. 某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米.建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元.用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35. (1)求每个A ,B 类摊位占地面积各为多少平方米?(2)该社区拟建A ,B 两类摊位共90个,且B 类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用.20. 如图,△ADE 由△ABC 绕点A 按逆时针方向旋转90°得到,且点B 的对应点D 恰好落在BC 的延长线上,AD ,EC 相交于点P . (1)求∠BDE 的度数;(2)F 是EC 延长线上的点,且∠CDF =∠DAC .①判断DF 和PF 的数量关系,并证明; ②求证:EPPF =PCCF .21.如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作△ABC关于点O对称的△A′B′C′;(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB′C′.22.已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:(1)根据以上信息,可知抛物线开口向______,对称轴为______;(2)求抛物线的表达式及m,n的值;(3)请在图1中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P′,描出相应的点P′,再把相应的点P′用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y=m(m>−2)与抛物线及(3)中的点P′所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系______.23.已知直线l1:y=−2x+10交y轴于点A,交x轴于点B,二次函数的图象过A,B两点,交x轴于另一点C,BC=4,且对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.(1)求二次函数的表达式;(2)若直线l2:y=mx+n(n≠10),求证:当m=−2时,l2//l1;(3)E为线段BC上不与端点重合的点,直线l3:y=−2x+q过点C且交直线AE于点F,求△ABE与△CEF面积之和的最小值.24.已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).25.某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为斜边向外侧作Rt△ABD,Rt△ACE,Rt△BCF,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为______;推广验证(2)如图3,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为边向外侧作任意△ABD,△ACE,△BCF,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE中,∠A=∠E=∠C=105°,∠ABC=90°,AB=2√3,DE=2,点P在AE上,∠ABP=30°,PE=√2,求五边形ABCDE的面积.26.如图1,在平面直角坐标系中,点A的坐标是(0,−2),在x轴上任取一点M,连接AM,分别以点A和点MAM的长为半径作弧,两弧相交于G,H两点,作直线GH,过点M作x轴的垂线l交直线GH 为圆心,大于12于点P.根据以上操作,完成下列问题.探究:(1)线段PA与PM的数量关系为______,其理由为:______.(2)在x轴上多次改变点M的位置,按上述作图方法得到相应点P的坐标,并完成下列表格:猜想:(3)请根据上述表格中P点的坐标,把这些点用平滑的曲线在图2中连接起来;观察画出的曲线L,猜想曲线L的形状是______.验证:(4)设点P的坐标是(x,y),根据图1中线段PA与PM的关系,求出y关于x的函数解析式.应用:(5)如图3,点B(−1,√3),C(1,√3),点D为曲线L上任意一点,且∠BDC<30°,求点D的纵坐标y D的取值范围.27.小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,∠ACB与∠ECD恰好为对顶角,∠ABC=∠CDE=90°,连接BD,AB=BD,点F是线段CE上一点.探究发现:(1)当点F为线段CE的中点时,连接DF(如图(2)),小明经过探究,得到结论:BD⊥DF.你认为此结论是否成立?______.(填“是”或“否”)拓展延伸:(2)将(1)中的条件与结论互换,即:BD⊥DF,则点F为线段CE的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.问题解决:(3)若AB=6,CE=9,求AD的长.答案和解析1.【答案】C【解析】解:∵x为400到600之间的整数,∴若小洁选择甲方案,需以通话费计算,若小洁选择乙方案,需以月租费计算,甲方案使用两年总花费=24x+15000;乙方案使用两年总花费=24×600+13000=27400.由已知得:24x+15000>27400,解得:x>51623,即x至少为517.故选C.由x的取值范围,结合题意找出甲、乙两种方案下两年的总花费各是多少,再由乙方案比甲方案便宜得出关于x的一元一次不等式,解不等式即可得出结论.本题考查了一元一次不等式的应用以及一次函数的应用,解题的关键是结合题意找出关于x的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出不等式(方程或方程组)是关键.2.【答案】C【解析】解:∵A、C两点的对称轴是线段AC的垂直平分线,∴连接AC,过点N作AC的垂直平分线PN交AD于点P,∵AB=24,AD=32,∴AC=√242+322=40,∴AN=20,∵∠PAN=∠CAD,∠ANP=∠ADC,∴△ANP∽△ADC,∴ANAD =APAC,即2032=AP40,解得,AP=25,∵M、E、F三点在AD上,AD=32,MD=16,ED=8,FD=7,∴AF=AD−FD=32−7=25,∴点P与点F重合.故选C.根据题意可知A、C两点的对称轴是线段AC的垂直平分线,画出合适的辅助线,然后根据题意可以求得AC和AN 的长,然后根据三角形相似的知识可以求得AP的长,从而可以得到P与哪一个点重合,本题得以解决.本题考查轴对称的性质、矩形的性质,解题的关键是明确题意,作出合适的辅助线,找出所求问题需要的条件.3.【答案】D【解析】解:∵四边形ABCD是正方形,∴AB//CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB′=60°,BE=B′E,∴∠AEB′=180°−∠BEF−∠FEB′=60°,∴B′E=2AE,设BE=x,则B′E=x,AE=3−x,∴2(3−x)=x,解得x=2.故选:D.由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB′=60°,BE=B′E,设BE=x,则B′E=x,AE=3−x,由直角三角形的性质可得:2(3−x)=x,解方程求出x即可得出答案.本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.4.【答案】B【解析】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2−4ac>0,故②正确;=1,可得b=−2a,∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以−b2a由图象可知,当x=−2时,y<0,即4a−2b+c<0,∴4a−2×(−2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=−1时,y=a−b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线上的点的坐标满足抛物线的解析式.5.【答案】D【解析】解:连接AD,∵D点分别以AB、AC为对称轴,画出对称点E、F,∴∠EAB=∠BAD,∠FAC=∠CAD,∵∠B=62°,∠C=51°,∴∠BAC=∠BAD+∠DAC=180°−62°−51°=67°,∴∠EAF=2∠BAC=134°,故选:D.连接AD,利用轴对称的性质解答即可.此题考查轴对称的性质,关键是利用轴对称的性质解答.6.【答案】C【解析】解:作ID⊥BA′于D,IE⊥AC于E,I′F⊥BA′于F,如图所示:则ID//I′F,∵△ABC的内心为I,△A′B′C的内心为I′,∴ID=IE=IF,∠ICD−12∠ACB,∠I′A′C=12∠B′A′C,∴四边形IDFI′是矩形,∴II′//L,∵∠A<∠B<∠C,∴∠A′<∠B′<∠C,∴∠ICD>∠I′A′C,∴IC和I′A′不平行,故选:C.作ID ⊥BA′于D ,IE ⊥AC 于E ,I′F ⊥BA′于F ,由内心的性质得出ID =IE =IF ,∠ICD =12∠ACB ,∠I′A′C =12∠B′A′C ,证出四边形IDFI′是矩形,得出II′//L ,证出∠ICD >∠I′A′C ,得出IC 和I′A′不平行,即可得出结论. 本题考查了三角形的内心、平行线的判定、旋转的性质;熟练掌握三角形的内心性质和平行线的判定是解题的关键.7.【答案】D【解析】解:∵四边形ABCD 是矩形,∴AB =CD ,AB//CD ,∠DAE =∠BCF =90°,OD =OB =OA =OC ,AD =BC ,AD//BC ,∴∠DAN =∠BCM ,∵BF ⊥AC ,DE//BF ,∴DE ⊥AC ,∴∠DNA =∠BMC =90°,在△DNA 和△BMC 中,{∠DAN =∠BCM∠DNA =∠BMC AD =BC,∴△DNA≌△BMC(AAS),∴DN =BM ,∠ADE =∠CBF ,故①正确;在△ADE 和△CBF 中,{∠ADE =∠CBFAD =BC ∠DAE =∠BCF,∴△ADE≌△CBF(ASA),∴AE =FC ,DE =BF ,故③正确;∴DE −DN =BF −BM ,即NE =MF ,∵DE//BF ,∴四边形NEMF 是平行四边形,∴EM//FN ,故②正确;∵AB =CD ,AE =CF ,∴BE =DF ,∵BE//DF ,∴四边形DEBF 是平行四边形,∵AO =AD ,∴AO =AD =OD ,∴△AOD 是等边三角形,∴∠ADO =∠DAN =60°,∴∠ABD=90°−∠ADO=30°,∵DE⊥AC,∴∠ADN=ODN=30°,∴∠ODN=∠ABD,∴DE=BE,∴四边形DEBF是菱形;故④正确;正确结论的个数是4个,故选:D.