概率论与数理统计知识点例题讲解

合集下载

概率论与数理统计知识点总结!-知识归纳整理

概率论与数理统计知识点总结!-知识归纳整理

《概率论与数理统计》 第一章随机事件及其概率§1.1 随机事件一、给出事件描述,要求用运算关系符表示事件: 二、给出事件运算关系符,要求判断其正确性: §1.2 概率古典概型公式:P (A )=所含样本点数所含样本点数ΩA 实用中经常采用“罗列组合”的想法计算补例1:将n 个球随机地放到n 个盒中去,问每个盒子恰有1个球的概率是多少?解:设A :“每个盒子恰有1个球”。

求:P(A)=?Ω所含样本点数:n n n n n =⋅⋅⋅...Α所含样本点数:!1...)2()1(n n n n =⋅⋅-⋅-⋅n n n A P !)(=∴补例2:将3封信随机地放入4个信箱中,问信箱中信的封数的最大数分别为1、2、3的概率各是多少?解:设A i :“信箱中信的最大封数为i”。

(i =1,2,3)求:P(A i )=?Ω所含样本点数:6444443==⋅⋅A 1所含样本点数:24234=⋅⋅836424)(1==∴A PA 2所含样本点数:363423=⋅⋅C1696436)(2==∴A PA 3所含样本点数:4433=⋅C161644)(3==∴A P注:由概率定义得出的几个性质:知识归纳整理1、0<P (A )<12、P(Ω)=1,P(φ) =0 §1.3 概率的加法法则定理:设A 、B 是互不相容事件(AB=φ),则: P (A ∪B )=P (A )+P (B )推论1:设A 1、 A 2、…、 A n 互不相容,则 P(A 1+A 2+...+ A n )= P(A 1) + P(A 2) +…+ P(A n )推论2:设A 1、 A 2、…、 A n 构成完备事件组,则 P(A 1+A 2+...+ A n )=1推论3: P (A )=1-P (A )推论4:若B ⊃A ,则P(B -A)= P(B)-P(A) 推论5(广义加法公式):对任意两个事件A 与B ,有P(A ∪B)=P(A)+P(B)-P(A B) 补充——对偶律:nnAA A A A A ⋂⋂⋂=⋃⋃⋃ (2)121nnAA A A A A ⋃⋃⋃=⋂⋂⋂ (2)121§1.4 条件概率与乘法法则条件概率公式:P(A/B)=)()(B P AB P (P(B)≠0)P(B/A)= )()(A P AB P (P(A)≠0)∴P (AB )=P (A /B )P (B )= P (B / A )P (A )有时须与P (A+B )=P (A )+P (B )-P (AB )中的P (AB )联系解题。

概率论与数理统计

概率论与数理统计
根据定理5.2有
1 lim P ( X 1 X 2 X n ) p 1, n n nA 即 lim P p 1. n n
关于伯努利定理的说明:
nA 伯努利定理表明事件发 生的频率 依概 n 率收敛于事件的概率p, 它以严格的数学形式 表达了频率的稳定性 .
x
定理5.6表明:
无论各个随机变量 X 1 , X 2 ,, X n ,服从什么 分布, 只要满足定理的条件 , 那么它们的和 X k
k 1 n
当 n 很大时, 近似地服从正态分布 .
下面介绍的定理是定理5.5的特殊情况.
定理5.7:
设随机变量 X服从参数为 n, p(0 p 1)的二项分布,则 ( 1 )(拉普拉斯定理)局 部极限定理:
且np 2, npq 1.265.
3 ( 1 )直接计算: P{ X 3} C10 0.23 0.87 0.2013
第一节
大数定律
一、问题的引入 二、基本定理 三、典型例题 四、小结
一、问题的提出:
契比雪夫不等式
定理 设随机变量 X 具有数学期望 E ( X ) μ, 方差 D( X ) σ 2 , 则对于任意正数 ε , 不等式 σ2 P{ X μ ε } 2 ε 成立. 证明
取连续型随机变量的情况来证明.
则随机变量之和的标准化变量 n n n n X k E X k X k k k 1 k 1 k 1 Z n k 1 n Bn D X k k 1 的分布函数 Fn ( x ) 对于任意x 满足
n n X k k k 1 k 1 lim Fn ( x ) lim P n n Bn t2 x 1 2 e dt ( x ). 2π

概率论与数理统计复习资料

概率论与数理统计复习资料

自考04183概率论与数理统计(经管类)笔记-自考概率论与数理统§1.1 随机事件1.随机现象:确定现象:太阳从东方升起,重感冒会发烧等;不确定现象:随机现象:相同条件下掷骰子出现的点数:在装有红、白球的口袋里摸某种球出现的可能性等;其他不确定现象:在某人群中找到的一个人是否漂亮等。

结论:随机现象是不确定现象之一。

2.随机试验和样本空间随机试验举例:E1:抛一枚硬币,观察正面H、反面T出现的情况。

E2:掷一枚骰子,观察出现的点数。

E3:记录110报警台一天接到的报警次数。

E4:在一批灯泡中任意抽取一个,测试它的寿命。

E5:记录某物理量(长度、直径等)的测量误差。

E6:在区间[0,1]上任取一点,记录它的坐标。

随机试验的特点:①试验的可重复性;②全部结果的可知性;③一次试验结果的随机性,满足这些条件的试验称为随机试验,简称试验。

样本空间:试验中出现的每一个不可分的结果,称为一个样本点,记作。

所有样本点的集合称为样本空间,记作。

举例:掷骰子:={1,2,3,4,5,6},=1,2,3,4,5,6;非样本点:“大于2点”,“小于4点”等。

3.随机事件:样本空间的子集,称为随机事件,简称事件,用A,B,C,…表示。

只包含一个样本点的单点子集{}称为基本事件。

必然事件:一定发生的事件,记作不可能事件:永远不能发生的事件,记作4.随机事件的关系和运算由于随机事件是样本空间的子集,所以,随机事件及其运算自然可以用集合的有关运算来处理,并且可以用表示集合的文氏图来直观描述。

(1)事件的包含和相等包含:设A,B为二事件,若A发生必然导致B发生,则称事件B包含事件A,或事A包含于事件B,记作,或。

性质:例:掷骰子,A:“出现3点”,B:“出现奇数点”,则。

注:与集合包含的区别。

相等:若且,则称事件A与事件B相等,记作A=B。

(2)和事件概念:称事件“A与B至少有一个发生”为事件A与事件B的和事件,或称为事件A与事件B的并,记作或A+B。

概率论与数理统计重点总结及例题解析

概率论与数理统计重点总结及例题解析

概率论与数理统计重点总结及例题解析一:全概率公式和贝叶斯公式例:某厂由甲、乙、丙三个车间生产同一种产品,它们的产量之比为3:2:1,各车间产品的不合格率依次为8%,9%, 12% 。

现从该厂产品中任意抽取一件,求:(1)取到不合格产品的概率;(2)若取到的是不合格品,求它是由甲车间生产的概率。

(同步45页三、1)解:设A1,A2,A3分别表示产品由甲、乙、丙车间生产,B表示产品不合格,则A1,A2,A3为一个完备事件组。

P(A1)=1/2, P(A2)=1/3, P(A3)=1/6,P(B| A1)=0。

08,P(B| A2)=0。

09,P(B| A3)=0。

12.由全概率公式P(B) = P(A1)P(B| A1)+ P(A2)P(B| A2)+ P(A3)P(B| A3) = 0.09由贝叶斯公式:P(A1| B)=P(A1B)/P(B) = 4/9练习:市场上出售的某种商品由三个厂家同时供货,其供应量第一厂家为第二厂家的2倍,第二、三两厂家相等,而且第一、二、三厂家的次品率依次为2%,2%,4%。

若在市场上随机购买一件商品为次品,问该件商品是第一厂家生产的概率是多少?(同步49页三、1)【0.4 】练习:设两箱内装有同种零件,第一箱装50件,有10件一等品,第二箱装30件,有18件一等品,先从两箱中任挑一箱,再从此箱中前后不放回地任取2个零件,求:(同步29页三、5)(1)取出的零件是一等品的概率;(2)在先取的是一等品的条件下,后取的仍是一等品的条件概率. 解:设事件i A ={从第i 箱取的零件},i B ={第i 次取的零件是一等品} (1)P (1B )=P(1A )P (1B |1A )+P (2A )P(1B |2A )=52301821501021=+(2)P (1B 2B )=194.02121230218250210=+C C C C ,则P (2B |1B )=)()(121B P B B P = 0.485二、连续型随机变量的综合题 例:设随机变量X 的概率密度函数为⎩⎨⎧<<=others x x x f 020)(λ 求:(1)常数λ;(2)EX ;(3)P{1〈X<3};(4)X 的分布函数F (x)(同步47页三、2)解:(1)由⎰⎰==∞+∞-201)(xdx dx x f λ得到λ=1/2 (2)3421)(22===⎰⎰∞+∞-dx x dx x xf EX (3)⎰⎰===<<31214321)(}31{xdx dx x f x P (4)当x<0时,⎰∞-==xdt x F 00)(当0≤x<2时,⎰⎰⎰∞-∞-=+==xxx tdt dx dt t f x F 00241210)()(当x ≥2时,F(x )=1故201()02412x F x x x x <⎧⎪⎪=≤<⎨⎪≥⎪⎩练习:已知随机变量X 的密度函数为⎩⎨⎧≤≤+=others x b ax x f 010)(且E (X)=7/12。

(完整版)概率论与数理统计复习题带答案讲解

(完整版)概率论与数理统计复习题带答案讲解

;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。

2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。

3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。

4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。

5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。

6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。

7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC I I ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。

12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =U ( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =U ( 0.2 ) 17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。

《概率论与数理统计》典型例题

《概率论与数理统计》典型例题

《概率论与数理统计》典型例题第一章 随机事件与概率例1.已知事件,A B 满足,A B 与同时发生的概率与两事件同时不发生的概率相等,且()P A p =,则()P B = 。

分析:此问题是考察事件的关系与概率的性质。

解:由题设知,()(P AB P A B =∩),则有()()()1()1()()()P AB P A B P A B P A B P A P B P AB ===−=−−+∩∪∪而,故可得。

()P A p =()P B =1p −注:此题具体考察学生对事件关系中对偶原理,以及概率加法公式的掌握情况,但首先要求学生应正确的表示出事件概率间的关系,这三点都是容易犯错的地方。

例2.从10个编号为1至10的球中任取1个,则取得的号码能被2或3整除的概率为 。

分析:这是古典概型的问题。

另外,问题中的一个“或”字提示学生这应该是求两个事件至少发生一个的概率,即和事件的概率,所以应考虑使用加法公式。

解:设A :“号码能被2整除”,B :“号码能被3整除”,则53(),()1010P A P B ==。

只有号码6能同时被2和3整除,所以1()10P AB =,故所求概率为 5317()()()()10101010P A B P A P B P AB =+−=+−=∪。

