2015年北京市海淀区初三数学一模试卷及答案

合集下载

2015-2016年北京海淀区中考二模数学试题及答案图片版,一模试题及答案。共两套题

2015-2016年北京海淀区中考二模数学试题及答案图片版,一模试题及答案。共两套题

海淀区九年级第二学期期末练习数学试卷参考答案一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.解:原式31+42=--⨯……………………4分5=.………………………5分18.解:原不等式组为8(1)5171062x x x x ->-⎧⎪⎨--≤⎪⎩,①,② 解不等式①,得 3x >-. ………………………2分 解不等式②,得 2≤x . ………………………3分∴ 原不等式组的解集为32x -≤<.………………………4分 不等式组的解集在数轴上表示如下:………………………5分19. 解:(1)∵ 原方程有两个不相等的实数根,∴ 0Δ>.即 364(7)0k -+>.∴ 2k <..………………………2分 (2)∵2k <且k 为正整数,∴1=k ..………………………3分 ∴0862=+-x x .∴1224x x ==,..………………………5分20.证明:∵ AB DE BC BF ⊥⊥,,90ACB ∠=︒, ∴90DBF BEF ACB ∠=∠=∠=︒.∴ ︒=∠+∠︒=∠+∠9029021F ,. ∴ F ∠=∠1..………………………2分 在中和△△DFB ABC ,1F ACB DBF AC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴ ABC △≌DFB △.………………………4分 ∴DF AB =..………………………5分21.解:设小静原来每分钟阅读x 个字.…………1分由题意,得300291003500+=x x . ………………………3分 解得 500=x . ………………………4分 经检验,500=x 是原方程的解,且符合题意. ∴130030050023002=+⨯=+x .答:小静现在每分钟阅读1300个字. ………………………5分22.(1)证明:∵ 90ACB ∠=︒, ∴AC BC ⊥. ∵DE BC ⊥, ∴AC ∥DE . 又∵ CF ∥AD ,∴ 四边形ACFD 为平行四边形. …………1分 ∴CF AD =.∵ CD AB 为边上的中线, ∴BD AD =. ∴CF BD =.∴四边形BDCF 为平行四边形. ∵ BC DE ⊥,∴四边形BDCF 为菱形. ………………………3分 (2)解:在Rt ACE △中,∵ 2tan 3EC EAC AC ∠==, ∴设 2,3CE x AC DF x ===. ∵菱形BDCF 的面积为24, ∴1242DF BC ⋅=.………………………4分 ∴ 24DF EC ⋅=. ∴ 3224x x ⋅=.∴ 12x =,22x =-(舍). ∴4CE =,12EF =3DF =. ∴5CF =. ………………………5分23. 解:(1)∵点)1,(m A 在双曲线xy 6=上, ∴6=m . ………………………1分F∵点)1,6(A 在直线b x y +=21上, ∴2-=b . ………………………2分 (2)当点B 在线段DE 上时,如图1,过点D 作DP ⊥y 轴于P ,过点B 作BQ ⊥y 轴于Q .可得EQB △∽EPD △. ∵BE BD 2=, ∴13BQ BE DP DE ==. ∵1BQ =, ∴3DP =. ∵点D 在直线1l 上,∴)213(-,的坐标为点D .………………4分 当点B 在线段DE 的延长线上时,如图2, 同理,由BE BD 2=,可得点D 的坐标为5(1)2--,.综上所述,点D 的坐标为)213(-,或5(1)2--,.…………… 5分24. (1)证明:连接OD .………………………1分∵⊙O 切BC 于点D , 90C ∠=︒, ∴90ODB C ∠=∠=︒. ∴OD ∥AC . ∴DAC ODA ∠=∠. ∵OD OA =, ∴OAD ODA ∠=∠. ∴DAC OAD ∠=∠.图1图2∴AD 平分BAC ∠.………………………2分(2)解:连接DE . ∵AE 为直径, ∴︒=∠90ADE .∵OAD DAC ∠=∠,sin DAC ∠=,∴sin OAD ∠=. ∵5OA =, ∴10AE =.∴AD =………………………3分 ∴4CD =,8AC =. ∵OD ∥AC ,∴BOD BAC △∽△.………………………4分∴OD BDAC BC =. 即584BD BD =+. ∴203BD =.………………………5分25.(1)m 16.5=;………………………2分(2)14;(估值在合理范围内即可) ………………………3分 (3)14000016.5%0.69.721000⨯⨯- 4.14=.