证△DNA≌△BMC(AAS),得出DN=BM,∠ADE=∠CBF,故①正确;证△ADE≌△CBF(ASA),得出AE= FC,DE=BF,故③正确;证四边形NEMF是平行四边形,得出EM//FN,故②正确;证四边形DEBF是平行四边形,证出∠ODN=∠ABD,则DE=BE,得出四边形DEBF是菱形;故④正确;即可得出结论.本题考查了矩形的性质、菱形的判定、平行四边形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、等腰三角形的判定等知识;熟练掌握矩形的性质和菱形的判定,证明三角形全等是解题的关键.8.【答案】B【解析】解:如图,∵点C为坐标平面内一点,BC=1,∴C在⊙B的圆上,且半径为1,取OD=OA=2,连接CD,∵AM=CM,OD=OA,∴OM是△ACD的中位线,∴OM=1CD,2当OM最大时,即CD最大,而D,B,C三点共线时,当C在DB的延长线上时,OM最大,∵OB=OD=2,∠BOD=90°,∴CD=2√2+1,∴OM=12CD=√2+12,即OM的最大值为√2+12;故选:B.根据同圆的半径相等可知:点C在半径为1的⊙B上,通过画图可知,C在BD与圆B的交点时,OM最小,在DB的延长线上时,OM最大,根据三角形的中位线定理可得结论.本题考查了坐标和图形的性质,三角形的中位线定理等知识,确定OM为最大值是点C的位置是关键,也是难点.9.【答案】A【解析】解:设正六边形的中心为O,连接OA,OB.由题意,OA=OB=AB=4,∴S弓形AmB =S扇形OAB−S△AOB=60⋅π⋅42360−√34×42=83π−4√3,∴S阴=6⋅(S半圆−S弓形AmB)=6⋅(12⋅π⋅22−83π+4√3)=24√3−4π,故选:A.设正六边形的中心为O,连接OA,OB首先求出弓形AmB的面积,再根据S阴=6⋅(S半圆−S弓形AmB)求解即可.本题考查正多边形和圆,扇形的面积,弓形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.10.【答案】D【解析】解:如图,设△ADE,△BDF,△CEG,平行四边形DEGF的面积分别为S1,S2,S3和S,过点D作DH//EC,则由DFGE为平行四边形,易得四边形DHCE也为平行四边形,从而△DFH≌△EGC,∴S△DFH=S3,∵DE//BC,∴△ADE∽△ABC,DE=3,BC=7,∴S1S△ABC =949,∴S1=949×14,∴S△BDH:S=(12×4):3=2:3,∴S△BDH=23S,∴23S+S=14−949×14,∴S=487.故选:D.如图,设△ADE,△BDF,△CEG,平行四边形DEGF的面积分别为S1,S2,S3和S,过点D作DH//EC,则由DFGE为平行四边形,易得四边形DHCE也为平行四边形,从而△DFH≌△EGC,利用面积比等于相似比的平方可求.本题是巧求面积的选择题,综合考查了平行四边形,相似三角形的性质等,难度较大.11.【答案】B【解析】解:设B(−3−m,2),C(−3+m,2),(m>0)∵A点坐标为(−3,0),∴BC=2m,∵△ABC为正三角形,∴AC=2m,∠DAO=60°,∴m=2√3 3∴C(−3+23√3,2)设抛物线解析式y=a(x+3)2,a(−3+2√33+3)2=2,∴a=32,∴y=32(x+3)2,当x=0时,y=272;故选:B.设B(−3−m,2),C(−3+m,2),(m>0),可知BC=2m,再由等边三角形的性质可知C(−3+23√3,2),设抛物线解析式y=a(x+3)2,将点C代入解析式即可求a,进而求解;本题考查二次函数的图象及性质,等边三角形的性质;结合函数图象将等边三角形的边长转化为点的坐标是解题的关键.12.【答案】C【解析】解:如图,连接PF,QF,PC,QC,∵P、Q两点分别为△ACF、△CEF的内心,∴PF是∠AFC的角平分线,FQ是∠CFE的角平分线,∴∠PFC=12∠AFC=30°,∠QFC=12∠CFE=30°,∴∠PFC=∠QFC=30°,同理,∠PCF=∠QCF∴PQ⊥CF,∴△PQF是等边三角形,∴PQ=2PG;易得△ACF≌△ECF,且内角是30°,60°,90°的三角形,∴AC=2√3,AF=2,CF=2AF=4,∴S△ACF=12AF×AC=12×2×2√3=2√3,过点P作PM⊥AF,PN⊥AC,PQ交CF于G,∵点P是△ACF的内心,∴PM=PN=PG,∴S△ACF=S△PAF+S△PAC+S△PCF=12AF×PM+12AC×PN+12CF×PG=12×2×PG+12×2√3×PG+12×4×PG=(1+√3+2)PG=(3+√3)PG =2√3,∴PG=√33+√3=√3−1∴PQ=2PG=2(√3−1)=2√3−2.故选:C.先判断出PQ⊥CF,再求出AC=2√3,AF=2,CF=2AF=4,利用△ACF的面积的两种算法即可求出PG,然后计算出PQ即可.此题是三角形的内切圆与内心,主要考查了三角形的内心的特点,三角形的全等,解本题的关键是知道三角形的内心的意义.13.【答案】13【解析】解:由题意得,阴影扇形的半径为1m,圆心角的度数为120°,则扇形的弧长为:120π×1180,而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr=120π×1180,解得,r=13,故答案为:13.求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.本题考查圆锥的有关计算,明确扇形的弧长相当于围成圆锥的底面周长是解决问题的关键.14.【答案】2√5−2【解析】解:如图,连接BE,BD.由题意BD=√22+42=2√5,∵∠MBN=90°,MN=4,EM=NE,∴BE=1MN=2,2∴点E的运动轨迹是以B为圆心,2为半径的圆,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2√5−2.故答案为2√5−2.如图,连接BE,BD.求出BE,BD,根据DE≥BD−BE求解即可.本题考查点与圆的位置关系,直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.【答案】①④【解析】解:如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.由对称性可知,OA=OC,OB=OD,∴四边形ABCD是平行四边形,当OA=OC=OB=OD时,四边形ABCD是矩形.∵反比例函数的图象在一,三象限,∴直线AC与直线BD不可能垂直,∴四边形ABCD不可能是菱形或正方形,故选项①④正确,故答案为①④,如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.证明四边形ABCD是平行四边形即可解决问题.本题考查反比例函数的性质,平行四边形的判定,矩形的判定,菱形的判定,正方形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.【答案】4√3厘米或4√3厘米或8−4√33【解析】解:①当∠ABE =30°时,AE =AB ×tan30°=4√33; ②当∠AEB =30°时,AE =AB tan30∘=√33=4√3;③∠ABE =15°时,∠ABA′=30°,延长BA′交AD 于F ,如下图所示,设AE =x ,则EA′=x ,EF =xsin60∘=2√3x 3, ∵AF =AE +EF =ABtan30°=4√33, ∴x +2√3x 3=4√33, ∴x =8−4√3,∴AE =8−4√3. 故答案为:4√33厘米或4√3厘米或8−4√3厘米.根据翻折可得∠ABE =∠A′BE ,分3种情况讨论:当∠ABE =30°时或当∠AEB =30°时或当∠ABA′=30°时求AE 的长.本题考查了翻折变换、矩形的性质,解决本题的关键是掌握矩形性质.17.【答案】①③④【解析】解:将(−4,0)(0,−4)(2,6)代入y =ax 2+bx +c 得,{16a −4b +c =0c =−44a +2b +c =6,解得,{a =1b =3c =−4,∴抛物线的关系式为y =x 2+3x −4,a =1>0,因此①正确; 对称轴为x =−32,即当x =−32时,函数的值最小,因此②不正确;把(−8,y 1)(8,y 2)代入关系式得,y 1=64−24−4=36,y 2=64+24−4=84,因此③正确;方程ax 2+bx +c =−5,也就是x 2+3x −4=−5,即方x 2+3x +1=0,由b 2−4ac =9−4=5>0可得x 2+3x +1=0有两个不相等的实数根,因此④正确;正确的结论有:①③④, 故答案为:①③④.任意取表格中的三组对应值,求出二次函数的关系式,再根据二次函数的图象与系数之间的关系进行判断即可.本题考查二次函数的图象和性质,理解和掌握二次函数的图象与系数的关系是正确判断的关键.18.【答案】①②④【解析】解:∵把AD沿AE折叠,使点D恰好落在AB边上的D′处,∴∠D=∠AD′E=90°=∠DAD′,AD=AD′,∴四边形ADED′是矩形,又∵AD=AD′=√3,∴四边形ADED′是正方形,∴AD=AD′=D′E=DE=√3,AE=√2AD=√6,∠EAD′=∠AED′=45°,∴D′B=AB−AD′=2,∵点F是BD′中点,∴D′F=1,∴EF=√D′E2+D′F2=√3+1=2,∵将△AED′绕点E顺时针旋转α,∴AE=A′E=√6,∠D′ED′′=α,∠EA′D′′=∠EAD′=45°,∴A′F=√6−2,故①正确;∵tan∠FED′=D′FD′E =√3=√33,∴∠FED′=30°∴α=30°+45°=75°,∴弧D′D″的长度=75°×π×√3180°=5√312π,故②正确;∵AE=A′E,∠AEA′=75°,∴∠EAA′=∠EA′A=52.5°,∴∠A′AF=7.5°,∵∠AA′F≠∠EA′G,∠AA′E≠∠EA′G,∠AFA′=120°≠∠EA′G,∴△AA′F与△A′GE不全等,故③错误;∵D′E=D′′E,EG=EG,∴Rt△ED′G≌Rt△ED′′G(HL),∴∠D′GE=∠D′′GE,∵∠AGD′′=∠A′AG+∠AA′G=105°,∴∠D′GE=52.5°=∠AA′F,又∵∠AFA′=∠EFG,∴△AFA′∽△EFG,故④正确,故答案为:①②④.