注:这是加法公式的一个应用。

本例可做多种推广,例如有60只球,又如能被2或3或5整除。

再如直述从10个数中任取一个,取得的数能被2或3整除的概率为多少等等。

例3.对于任意两事件,若,则 A B 和()0,()0P A P B >>不正确。

(A )若AB φ=,则A 、B 一定不相容。

(B )若AB φ=,则A 、B 一定独立。

()若C AB φ≠,则A 、B 有可能独立。

()若D AB φ=,则A 、B 一定不独立。

分析:此问题是考察事件关系中的相容性与事件的独立性的区别,从定义出发。

解:由事件关系中相容性的定义知选项A 正确。

天津市考研数学复习资料概率论与数理统计重要概念总结与例题讲解

天津市考研数学复习资料概率论与数理统计重要概念总结与例题讲解

天津市考研数学复习资料概率论与数理统计重要概念总结与例题讲解天津市考研数学复习资料——概率论与数理统计重要概念总结与例题讲解概率论与数理统计是数学中的重要分支,对于考研数学的备考来说,也是一个重要的考点。

在这里,我们将为大家总结概率论与数理统计中一些重要的概念,并结合例题进行详细讲解,希望能够对大家的数学复习有所帮助。

一、概率论重要概念总结1. 随机事件与样本空间随机事件是描述一个实验中出现的一种结果,样本空间是指所有可能结果的集合。

通常用S表示样本空间,用A、B、C等表示随机事件。

2. 概率的基本定义概率是描述随机事件发生可能性大小的数值,表示为P(A),其中A是一个随机事件。

概率的取值范围是[0, 1]。

3. 事件的关系与运算事件的关系包括包含关系、互斥关系、对立关系等。

事件的运算包括并、交、差、余等运算。

4. 条件概率与乘法法则条件概率表示在已知某一事件发生的条件下,另一个事件发生的概率。

乘法法则用于计算多个事件同时发生的概率。

5. 全概率公式与贝叶斯公式全概率公式用于计算一个事件的概率,贝叶斯公式用于在已知某些条件下,计算另一事件的概率。

二、概率论例题讲解1. 例题一随机事件A与B互斥,且P(A)=0.3,P(B)=0.4,求P(A并B)。

解析:由于A与B互斥,所以P(A并B)=0。

2. 例题二在一副有52张牌的扑克牌中,随机抽取一张,求抽到红心牌的概率。

解析:红心牌共有13张,所以概率为P(红心牌)=13/52=1/4。

三、数理统计重要概念总结1. 随机变量与概率分布随机变量是指随机事件在数值上的映射,概率分布描述随机变量取值的概率情况。

常见的概率分布有离散型概率分布和连续型概率分布。

2. 数理统计中的参数估计与假设检验参数估计用于利用样本数据推断总体的参数,假设检验用于验证关于总体参数的假设。

3. 常见的概率分布常见的离散型概率分布有伯努利分布、二项分布、泊松分布等;常见的连续型概率分布有均匀分布、正态分布等。

(完整版)概率论与数理统计复习题带答案讲解

(完整版)概率论与数理统计复习题带答案讲解

;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。

2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。

3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。

4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。

5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。

6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。

7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC I I ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。

12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =U ( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =U ( 0.2 ) 17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。

概率论与数理统计习题集及问题详解

概率论与数理统计习题集及问题详解

第1章 概率论的基本概念§1 .8 随机事件的独立性1. 电路如图,其中A,B,C,D 为开关。

设各开关闭合与否相互独立,且每一开关闭合的概率均为p,求L 与R 为通路(用T 表示)的概率。

A B L R C D1. 甲,乙,丙三人向同一目标各射击一次,命中率分别为0.4,0.5和0.6,是否命中,相互独立, 求下列概率: (1) 恰好命中一次,(2) 至少命中一次。

第1章作业答案§1 .8. 1: 用A,B,C,D 表示开关闭合,于是 T = AB ∪CD, 从而,由概率的性质及A,B,C,D 的相互独立性P(T) = P(AB) + P(CD) - P(ABCD)= P(A)P(B) + P(C)P(D) – P(A)P(B)P(C)P(D)424222p p p p p -=-+=2: (1) 0.4(1-0.5)(1-0.6)+(1-0.4)0.5(1-0.6)+(1-0.4)(1-0.5)0.6=0.38; (2) 1-(1-0.4)(1-0.5)(1-0.6)=0.88.第2章 随机变量及其分布§2.2 10-分布和泊松分布1 某程控交换机在一分钟内接到用户的呼叫次数X 是服从λ=4的泊松分布,求(1)每分钟恰有1次呼叫的概率;(2)每分钟只少有1次呼叫的概率; (3)每分钟最多有1次呼叫的概率;2 设随机变量X 有分布律: X 23 , Y ~π(X), 试求: p 0.4 0.6(1)P(X=2,Y ≤2); (2)P(Y ≤2); (3) 已知 Y ≤2, 求X=2 的概率。

§2.3 贝努里分布2 设每次射击命中率为0.2,问至少必须进行多少次独立射击,才能使至少击中一次的概率不小于0.9 ?§2.6 均匀分布和指数分布2 假设打一次电话所用时间(单位:分)X 服从2.0=α的指数分布,如某人正好在你前面走进电话亭,试求你等待:(1)超过10分钟的概率;(2)10分钟 到20分钟的概率。

《概率论与数理统计》疑难解析

《概率论与数理统计》疑难解析

《概率论与数理统计》疑难解析《概率论与数理统计》疑难解析·内容提要/ ·疑难分析/ ·例题解析目录第一章随机事件及其概率 (1)第二章随机变量及其分布 (7)第三章多维随机变量及其分布 (13)第四章随机变量的数字特征 (19)第五章大数定律和中心极限定理 (24)第六章数理统计的基本概念 (26)第七章参数估计 (29)第八章假设检验 (33)第九章方差分析和回归分析 (35)第一章随机事件及其概率内容提要1、随机试验、样本空间与随机事件(1)随机试验:具有以下三个特点的试验称为随机试验,记为E。

1)试验可在相同的条件下重复进行;2)每次试验的结果具有多种可能性,但试验之前可确知试验的所有可能结果;3)每次试验前不能确定哪一个结果会出现。

(2)样本空间:随机试验E的所有可能结果组成的集合称为E 的样本空间,记为Ω;试验的每一个可能结果,即Ω中的元素,称为样本点,记为e。

(3)随机事件:在一次试验中可能出现也可能不出现的事件称为随机事件,简称事件,常用A、B、C 等大写字母表示;可表述为样本空间中样本点的某个集合,分为复合事件和简单事件,还有必然事件(记为Ω)和不可能事件(记为Φ)。

2、事件的关系与运算(1)包含关系与相等:“事件A发生必导致B发生”,记为或;且(2)和事件(并):“事件A与B至少有一个发生”,记为。

(3)积事件(交):“ 事件A与B同时发生”,记为或AB 。

(4)差事件、对立事件(余事件):“事件A发生而B不发生”,记为A-B称为A与B的差事件;称为B的对立事件;易知:。

(5)互不相容性:AB=ф;A、B互为对立事件且。

(6)事件的运算法则:1) 交换律:;2) 结合律:;3) 分配律:;4) 对偶(De Morgan) 律:,,可推广。

3、频率与概率(1)频率的定义:事件A在n次重复试验中出现次,则比值称为事件A在n次重复试验中出现的频率,记为,即。

概率论与数理统计典型例题与解析(期末考试与考研必备的超强资料)

概率论与数理统计典型例题与解析(期末考试与考研必备的超强资料)