答:2020年我国儿科医生需比2015年增加4.14万人,才能使每千名儿童拥有的儿科医 生数达到0.6. ………………………5分26. 第二步:6BD BC ==;………………………1分 第四步:如图,△ABC 即为所求. ………………3分 第五步: ② ,18.………………5分27. 解:(1)12n n =. ……………… 1 分理由如下:由题意可得抛物线的对称轴为2x =.∵1P (1,1n ),2P (3,2n )在抛物线24y ax ax b =-+上, ∴12n n =.………………3分 (2)当0a >时,抛物线的顶点为(2,1),且过点(4,4), ∴抛物线的解析式为23344y x x =-+.………………5分 当0a <时,抛物线的顶点为(2,4),且过点(4,1),∴抛物线的解析式为23314y x x =-++. 综上所述,抛物线的解析式为23344y x x =-+或23314y x x =-++.…………7 分28. 解:(1)①补全图形,如图1所示.…………1分②连接BE .∵AB BC =,,E C 关于直线BD 对称,∴AB BC BE ==.………………………2分 ∴C BEC ∠=∠, BAE BEA ∠=∠. ∵90ABC ∠=︒,∴270BAE AEC C ∠+∠+∠=︒.∴135AEC ∠=︒..………………………4分 (2)求解思路如下:a .连接AC ,过点A 作AF ⊥CE ,交CE 延长线于点F ,如图2所示;b .由(1)可求︒=∠135AEC ,由AE =可求1AF EF ==;c .由1CE =,可求2AC =,AB BC ==ABE 为等边三角形;d .由C ,E 两点关于直线BD 对称,AB AD =,可求15EBD ∠=︒,75ABD ∠=︒,30α=︒. ……………………7分29.解:(1)函数1y x =-没有不变值; ………………1分函数1y x=有1-和1两个不变值,其不变长度为2;………………2分 函数2y x =有0和1两个不变值,其不变长度为1;………………3分 (2)①∵函数22y x bx =-的不变长度为零, ∴方程22x bx x -=有两个相等的实数根. ∴1b =-. ………………4分②解方程22x bx x -=,得10x =,212b x +=.………………5分 ∵13b ≤≤, ∴212x ≤≤.∴函数22y x bx =-的不变长度q 的取值范围为12q ≤≤. ………………6分(3)m 的取值范围为13m ≤≤或18m <-. ………………8分2016海淀一模一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.1.“中华人民共和国全国人民代表大会”和“中国人民政治协商会议”于2016年3月3日在北京胜利召开.截止到2016年3月14日,在百度上搜索关键词“两会”,显示的搜索结果约为96 500 000条.将96 500 000用科学记数法表示应为A.96.5×107B.9.65×107 C.9.65×108 D.0.965×1092.如图是某个几何体的三视图,该几何体是A.长方体B.正方体C.圆柱D.三棱柱3.一个不透明的口袋中装有3个红球和12个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为A.14B.34C.15D.454.下列图形中,是轴对称图形但不是中心对称图形的是A.B.C.D.5.如图,在 ABCD中,AB=3,BC=5,∠ABC的平分线交AD于点E,则DE的长为A.5 B.4 C.3 D.2 6.如图,等腰直角三角板的顶点A,C分别在直线a,b上.若a∥b,1=35∠︒,则2∠的度数为A.35︒B.15︒C.10︒D.5︒7.初三(8)班体委用划记法统计本班40名同学投掷实心D球的成绩,结果如下表所示:则这40名同学投掷实心球的成绩的众数和中位数分别是A.9,8 B.9,8.5 C.8,8 D.8,8.58.京津冀都市圈是指以北京、天津两座直辖市以及河北省的保定、廊坊、唐山、邯郸、邢台、秦皇岛、沧州、衡水、承德、张家口(,)表示图中承德的位置,和石家庄为中心的区域.若“数对”19043︒(,)表示图中保定的位置,则与图中张家口的位置对“数对”160238︒应的“数对”为(,)A.176145︒(,)B.17635︒(,)C.100145︒(,)D.10035︒9.油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:某人计划购入一辆上述品牌的汽车.他估算了未来10年的用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计平均每年行驶的公里数至少..为A.5 000 B.10 000 C.15 000 D.20 000 10.