由折叠的性质可得∠D=∠AD′E=90°=∠DAD′,AD=AD′,可证四边形ADED′是正方形,可得AD=AD′=D′E=DE=√3,AE=√2AD=√6,∠EAD′=∠AED′=45°,由勾股定理可求EF的长,由旋转的性质可得AE= A′E=√6,∠D′ED′′=α,∠EA′D′′=∠EAD′=45°,可求A′F=√6−2,可判断①;由锐角三角函数可求∠FED′= 30°,由弧长公式可求弧D′D″的长度,可判断②;由等腰三角形的性质可求∠EAA′=∠EA′A=52.5°,∠A′AF= 7.5°,可判断③;由“HL”可证Rt△ED′G≌Rt△ED′′G,可得∴∠D′GE=∠D′′GE=52.5°,可证△AFA′∽△EFG,可判断④,即可求解.本题是四边形综合题,考查了矩形的性质,正方形的判定和性质,全等三角形的判定和性质,锐角三角函数,弧长公式,等腰三角形的在,旋转的性质,相似三角形的判定和性质等知识,灵活运用这些性质进行推理证明是本题的关键.19.【答案】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:60x+2=60x⋅35,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90−a)个,由题意得:90−a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90−22)×3=10520,答:建造这90个摊位的最大费用是10520元.【解析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的35这个等量关系列出方程即可.(2)设建A摊位a个,则建B摊位(90−a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.20.【答案】解:(1)∵△ADE由△ABC绕点A按逆时针方向旋转90°得到,∴AB=AD,∠BAD=90°,△ABC≌△ADE,在Rt△ABD中,∠B=∠ADB=45°,∴∠ADE=∠B=45°,∴∠BDE=∠ADB+∠ADE=90°.(2)①DF=PF.证明:由旋转的性质可知,AC=AE,∠CAE=90°,在Rt△ACE中,∠ACE=∠AEC=45°,∵∠CDF=∠CAD,∠ACE=∠ADB=45°,∴∠ADB+∠CDF=∠ACE+∠CAD,即∠FPD=∠FDP,∴DF=PF.②证明:过点P作PH//ED交DF于点H,∴∠HPF=∠DEP,EPPF =DHHF,∵∠DPF=∠ADE+∠DEP=45°+∠DEP,∠DPF=∠ACE+∠DAC=45°+∠DAC,∴∠DEP=∠DAC,又∵∠CDF=∠DAC,∴∠DEP=∠CDF,∴∠HPF=∠CDF,又∵FD=FP,∠F=∠F,∴△HPF≌△CDF(ASA),∴HF=CF,∴DH=PC,又∵EPPF =DHHF,∴EPPF =PCCF.【解析】(1)由旋转的性质得出AB =AD ,∠BAD =90°,△ABC≌△ADE ,得出∠ADE =∠B =45°,可求出∠BDE 的度数;(2)①由旋转的性质得出AC =AE ,∠CAE =90°,证得∠FPD =∠FDP ,由等腰三角形的判定得出结论; ②过点P 作PH//ED 交DF 于点H ,得出∠HPF =∠DEP ,EP PF =DH HF ,证明△HPF≌△CDF(ASA),由全等三角形的性质得出HF =CF ,则可得出结论.本题是相似形综合题,考查了旋转的性质,三角形内角与外角的关系,等腰三角形的判定,全等三角形的判定与性质,平行线的性质,平行线分线段成比例定理等知识,熟练掌握相似三角形的判定与性质是解题的关键. 21.【答案】解:(1)如图1中,△A′B′C′即为所求.(2)如图2中,△AB′C′即为所求.【解析】(1)分别作出A ,B ,C 的对应点A′,B′,C′即可.(2)根据AB =2√5,BC =√5,AC =5,利用数形结合的思想解决问题即可.本题考查作图−旋转变换,解题的关键是理解题意,学会利用数形结合的思想解决问题,属于中考常考题型. 22.【答案】上 直线x =1 A 1A 2=A 3A 4【解析】解:(1)根据表格信息,可知抛物线开口向上,对称轴为直线x =1;故答案为:上,直线x =1;(2)把(−1,0),(0,−3),(2,−3)代入y =ax 2+bx +c ,得:{a −b +c =0c =−34a +2b +c =−3,解得:{a =1b =−2c =−3,∴抛物线解析式为y =x 2−2x −3,当x =−2时,m =4+4−3=5;当x =1时,n =1−2−3=−4;(3)画出抛物线图象,如图1所示,描出P′的轨迹,是一条抛物线,如备用图中的红线所示,(4)根据题意及(3)中图象可得:A 1A 2=A 3A 4.故答案为:A 1A 2=A 3A 4.(1)观察表格中的数据,得到x =0和x =2时,y 值相等都为−3,且其他y 的值比−3大,可得出抛物线开口方向及对称轴;(2)把三点坐标代入抛物线解析式求出a ,b ,c 的值确定出解析式,进而求出m 与n 的值即可;(3)画出抛物线图象,确定出点P′运动的轨迹即可;(4)根据(3)中图象可得答案.本题考查了待定系数法求二次函数的解析式及二次函数的图象与性质,数形结合并熟练掌握二次函数的相关性质是解题的关键.23.【答案】解:(1)∵直线l 1:y =−2x +10交y 轴于点A ,交x 轴于点B ,∴点A(0,10),点B(5,0),∵BC =4,∴点C(9,0)或点C(1,0),∵点P 1(x 1,y 1),P 2(x 2,y 2),当x 1>x 2≥5时,总有y 1>y 2.∴当x ≥5时,y 随x 的增大而增大,当抛物线过点C(9,0)时,则当5<x <7时,y 随x 的增大而减少,不合题意舍去,当抛物线过点C(1,0)时,则当x >3时,y 随x 的增大而增大,符合题意,∴设抛物线解析式为:y =a(x −1)(x −5),过点A(0,10),∴10=5a ,∴a =2,∴抛物线解析式为:y =2(x −1)(x −5)=2x 2−12x +10;(2)当m =−2时,直线l 2:y =−2x +n(n ≠10),∴直线l 2:y =−2x +n(n ≠10)与直线l 1:y =−2x +10不重合,假设l 1与l 2不平行,则l 1与l 2必相交,设交点为P(x P ,y P ),∴{y P =−2x P +n y P =−2x P +10解得:n =10,∵n=10与已知n≠10矛盾,∴l1与l2不相交,∴l2//l1;(3)如图,、∵直线l3:y=−2x+q过点C,∴0=−2×1+q,∴q=2,∴直线l3,解析式为L:y=−2x+2,∴l3//l1,∴CF//AB,∴∠ECF=∠ABE,∠CFE=∠BAE,∴△CEF∽△BEA,∴S△CEFS△ABE =(CEBE)2,设BE=t(0<t<4),则CE=4−t,∴S△ABE=12×t×10=5t,∴S△CEF=(CEBE )2×S△ABE=(4−tt)2×5t=5(4−t)2t,∴S△ABE+S△CEF=5t+5(4−t)2t =10t+80t−40=10(√t√2√t)2+40√2−40,∴当t=2√2时,S△ABE+S△CEF的最小值为40√2−40.【解析】(1)先求出点A,点B,点C坐标,利用待定系数法可求解析式;(2)利用反证法可得结论;(3)通过证明△CEF∽△BEA,可得S△CEFS△ABE =(CEBE)2,BE=t(0<t<4),则CE=4−t,可求S△ABE=12×t×10=5t,S△CEF=5(4−t)2,利用二次函数的性质可求解.t本题是二次函数综合题,考查了一次函数和二次函数的图象和性质,利用待定系数法可求解析式,相似三角形的判定和性质,三角形的面积等知识,利用数形结合思想和函数和方程的思想解决问题是本题的关键.24.【答案】解:(1)如图1,连接OA,OB,∵PA,PB为⊙O的切线,∴∠PAO=∠PBO=90°,∵∠APB+∠PAO+∠PBO+∠AOB=360°,∴∠APB+∠AOB=180°,∵∠APB=80°,∴∠AOB=100°,∴∠ACB=50°;(2)如图2,当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由(1)可知,∠AOB+∠APB=180°,∵∠APB=60°,∴∠AOB=120°,∴∠ACB=60°=∠APB,∵点C运动到PC距离最大,∴PC经过圆心,∵PA,PB为⊙O的切线,∴PA=PB,∠APC=∠BPC=30°,又∵PC=PC,∴△APC≌△BPC(SAS),∴∠ACP =∠BCP =30°,AC =BC ,∴∠APC =∠ACP =30°,∴AP =AC ,∴AP =AC =PB =BC ,∴四边形APBC 是菱形;(3)∵⊙O 的半径为r ,∴OA =r ,OP =2r ,∴AP =√3r ,PD =r ,∵∠AOP =90°−∠APO =60°,∴AD ⏜=60°π⋅r 180∘=π3r , ∴阴影部分的周长=PA +PD +AD ⏜=√3r +r +π3r =(√3+1+π3)r .【解析】(1)连接OA ,OB ,由切线的性质可求∠PAO =∠PBO =90°,由四边形内角和可求解;(2)当∠APB =60°时,四边形APBC 是菱形,连接OA ,OB ,由切线长定理可得PA =PB ,∠APC =∠BPC =30°,由“SAS ”可证△APC≌△BPC ,可得∠ACP =∠BCP =30°,AC =BC ,可证AP =AC =PB =BC ,可得四边形APBC 是菱形;(3)分别求出AP ,PD 的长,由弧长公式可求AD⏜,即可求解. 本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,弧长公式,菱形的判定等知识,灵活运用这些性质解决问题是本题的关键.25.【答案】S 1+S 2=S 3【解析】解:类比探究(1)∵∠1=∠3,∠D =∠F =90°,∴△ADB∽△BFC ,∴S △ADBS △BFC =(AB BC )2,同理可得:S △AECS △BFC =(AC BC )2, ∵AB 2+AC 2=BC 2,∴S 1S 3+S 2S 3=(AB BC )2+(AC BC )2=AB 2+AC 2BC 2=1,∴S 1+S 2=S 3,故答案为:S 1+S 2=S 3.。