概率论与数理统计典型例题分析(期末考试与考研必备)1.在数学系学生中任选一名学生.设事件A ={选出的学生是男生},B ={选出的学生是三年级学生},C ={选出的学生是科普队的}.(1)叙述事件ABC 的含义.(2)在什么条件下,ABC =C 成立?(3)在什么条件下,C ⊂B 成立?解 (1)事件ABC 的含义是,选出的学生是三年级的男生,不是科普队员.(2)由于ABC ⊂C ,故ABC =C 当且仅当C ⊂ABC .这又当且仅当C ⊂AB ,即科普队员都是三年级的男生.(3)当科普队员全是三年级学生时,C 是B 的子事件,即C ⊂B 成立.2.将一枚硬币独立地掷两次,引进事件:A ={掷第一次出现正面},B ={掷第二次出现正面},C ={正、反面各出现一次},则事件A ,B ,C 是相互独立,还是两两独立? 解 由题设,可知P (AB )=P (A )P (B ),即A ,B 相互独立.而1()(())()()(),4P AC P A AB AB P AB P A P B =+=== ()()()()()(()())P A P C P A P AB AB P A P AB P AB =+=+⋅=+⨯=41)4121(21 故A ,C 相互独立,同理B ,C 也相互独立.但是P (ABC )=P (∅)=0,而 ,81212121)()()(=⨯⨯=C P B P A P 即 )()()()(C P B P A P ABC P ≠,因此A ,B ,C 两两独立.问题 (1)两个事件的“独立”与“互斥”之间有没有关系?在一般情况下,即P (A )>0,P (B )>0时,有关系吗?为什么?(2)设0<P (A )<1,0<P (B )<1,P (B |A )+P (B |A )=1.问A 与B 是否独立,为什么?由此可以得到什么结论?3.设A ,B ,C 是三个随机事件,且=====)()(,41)()()(CB P AB P C P B P A p 0,81)(=AC P ,求A ,B ,C 中至少有一个发生的概率. 解 设D ={A ,B ,C 中至少有一个发生},则D =A +B +C ,于是P (D )=P (A +B +C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ).又因为,41)()()(===C P B P A P ,0)()(==CB P AB P 81)(=AC P ,而由P (AB )=0,有P (ABC )=0,所以⋅=-=858143)(D P 问题 怎样由P (AB )=0推出P (ABC )=0?提示 利用事件的关系与运算导出.4.设事件A 与B 相互独立,P (A )=a ,P (B )=b .若事件C 发生,必然导致A 与B 同时发生,求A ,B ,C 都不发生的概率.解 由于事件A 与B 相互独立,因此P (AB )=P (A )·P (B )=a ·b .考虑到C ⊂AB ,故有,B A B A AB C ⊃+=⊃因此).1)(1()()()()(b a B P A P B A P C B A P --===5.某地铁每隔5 min 有一列车通过,在乘客对列车通过该站时间完全不知道的情况下,求每一个乘客到站等车时间不多于2 min 的概率.解 设A ={每一个乘客等车时间不多于2 min}.由于乘客可以在接连两列车之间的任何一个时刻到达车站,因此每一乘客到达站台时刻t 可以看成是均匀地出现在长为5 min 的时间区间上的一个随机点,即Ω=[0,5).又设前一列车在时刻T 1开出,后一列车在时刻T 2到达,线段T 1T 2长为5(见图1-1),即L (Ω)=5;T 0是T 1T 2上一点,且T 0T 2长为2.显然,乘客只有在T 0之后到达(即只有t 落在线段T 0T 2上),等车时间才不会多于2min ,即L (A )=2.因此图1-1⋅=Ω=52)()()(L A L A P 6.甲乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内到达的时间是等可能的,如果甲船和乙船停泊的时间都是两小时,它们同日到达时会面的概率是多少?解 这是一个几何概型问题.设A ={它们会面}.又设甲乙两船到达的时刻分别是x ,y ,则0≤x ≤24,0≤y ≤24.由题意可知,若要甲乙会面,必须满足|x -y |≤2,即图中阴影部分.由图1-2可知:L (Ω)是由x =0,x =24,y =0,y =24图1-2所围图形面积S =242,而L (A )=242-222,因此.)2422(1242224)()()(2222-=-=Ω=L A L A P7.设随机事件B 是A 的子事件,已知P (A )=1/4,P (B )=1/6,求P (B |A ).分析 这是一个条件概率问题.解 因为B ⊂A ,所以P (B )=P (AB ),因此⋅===32)()()()()|(A P B P A P AB P A B P 8.在100件产品中有5件是不合格的,无放回地抽取两件,问第一次取到正品而第二次取到次品的概率是多少?解 设事件A ={第一次取到正品},B ={第二次取到次品}.用古典概型方法求出.010095)(=/=A P 由于第一次取到正品后不放回,那么第二次是在99件中(不合格品仍是5件)任取一件,所以⋅=995)|(A B P 由公式(1-4), ⋅=⨯==3961999510095)|()()(A B P A P AB P9.五个人抓一个有物之阄,求第二个人抓到的概率.解 这是一个乘法公式的问题.设A i ={第i 个人抓到有物之阄}(i =1,2,3,4,5),有⋅=+∅=+=+=Ω=2121212111222)(A A A A A A A A A A A A A根据事件相同,对应概率相等有).|()()()(121212A A P A P A A P A P ==又因为,41)|(,54)(,51)(1211===A A P A P A P 所以 ⋅=⨯=514154)(2A P10.设袋中有4个乒乓球,其中1个涂有白色,1个涂有红色,1个涂有蓝色,1个涂有白、红、蓝三种颜色.今从袋中随机地取一个球,设事件A ={取出的球涂有白色},B ={取出的球涂有红色},C ={取出的球涂有蓝色}. 试验证事件A ,B ,C 两两相互独立,但不相互独立.证 根据古典概型,我们有n =4,而事件A ,B 同时发生,只能是取到的球是涂有白、红、蓝三种颜色的球,即m =1,因而⋅=41)(AB P 同理,事件A 发生,只能是取到的球是涂红色的球或涂三种颜色的球,因而⋅==⋅==2142)(2142)(B P A P 因此,有 ,412121)()(=⨯=B P A P 所以 P (AB )=P (A )P (B ),即事件A ,B 相互独立.类似可证,事件A ,C 相互独立,事件B ,C 相互独立,即A ,B ,C 两两相互独立,但是由于,41)(=ABC P 而 ,4181212121)()()(=/=⨯⨯=C P B P A P 所以A ,B ,C 并不相互独立.11.加工某一零件共需经过四道工序,设第一、二、三、四道工序的次品率分别是2%、3%、5%、3%,假定各道工序是互不影响的,求加工出来的零件的次品率.答案是:0.124(或1-0.98×0.97×0.95×0.97).12.一批零件共100个,其中有次品10个.每次从中任取一个零件,取出的零件不再放回去,求第一、二次取到的是次品,第三次才取到正品的概率. 答案是:)989099910010(0084.0⨯⨯或. 13.用高射炮射击飞机,如果每门高射炮击中飞机的概率是0.6,试问:(1)用两门高射炮分别射击一次击中飞机的概率是多少?(2)若有一架敌机入侵,至少需要多少架高射炮同时射击才能以99%的概率命中敌机?分析 本题既可使用加法公式,也可使用乘法公式.解 (1)令B i ={第i 门高射炮击中敌机}(i =1,2),A ={击中敌机}.在同时射击时,B 1与B 2可以看成是互相独立的,从而21,B B 也是相互独立的,且有P (B 1)=P (B 2)=0.6,.4.0)(1)()(121=-==B P B P B P方法1(加法公式)由于A =B 1+B 2,有P (A )=P (B 1+B 2)=P (B 1)+P (B 2)-P (B 1)P (B 2)=0.6+0.6-0.6×0.6=0.84.方法2(乘法公式) 由于21B B A =,有,16.04.04.0)()()()(2121=⨯===B P B P B B P A P于是 .84.0)(1)(=-=A P A P(2)令n 是以99%的概率击中敌机所需高射炮的门数,由上面讨论可知,99%=1-0.4n 即 0.4n =0.01,亦即.026.53979.024.0lg 01.0lg ≈--==n 因此若有一架敌机入侵,至少需要配置6门高射炮方能以99%的把握击中它.14.设某人从外地赶来参加紧急会议.他乘火车、轮船、汽车或飞机来的概率分别是31110510、、及52,如果他乘飞机来,不会迟到;而乘火车、轮船或汽车来迟到的概率分别为41、⋅12131、试问:(1)他迟到的概率;(2)此人若迟到,试推断他是怎样来的可能性最大? 解 令A 1={乘火车},A 2={乘轮船},A 3={乘汽车},A 4={乘飞机},B ={迟到}.按题意有:,103)(1=A P ,51)(2=A P ,101)(3=A P ,52)(4=A P,41)|(1=A B P ,31)|(2=A B P ,121)|(3=A B P .0)|(4=A B P (1)由全概率公式,有⋅=⨯+⨯+⨯+⨯==∑=203052121101315141103)|()()(41i i i A B P A P B P (2)由逆概率公式 ),4,3,2,1()|()()|()()|(41==∑=i A B P A P A B P A P B A P jj j i i i得到.0)|(,181)|(,94)|(,21)|(4321====B A P B A P B A P B A P 由上述计算结果可以推断出此人乘火车来的可能性最大.15.三人同时向一架飞机射击,设他们射中的概率分别为0.5,0.6,0.7.又设无人射中,飞机不会坠毁;只有一人击中飞机坠毁的概率为0.2;两人击中飞机坠毁的概率为0.6;三人射中飞机一定坠毁.求三人同时向飞机射击一次飞机坠毁的概率.解 设A i ={第i 个人射中}(i =1,2,3),有P (A 1)=0.5, P (A 2)=0.6, P (A 3)=0.7.又设B 0={三人都射不中},B 1={只有一人射中},B 2={恰有两人射中},B 3={三人同时射中},C ={飞机坠毁}.由题设可知,0)|(0=B C P ,2.0)|(1=B C P ,6.0)|(2=B C P ,1)|(3=B C P并且.06.03.04.05.0)()()()()(3213210=⨯⨯===A P A P A P A A A P B P同理)()(3213213211A A A A A A A A A P B P ++=)()()(321321321A A A P A A A P A A A P ++=123123123()()()()()()()()()P A P A P A P A P A P A P A P A P A =++=0.5×0.4×0.3+0.5×0.6×0.3+0.5×0.4×0.7=0.29;P (B 2)=0.44;P (B 3)=0.21.利用全概率公式便得到)|()()(30i i i B C P B P C P ∑===0.06×0+0.29×0.2+0.44×0.6+0.21×1=0.532.由上面的讨论可以看出,在使用全概率公式和逆概率公式解题时,“分析题目,正确写出题设,找出(或计算)先验概率和条件概率”是十分重要的.练习:两台机床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍,求任意取出的零件是合格品的概率;又:如果任意取出的零件经检查是废品,求它是由第二台机床加工的概率.答案是:0.973;0.25.16.某类电灯泡使用时数在1000 h 以上的概率为0.2,求三个灯泡在使用1000 h 以后最多只坏一个的概率.解 这是一个n =3,p =0.8二项概型问题P 3(μ≤1)=P (μ=0)+P (μ=1).17.袋中有10个球,其中2个为白色,从中有放回地取出3个,求这3个球中恰有2个白球的概率.解 方法1 设A ={恰有2个白球},由古典概型,有310=n , 8232⨯⨯=m ,因此 ⋅⨯⨯=3210823)(A P 方法2 由二项概型,有⋅⨯⨯====321223310823)108()102()2()(C P A P μ18.袋中有4个白球、6个红球,先从中任取出4个,然后再从剩下的6个球中任取一个,则它恰为白球的概率是______.分析 设A i ={第i 次取到白球},根据古典概型,我们有⋅==104)(110141C C A P 由于 ,)(212111222A A A A A A A ΩA A +=+==并且,94106)|()()(,93104)|()()(1212112121⨯==⨯==A A P A P A A P A A P A P A A P 因此 ⋅=⨯⨯+⨯=1049104634)(2A P 同理 ⋅=104)(5A P 19.有一批产品,其中正品有n 个,次品有m 个,先从这批产品中任意取出l 个(不知其中的次品数),然后再从剩下的产品中任取一个恰为正品的概率为( ).