小明在暗室做小孔成像实验.如图1,固定光源(线段MN)发出的光经过小孔(动点K)成像(线段M'N')于足够长的固定挡板(直线l)上,其中MN// l. 已知点K匀速运动,其运动路径由AB,BC,CD,DA,AC,BD组成.记它的运动时间为x,M'N'的长度为y,若y关于x的函数图象大致如图2所示,则点K的运动路径可能为A.A→B→C→D→A B.B→C→D→A→BC.B→C→A→D→B D.D→A→B→C→D图1 图2二、填空题(本题共18分,每小题3分)11. 分解因式:a2b-2ab+b=________________.12. 如图,AB为⊙O的弦,OC⊥AB于点C.若AB=8,OC=3,则⊙O的半径长为________.13.埃及《纸草书》中记载:“一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.”设这个数是x,可列方程为.14.在下列函数①21y x=+;②22y x x=+;③3yx=;④3y x=-中,与众不同的一个是_____(填序号),你的理由是________ .15.北京市2010~2015年高考报名人数统计如图所示.根据统计图中提供的信息,预估2016年北京市高考报名人数约为________万人,你的预估理由是____________.16.阅读下面材料:在数学课上,老师提出如下问题:老师说:“小云的作法正确.”请回答:小云的作图依据是________________________________________.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:)2016tan3012π-⎛⎫--︒++⎪⎝⎭.18.解不等式组41)3(2),14,2x xxx-≤+⎧⎪⎨-<-⎪⎩(并写出它的所有整数解....19.已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.20.如图,在△ABC 中,90BAC ∠=︒,AD BC ⊥于点D ,DE 为AC 边上的中线.求证:BAD EDC ∠=∠.21.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小琼步行12 000步与小博步行9 000步消耗的能量相同.若每消耗1千卡能量小琼行走的步数比小博多10步,求小博每消耗1千卡能量需要行走多少步.22.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点B 作AC 的平行线交DC 的延长线于点E . (1)求证:BD=BE ;(2)若BE =10,CE =6,连接OE ,求tan ∠OED 的值.D ABC23.在平面直角坐标系xOy 中,直线y x =-与双曲线ky x=(0k ≠)的一个交点为)P m . (1)求k 的值;(2)将直线y x =-向上平移b (b>0)个单位长度后,与x 轴,y 轴分别交于点A ,点B ,与双曲线ky x=(0k ≠)的一个交点记为Q .若2BQ AB =,求b 的值.24.如图,AB ,AD 是⊙O 的弦,AO 平分BAD ∠.过点B 作⊙O 的切线交AO 的延长线于点C ,连接CD ,BO .延长BO 交⊙O 于点E ,交AD 于点F ,连接AE ,DE .(1)求证:CD 是⊙O 的切线; (2)若3AE DE ==,求AF 的长.25.阅读下列材料:2015年中国内地电影市场票房总收入400亿元,动画电影成为了新崛起的热点,票房占比为11.25%.2014年,中国内地动画电影市场6部破亿,只有一部《熊出没》为国产动画电影,票房成绩为2.4亿元.而2015年中国内地动画电影市场共8部破亿,国产动画电影占3部,分别是《大圣归来》,《熊出没2》和《十万个冷笑话》.其中,《大圣归来》以9.55亿元票房夺冠,《熊出没2》比2014年第一部的票房又增长了20%,《十万个冷笑话》以1.2亿元票房成绩勉强破亿.另外5部来自海外动画电影,其中美国两部全球热映的动画电影《超能陆战队》和《小黄人大眼萌》在中国内地只拿下5.26亿元和4.36亿元票房,而同样来自美国的《精灵旅社2》收获1.2亿元票房,日本的《哆啦A梦之伴我同行》和法国的《小王子》分别获得5.3亿和1.58亿元票房收入.2015年中国内地动画电影市场中,国产动画电影共上映41部,其中票房在1000万元~5000万元、5000万元~1亿元的国产动画电影分别有12部和5部,票房金字塔结构分化更加明显,标志着中国国产动画电影市场的日趋成熟.根据以上材料解答下列问题:(1)2015(2)右图为2015年国产..动画电影票房金字塔,则B= ;(3)选择统计表或.统计图将2015年中国内地动画电影市场票房收入前5名的票房成绩表示出来.26.