2022届秋季高一新生开学分班考试精选数学试卷(全国)07(解析版)

2022届秋季高一新生开学分班考试精选数学试卷(全国)07(解析版)

2022届秋季高一新生入学分班考试数学试卷(全国)07一、选择题1.比-2小的数是( ) A .-3 B .-1C .0D .1【参考答案】A解:比-2小的数只能在负数中找,在-3和-1中, ∵3322-=>=-, ∴32-<-. 故选A .2.一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是( )A .B .C .D .【参考答案】C解:从上面看,一个正方形里面有一个圆且是实线. 故选C .3.下列说法正确的是( )A .要了解一批灯泡的使用寿命,采用普查的方式B .平均数相同的甲、乙两组数据,若甲组数据的方差20.2S =甲,乙组数据的方差20.01S =乙,则乙组数据比甲组数据稳定C .某次抽奖,中奖概率为2%,小李抽取了100张彩票,一定有两张中奖D .随机掷一枚质地均匀的硬币,若第一次正面朝上,则第二次一定反面朝上 【参考答案】BA.要了解一批灯泡的使用寿命,采用抽样调查的方式,A 错误;B.方差越小则数据越稳定,B 正确;C.某次抽奖,中奖概率为2%,小李抽取了100张彩票,可能有两张中奖,C 错误;D.随机掷一枚质地均匀的硬币,若第一次正面朝上,则第二次可能反面朝上,D 错误,故选:B .4.下列运算正确的是( ) A .3362x x x += B .428x x x ⋅=C .623x x x ÷=D .()236x x -=【参考答案】D解:A. 3332x x x +=,原选项计算错误,不合题意; B. 426x x x ⋅=,原选项计算错误,不合题意; C. 624x x x ÷=,原选项计算错误,不合题意; D. ()236x x -=,原选项计算正确,符合题意.故选:D5.如图,//AB CD ,EF 分别与AB ,CD ,交于点B ,E ,若30F ∠=︒,130CEF ∠=︒,则A ∠的度数是( )A .20︒B .30C .40︒D .50︒【参考答案】A 解:∵AB ∥CD ,∴∠ABF =∠CEF =130°,又∵∠A +∠F +∠ABF =180°,且∠F =30°, ∴∠A =180°-∠F -∠ABF =180°-30°-130°=20°, 故选:A .6.数据21,21,26,25,21,25,26,27的众数、中位数分别是( ) A .21,23 B .21,21C .23,21D .21,25【参考答案】D解:把数据按照从小到大重新排列如下:21,21,21,25,25,26,26,27,其中21出现的次数最多,所以众数是21,而排在最中间的两个数是25,25, 所以中位数为:25+25=25,2所以中位数是25. 故选:.D7.如图,A ,B ,C 是O 上的三个点,60AOB ∠=︒, 55B ∠=︒,则A ∠的度数是( )A .25︒B .30C .40︒D .50︒【参考答案】A 解:OB OC =,55B ∠=︒,180270BOCB,60AOB ∠=︒,7060130AOC AOB BOC ︒︒∴∠=∠+∠=+=︒, OA OC =,180130252AOCA,故选:A . 8.不等式组10842x x x -≥⎧⎨+>+⎩的解集在数轴上表示正确的是( )A .B .C .D .【参考答案】B由10x ≥-,得:1≥x ,由842x x +>+,得:2x <, 所以,不等式组的解集为:12x ≤<, 在数轴上表示解集如图所示:,故选B.9.随着5G 网络技术的发展,市场对5G 产品的需求越来越大,为满足市场需求,某大型5G 产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需的时间与更新技术前生产400万件产品所需时间相同,设更新技术前每天生产x 万件,依据题意得( ) A .40050030x x=- B .40050030x x =+ C .40050030x x =- D .40050030x x=+ 【参考答案】B解:设更新技术前每天生产x 万件产品,则更新技术后每天生产(x+30)万件产品, 依题意,得:40050030x x =+. 故选:B .10.如图,菱形ABCD 的边长为2,∠A =60°,一个以点B 为顶点的60°角绕点B 旋转,这个角的两边分别与线段AD 的延长线及CD 的延长线交于点P 、Q ,设DP =x ,DQ =y ,则能大致反映y 与x 的函数关系的图象是( )A .B .C .D .【参考答案】A解:∵四边形ABCD 是菱形,∠A =60°,∴∠ABD =∠CBD =∠ADB =∠BDC =60°,∴∠BDQ =∠BDP =120°,∵∠QBP =60°,∴∠OBD =∠PBC ,∵AP ∥BC ,∴∠P =∠PBC ,∴∠QBD =∠P ,∴△BDQ ∽△PDB ,∴DQ BD BD PD =,即22y x=,∴xy =4,∴y 与x 的函数关系的图象是双曲线,故选A .二、填空题11.新型冠状病毒肺炎疫情期间,应该坚持勤洗手.一双没有洗过的手,带有各种细菌约75000万个,75000万用科学记数法表示为_____. 【参考答案】87.510⨯解:75000万用科学记数法表示为87.510⨯, 故参考答案为:87.510⨯.12.在∠ABC 中,AD 为∠BAC 的角平分线.若添加一个条件:______,则∠ABD ∠∠ACD . 【参考答案】AD BC ⊥当AD ⊥BC 时,∠ADB =∠ADC =90°, ∵AD 平分∠BAC , ∴∠BAD =∠CAD , 在△ABD 和△ACD 中,AD ADADB ADC BAD CAD ⎧⎪=⎨⎪∠=∠=∠⎩∠, ∴△ABD ≌△ACD ,故参考答案为:AD ⊥BC .13.在函数y 中,自变量x 的取值范围是_____. 【参考答案】3x ≤且0x ≠∵y =, ∴300x x -≥⎧⎨≠⎩,∴3x ≤且0x ≠.故参考答案为:3x ≤且0x ≠.14.已知菱形ABCD 的边长为6,∠B =60°,对角线AC 、BD 交于点O ,点E 在对角线BD 上,∠ADE 与∠BOC 相似,则点E 到BC 的距离为______.∵四边形ABCD 是菱形,∴AC BD ⊥,30OBC ADB ︒∠=∠=,AB=BC=AD=6,OA=OC , ∴132OC BC ==,∴OB ==当AE BD ⊥时,此时E 与O 重合,在Rt ADE 和Rt CBE ∆中,高考复习试卷资料AE ECAD BC=⎧⎨=⎩ ∴ADE CBE ≅∆, 设E 到BC 的距离为h ,∵1122COBS OB OC CB h =⋅=⋅,即113622h ⨯=⨯,解得2h =,∴E 到BC ; 当AE AD ⊥时,∵30OBC ADB ︒∠=∠=,90EAD COB ︒∠=∠= ∴ADE ∽OBC ∆,在Rt △ADE 中,30ADB ︒∠=,AD =6,∴tan 30AE AD ︒=⋅= 延长AE 交BC 于点G ,则AG BC ⊥,在Rt △ABD 中,60ABC ︒∠=,AB =6,∴sin 60AG AB ︒=⋅=∴EG AG AE =-=高考复习试卷资料2. 15.如图,点A 、B 在双曲线y =kx(x >0)上,点C 、D 在坐标轴上,AC∠x 轴,BD∠y 轴,OA 与BD 交于点E ,OB 与AC 交于点F ,AC 与DB 交于点G ,BD =2OC ,四边形OEGF 的面积为2,则k 的值为___.【参考答案】8 解:连接OG ,设A ,k m m ⎛⎫ ⎪⎝⎭, ∴OC=m , ∴BD =2OC=2m , ∴B 2,2k m m ⎛⎫ ⎪⎝⎭,高考复习试卷资料∴2kCG AG BG DG m m====, , ∵//EG OC , ∴1,AE AGO AEG A C E G O C== ,∴214AEG AOCS AG SAC ⎛⎫== ⎪⎝⎭. ∵//AG OD , ∴1,AE EGOE DE== AEG OED ,∴2,1,AEG OEDSAE DE EG SEO ⎛⎫=== ⎪⎝⎭ ∴E 是DG 的中点, ∴12ODEOEGODGSSS ==.