方法1 设A k ={前l 次中恰有k 个正品},k =q ,q +1,…,p ;其中q =max(l -m ,0),p =min(n ,l ).又设B ={第l +1个恰为正品},有,)(,1nm k l m k n k p q q C C C A P ΩA A A +-+==+++ 而 ,)|(11ln m k n C C A B P l n m k n k -+-==-+- 由全概率公式有⋅+==∑=nm n A B P A P B P k k p q k )|()()( 举例说明:(1)n =3,m =5,l =4,这时k =0,1,2,3.⋅=+++=8)4/()0306015()(48C B P⋅=+++=8)4/()5609020()(48C B P 方法2 利用抓阄问题的讨论,直接得到⋅+n m n 方法3 前l +1次取到正品的概率减去前l 次取到正品的概率(有条件限制,有时使用起来不一定方便)方法4 (全排列方法)令第l +1个位置上为正品,由于有n 个正品,故有n 种方法,于是⋅+=+-+=nm n n m n m n B P )!()!1()( 方法5 将第l +1次看成第1次,于是⋅+==+nm n C C B P n m n 11)( 20.袋中有5个球,其中1个是红球,每次取1个球,取出后不放回,前3次取到红球的概率为( ).分析 设A ={前3次取到红球},根据古典概型,有⋅==53)(352411C C C A P说明 利用这一结论,可以计算第3次取到红球的概率:P {第3次取到红球}=P {前3次取到红球}-P {前2次取到红球}⋅=-=-=515253251411352411C C C C C C 注意 这里实际用到了互斥情况下的加法公式.21.设两两相互独立的三事件A ,B ,C ,满足:ABC =∅,P (A )=P (B )=P (C )<21,并且169)(=++C B A P ,求事件A 的概率. 分析 设P (A )=p .由于ABC =∅,有P (ABC )=0,根据三个事件两两独立....情况下的加法公式,有P (A +B +C )=P (A )+P (B )+P (C )-P (A )P (B )-P (B )P (C )-P (A )P (C )+P (ABC ), 即 ,1690332=+-p p 亦即 ,01632=+-p p 解得 41=p 或43(由题意舍去).于是 ⋅=41)(A P 说明 (1)三个事件两两独立,不能推出三个事件相互独立.(2)由ABC =⇒∅P (ABC )=0,反之不真.22.设P (A )>0,P (B )>0,证明(1)若A 与B 相互独立,则A 与B 不互斥.(2)若A 与B 互斥,则A 与B 不独立.分析 (1)由于事件A 与B 相互独立,且P (A )>0,P (B )>0,因此P (AB )=P (A )P (B )>0.可见,AB ≠∅,即事件A 与B 不互斥(相容).(2)由于事件A 与B 互斥,即AB =∅,因此P (AB )=0,而P (A )>0,P (B )>0,故P (AB )≠P (A )P (B ),即事件A 与B 不可能相互独立.说明 (1)事件之间相互独立,并不意味着它们互斥,反之亦然.(2)在P (A )>0,P (B )>0的条件下,两个事件独立与否,是在它们相容情况下讨论的.(3)事件的“互斥”与“相互独立”是没有关系的两个“关系”.23.设A ,B 是两个随机事件,且0<P (A )<1,P (B )>0,)|()|(A B P A B P =,则P (AB )=P (A )P (B ).分析 由公式()()()(|),(|),()()1()P AB P AB P AB P B A P B A P A P A P A ===- 由题设 ),|()|(A B P A B P =即,)(1)()()(A P B A P A P AB P -= 于是,有 ()()(()())()()()(),P AB P A P AB P AB P A P AB AB P A P B =+=+=即A 、B 相互独立.说明 (1) )|()|(A B P A B P =是A ,B 独立的一个充要条件.(2)若此题换成下述选择题:设……,则______ (A)).|()|(B A P B A P = (B)(|)(|).P A B P A B =/(C)P (AB )=P (A )P (B ). (D )P (AB )≠P (A )P (B ).时,能否认为(A )与(B ),或(C )与(D )之中必有一个成立.24.设两个随机事件A ,B 相互独立,已知仅有A 发生的概率为41,仅有B 发生的概率为41,则 P (A )=______,P (B )=______.分析 方法1 因为P (A )>0,P (B )>0,且A 与B 相互独立,所以AB ≠∅(想一想为什么).一方面P (A +B )=P (A )+P (B )-P (A )P (B ); (1-6)另一方面).()(21)()()()()(B P A P B P A P B A P B A P B A P +=++=+ (1-7) 由于)()(B A P B A P =,有 ),()()()(B P AB B A P AB B A P A P =+=+=于是由式(1-6),式(1-7)有,))((21))(()(222A P A P A P +=- 即 ⋅===-21)(,21)(,41))(()(2B P A P A P A P 方法2 因为A 与B 相互独立,所以A 与B 也相互独立.由于)()(B A P B A P =,有P (A )=P (B ),于是,41))(1)(())(1)(()()()(=-=-==A P A P B P A P B P A P B A P 因此 ⋅==21)()(B P A P 问题 比较上述两种方法,哪个更简单一些,还有没有其他方法?25.设随机事件A 与B 的和事件的概率为0.6,且积事件B A ⋅的概率为0.3,则事件A 的概率P (A )=( ).分析 因为B A B A +=⋅,所以.4.06.01)(1)()(=-=+-=+=⋅B A P B A P B A P又因为,)(B A B A B B A ΩA A +=+==故 .7.04.03.0)()(=+=+=B A B A P A P26.甲、乙两封信随机地投入标号是1,2,3,4,5的五个信筒内,则第3号信筒恰好只投入一封信的概率为( ).分析 这是一个古典概型问题,有1422,5C m n ⨯==,因此P (A )=0.32.问题 (1)如何将信投入信箱转化为在信封上写号问题? (2)本题是否可用(有放回)摸球问题来解决?27.袋中有10个球,其中有4个白球、6个红球.从中任取3个,求这3个球中至少有1个是白球的概率.分析 这一个古典概型问题,样本空间中样本点的总数为⋅=310C n方法1 设A ={至少有1个白球},有⋅=++=65)(310063416242614C C C C C C C A P 方法2 设B ={取出的全是红球},有⋅-=-=3104361)(1)(C CC B P A P方法3 先从4个白球中任取一个,然后再从剩下的9个球(有红球又有白球)中任取2个,因此⋅=3102914)(C CC A P问题 上述三种方法都对吗,为什么?28.一批产品共100件,对产品进行不放回地抽样检查,整批产品不合格的条件是:在被检查的5件产品中至少有一件是废品.如果在该批产品中有5件是废品,求该批产品被拒绝接收的概率.解 设A i ={被检查的第i 件产品是废品},i =1,2,3,4,5;B ={该批产品被拒绝接收}.方法1 由于,54321A A A A A B ++++=于是1234512345()1()1()P B P A A A A A P A A A A A =-++++=-1213124123512341()(|)(|)(|)(|),P A P A A P A A A P A A A A P A A A A A =-而 ,9893)|(,9994)|(,10095)(213121===A A A P A A P A P ⋅==9691)|(,9792)|(432153214A A A A A P A A A A P因此 .23.09691979298939994100951)(=⨯⨯⨯⨯-=B P方法2 .23.01)(1)(5100595=-=-=C C B P B P29.由以往记录的数据分析,某船只在不同情况下运输某种物品,损坏2%,10%,90%的概率分别为0.8,0.15和0.05.现在从中随机地取三件,发现这三件全是好的,试分析这批物品的损坏率为多少?分析 设B ={三件都是好的},A 1={损坏率为2%}, A 2={损坏率为10%},A 3={损坏率为90%},则A 1,A 2,A 3两两互斥,且A 1∪A 2∪A 3=Ω.已知P (A 1)=0.8,P (A 2)=0.15,P (A 3)=0.05,且3198.0)|(=A B P , 3290.0)|(=A B P , 3310.0)|(=A B P .由全概率公式可知)()|()(31i i i A P A B P B P ∑==05.01.015.090.08.098.0333⨯+⨯+⨯= 8624.0≈.由贝叶斯公式,这批物品的损坏率为2%,10%,90%的概率分别是,8731.08624.08.098.0)()()|()|(3111≈⨯==B P A P A B P B A P,1268.08624.015.090.0)()()|()|(3222≈⨯==B P A P A B P B A P.0001.08624.005.01.0)()()|()|(3333≈⨯==B P A P A B P B A P由于P (A 1|B )比P (A 2|B ),P (A 3|B )大得多,因此可以认为这批货物的损坏率为2%.30.掷两枚匀称的骰子,X ={点数之和},求X 的分布. 答案是:⋅⎥⎦⎤⎢⎣⎡36/136/236/11232~ X 31.设⎪⎩⎪⎨⎧≤>+=,0,0,0,11)(2x x x x f f (x )是否为分布密度函数?如何改造?解 由于,2πd )(=⎰+∞∞-x x f 所以f (x )不是分布密度函数.令⎪⎩⎪⎨⎧≤>+⋅==.0,0,0,11π2)(π2)(2x x x x f x p则p (x )是分布密度函数.32.设随机变量X 的分布密度函数为⎩⎨⎧≤≤=.,0,10,)(其他x Cx x p求(Ⅰ)常数C ;(Ⅱ)P (0.3≤X ≤0.7);(Ⅲ)P (-0.5≤X <0.5).解 (Ⅰ)由p (x )的性质,有,21|2d d )(110210C x C x Cx x x p =⋅===⎰⎰∞+∞-所以C =2.(Ⅱ).4.0|d 2)7.03.0(7.03.027.03.0===≤≤⎰x x x X P(Ⅲ).25.0|d 2d 0)5.05.0(5.0025.0005.0==+=≤≤-⎰⎰-x x x x X P问题 若连续型随机变量X 的分布密度函数p (x )为不可求积函数,如何计算P (X ∈D )呢?33.从一批有13个正品和2个次品的产品中任意取3个,求抽得的次品数X 的分布列和分布函数,并求⋅≤<)2521(X P 解 先求X 的分布列,X 的所有可能取值为0,1,2,由古典概型的概率计算公式知3122113213213323151********(0),(1),(2)353535C C C C C P X P X P X C C C =========⋅ 故X 的分布列为四个区间.当x <0时,F (x )=P (X ≤x )=0.当10<≤x 时,⋅===3522)0()(X P x F 当12x ≤<时,⋅==+==3534)1()0()(X P X P x F 当x ≥2时,F (x )=P (X =0)+P (X =1)+P (X =2)=1. 综上有X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<=.2,1,21,3534,10,3522,0,0)(x x x x x F由分布函数可求出⋅=-=-=≤<351335221)21()25()2521(F F X P 34.设连续型随机变量X 的分布函数⎪⎩⎪⎨⎧≤>+=-,0,0,0,e )(22x x B A x F x求系数A 和B .解 由lim ()1n F x →+∞=,知A =1.再由F (x )在x =0处的连续性可知,)e(lim )(lim 02200B A B A x F x x x +=+==-+→→故 B =-A =-1.35.设连续型随机变量X 的分布函数为()1xAF x e-=+, +∞<<∞-x , 求(Ⅰ)常数A . (Ⅱ)X 的分布密度函数p (x ). (Ⅲ)P {X ≤0}.答案是:(Ⅰ)A =1.(Ⅱ)2)e 1(e )(x xx p --+= +∞<<∞-x . (Ⅲ)⋅==<21)0()0(F X P 问题 (1)离散型随机变量的概率分布与分布函数之间有什么关系?(2)连续型随机变量的概率分布密度与分布函数之间有什么关系? (3)如何利用分布函数计算P (X ∈D )?其中D =(a ,b ]. (4)如何确定分布函数中的待定常数?36.设X 服从指数分布,则Y =min{X ,2}的分布函数( ).(A)连续. (B)至少有两个间断点. (C)阶梯函数. (D)恰有一个间断点. 答案是:D .