有这样一个问题:探究函数(1)(2)(3)=---的图象与性质.y x x x小东对函数(1)(2)(3)=---的图象与性质进行了探究.y x x x下面是小东的探究过程,请补充完成:(1)函数(1)(2)(3)=---的自变量x的取值范围是全体实数;y x x x(2)下表是y与x的几组对应值.①m = ;②若M (7-,720-),N (n ,720)为该函数图象上的 两点,则n = ;(3)在平面直角坐标系xOy 中, A (,A A x y ),B (,B A x y -)为该函数图象上的两点,且A 为23x ≤≤范围内的最低点,A 点的位置如图所示.①标出点B 的位置;②画出函数(1)(2)(3)y x x x =---(04x ≤≤)的图象.27.在平面直角坐标系xOy 中,抛物线224y mx mx m =-+-(0m ≠)的顶点为A ,与 x 轴交于B ,C 两点(点B 在点C 左侧),与y 轴交于点D . (1)求点A 的坐标; (2)若BC =4,①求抛物线的解析式;②将抛物线在C,D之间的部分记为图象G(包含C,D两点).若过点A的直线+(0)=≠与图象G有两个交点,结合函数的图象,求k的y kx b k取值范围.28.在△ABC中,AB=AC,∠BAC=90︒,点D在射线BC上(与B、C两点不重合),以AD为边作正方形ADEF,使点E与点B在直线AD的异侧,射线BA与射线CF相交于点G.(1)若点D在线段BC上,如图1.①依题意补全图1;②判断BC与CG的数量关系与位置关系,并加以证明;(2)若点D在线段BC的延长线上,且G为CF中点,连接GE,AB 则GE的长为_______,并简述求GE长的思路.29.在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P 关于⊙C 的限距点的定义如下:若P '为直线PC 与⊙C 的一个交点,满足2r PP r '≤≤,则称P '为点P 关于⊙C 的限距点,右图为点P 及其关于⊙C 的限距点P '的示意图.(1) 当⊙O 的半径为1时.① 分别判断点M (3,4),N 5(,0)2,T (1 关于⊙O 的限距点是否存在?若存在,求其坐标;②点D 的坐标为(2,0),DE ,DF 分别切⊙O 于点E ,点F ,点P在△DEF 的边上.若点P 关于⊙O 的限距点P '存在,求点P '的横坐标的取值范围;(2) 保持(1)中D ,E ,F 三点不变,点P 在△DEF 的边上沿E →F →D →E 的方向运动,⊙C 的圆心C 的坐标为(1,0),半径为r .请从下面两个问题中任选一个作答.温馨提示:答对问题1得2分,答对问题2得1分,两题均答不重复计分.数学试卷参考答案一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 19.解:原式=1-6×……………………4分=4-.………………………5分18.解:原不等式组为解不等式①,得x≤10.………………………2分解不等式②,得x>7.………………………3分∴原不等式组的解集为7<x≤10.………………………4分∴原不等式组的所有整数解为8,9,10. (5)分Array 19.解:原式=x2-2x+1-x2+3x+x2-4………………………3分=x2+x-3.………………………4分∵x2+x-5=0,∴x2+x=5.∴原式=5-3=2..………………………5分20.证明:∵∠BAC=90o,∴∠BAD+∠DAC=90o.∵AD⊥BC,∴∠ADC=90o.∴∠DAC+∠C=90o.∴∠BAD=∠C .………………………2分∵DE为AC边上的中线,∴DE=EC.∴∠EDC=∠C ..………………………4分∴∠BAD=∠EDC.………………………5分21.解:设小博每消耗1千卡能量需要行走x步.………………………1分由题意,得. ………………………3分解得x=30 . ………………………4分经检验,x=30是原方程的解,且符合题意.答:小博每消耗1千卡能量需要步行30步. ………………………5分22.(1) 证明:∵ 四边形ABCD 为矩形,∴ AC=BD ,AB ∥DC. ∵ AC ∥BE ,∴ 四边形ABEC 为平行四边形. ………………………2分 ∴ AC=BE.∴ BD=BE. ………………………3分 (2) 解:过点O 作OF ⊥CD 于点F .∵ 四边形为矩形, ∴ 90BCD ∠=︒. ∵ 10BE BD ==, ∴ 6CD CE ==.同理,可得132CF DF CD ===.∴9EF =. ………………………4分 在Rt △BCE 中,由勾股定理可得8BC =. ∵ OB=OD ,∴ OF 为△BCD 的中位线. ∴ 142OF BC ==. ∴在Rt △OEF 中,4tan 9OF OED EF ∠==. ………………………5分23. 