∵//BG OC , ∴1,BG FGOC CF== ∴GF FC =, ∴F 是GC 的中点, ∴12OGFOFCOCG SSS ==.在矩形OCGD 中,ODGOCG S S =,∴ODEOEGOGF OFCSSSS===.∵四边形OEGF 的面积为2, ∴1OEGOGFS S ==, ∴1ODE OEGOGFOFCS S SS====,∴1AEG ODES S==, ∴44AOCAEGSS==,∴28AOCk S ==.故参考答案为:8.高考复习试卷资料16.如图,平面直角坐标系中,∠ABC 、∠A 1B 1C 1、∠A 2B 2C 2、…∠A n B n ∠n 均为等边三角形,点A 、A 1、…An 在x 轴上,OA =1,点B 在y 轴上,BC //B 1C 1//B 2C 2//…//B n ∠n //x 轴,点C 为A 1B 1中点,点C 1为A 2B 2中点,…,点∠n 为A n +1B n +1中点.则点C 4坐标为______.【参考答案】(解:过点C ,作CW 1⊥x 轴,过点C 1,作C 1W 2⊥x 轴,过点C 2,作C 2W 3⊥x 轴.∵点B 在y 轴上,BC //B 1C 1//B 2C 2//…//B n ∁n //x 轴,OA =1,△ABC 、△A 1B 1C 1、△A 2B 2C 2、…△A n B n ∁n 均为等边三角形∴==60BAO ABC ∠∠︒,111==60B AO B ∠∠︒ 则1===21cos 602OA AB ︒,1==tan60=1CW OB OA ⋅︒11=+=+=2=2OW OA AW OA OA OA ,故点C (2∴1△ACA 是等边三角形 ∵点C 为A 1B 1中点∴111====4222A C B A A AB C∴2112=+=+22=55OW OA AA AW OA OA OA OA ++=,12122CW OA(15C ,由上述规律:3=+244=1111OW OA OA OA OA OA ++=,234C W OA (2C 11,;4=+2488=2323OW OA OA OA OA OA OA +++=,348C W OA ,则(3C 23,;5=+24816+16=4747OW OA OA OA OA OA OA OA +++=,4516C W OA ,则(4C 47,;故参考答案为:(三、解答题17.(1)计算0214cos3023-⎛⎫︒+- ⎪⎝⎭⎝⎭(2)化简式子2244233x x x x x x +-+⎛⎫++÷ ⎪--⎝⎭并在0,2,3中选取一个合适的数作为x 的值代入求值. 【参考答案】(1)8;(2)22x x +-;当0x =时,原式=1-.解:(1)02114cos30223-⎛⎫⎛⎫︒-+-- ⎪ ⎪ ⎪⎝⎭⎝⎭(4219=-+-219=+-8=;(2)2244233x x x x x x +-+⎛⎫++÷⎪--⎝⎭22(2)(3)(2)333x x x x x x x ++--⎡⎤=+÷⎢⎥---⎣⎦2(2)(13)33(2)x x x x x ++--=⋅--x 2x 2+=-, 因为x 不能取2,3, 所以当x =0时,原式=021 02+=--.18.《中国汉字听写大会》唤醒了很多人对文字基本功的重视和对汉字文化的学习,我区某校组织了一次全校2000名学生参加的“汉字听写大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生海选成绩分组表请根据所给信息,解答下列问题:(1)求出D组的人数,并把图1中的条形统计图补充完整;(请画在答题卷相对应的图上)(2)在图2的扇形统计图中,记表示B组人数所占的百分比为%a,则a的值为______,表示C组扇形的圆心角θ的度数为______度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?(4)经过统计发现,在E组中,有2位男生和2位女生获得了满分,如果从这4人中挑选2人代表学校参加比赛,请用树状图或列表法求出所选两人正好是一男一女的概率是多少?【参考答案】(1)50(人);作图见题目解析;(2)15,72;(3)700人;(4)23.解:(1)D组的人数是:2001030407050----=(人),补全图形如下:(2)B组人数所占的百分比是30100%15%200⨯=,则a的值是15;C组扇形的圆心角θ的度数为4036072200︒⨯=︒;故参考答案为:15,72;(3)根据题意得:702000700200⨯=(人)答:估计该校参加这次海选比赛的2000名学生中成绩“优等”的有700人.(4)分别用A、B表示两名女生,分别用C、D表示两名男生,由题意,可列表:由已知,共有12种结果,且每种结果出现的可能性相同,其中满足要求的有8种,∴P(恰好抽到1个男生和1个女生)82 123 ==.19.如图,在ABC 中,D 是边BC 上一点,以BD 为直径的O 经过点A ,且CAD ABC ∠=∠.(1)请判断直线AC 是否是O 的切线,并说明理由;(2)若2CD =,4CA =,求半径的长.【参考答案】(1)直线AC 是O 的切线,参考答案见题目解析;(2)3.解:(1)直线AC 是O 的切线,理由如下:如图,连接OA .∵BD 为O 的直径,∴90BAD OAB OAD ∠=︒=∠+∠. ∵OA OB =, ∴OAB ABC ∠=∠. 又∵CAD ABC ∠=∠, ∴90OAD CAD ∠+∠=︒. ∴AC OA ⊥.又∵点A 在O 上,∴直线AC 是O 的切线.(2)∵CAD ABC ∠=∠,C C ∠=∠, ∴CAD CBA ∽△△, ∴CA CDCB AC=,即2AC CD CB =⋅, ∴2CD =,4CA =,∴162CB =, ∴8CB =,从而6BD =,即26r =, ∴3r =.20.如图,已知一次函数1y kx b =+与反比例函数2my x=的图象在第一、三象限分别交于(6,1)A ,(,3)B a -两点,连接OA ,OB .(1)求一次函数和反比例函数的题目解析式; (2)AOB 的面积为______;(3)直接写出12y y >时x 的取值范围.【参考答案】(1)1122y x =-,26y x =;(2)8;(3)-2<x <0或x >6.解:(1)把(6,1)A 代入反比例函数2my x=得:m=6,∴反比例函数的题目解析式为26y x=, ∵(,3)B a -点在反比例函数2my x=图像上, ∴-3a=6,解得a=-2, ∴B (-2,-3),∵一次函数y 1=kx+b 的图象经过A 和B ,∴1632k b k b =+⎧⎨-=-+⎩,解得:122k b ⎧=⎪⎨⎪=-⎩,∴一次函数的题目解析式为1122y x =-; (2)∵(6,1)A ,(2,3)B --,一次函数的题目解析式为1122y x =-, 令y=0,解得:x=4,即一次函数图像与x 轴交点为(4,0), ∴S △AOB =()141382⨯⨯+=, 故参考答案为:8; (3)由图象可知:12y y >时,即一次函数图像在反比例函数图像上方,x 的取值范围是:-2<x <0或x >6.21.一方有难,八方支援.2020年初,新冠肺炎爆发,山东某蔬菜基地运输公司计划安排甲、乙两种货车向某疫区运送新鲜蔬菜,两次满载的运输情况如下表:(1)求甲、乙两种货车每次满载分别能运输多少吨新鲜蔬菜?(2)目前至少有36吨新鲜蔬菜要一次性运输到目的地,该公司拟安排甲、乙两种货车共8辆,其中每辆甲种货车一次运送费用为500元,每辆乙种货车一次运送费用为300元,请问该公司应如何安排甲、乙两种货车使总运送费用最少?【参考答案】(1)甲、乙两种货车每次满载分别能运输5吨和3吨新鲜蔬菜;(2)该公司安排甲种货车6辆,乙种货车2辆时总运送费用最少.解:(1)设甲、乙两种货车每次满载分别能运输x 吨和y 吨新鲜蔬菜,根据题意得:23193530x y x y +=⎧⎨+=⎩, 解得53x y =⎧⎨=⎩.