分析 方法1 由题设可知X ~E (λ),有⎩⎨⎧≤>=-.0,0,0,e )(x x x p x λλ 令X 1=X ,X 2=2,则⎩⎨⎧≥<=⎩⎨⎧>-≤=-.2,1,2,0)(;0,e 1,0,0)(21x x x F x x x F xλ于是,Y =min{X ,2}=min{X 1,X 2}的分布函数为))(1))((1(1)(21y F y F y F ---=○一⎪⎩⎪⎨⎧≥<<-≤=-.2,1,20,e 1,0,0y y y y λ 可见它只有一个间断点y =2.方法2 从图2-1中,容易看出它只有一个间断点y =2.图2-137.一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只球,用X 表示取出的3只球中的最小号码数,求X 的分布函数.解 X 的可能取值为3,2,1.,106/)1(,103/)2(,101/)3(352435233522=========C C X P C C X P C C X P 即X 的分布阵为⎥⎥⎦⎤⎢⎢⎣⎡101103106321, 从而X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<=.3,1,32,109,21,106,1,0)(x x x x x F38.设X ~U (a ,b ),即⎪⎩⎪⎨⎧≤≤-=.,0,,1)(其他b x a a b x p则⎪⎩⎪⎨⎧≥<≤--<=.,1,,,,0)(b x b x a a b a x a x x F 其图形是一条连续的曲线,见图2-3.图2-339.设X ~N (0,1),求P (X <2.35),P (X <-1.25)以及P (|X |<1.55). 解 P (X <2.35)=Ф(2.35)查表0.9906.P (X <-1.25)=Ф(-1.25)=1-Ф(1.25)=1-0.8944=0.1056.P (|X |<1.55)=P (-1.55<X <1.55)=Ф(1.55)-Ф(-1.55)=2Ф(1.55)-1=2×0.9394-1=0.8788.40.设X ~N (1,22),求P (0<X ≤5). 解 这里μ=1,σ=2,β=5,α=0,有.5.0,2--=-σμασμβ 于是P (0<X ≤5)=Ф(2)-Ф(-0.5)=Ф(2)-[1-Ф(0.5)]=Ф(2)+Ф(0.5)-1=0.9772+0.6915-1=0.6687.41.若X ~N (μ,σ2),求(Ⅰ)P {μ-σ<X <μ+σ}; (Ⅱ)P {μ-2σ<X <μ+2σ}; (Ⅲ)P {μ-3σ<X <μ+3σ}. 解 (Ⅰ)由于X ~N (μ,σ2),故)()(}{σμσμσμσμσμσμ----+=+<<-ΦΦX P =Ф(1)-Ф(-1)=2Ф(1)-1=0.6826≈0.68.同理有:(Ⅱ) P {μ-2σ<X <μ+2σ}=2Ф(2)-1=0.9545≈0.95. (Ⅲ) P {μ-3σ<X <μ+3σ}=2Ф(3)-1=0.9973≈0.99.42.设X ~N (2,32),求:(Ⅰ)P {-1≤X ≤8};(Ⅱ)P {X ≥-4};(Ⅲ)P {X ≤11}. 解 由于X ~N (2,32),即μ=2,σ=3,因此 (Ⅰ)P {-1≤X ≤8}=P {2-3≤X ≤2+2×3}=P {2-3≤X <2}+P {2≤X ≤2+2×3}}322322{21}3232{21⨯+<≤⨯-++<≤-=X P X P.815.0295.0268.0=+≈(Ⅱ)P {X ≥-4}=P {-4≤X <+∞}=P {2-2×3≤X ≤2}+P {X ≥2}.975.021295.0=+≈(Ⅲ)P {X ≤11}=P {-∞<X ≤11}=P {-∞<X ≤2}+P {2≤X ≤2+3×3}.995.0299.021=+≈43.设X ~N (3,σ2),并且P (3≤X ≤7)=0.4,求P (X ≤-1).答案是:0.1. 分析(略)44.设某机器生产的螺栓的长度(cm)服从参数μ=10.05,σ=0.06的正态分布,规定长度在范围(10.05±0.12)cm 内为合格品,求螺栓的次品率.答案是:0.0455(或0.05). 分析(略).求Y =X +1的概率分布.解 由y i =2i x +1(i =1,2,…,5)及X 的分布,得到把f (x i )=2i x +1相同的值合并起来,并把相应的概率相加,便得到Y 的分布,即,21)2()2()5(==+-===X P X P Y P ,103)1()1()2(==+-===X P X P Y P ⋅====51)0()1(X P Y P 所以46.设X ~U (0,1),并且Y =X ,求Y 的分布密度p 2(y ). 解 X 的分布密度函数为⎩⎨⎧∈=.,0],1,0[,1)(1其他x x p 对于函数y =x 2,当x ∈[0,1]时,α=min{x 2}=0,β=max{x 2}=1,于是⎪⎩⎪⎨⎧≥<<≤=.1,1,10*,,0,0)(y y y y F 当0<y <1时)()()()(2y X P y X P y Y P y F ≤=≤=≤=.d 1d 0d )(01y x x x x p yy=+==⎰⎰⎰∞-∞-由 ,21)()()(2yy y F y p ='='=故随机变量Y 的分布密度函数为⎪⎩⎪⎨⎧<<=.,0,10,21)(2其他y yy p47.设随机变量)2π,2π(~-U X ,求随机变量Y =sin X 的分布密度p 2(y ). 解 X 的分布密度函数为⎪⎩⎪⎨⎧-∈=.0,],2π,2π[,π1)(1其他x x p因为y =sin x 在)2π,2π(-内单调增加,所以存在反函数x =arc sin y ,其导数为 ⋅-='211yx y利用公式求出Y 的分布密度函数,首先计算,1}{sin min 2π2π-==≤≤-x x α ππ22max {sin }1,x x β-≤≤== 于是⎪⎩⎪⎨⎧<<-'⋅=-.,0,11|,|))(()(112其他y x y f p y p y⎪⎩⎪⎨⎧<<--=.,0,11,11.π12其他y y 48.X ~U (0,π),Y =sin X ,求p 2(y ).解 X 的分布密度函数为⎪⎩⎪⎨⎧∈=.,0],π,0[,π1)(1其他x x p0π0πmin{sin }0,max{sin } 1.x x x x αβ≤≤≤≤====当0<y <1时,F (y )=P (Y ≤y )=P (sin X ≤y )=P (0≤X ≤arc sin y )+P (π-arc sin y ≤X ≤π),sin arc π2y =所以⎪⎩⎪⎨⎧≥<<≤=1,,11,0,sin arc π20,,0)(y y y y y F 即⎪⎩⎪⎨⎧<<-=.,0,10,1π2)(22其他y yy p 49.(1).,,2,1,}{N k NAk X P ⋅⋅⋅=== (2) ,!}{k B k X P kλ⋅==k =0,1,2,…,λ>0且λ为常数,试确定常数A 和B .解 (1)由分布律的性质可知,)(111A N NAN A k X P Nk N k =⋅====∑∑== 因此,A =1.于是,X 的分布律为).,,2,1(1)(N k Nk X P === 称这样的分布为离散型的均匀分布.(2)由分布律的性质,有,e !!10λλλ⋅===∑∑∞=∞=B k B k Bkk kk解得B =e -λ.于是.e !)(λλ-==k k X P k这表明X 服从参数为λ的泊松分布.50.设平面区域D 是由x =1,y =0,y =x 所围成(如图2-5),今向D 内随机地投入10个点,求这10个点中至少有2个点落在由曲线y =x 2与y =x 所围成的区域D 1内的概率.图2-5分析 分两步进行.第一步:先计算任投一点落入D 1的概率.根据几何概型,有11()123()1()32L A P A L Ω-===⋅第二步:设X ={落入D 1内的点数},有),31,10(~B X 于是P (X ≥2)=1-P (X =0)-P (X =1).)32)(31()32(1911010C --=51.设随机变量X 具有连续的分布函数F 1(x ),求Y =F 1(X )的分布函数F 2(y ).(或证明题:设X 的分布函数F 1(x )是连续函数,证明随机变量Y =F 1(X )在区间(0,1)上服从均匀分布.)分析 由于F 1(x )为X 的连续分布函数,可知α=min{F 1(x )}=F 1(-∞)=0, β=max{F 1(x )}=F 1(+∞)=1. 因为F 1(x )是单调递增函数,所以11-F (y )存在(单调函数必有单值反函数存在),因而有⎪⎩⎪⎨⎧≥<≤<=≤.1,1,10*,,0,0)()(def2y y y y Y P y F 当0≤y <1时,*=F 2(y )=P (F 1(X )≤y )=P (X ≤11-F (y )) =F 1(11-F (y ))=y .代入F 2(y )表达式有⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(2y y y y y F 因此,Y 的分布密度函数为⎩⎨⎧≤≤=.,0,10,1)(2其他y y p即 ).1,0(~U Y52.设X ~E (2),证明Y =1-e -2X~U (0,1)分析 由于X ~E (2),因此⎩⎨⎧≤>=-.0,0,0,e 2)(21x x x p x 当x =0时,y =0=α;当x →+∞时,y →1=β:因为y =1-e -2x单调增加,所以其反函数为)1ln(21y x --=,有 .e 21112111212x yy y x =-=---='方法1(公式法)⎩⎨⎧≤≤'=--.,0,10|,))((|))(()(1112其他y y f y f p y p⎪⎩⎪⎨⎧≤≤⋅=-.,0,10,e 21e 222其他y xx ⎩⎨⎧≤≤=.,0,10,1其他y 即Y ~U (0,1).方法2(定义法) 由分布函数的定义⎪⎩⎪⎨⎧>≤≤<=.1,1,10*,,0,0)(2y y y y F 当0≤y ≤1时,有))1ln(21()e 1()()(22y X P y P y Y P y F X --≤=≤-=≤=-12(ln(1))211(ln(1))1e 2---=--=-y F y,)1(1y y =--=因此⎪⎩⎪⎨⎧>≤≤<=,1,1,10,,0,0)(y y y y y F即Y ~U (0,1).53.设随机变量X 的概率密度为⎪⎩⎪⎨⎧∈=,,0],8,1[,31)(32其他x x x fF (x )是X 的分布函数.求随机变量Y =F (X )的分布函数.解 易见,当x <1时,F (x )=0;当x >8时,F (x )=1. 对于x ∈[1,8],有.1d 31)(1332-==⎰xx t t x F设G (y )是随机变量Y =F (X )的分布函数.显然,当y ≤0时,G (y )=0;当y ≥1时,G (y )=1.对于y ∈(0,1),有}1{})({}{)(3y X P y X F P y Y P y G ≤-=≤=≤=,])1[(})1({33y y F y X P =+=+≤=于是,Y =F (X )的分布函数为⎪⎩⎪⎨⎧≥<<≤=.1,1,10,,0,0)(y y y y y G即Y ~U (0,1).54.设随机变量X ~U (0,5),求方程4x 2+4Xx +X +2=0有实根的概率. 分析 因为X 在(0,5)上服从均匀分布,故X 的分布密度为⎪⎩⎪⎨⎧≤≤=.,0,50,51)(其他x x p方程4x 2+4Xx +X +2=0有实根的条件是∆=16X 2-16(X +2)≥0,即 (X +1)(X -2)≥0.解 得X ≤-1或X ≥2.舍去X ≤-1,最后得2≤X ≤5.因此,所求概率为⋅==≤≤⎰53d 51)52(52x X P 问题 本题可否使用其他方法?55. 设随机变量X 的绝对值不大于1,即|X |≤1,且===-=)1(,81)1(X P X P41,在事件{-1<X <1}出现的条件下,X 在(-1,1)内的任一子区间上取值的条件概率与该子区间长度成正比.试求X 的分布函数F (x )及P (X <0)(即X 取负值的概率).分析 (1)由题设,我们有x <-1时,F (x )=0;x ≥1时,F (x )=1.以下考虑-1<x <1时的情形.由于1=P (|X |≤1)=P (X =-1)+P (-1<X <1)+P (X =1), 故 ⋅=--=<<-8541811)11(X P 另据条件,有),1(21)11|1(+=<<-≤<-x X x X P 于是,对于-1<x <1,有(-1,x ]⊂(-1,1),因此P (-1<X ≤x )=P (-1<X ≤x ,-1<X <1)=P (-1<X <1)P (-1<X ≤x |-1<X <1)),1(165)1(2185+=+⨯=x x ⋅+=≤<-+-≤=1675)1()1()(x x X P X P x F综上,有⎪⎩⎪⎨⎧≥<≤-+-<=.1,1,11,16/)75(,1,0)(x x x x x F (2)P (X <0)=P (X ≤0)-P (X =0)=F (0)=7/16.56.射击用的靶子是一个半径为R 的圆盘,已知每次射击都能击中靶子,并且击中靶子上任一以靶心为圆心的圆盘的概率与该盘的面积成正比.设随机变量X 表示击中点与靶心的距离,求X 的分布密度函数.分析 根据分布函数的定义及几何概型,由图2-6有图2-6),0(ππ)()(2222R x R x R x x X P x F ≤≤==≤=于是 22()(),xp x F x R='=因此⎪⎩⎪⎨⎧≤≤=.,0,0,2)(2其他R x R xx p 说明 (1)注意其分布函数应为⎪⎪⎩⎪⎪⎨⎧>≤≤<=.,1,0,,0,0)(22R x R x R x x x F 57.