解:(1)∵P()在直线y= -x 上,∴m=-. ………………………1分∵P()在双曲线y=上,∴k=. ………………………2分A图1 图2(2) ∵y= -x 向上平移b (b >0)个单位长度后,与x 轴,y 轴分别交于A ,B ,∴A (b ,0)B (0,b ). ………………………3分作QH ⊥x 轴于H ,可得△HAQ ∽△OAB .如图1,当点Q 在AB 的延长线上时,∵BQ=2AB , ∴3===ABAQ OA HA OB HQ . ∵OA OB b ==,∴,2HO b =.∴Q 的坐标为(-2b,3b).由点Q 在双曲线6y x=-上, 可得1b =. ………………………4分 如图2,当点Q 在AB 的反向延长线上时,同理可得,Q 的坐标为(2b,-b).由点Q 在双曲线6y x =-上,可得b=.综上所述,b=1或b=. ………………………5分24. (1) 证明:如图,连接OD . ………………………1分∵BC 为⊙的切线,∴∠CBO=90o .∵AO 平分BAD ∠,∴∠1=∠2.∵OA OB OD ==,∴1=4=2=5∠∠∠∠.∴∠BOC=∠DOC .∴△BOC ≌△DOC .∴90CBO CDO ∠=∠=︒.∴CD 为⊙O 的切线. ……………2分(2) ∵AE=DE,∴.∴∠3=∠4. ………………………3分∵124∠=∠=∠,∴∠1=∠2=∠3.∵BE 为⊙O 的直径,∴∠BAE=90o .∴∠1=∠2=∠3=∠4=30o .………………………4分∴∠AFE=90o .在Rt △AFE 中,∵AE=3,︒=∠303,∴AF=. ………………………5分25. (1) 45;………………………2分(2) 21;………………………3分(3) 2.4×(1+20%)=2.88 .2015年中国内地动画电影市场票房收入前5名的票房成绩统计表………………………5分或2015年中国内地动画电影市场票房收入前5名的票房成绩统计图………………………5分26. (2) ①m= -60;………………………1分②n=11;………………………2分(3)正确标出点B的位置,画出函数图象. …………………5分27. 解:(1)y=mx2-2mx+m-4=m(x2-2x+1)-4=m(x-1)2-4 .∴ 点A 的坐标为(1,-4). ………………………2分(2)①由(1)得,抛物线的对称轴为x =1.∵ 抛物线与x 轴交于B ,C 两点(点B 在点C 左侧),BC =4,∴ 点B 的坐标为(-1,0) ,点C 的坐标为(3,0) .………………………3分∴ m+2m+m-4=0.∴ m=1.∴ 抛物线的解析式为y=x 2-2x-3.……4分② 由①可得点D 的坐标为(0,-3) .当直线过点A ,D 时,解得k=-1.………5分当直线过点A ,C 时,解得k=2. ………6分结合函数的图象可知,k 的取值范围为10k -≤<或02k <≤. (7)分28. 解:(1) ①补全图形,如图1所示. ………………………1分②BC 和CG 的数量关系:BC CG =,位置关系:BC CG ⊥.…………2分证明: 如图1.∵AB=AC ,∠BAC=90o∴∠B=∠ACB=45o , ∠1+∠2=90o ,.∵射线BA 、CF 的延长线相交于点G ,∴∠CAG=∠BAC=90o .∵四边形ADEF 为正方形,∴∠DAF=∠2+∠3=90o ,AD=AF .∴∠1=∠3.∴△ABD ≌△ACF .…………………3分∴∠B=∠ACF=45o .图1∴45B G ∠=∠=︒,90BCG ∠=︒.∴BC CG =,BC CG ⊥.…………………4分(2) GE=.…………………5分思路如下:a . 由G 为CF 中点画出图形,如图2所示.b . 与②同理,可得BD=CF ,BC CG =,BC CG ⊥;c . 由,G 为CF 中点,可得2====CD FG CG BC ;d . 过点A 作AM BD ⊥于M ,过点E 作EN FG ⊥于N ,可证△AMD ≌△FNE ,可得1AM FN ==,NE 为FG 的垂直平分线,FE EG =;e . 在Rt △AMD 中,1AM =,3MD =,可得AD =,即GE FE AD == ……7分29.解:(1)①点M ,点T 关于⊙的限距点不存在;点N 关于⊙的限距点存在,坐标为(1,0). (2)分②∵点D 的坐标为(2,0),⊙半径为1,DE ,DF 分别切⊙于点E ,点F ,∴切点坐标为1(2,1(2,.……………3分 如图所示,不妨设点E 的坐标为1(22,,点F 的坐标为1(22,,EO ,FO 的延长线分别交⊙O 于点'E ,'F ,则1'(2E -,,1'(2F -. 设点P 关于⊙O 的限距点的横坐标为x .Ⅰ.当点P 在线段EF 上时,直线PO 与的交点'P 满足2'1≤≤PP ,故点P关于⊙O 的限距点存在,其横坐标x 满足-1≤x≤ -.………5分Ⅱ.当点P 在线段DE ,DF (不包括端点)上时,直线PO 与⊙O 的交点'P 满足1'0<<PP 或2'3PP <<,故点P 关于⊙的限距点不存在.Ⅲ.当点P 与点D 重合时,直线PO 与⊙O 的交点'(1,0)P 满足1'=PP ,故点P关于⊙的限距点存在,其横坐标=1.综上所述,点P 关于⊙O 的限距点的横坐标x 的范围为-1≤x≤ -或=1. ……………………6分(2)问题1: .………………8分 问题2:0 < r < 16.………………7分。