答:甲、乙两种货车每次满载分别能运输5吨和3吨新鲜蔬菜; (2)设安排甲种货车a 辆,乙种货车()8a -辆,根据题意得:()53836a a +-≥,解得6a ≥,设总运送费用为w 元,则500300(8)2002400w a a a ==+-+, ∵2000>,∴w 随a 的增大而增大,∴当6a =时,w 的值最小,从而该公司安排甲种货车6辆,乙种货车2辆时总运送费用最少.22.如图1 ,在ABC 中,90,,BAC AB AC ∠=︒=D 是BC 边上一点(不与点,B C 重合),将线段AD 绕点A 逆时针旋转90︒得到AE ,连接EC .(发现问题)(1)如图1 ,通过图形旋转的性质,可知AD =_______,DAE =∠ 度; (解决问题)(2)如图1,证明BC DC EC =+; (拓展延伸)如图2,在ABC 中,90,,BAC AB AC D ∠=︒=为ABC 外一点,且45ADC ∠=︒,仍将线段AD 绕点A 逆时针旋转90︒得到AE ,连接,EC ED . (3)若6,3,AD CD ==求的BD 长.【参考答案】(1)AE ;90;(2)见题目解析;(3)BD 的长为9解:(1)由旋转性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角,得到90AD AE DAE =∠=︒,. 故参考答案为:AE ;90. (2)∵90DAE BAC ∠=∠=︒, ∴DAE DAC BAC DAC ∠-∠=∠-∠, ∴BAD CAE ∠=∠, 又∵,AB AC AD AE ==, ∴ABD ACE △≌△(SAS ), ∴BD CE =,∴BC BD DC DC EC =+=+; (3)如图2中,连BD .∵90=BAC DAE ∠=︒∠,∴+=+BAC DAC DAE DAC ∠∠∠∠, ∴=CAE BAD ∠∠, 又AB AC =,AD AE =,ABD ∴≌()ACE SAS ,BD CE ∴=,∵90DAE ∠=︒,AD AE =, ∴22222=+=DE AD AE AD ,45ADE ADC ∠=∠=︒,ECD ∴为直角三角形,=90EDC ∠︒,∴2222222283261EC CD ED CD AD =+=+⨯==+,∴EC=9,∴=9BD CE =.23.如图,抛物线2=3y ax x c ++()0a ≠与x 轴交于点()2,0A -和点B ,与y 轴交于点()0,8C ,顶点为D ,连接AC ,CD ,DB ,直线BC 与抛物线的对称轴l 交于点E .(1)求抛物线的题目解析式和直线BC 的题目解析式; (2)求四边形ABDC 的面积;(3)P 是第一象限内抛物线上的动点,连接PB ,PC ,当35PBCABCSS =时,求点P 的坐标;(4)在抛物线的对称轴l 上是否存在点M ,使得BEM △为等腰三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由. 【参考答案】(1)8y x =-+,21382y x x =-++;(2)70;(3)1(2,12)P ,2(6,8)P ;(4)存在.点M 的坐标为(3,0)或()3,5-或(3,5+或(3,5-(1)抛物线23y ax x c =++(0)a ≠过点(2,0)A -和(0,8)C ,∴4608a c c -+=⎧⎨=⎩解得128a c ⎧=-⎪⎨⎪=⎩∴抛物线的题目解析式为21382y x x =-++. 令0y =,得213802x x -++=. 解得12x =-,28x =.高考复习试卷资料∴点B 的坐标为()8,0.设直线BC 的题目解析式为y kx b =+. 把点()8,0B,()0,8C 分别代入y kx b =+,得608k b b +=⎧⎨=⎩解得18k b =-⎧⎨=⎩ ∴直线BC 的题目解析式为8y x =-+.(2)如图,设抛物线的对称轴l 与x 轴交于点H . 抛物线的题目解析式为()221125383222y x x x =-++=--+, ∴顶点D 的坐标为253,2⎛⎫⎪⎝⎭.∴S 四边形ABDC AOCSS =+四边形OCDH BDH S +△111()222AO OC OC DH OH HB HD =⋅++⋅+⋅ 11251252883522222⎛⎫=⨯⨯+⨯+⨯+⨯⨯ ⎪⎝⎭ 70=.(3)111084022ABC S AB OC =⋅=⨯⨯=△. ∴3245PBC ABCSS ==.如图,过点P 作PG x ⊥轴,交x 轴于点G ,交BC 于点F .高考复习试卷资料设点21,382P t t t ⎛⎫-++ ⎪⎝⎭. 点F 在直线BC 上,∴(,8)F t t -+. ∴2142PF t t =-+. ∴11()2422PBC S PF OG GB PF OB =⋅+=⋅=△. ∴211482422t t ⎛⎫-+⨯= ⎪⎝⎭.解得12t =,26t =.∴1(2,12)P ,2(6,8)P .(4)存在.直线BC 的题目解析式为8y x =-+对称轴l 为:3x =(3,5)E ∴5EH BH ∴==BE ∴==①当MB ME =时,点M 与点H 重合,∴M ()3,0高考复习试卷资料②当EB EM =时,15HM =1M ∴(3,5-或者25HM =2M ∴(3,5+③当BE BM =时,5HM HE ==,3M ∴()3,5-点M 的坐标为()3,0或()3,5-或(3,5+或(3,5-.24.如图,在平面直角坐标系中,已知点C (0,4),点A 、B 在x 轴上,并且OA =OC =4OB ,动点P 在过A 、B 、C 三点的抛物线上.(1)求抛物线的函数表达式;(2)在直线AC 上方的抛物线上,是否存在点P ,使得∠P AC 的面积最大?若存在,求出P 点坐标及ΔP AC 面积的最大值;若不存在,请说明理由.(3)在x 轴上是否存在点Q ,使得∠ACQ 是等腰三角形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【参考答案】(1)y =−x 2+3x +4;(2)存在, 当P 点坐标为(2,6)时,ΔP AC 面积的最大值是8;(3)Q (0,0),(-4,0),()()4,4+-.解: (1)∵C (0,4),∴OC =4.∵OA =OC =4OB ,∴OA =4,OB =1,∴A (4,0),B (−1,0),设抛物线题目解析式:y =a (x +1)(x −4),∴4=−4a ,∴a =−1.∴y =−x 2+3x +4.(2)存在.作PN ⊥x 轴交AC 于N , ()()4,0,0,4,A C高考复习试卷资料 ∴ AC 的题目解析式为y =-x +4 ,设P (x ,−x 2+3x +4),则N (x ,-x +4),得PN =(−x 2+3x +4)-(-x +4)=−x 2+4x ,∴S △P AC =12PN ×4=2PN =2(−x 2+4x )=-2(x -2)2+8 ,当x =2时,ΔP AC 面积的最大值为8,此时点P 的坐标为(2,6).∴P 点坐标为(2,6)时,ΔP AC 面积有最大值,最大面积是8 .(3) 设(),0,Q x 根据勾股定理得:()2222222224432,4,416,AC AQ x CQ x x =+==-=+=+①当AC AQ =时,()2432,x -=1244x x ∴=+=-此时可得Q 的坐标为(,0)、(,0);②当CA CQ =时,21632,x +=∴ 4,x =±当4x =时,不合题意舍去,()4,0,Q ∴-③当QC QA =时,()22416,x x -=+0,x ∴=()0,0.Q ∴综上,符合条件的点Q 的坐标为:(0,0),(-4,0),()()4,4+-.高考复习试卷资料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P DC B A 高一新生分班考试数学试卷(含答案)(满分150分,考试时间120分钟)题号 一二三总分得分1.化简=-2a a () A .a B .a -C .a D .2a2.分式1||22---x x x 的值为0,则x 的值为()A .21或-B .2C .1-D .2-3.如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点。