点随机地落在中心在原点,半径为R 的圆周上,并且对弧长是均匀地分布,求(1)落点的横坐标的概率分布密度函数p 1(x ).(2)落点与点(-R ,0)的弦长的概率分布密度函数p 2(y ). (提示:落点的极角θ均匀地分布在(0,2π)上)分析 设落点的极角为Θ,落点P 的横坐标为X ,落点与(-R ,0)点的弦长为Y ,则由题设可知Θ~U (0,2π),即()1,02π,2π0,.p θθΘ⎧≤<⎪=⎨⎪⎩其他 由图2-7不难看出⋅==2cos2,cos ΘR Y ΘR X图2-7(1)定义法试求点P 的横坐标X =R cos Θ的密度函数.因为x =R cos θ(0≤θ<2π)不是单调函数,由图2-8得到,使R cos θ≤x 成立的θ应满足⋅-≤≤Rx R x cos arc π2cosarc θ图2-8于是,对-R ≤x ≤R ,有θθθd )()cos ()()(cos ΘxR X p x ΘR P x X P x F ⎰≤=≤=≤=⋅-==⎰-Rx Rx Rx os arcc π11d 2π1arccosπ2arccosθ 对x <-R ,有.0)()cos ()()(=∅=≤=≤=P x ΘR P x X P x F X对x >R ,有,1)()cos ()()(==≤=≤=ΩP x ΘR P x X P x F X即⎪⎩⎪⎨⎧≥<<---≤=.,1,,cos arc π11,,0)(R x R x R R xR x x F X 所以X 的密度函数为⎪⎩⎪⎨⎧<<--='=.,0,,π1)()(22其他R x R x R x F x p X X(2)公式法设θ∈(-π,π).由,2cos 2θR y =有当0≤θ≤π时,单调递减,⋅--='=2242,2cosarc 2y R R y y θθ 当-π≤θ≤0时,单调递增,2arccos,2y y R θθ=-=' 可见p Y (y )=P θ(f -1(y ))|y y f'-))((1|⋅-=--+-=22222241π2|42|2π1422π1yR y R y R 因此⎪⎩⎪⎨⎧<≤-=.,0,20,4π2)(22其他R y y R y p Y58.设随机变量X 的概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧∈∈=.,0],6,3[,92],1,0[,31)(其他x x x p若使得32)(=≥k X P ,则k 的取值范围是________. 分析 由图2-9可知图2-9,32)36(92)63(=-⨯=≤≤X P 因此k ∈[1,3]时,⋅=≤≤=≥32)63()(X P k X P 59.设随机变量X 的分布函数为F (x ),则Y =-2ln F (X )的概率分布密度函数P Y (y )=______.分析 用定义法求出Y 的分布,首先求出Y 的分布函数. 当y >0时,有F (y )=P (Y ≤y )=P (-2ln F (X )≤y ))e )((2y X F P -≥= ))e ((21y F X P --≥= ))e ((121y F F ---=.e 12y--=当y ≤0时,F (y )=0.因此 ⎪⎩⎪⎨⎧≤>-=-.0,0,0,e 1)(2y y y F y 再求出Y 的分布密度函数⎪⎩⎪⎨⎧≤>='=-.0,0,0,e 21)()(2y y y F y p yY60.设)2π,2π(~-U X ,并且y =tan x ,求Y 的分布密度函数p (y ). 分析 由)2π,2π(~-U X ,有⎪⎩⎪⎨⎧-∈=.,0],2π,2π[,π1)(1其他x x p 下面利用公式法求出Y =tan X 的分布,为此先求出:α=-∞,β=+∞.,tan arc )(1y y f x ==-⋅+='='-2111))((yy f x y y 于是有121()(())|(1'())|y p y p f y f y --=⋅').(11.π12+∞<<-∞+=y y61.设二维随机向量(X ,Y )共有6个取正概率的点,它们是:(1,-1),(2,-1),(2,0)(2,2),(3,1),(3,2),并且(X ,Y )取得它们的概率相同,则(X ,Y )的联合分布及边缘分布为62.设(X ,Y )的联合分布密度为⎩⎨⎧≥≥=+-.,0,0,0,e ),()43(其他y x C y x p y x试求:(1)常数C . (2)P {0<X <1,0<Y <2}. (3)X 与Y 的边缘分布密度p 1(x ),p 2(y ).解 (1)由p (x ,y )的性质,有y x C y x y x p y x d d e d d ),(1)43(0+-+∞+∞+∞∞-+∞∞-⎰⎰⎰⎰==3401e d e d ,12x y C x y C +∞+∞--=⋅⋅=⎰⎰ 即C =12.(2)令D ={(x ,y )|0<x <1,0<y <2},有y x y x p D Y X P Y X P Dd d ),(}),{(}20,10{⎰⎰=∈=<<<<).e 1)(e 1(d e d e 12d d e 128342310)43(----+---===⎰⎰⎰⎰y x y x y x y x D(3)先求X 的边缘分布:①当x <0时,p (x ,y )=0,于是10()(,)d 0.p x p x y y +∞==⎰②当x ≥0时,只有y ≥0时,p (x ,y )=12e-(3x +4y ),于是⎰+∞∞--+-==.e 3d e 12)(3)43(1x y x y x p因此⎩⎨⎧<≥=-.0,0,0,e 3)(31x x x p x 同理⎩⎨⎧<≥=-.0,0,0,e 4)(42y y y p y 63.设二维连续型随机变量(X ,Y )在区域D 上服从均匀分布,其中D ={(x ,y ):|x +y |≤1,|x -y |≤1},求X 的边缘密度p X (x ).解 区域D 实际上是以(-1,0),(0,1),(1,0),(0,-1)为顶点的正方形区域(见图3-9),其边长为2,面积S D =2,因此(X ,Y )的联合密度是图3-9⎪⎩⎪⎨⎧∉∈=.),(,0,),(,21),(D y x D y x y x p 11111d ,10,21()(,)d d ,01,20,.x x x X x y x p x p x y y y x +--+∞--∞-⎧-≤≤⎪⎪⎪==<≤⎨⎪⎪⎪⎩⎰⎰⎰其他即 1,10,()1,01,0,.X x x p x x x +-≤≤⎧⎪=-<≤⎨⎪⎩其他 64.设二维随机向量(X ,Y )的联合分布函数为⎩⎨⎧≥≥+--=----.,0,0,0,333),(其他y x C y x F y x y x求(1)常数C ;(2)分布密度p (x ,y ).解 (1)由性质F (+∞,+∞)=1,得到C =1.(2)由公式:yx Fy x p ∂∂∂=2),(有3ln 33ln 3,x x y Fx--∂=-∂ .)3(ln 3)3ln 33ln 3(22y x y x x yyx F -----=-∂∂=∂∂∂故 ⎩⎨⎧≥≥=--.,0,0,0,)3(ln 3),(2其他y x y x p y x65.设D 2是x =0,y =0,y =2x +1围成的区域,ξ=(X ,Y )在D 2上均匀分布,求F (x ,y ).答案是:⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅∈∈-∈+∈-+∈=54232221),(,1,),(,2,),(,)12(,),(,)12(2,),(,0),(D y x D y x y y D y x x D y x y x y D y x y x F 其中区域D 1,D 2,D 3,D 4,D 5如图3-10所示.图3-1066.求 (1)X 与Y 的边缘分布.(2)X 关于Y 取值y 1=0.4的条件分布. (3)Y 关于X 取值x 2=5的条件分布. 解(1)由公式),3,2,1()(====∑⋅i p x X p p ijji i),2,1()(====⋅j p y Y p p ijij j(2)计算下面各条件概率:,8380.030.0)(),()|(,16380.015.0)(),()|(1121211111======y p y x p y x p y p y x p y x p⋅===16780.035.0)(),()|(11313y p y x p y x p因此,X 关于Y(3)同样方法求出Y 关于X 取值x =5的条件分布为67.设二维随机向量(X ,Y )的联合分布密度为.e π1),()52(2122y xy x y x p ++-=求(1)X 与Y 的边缘分布密度; (2)条件分布密度.解 (1)由公式y y y x p x p y xy x d e π1d ),()()52(21122++-∞+∞-∞+∞-⎰⎰==)10125(d e 52e e π1222)10125(102x y x y x x +=⎰∞+∞-+-- ,e 5π2πe 52π1224.04.0x x --=⋅=这里应用了.πd e2=-+∞∞-⎰u u 同理,可求得Y 的边缘分布密度为.e π2)(222y y p -=(2)在给定Y =y 的条件下,X 的条件分布密度为,e 2π1)(),()|(2)(5.02y x y p y x p y x p +-==而在给定X =x 的条件下,Y 的条件分布密度为.e 2π5)(),()|(2)5(1.01y x x p y x p x y p +-==69.设随机变量X 与Y 相互独立,下表列出了二维随机向量(X ,Y )联合分布律及关于X和关于Y 的边缘分布律中的部分数值,试将其余数值填入下表中的空白处.分析 应注意到X 与Y 相互独立. 解 由于P (X =x 1,Y =y 1)=P (Y =y 1)-P (X =x 2,Y =y 1),2418161=-=考虑到X 与Y 相互独立,有P (X =x 1)P (Y =y 1)=P (X =x 1,Y =y 1),⋅===4161241}{1x X P所以同理,可以导出其他数值.故XY 的联合分布律为70.设随机变量X 以概率1取值0,而Y 是任意的随机变量,证明X 与Y 相互独立. 证 X 的分布函数为⎩⎨⎧≥<=.0,1,0,0)(1时当时当x x x F 设Y 的分布函数为F 2(y ),(X ,Y )的分布函数为F (x ,y ),则当x <0时,对任意的y 有F (x ,y )=P {X ≤x ,Y ≤y }=P ({X ≤x }∩{Y ≤y })=P (∅∩{Y ≤y })=P (∅)=0=F 1(x )F 2(y ).当x ≥0时,对任意的y 有F (x ,y )=P ({X ≤x }∩{Y ≤y })=P {Y ≤y }=F 2(y )=F 1(x )F 2(y ).因此,对任意的x ,y 均有F (x ,y )=F 1(x )F 2(y ),即X 与Y 相互独立.71.设(X ,Y )的联合分布密度为⎪⎩⎪⎨⎧<<+=.,0,1||,1||,41),(其他y x xy y x p试证明:(1)X 与Y 是相依的. (2)X 2与Y 2是相互独立的.证 (1)先求X 的边缘分布密度.当|x |<1时,有⋅=+==⎰⎰-+∞∞-21d 41d ),()(111y xy y y x p x p当|x |≥1时,p 1(x )=0,因此⎪⎩⎪⎨⎧<=.,0,1||,21)(1其他x x p 同理⎪⎩⎪⎨⎧<=.,0,1||,21)(2其他y y p 可见,当|x |<1,|y |<1时p (x ,y )≠p 1(x )·p 2(y ),所以X 与Y 不独立,即是相依的.(2)令ξ=X 2,η=Y 2,其分布函数分别为F 1(x )和F 2(y ),于是当0≤x <1时,有)()()(21x X x P x X P x F ≤≤-=≤=⎰-==x x x x ,d 21因此⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(1x x x x x F同理可求得Y 2的分布函数⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(2y y y y y F如图3-11所示,将Oxy 平面分成5块区域来讨论,并将(ξ,η)的分布函数记为F 3(x ,y ),则图3-11①当x <0或y <0时,F 3(x ,y )=0. ②当0≤x <1,y ≥1时,.)(),(),(2223x x X P y Y x X P y x F =≤=≤≤=③当0≤y <1,x ≥1时,同理.),(3y y x F =④当0≤x <1,0≤y <1时, F 3(x ,y )=P (X 2≤x ,Y 2≤y )),(y Y y x X x P ≤≤-≤≤-=1d 4sxs t +==⑤当x ≥1,y ≥1时,.1d d 41),(),(1111223=+=≤≤=⎰⎰--y x xyy Y x X P y x F综合起来得到⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥<≤<≤≥<≤≥<≤<<=.1,1,1,10,10,,1,10,,1,10,,00,0),(3y x y x xy x y y y x x y x y x F 或不难验证,对于所有x ,y 都有F 3(x ,y )=F 1(x )·F 2(y ),所以ξ与η相互独立,即X 2与Y 2相互独立.72. 设(X ,Y )的联合分布为求(Ⅰ)Z 1=X +Y ;23解 (Ⅰ)Z 1=X +Y 的正概率点为0,1,2,3.因为。