2015年海淀区初三一模数学试题及答案

2015年海淀区初三一模数学试题及答案

2015年北京市海淀区中考数学一模试卷一、选择题(本题共30分,每小题3分)1.2015年北京市实施能源清洁化战略,全市燃煤总量减少到15 000万吨左右,将15 000用科学记数法表示应为( )A . 50.1510⨯B .41.510⨯C .51.510⨯D .31510⨯ 2.右图是某几何体的三视图,该几何体( )是A. 三棱柱B. 三棱锥C. 长方体D.正方体 3.如图,数轴上两点A ,B 表示的数互为相反数,则点B 表示的数为( )A .-1B .1C .-2D .24.某游戏的规则为:选手蒙眼在一张如图所示的正方形黑白格子纸(九个小正方形面积相等)上描一个点,若所描的点落在黑色区域,获得笔记本一个;若落在白色区域,获得钢笔一支.选手获得笔记本的概率为( )A .12 B .45 C .49 D .595.如图,直线a 与直线b 平行,将三角板的直角顶点放在直线a 上,若∠1=40°,则∠2等于( ) A . 40° B .50° C .60° D .140°6.如图,已知∠AOB .小明按如下步骤作图:(1)以点O 为圆心,适当长为半径画弧,交OA 于D ,交OB 于点E . (2)分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧在∠AOB 的内部相交于点C . (3)画射线OC .根据上述作图步骤,下列结论正确的是( )A .射线OC 是AOB ∠的平分线 B .线段DE 平分线段OC C .点O 和点C 关于直线DE 对称D .OE =CE7.某次比赛中,15名选手的成绩如图所示,则这15名选手成绩的众数和中位数分别是( ) A .98,95 B .98,98 C .95,98 D .95,958. 甲骑车到乙家研讨数学问题,中途因等候红灯停止了一分钟,之后又骑行了1.2千米到达了乙家.若甲骑行的速度始终不变,从出发开始计时,剩余的路程S (单位:千米)与时间t (单位:分钟)的函数关系的图象如图所示,则图中a 等于( )A .1.2B .2C .2.4D .69.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E .若60B ∠=︒,AC =3,则CD 的长为( ) A . 6 B .23 C .3 D .310.小明在书上看到了一个实验:如右图,一个盛了水的圆柱形容器内,有一个顶端拴了一根细绳的实心铁球,将铁球从水面下沿竖直方向慢慢地匀速向上拉动.小明将此实验进行了改进,他把实心铁球换成了材质相同的别的物体,记录实验时间t 以及容器内水面的高度h ,并画出表示h 与t .小明选择的物体可能是( )二、填空题(本题共18分,每小题3分) 11.分解因式:32a ab -=____________.12.写出一个函数y kx =(0k ≠),使它的图象与反比例函数1y x=的图象有公共点,这个函数的解析式为___________.13.某学习小组设计了一个摸球试验,在袋中装有黑,白两种颜色的球,这些球的形状大小质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋中摸出一个球,记下颜色,再把它放回,不断重复.下表是由试验得到的一组统计数据:从这个袋中随机摸出一个球,是摸球的次数n 100 200 300 400 500 600摸到白球的次数m 58 118 189 237 302 359摸到白球的频率nm白球的概率约为 .(结果精确到)14.如图,点C 为线段AB 上一点,将线段CB 绕点C 旋转,得到线段CD ,若DA AB ⊥,1AD =,BD =BC 的长为__________.15. 在研究了平行四边形的相关内容后,老师提出这样一个问题: “四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD =BC ”,小红说“添加AB =DC ” .你同意 的观点, 理由是 .16.若三角形的某一边长等于其外接圆半径,则将此三角形称为等径三角形,该边所对的角称为等径角.已知△ABC 是等径三角形,则等径角的度数为 .三、解答题(本题共30分,每小题5分) 17.