若EF =2,BC =5,CD =3, 则tanC 等于() A .43B .35C .34D .454.如图,PA 、PB 是⊙O 切线,A 、B 为切点,AC 是直径,∠P =40°,则∠BAC =() A .040B .080C .020D .0105.在两个袋内,分别装着写有1、2、3、4四个数字的4张卡片,今从每个袋中各任取一张卡片,则所取两卡片上数字之积为偶数的概率是()A .21B .165C .167D .43 6.如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为().4 C 如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是A →D →C →B →A ,设P 点经过的路程为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是()8.若直角坐标系内两点P 、Q 满足条件①P 、Q 都在函数y 的图象上②P 、Q 关于原点对称,则称点对(P ,Q )是函数y 的一个“友好点对”(点对(P ,Q )与(Q ,P )看作同一个“友好点对”)。

已知函数⎪⎩⎪⎨⎧>≤++=0211422x xx x x y ,,,则函数y 的“友好点对”有()个 A ..1 C 注意:请将选择题的答案填入表格中。

题号 12345678得分评卷人答案(4题图) O C B A P(6题B CF E (3题二、 填空题(每题5分,共50分)9.已知a 、b 是一元二次方程2210x x --=的两个实数根,则代数式()()2a b a b ab -+-+的值等于10.有一个六个面分别标上数字1、2、3、4、5、6的正方体,甲、乙、丙三位同学从不同的角度观察的结果如图所示.如果记2的对面的数字为m ,3的对面的数字为n ,则方程1x m n +=的解x 满足1+<<k x k ,k 为整数,则k =11.如图,直角梯形纸片ABCD 中,AD y x ()f x 2y x =2()f x x =1x =(1)1f=||)(x x x f =c b a >>0=++c b a 0≠b )()()(c f b f a f ++111C B A ABC-2,1==BC AB 31=AA M 1BB 1MC AM +BM 图,AB 是半圆O 的直径,四边形CDMN 和DEFG 都是正方形,其中C ,D ,E 在AB 上,F ,N 在半圆上。