概率论与数理统计例题和知识点总结

概率论与数理统计例题和知识点总结

概率论与数理统计例题和知识点总结概率论与数理统计是一门研究随机现象统计规律的学科,它在自然科学、工程技术、经济管理、社会科学等众多领域都有着广泛的应用。

下面将通过一些例题来帮助大家理解和掌握这门学科的重要知识点。

一、随机事件与概率随机事件是指在一定条件下,可能出现也可能不出现的事件。

概率则是衡量随机事件发生可能性大小的数值。

例 1:抛掷一枚均匀的硬币,求正面朝上的概率。

解:因为硬币只有正反两面,且质地均匀,所以正面朝上的概率为1/2。

知识点:古典概型中,事件 A 的概率 P(A) = A 包含的基本事件数/基本事件总数。

例 2:一个袋子里有 5 个红球和 3 个白球,从中随机取出一个球,求取出红球的概率。

解:袋子里一共有 8 个球,其中 5 个是红球,所以取出红球的概率为 5/8。

知识点:概率的性质:0 ≤ P(A) ≤ 1;P(Ω) = 1,P(∅)= 0。

二、条件概率与乘法公式条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。

例 3:已知在某疾病的检测中,阳性结果中真正患病的概率为 09,而总体人群中患病的概率为 001。

如果一个人的检测结果为阳性,求他真正患病的概率。

解:设 A 表示患病,B 表示检测结果为阳性。

则 P(A) = 001,P(B|A) = 09,P(B|A')= 1 P(B|A) = 01。

根据全概率公式:P(B) =P(A)×P(B|A) + P(A')×P(B|A')= 001×09 +099×01 ≈ 0108。

再根据贝叶斯公式:P(A|B) = P(A)×P(B|A) / P(B) = 001×09 /0108 ≈ 0083。

知识点:条件概率公式:P(B|A) = P(AB) / P(A);乘法公式:P(AB) = P(A)×P(B|A)。

三、独立性如果两个事件的发生与否互不影响,那么称它们是相互独立的事件。

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳

例1 设甲、乙、丙三 人的命中率分别为0.3,
P(Ai)—— 先验概率
0.2,0.1。现三人独立地 向目标各射击一次,结果
A1
A2 ........ An
有两次命中目标,试求丙
P(B/Ai)
P(Ai /B ) 后验概率
没有命中目标的概率。
B P(B )
解 记A、B、C分别为甲、乙、丙命中目标,D 为
P(ABC ) P(D )
0.30.20.90.587 0.092
法二 用Bayes公式:
0.1
0.9
P (C) = 0.1, P(C)0.9;
P (D/C) = 0.3*0.8+0.7*0.2,
P(D/C)0.3*0.2.
C 0.3*0.8+0.7*0.2
C
0.3*0.2
于是有
D
P (C /D )
第二、三章 随机变量及其分布
1.常用分布 B(n,p),P( ),U[a,b],E( ),N(, 2 );
二维均匀、二维正态
2.联合分布和边缘分布
pi• pij,fX(x)f(x,y)dy
j
3.概率的计算 (一维或二维C.R.V.:一重或二重积分)
4.随机变量函数的分布 作图、定限再计算、验证
5 随机变量的独立性
•正态分布的线性组合性质(含正态分布可加性)
若Xi ~ N( i,i 2), i=1,2,...n, 相互独立,则对任
何实数a1, a2, …, an, 有
n
n
n
a X 1 b~ N (a? 1 b,,a 2? 12 ),
aiXi ~N(
a?i i ,,
?a i2
① 分布函数法(C.R.V.):

概率论与数理统计考试知识点汇总及疑难解析

概率论与数理统计考试知识点汇总及疑难解析

疑难解析系统(概率论与数理统计中的疑难问题)目录第一章事件与概率………………………………………………3-4第二章条件概率与独立性………………………………………5-6第三章随机变量及其分布………………………………………7-8第四章多维随机变量及其分布…………………………………9-10第五章数字特征…………………………………………………11-14第六章数理统计的基本概念……………………………………15-17第七章参数估计…………………………………………………18-21第八章假设检验…………………………………………………22-23第一章 概率论基本概念1.什么是统计规律性?什么是随机现象?答 在一定条件下发生,其结果是多样的,因而在现象发生前不能预知确切结果的不确定现象,其结果在大量重复试验中呈现出一种规律性. 由于这种规律是根据统计数据分析出来的,因而称为统计规律性。

在一次试验或观察中结果不能预先确定,而在大量重复试验中结果具有统计规律性的现象称为随机现象. 随机现象是概率论与数理统计的主要研究对象.2.如何理解互逆事件与互斥事件?答 如果两个事件A 与B 必有一个发生,且至多有一个发生,则、A B 为互逆事件. B A =.如果两个事件A 与B 不能同时发生,则、A B 为互斥事件.如考试及格与不及格是互逆也是互斥的,但考试70分和80分互斥却不互逆. 区别互逆与互斥的关键是,当样本空间只有两个事件时,两事件才可能互逆. 而互斥适用于多个事件的情形. 互斥事件的特征是,在一次试验中两者可以都不发生,而互逆事件必发生一个且至多发生一个.3.如何用已知事件来表达与其有关的其它事件?答 首先要了解所讨论试验中事件的构成,所需表达事件与已知事件的关系,然后运用这些关系与运算法则将事件表达出来.例如,设S 为事件05x ≤≤,A 为事件12x ≤≤,B 为事件02x ≤≤,则 02x ≤≤为事件B 或A B U ,12x ≤≤为事件A 或BA ,25x <≤为事件S B -或B ,01x ≤<为B A -.4.样本空间与必然事件之间有什么关系?答 样本空间是随机试验E 的所有可能结果的集合,而必然事件是指随机试验中一定会出现的结果. 虽然在一次试验中只有样本空间的一个元素发生,但在把样本空间视作一个整体时,我们说它在每次试验中都发生了. 因此,可以说样本空间是必然事件.5.在什么情况下,随机事件A 的频率可以作为它的概率的近似值? 答 随机事件A 的频率()n f A 反映事件A 在多次重复试验中发生的频繁程度. 当n 增大时,频率在概率()P A 附近摆动. 因此,每一个从独立重复试验中测得的频率,都可以作为概率()P A 的近似值. 而且,一般n 越大,近似程度越好.事实上,当n 增大时,频率大量集中于包含()P A 的一个小区间. 任选区间中一值作为概率的近似值,称为统计概率. 在解题时,当n 较大时,可取统计概率为()/A P A n n ≈.6.概率是否可以看做频率的极限?答 这样理解是不恰当的. 因为如上题所述,当n →∞时,()n f A 在()P A 附近摆动,与高等数学中极限的N ε-概念是不同的. 由于概率是随机现象的可能性的赋值,对于任给的0ε>,存在偶然的因素,可能找不到()N ε,从而得不到|()()|n f A P A ε-<.7.怎样理解古典概型的等可能假设?答 等可能性是古典概型的两大假设之一,有了这两个假设,给直接计算概率带来了很大的方便. 但在事实上,所讨论问题是否符合等可能假设,一般不是通过实际验证,而往往是根据人们长期形成的“对称性经验”作出的. 例如,骰子是正六面形,当质量均匀分布时,投掷一次,每面朝上的可能性都相等;装在袋中的小球,颜色可以不同,只要大小和形状相同,摸出其中任一个的可能性都相等. 因此,等可能假设不是人为的,而是人们根据对事物的认识——对称性特征而确认的.8.概率为0的事件是否为不可能事件?概率为1的事件是否为必然事件?答 有关概念:不可能事件φ的概率为0,即()0P φ=,但其逆不真;同样,必然事件Ω的概率()1P Ω=,但其逆也不真。

随机变量的函数分布例题和知识点总结

随机变量的函数分布例题和知识点总结

随机变量的函数分布例题和知识点总结在概率论与数理统计中,随机变量的函数分布是一个重要的概念。

理解和掌握这一概念对于解决许多实际问题以及深入研究概率理论都具有关键意义。

接下来,我们将通过一些具体的例题来加深对随机变量函数分布的理解,并对相关知识点进行总结。

首先,让我们来明确一下什么是随机变量的函数分布。

给定一个随机变量 X,若通过某种函数关系 Y = g(X) 定义了另一个随机变量 Y,那么我们关心的就是 Y 的概率分布,这就是随机变量的函数分布。

一、例题分析例 1:设随机变量 X 服从区间0, 1上的均匀分布,求 Y = 2X + 1 的概率分布。

由于 X 服从区间0, 1上的均匀分布,其概率密度函数为:\f_X(x) =\begin{cases}1, & 0 \leq x \leq 1 \\0, &\text{其他}\end{cases}\对于 Y = 2X + 1,我们可以通过反解 X 得到:\(X =\frac{Y 1}{2}\)然后计算 Y 的分布函数\(F_Y(y)\):\\begin{align}F_Y(y)&=P(Y\leq y)\\&=P(2X + 1\leq y)\\&=P(X\leq \frac{y 1}{2})\\\end{align}\当\(y < 1\)时,\(F_Y(y) = 0\)当\(1\leq y\leq 3\)时,\\begin{align}F_Y(y)&=\int_{0}^{\frac{y 1}{2}}1dx\\&=\frac{y 1}{2}\end{align}\当\(y > 3\)时,\(F_Y(y) = 1\)对\(F_Y(y)\)求导,可得 Y 的概率密度函数\(f_Y(y)\)为:\f_Y(y) =\begin{cases}\frac{1}{2},& 1 \leq y \leq 3 \\0, &\text{其他}\end{cases}\例 2:设随机变量\(X\)服从标准正态分布\(N(0, 1)\),求\(Y = X^2\)的概率分布。