计算:2022cos60(3.14π)--+-+-.18.解不等式组:345214.33x x x x +>-⎧⎪⎨-⎪⎩,≥19.已知43x y =,求代数式22(2)()()2x y x y x y y ---+-的值.20.如图,点A ,B ,C ,D 在同一条直线上,AB=FC ,∠A =∠F ,∠EBC =∠FCB .求证: BE=CD .21.已知关于x的方程220 (0)kx x kk--=≠.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根都是整数,求整数k的值.22.列方程或方程组解应用题:为了响应学校提出的“节能减排,低碳生活”的倡议,班会课上小李建议每位同学都践行“双面打印,节约用纸”.他举了一个实际例子:打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求例子中的A4厚型纸每页的质量.(墨的质量忽略不计)四、解答题(本题共20分,每小题5分)23.如图,在□ABCD中,∠BAD的平分线交CD于点E,交BC的延长线于点F,连接BE,∠F=45°.(1)求证:四边形ABCD是矩形;(2)若AB=14,DE=8,求sin∠AEB的值.24.根据某研究中心公布的近几年中国互联网络发展状况统计报告的部分相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)从2011年到2014年,中国网民人数每年增长的人数近似相等,估算2015年中国网民的人数约为亿;(3)据某市统计数据显示,2014年末全市常住人口为476.6万人,其中网民数约为210万人.若2014年该市的网民学历结构与2014年的中国网民学历结构基本相同,请你估算2014年末该市网民学历是大专的约有万人.25.如图,在△ABC中,AB=AC,AD⊥BC于点D,过点C作⊙O与边AB相切于点E,交BC于点F,CE为⊙O的直径.(1)求证:OD⊥CE;(2)若DF=1,DC=3,求AE的长.AEOB D CF26.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC 中,DE ∥BC 分别交AB 于D ,交AC 于E .已知CD ⊥BE ,CD =3,BE =5,求BC +DE 的值.小明发现,过点E 作EF ∥DC ,交BC 延长线于点F ,构造△BEF ,经过推理和计算能够使问题得到解决(如图2).请回答:BC +DE 的值为_______.参考小明思考问题的方法,解决问题:如图3,已知□ABCD 和矩形ABEF ,AC 与DF 交于点G ,AC =BF =DF ,求∠AGF 的度数.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.在平面直角坐标系xOy 中,抛物线2212y x x =-+与y 轴交于点A ,顶点为点B ,点C 与点A 关于抛物线的对称轴对称.(1)求直线BC 的解析式;(2)点D 在抛物线上,且点D 的横坐标为4.将抛物线在点A ,D 之间的部分(包含点A ,D )记为图象G ,若图象G 向下平移t (0t >)个单位后与直线BC 只有一个公共点,求t 的取值范围.xyO –5–4–3–2–112345–7–6–5–4–3–2–1123456728.在菱形ABCD 中,120ADC ∠=︒,点E 是对角线AC 上一点,连接DE ,50DEC ∠=︒,将线段BC 绕点B 逆时针旋转50︒并延长得到射线BF ,交ED 的延长线于点G . (1)依题意补全图形;(2)求证:EG BC =;(3)用等式表示线段AE ,EG ,BG 之间的数量关系:_____________________________.29.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若,1,1≥b a b b a ⎧'=⎨-<⎩,则称点Q 为点P 的限变点.例如:点()2,3的限变点的坐标是()2,3,点()2,5-的限变点的坐标是()2,5--.(1)①点)的限变点的坐标是___________;②在点()2,1A --,()1,2B -中有一个点是函数2y x=图象上某一个点的限变点, 这个点是_______________;(2)若点P 在函数3(2,2)y x x k k =-+->-≤≤的图象上,其限变点Q 的纵坐标b '的取值范围是52≤≤b '-,求k 的取值范围;(3)若点P 在关于x 的二次函数222y x tx t t =-++的图象上,其限变点Q 的纵坐标b '的取值范围是≥b m'或b n '<,其中m n >.令s m n =-,求s 关于t 的函数 解析式及s 的取值范围.