若AB=10,则正方形CDMN 的面积与正方形DEFG 的面积之和是 16.如图,CD 为直角ΔABC 斜边AB 上的高,BC 长度为1,DE ⊥AC 。

设ΔADE ,ΔCDB ,ΔABC的周长分别是12,,p p p 。

当12p p p+取最大值时,AB= 17.如图放置的等腰直角∆ABC 薄片(2,900==∠AC ACB )沿x 轴滚动,点A 的运动 轨迹曲线与x 轴有交点,则在两个相邻交点间点A 的轨迹曲线与x 轴围成图形面积为___ 18.如图是一个数表,第1行依次写着从小到大的正整数,然后把每行相邻的两个数的和写在这两数正中间的下方,得到下一行,数表从上到下与从左到右均为无限项,则这个数表中的第11行第7个数为(用具体数字作答)1234567… … 4… … 486480…注意:请将填空题的答案填在下面的横线上。

三、解答题(共60分)19.(本小题满分12分)如图,抛物线1417452++-=x x y 与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C (3,0). (1)求直线AB 的函数关系式;(2)动点P 在线段OC 上从原点出发以每秒一个单位的速度向C 移动,过点P 作PN ⊥x 轴,交直线AB 于点M ,交抛物线于点N 。

设点P 移动的时间为t 秒,MN 的长度为s 个单位,求s 与t 的函数关系式,并写出t 的取值范围;(3)设在(2)的条件下(不考虑点P 与点O ,点C 重合的情况),连接CM ,BN ,当t 为何值时,四边形BCMN 为平行四边形?问对于所求的t 值,平行四边形BCMN 能否为菱形?请说明理由.得分 评卷人11题图B CE D AF 5 23 3 2 1 2 6 1 甲 乙 丙10题图 oxy C AB题图17ABC M1A 1B 1C 题图1420.(本小题满分12分)函数)(x f ,若自变量x 取值范围内存在0x ,使00)(x x f =成立,则称以00(,)x x 为坐标的点为函数()f x 图像上的不动点。

()(x f 的定义见第.....12..题.) (1)若函数bx ax x f ++=3)(有两个关于原点对称的不动点,求a ,b 应满足的条件; (2)在(1)的条件下,若a=2,直线1)1(:-+-=b x a y l 与y 轴、x 轴分别相交于A 、B 两点,在xby =的图象上取一点P (P 点的横坐标大于2),过P 作PQ ⊥x 轴,垂足是Q ,若四边形A BQP 的面积等于2,求P 点的坐标(3)定义在实数集上的函数)(x f ,对任意的x 有)()(x f x f -=-恒成立。

下述命题“若函数)(x f 的图像上存在有限个不动点,则不动点有奇数个”是否正确?若正确,给予证明;若不正确,举反例说明。

21.(本小题满分12分)已知圆Ox 轴负半轴于A 点,交y 轴正半轴于B 点 (1)求BAO ∠(2)设圆O 与x 轴的两交点是12,F F 线从1F 射出经反射到2F 经过的路程(3)点P 是x 轴负半轴上一点,从点P 发出的光线经l 反射后与圆O 相切.若光线从射出经反射到相切经过的路程最短,求点P 的坐标 22.(本小题满分12分)在金融危机中,某钢材公司积压了部分圆钢,经清理知共有2009根.现将它们堆放在一起. (1)若堆放成纵断面为正三角形(每一层的根数比上一层根数多1根),并使剩余的圆钢尽可能地少,则剩余了多少根圆钢?(2)若堆成纵断面为等腰梯形(每一层的根数比上一层根数多1根),且不少于七层, (Ⅰ)共有几种不同的方案?(Ⅱ)已知每根圆钢的直径为10cm ,为考虑安全隐患,堆放高度不得高于4m ,则选择哪个方案,最能节省堆放场地? 23.(本小题满分12分)试求出所有正整数a 使得关于x 的二次方程22(21)4(3)0ax a x a +-+-=至少有一个整数根.数学试卷答案一、选择题(每题5分,共40分)三、 填空题(每题5分,共50分) 9.1-10.011.612.1或-113.614.115.2516.217.24+π18.12288 三、解答题(共60分)19.解:(1)易知A(0,1),B(3,,可得直线AB 的解析式为y =121+x ……………3分(2))121(1417452+-++-=-==t t t MP NP MN s)30(415452≤≤+-=t t t ………………6分(3)若四边形BCMN 为平行四边形,则有MN =BC ,此时,有25415452=+-t t ,解得11=t ,22=t 所以当t =1或2时,四边形BCMN 为平行四边形.………………8分①当t =1时,23=MP ,4=NP ,故25=-=MP NP MN ,又在Rt △MPC 中,2522=+=PC MP MC ,故MN =MC ,此时四边形BCMN 为菱形…………10分②当t =2时,2=MP ,29=NP ,故25=-=MP NP MN ,又在Rt △MPC 中,522=+=PC MP MC ,故MN ≠MC ,此时四边形BCMN 不是菱形.…………12分 20.解:(1)由题得x bx ax =++3有两个互为相反数的根0x ,0x -)0(0≠x 即)(0)3(2b x a x b x -≠=--+有两个互为相反数的根0x ,0x -……1分根带入得⎪⎩⎪⎨⎧=---+=--+0))(3(0)3(020020a x b x a x b x ,两式相减得0)3(20=-x b ,3=∴b ……3分方程变为)3(02-≠=-x a x 90≠>∴a a 且…………4分(2)由(1)得3,2==b a ,所以2:+-=x y l ,即A (0,2)B(2,0)……5分设x y 3=上任意一点)2)(3,(>t tt P ,所以)2)(0,(>t t Q ……6分 又因为2-=∆AOB AOQP S S 四边形,所以22221)32(21=⨯⨯-+t t 25=∴t ……8分)56,25(P ∴……………………9分(3)正确①在)()(x f x f -=-令0=x 得)0()0(f f -=所以0)0(=f所以)0,0(为函数的不动点……………………10分 ②设00(,)x x 为函数()f x 图像上的不动点,则00)(x x f = 所以000)()(x x f x f -=-=-,所以),(00x x --也为函数()f x 图像上的不动点……………………12分 21.解:(1)由题|OA|=4,|OB|=334,所以33tan =∠BAO ,所以030=∠BAO 2分 (2)如图(1)由对称性可知,点1F 关于l 的对称点/1F 在过点()4,0A -且倾斜角为060的直线/l 上在/21AF F ∆中,0'160=∠AO F ,3811'1=-==O F AO AF AF ,3162=AF所以/21AF F ∆为直角三角形,02'190=∠F AF 。

所以光线从1F 射出经反射到2F 经过的路程为3382'12'121==+=+F F MF M F MF M F …………………………6分 (2)如图(2)由对称性可知,点P 关于l 的对称点'P 在过点()4,0A -且倾斜角为060的直线/l 上Q P MQ M P MQ PM ''=+=+,所以路程最短即为/l 上点/P 到切点Q 的切线长最短。

连接',OP OQ ,在'OQP Rt ∆中,只要'OP 最短,由几何知识可知,/P 应为过原点O 且与/l 垂直的直线与/l 的交点,这一点又与点P 关于l 对称,∴260cos 0'===AO AP AP ,故点P 的坐标为()2,0-……………12分22.解:(1)设纵断面层数为n ,则21+即20092)1(≤+n n ,040182≤-+n n 当62=n 此时剩余的圆钢为562)162(622009=+-(2)当纵断面为等腰梯形时,设共堆放n)1(.....)2()1(=-+++++++n x x x x 即4177220092)12(⨯⨯⨯=⨯=-+n x n ,……………………6分因1-n 与n 的奇偶性不同,所以12-+n x 与n 的奇偶性也不同,且12-+<n x n ,从而由上述等式得:⎩⎨⎧=-+=574127n x n 或⎩⎨⎧=-+=2871214n x n 或⎩⎨⎧=-+=981241n x n 或⎩⎨⎧=-+=821249n x n ,所以共有4种方案可供选择。

相关文档
最新文档