概率论与数理统计 1-6

概率论与数理统计 1-6

第一章概率论的基本概念第一章概率论的基本概念第六节独立性一、事件的相互独立性二、几个重要定理三、例题讲解四、小结一、事件的相互独立性1.引例盒中有5个球(3绿2红),每次取出一个,有放回的取两次,记A:第一次抽取,取到绿球B:第二次抽取,取到绿球则有P(B|A)=P(B)他表示A的发生并不影响B发生的可能性大小,即)P(AB)=P(A)P(BP(B|A)=P(B⟺)2.定义设A,B是两事件,如果满足等式P AB=P A P B则称事件A,B相互独立,简称A,B独立.说明:事件A与事件B相互独立,是指事件A的发生与事件B发生的概率无关.两事件相互独立)P(AB)=P(A)P(B 两事件互斥AB =∅两事件相互独立与两事件互斥的关系.请同学们思考二者之间没有必然联系互斥独立AB例如由此可见两事件相互独立,但两事件不互斥.P(A)=12,P(B)=12,P(AB)=P(A)P(B).A BP A=12,P B=12则P(AB)=0,而P(A)P(B)=1 4 ,故P(AB)≠P(A)P(B).由此可见两事件互斥但不独立. AB3.三事件两两相互独立的概念定义:设A,B,C是三个事件,如果满足等式൞P(AB)=P(A)P(B), P(BC)=P(B)P(C), P(AC)=P(A)P(C),则称事件A,B,C两两相互独立4.三事件相互独立的概念定义:设A,B,C是三个事件,如果满足等式P AB=P A P B,P BC=P B P C,P AC=P A P C,P(ABC)=P(A)P(B)P(C),则称事件A,B,C相互独立注意:三个事件相互独立→三个事件两两相互独立三个事件相互独立↚三个事件两两相互独立推广:设A1,A2,⋯,A n是n个事件,如果对于任意k(1<k≤n),任意1≤i1<i2<⋯<i k≤n,具有等式P(A i1A i2⋯A ik)=P(A i1)P(A i2)⋯P(A ik)则称A1,A2,⋯,A n为相互独立的事件n个事件相互独立→n个事件两两相互独立n个事件相互独立↚n个事件两两相互独立二、几个重要定理定理一:设A,B是两事件,且P(A)>0.若A,B相互独立,则P(B|A)=P(B),反之亦然.定理二:若A,B相互独立,则下列各对事件,ഥA与B,A与ഥB,ഥA与ഥB,也相互独立。

概率论与数理统计第5讲 (2)_OK

概率论与数理统计第5讲 (2)_OK
2.难点 古典概型的概率计算 全概率公式的应用
2021/8/23
29
四、典型例题y
例1:(2000年,数学一) 设两个相互独立的事件A和B不发生的概率为 1/9, A发生B不发生的概率与B发生A不发生 的概率相等,则P(A)=_________.
18
例2:设两系统都是由 4 个元件组成,每个元件正
常工作的概率为 p , 每个元件是否正常工作相互
独立.两系统的连接方式如下图所示,比较两系
统的可靠性.
A1
A2
S1:
B1
B2
P(S1 ) P( A1 A2 B1B2 ) P( A1 A2 ) P(B1B2 ) P( A1A2B1B2 )
2 p2 p4 p2(2 p2)
注:称此为二事件的独立性关于逆运算封闭.
2021/8则以下三对事件 也相互独立.
(1) A 与 B; (2) A 与 B; (3) A 与 B .
证 (1) P( AB ) P( A) P( AB)
又∵ A与B相互独立
P( AB) P( A) P( AB) P( A) P( A)P(B)
P( A1 ) 0.45, P( A2 ) 0.55, P( A3 ) 0.60
B A1 A2 A3
2021/8/23
16
P( A1 ) 0.45, P( A2 ) 0.55, P( A3 ) 0.60
B A1 A2 A3
P(B) P( A1 A2 A3 ) 1 P( A1 )P( A2 )P( A3 ) 1 (1 0.45)(1 0.55)(1 0.60) 0.901
3
定义1: 设 A, B 是两事件 , 如果满足等式
P( AB) P( A) P(B) 则称事件 A, B 相互独立,简称 A, B 独立.

1-6概率论与数理统计

1-6概率论与数理统计

中找两个事件,它们既相 问:能否在样本空间Ω中找两个事件 它们既相 互独立又互斥? 互独立又互斥
φ 不难发现, 与任何事件既独立又互斥. 不难发现, 与任何事件既独立又互斥
φ A=φ
A

P( φ A) = 0 =P( φ )P(A)
前面我们看到独立与互斥的区别和联系, 前面我们看到独立与互斥的区别和联系, 练习 1.设A、B为互斥事件,且P(A)>0,P(B)>0, 设 为互斥事件, 为互斥事件 下面四个结论中,正确的是: 下面四个结论中,正确的是: A. P(B|A)>0 C. P(A|B)=0 B. P(A|B)=P(A) D. P(AB)=P(A)P(B)
性质 2 若 A, B 相互独立 , 则下列各对事件 , A 与 B , A 与 B , A 与 B 也相互独立 . 证明: 证明
先证 A 与 B 独立 .
因为 A = AB U A B 且 ( AB )( A B ) = ∅ , 所以 P ( A) = P ( AB ) + P ( A B ), 即 P( AB) = P( A) − P( AB).
则称 A1 , A2 ,L , An 为相互独立的事件 .
有兴趣的同学可以计算一下,上式中要成立的等式个数?
n 个事件相互独立
n个事件两两独立 个事件两两独立
下面我们来举一个右不能推出左的例子。 下面我们来举一个右不能推出左的例子。
伯恩斯坦反例 一个均匀的正四面体, 其第一面染成红色, 例 一个均匀的正四面体, 其第一面染成红色, 第三面染成黑色, 第二面染成白色 , 第三面染成黑色,而第四面同 时染上红、 黑三种颜色.现以 时染上红、白、黑三种颜色 现以 A , B,C 分别 , 记投一次四面体出现红、 黑颜色朝下的事件, 记投一次四面体出现红、白、黑颜色朝下的事件, 是否相互独立? 问 A,B,C是否相互独立 , , 是否相互独立 解 由于在四面体中红、 白、黑分别出现两面, 由于在四面体中红、 黑分别出现两面, 1 因此 P ( A) = P ( B ) = P ( C ) = , 2 1 又由题意知 P ( AB ) = P ( BC ) = P ( AC ) = , 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 , 其它
求其分布函数F(x)
解:
x
F( x) P{X x} f (u)du
0,
x0
y
x
udu
0
x2 2
,
1
x
0 udu 1 (2 u)du
1 (2 x)2 / 2,
0 x1
1 x2
0 12
x
1 ,
x2
P72T20 设顾客在某银行的窗口等待服务的时间X服从指数分
布, 其概率密度为
2Ax, 0 x 1
f
(x)
F'(X
)
0
,
其它

1
1
f ( x)dx 2 Axdx A
知道分布函0数,求落在
某A区间1的概率,没有必 要对概率密度积分了,
以下因同为解这法一样麻烦,直接用
分布函数即可.
P72,T17 已知r.vX的概率密度为:
x , 0 x1 f ( x) 2 x , 1 x 2 ,
k 1
k 1
n
b
2
k
b
k1 3
2
2 n1
3
3
1
2 3
1
再对上式取极限得:
lim b
2 3
2 3
n1
b
2 3
2b 1 b 1
n
1
2 3
1
2 3
2
P70T6(2)
(2)设随机变量的分布律为 PX k k , k 1,2,3,4,5
15
其分布函数为F(x) 求2P1 X 2.
解:P1 X 2 PX 2 PX 1
2 1 1 15 15 5
1 2 3 45
错解: P1 X 2 F2 F1
注:如果X是连续型随机变量,则
P1 X 2 P1 X 2 F2 F1
P71T8 有甲,乙两种味道的酒各4杯,颜色相同。从 中挑4杯便能

甲 种酒全部挑出,算是试验成功.
(1)某人随机地去挑,问他试验成功的概率.
pk 1, f ( x)dx 1 ,
f ( x, y)dxdy 1
k 1
B. 分布函数与概率密度函数之间的转化(连续型)
x
F( x) f (t)dt, F '( x) f ( x)
x
F(x, y)
y
f (u, v)dudv
f (x, y) 2F(x, y)
xy
C . 联合分布 边缘分布
(2)某人通过品尝区分两种酒,他连续试验10次,结果成功3次,
解: (1)所问求此概人是率否为确:1有/ 品C尝84=区1/分70的能力.
(2)假设此人无品尝区分的能力,记X为10次试验中成功次数
X~b(10,1/70)
P{ X
3}
C130
( 1 )3 ( 69)7 70 70
3.16 104
lim F(x) lim Ax2 A, lim F(x) 1
x1
x1
x1
A1
(2)
2x, 0 x 1
f
(
x)
F
'
(
X
)
0
,
其它
(3) P0 X 2 P0 X 2 F2 F0 1 0 1
2
1
2
或 P0 X 2 f xdx 2xdx 0dx 1
0
0
1
解法二:
一、内容小结
r.v及其概率分布
离散型r.v 的分布律
分布函数 的性质
连续型r.v的 概率密度
分布律 与分布函数
的关系
概率密度 与分布函数
的关系
二项分布 泊松分布
正态分布 指数分布 均匀分布
1. 重点概念: 随机变量, 分布函数,
分布律(离散型),概率密度函数(连续型)。
2. 重点公式:
A. 分布律、概率密度函数的性质:
f
( x)
1 5
ex/5
0
x0 其它
某顾客的习惯是,等待时间超过10分钟便离开.现知他一个月要到银
行5次,求他未受到服务的次数不少于1的概率.
分析: 顾客一个月内未受到服务的次数为Y, 要求的是P{Y1};
“未受到服务”的事件A为{X>10};
X
x
x
F. 二维正态分布
二、作业点评
课本P70,T5 (2)
(2)设r.vX的分布律为
PX k b 2k , k 1,2,
3
试确定常数b;
解:
k 1
Pk
1
k 1
PX
k
b k1
2 k
3
b
1
2 3
b1
2 3
2b 1
2
n
n
错解: Pk 1 P X k
3. 主要方法
A. 利用分布函数及概率密度函数的性质解题.
B. 利用概率密度函数计算概率, 随机变量X(或(X,Y))落在某区间I(或某区 域 G)的概率为
f ( x)dx 或( f ( x, y)dxdy)
I
G
C. 求随机变量的函数的分布,先求分布函数,再求导,求概率密度函数.
X 连续型, y=g(x)为连续函数,则Y= g(X)为连续型.
离散型 :
连续型 :
fX (x)
f ( x, y)dy
fY ( y)
f ( x, y)dx
D. 边缘分布+独立性 联合分布
X,Y离散型且相互独立, 则:
P{ X xi ,Y y j } P{ X xi }P{Y y j } Pi• P• j
X,Y连续型且相互独立, 则:f ( x, y) f X ( x) fY ( y)
FY ( y) P{g(X ) y} P{X I} f (x)dx, I {x : g(x) y}
I
(X,Y)连续型, z=g(x,y)为二元连续函数, 则Z=g(X,Y)为连续型
FZ (z) P{g( X ,Y ) z} P{(X ,Y ) } f ( x, y)dxdy,
:C
k n
pk (1
p)nk
k e
k!
(
np)
C.
均匀分布
f
( x)
b
1
a
,
0 ,
a xb 其它
D.
指数分布
e x
f (x)
,
0 ,
x0 x0
E. 正态分布
f (x)
1
e
(
x )2 2 2
,
x
2
X ~ N(, 2 )
Z X ~ N (0,1)
FX x
PX
x
P
{(x, y) : g(x, y) z}
4. 常见的重要分布
A . 二项分布, X服从b(n,p)
P{ X
k}
C
k n
pk (1
p)nk
(k
0,1,
, n) 其 中p
P( A)
B. Poisson分布, X服从()
k e
P{ X k}
,
k!
k 0,1,2, ( 0)
n较大Biblioteka ,p较小显然{X=3}是一小概率事件,根据小概率事件几乎不可能发生
原理,可以认为原假设不对,故此人有一定品尝区分能力.
P72,T16 设连续型r.vX的分布函数为
0
x0
F(x)
Ax
2
0 x1
1
x 1
求 : (1)常数 A (2)概率密度函数 (3) P0 X 2
解法一: (1) 由于连续型随机变量X的分布函数是连续的
相关文档
最新文档