海淀区九年级第二学期期中练习数学试卷答案及评分参考2015.5 一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)17. (本小题满分5分) 解:原式=112142-⨯+ ………………………………………………………4分 14=+ ………………………………………………………………5分 18. (本小题满分5分)解: 345214.33x x x x +>-⎧⎪⎨-⎪⎩,≥ ② ①由不等式①得 3x <. ……………………………………………………2分由不等式②得 2≥x -. ……………………………………………………4分 ∴不等式组的解集为23≤x -<. ……………………………………………………5分19. (本小题满分5分)解: 22(2)()()2x y x y x y y ---+-2222244()2x xy y x y y =-+---………………………………………………2分243xy y =-+ ……………………………………………………………………3分()43y x y =--.…………………………………………………………………4分∵43x y =,∴原式= 0. ………………………………………………………………………5分 20. (本小题满分5分)证明:∠EBC =∠FCB ,ABE FCD ∴∠=∠. …………………………………………………………1分在△ABE 与△FCD中, ,,,A F AB FC ABE FCD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴∆ABE ≌∆FCD .………………………………………………………………4分 ∴BE=CD . ………………………………………………………………………5分21. (本小题满分5分) (1)证明:0k ≠,∴220kx xk--=是关于x的一元二次方程.22(1)4()kk∆=---……………………………………………………1分90=>.∴方程总有两个不相等的实数根.………………………………………2分(2)解:由求根公式,得12xk±=.∴1221,x xk k==-.…………………………………………………………4分方程的两个实数根都是整数,且k是整数,∴1k=-或1k=.…………………………………………………………5分22. (本小题满分5分)解:设例子中的A4厚型纸每页的质量为x克.………………………………………1分由题意,得40016020.8x x=⨯-.………………………………………………2分解得4x=.………………………………………………………3分经检验,4x=为原方程的解,且符合题意.………………………………4分答:例子中的A4厚型纸每页的质量为4克.…………………………………5分四、解答题(本题共20分,每小题5分)23. (本小题满分5分)(1)证明:四边形ABCD是平行四边形,∴AD//BC.∴∠DAF=∠F.∠F=45°,∴∠DAE=45°.………………………………………1分AF是∠BAD的平分线,45EAB DAE∴∠=∠=.90DAB∴∠=.又四边形ABCD是平行四边形,∴四边形ABCD是矩形.…………………………2分(2)解:过点B作BH AE⊥于点H,如图.四边形ABCD是矩形,∴AB=CD,AD=BC,∠DCB=∠D=90°.AB=14,DE=8,∴CE=6.在Rt △ADE 中,∠DAE=45°,∴∠DEA =∠DAE=45°. ∴ AD=DE =8. ∴ BC =8.在Rt △BCE 中,由勾股定理得10BE ==. ……………………………………………3分 在Rt △AHB 中,∠HAB=45°,∴sin 4572BH AB =⋅=. …………………………………………4分在Rt △BHE 中,∠BHE=90°,∴sin ∠AEB=10BH BE =. ……………………………………………5分 24. (本小题满分5分)(1)36. ……………………………………………………………………………1分 (2)6.700.01±. ……………………………………………………………………3分 (3)21. ……………………………………………………………………………5分25. (本小题满分5分)(1)证明:⊙O 与边AB 相切于点E ,且 CE 为⊙O 的直径.∴CE ⊥AB.AB=AC ,AD ⊥BC ,BD DC ∴=. ………………………………1分 又 OE=OC , ∴OD ∥EB .∴ OD ⊥CE .………………………………2分(2)解:连接EF .CE 为⊙O 的直径,且点F 在 ⊙O 上,∴ ∠EFC =90°. CE ⊥AB ,∴∠BEC =90°. ∴+BEF FEC FEC ECF ∠=∠+∠∠=90°. ∴BEF ECF ∠=∠.∴tan tan BEF ECF ∠=∠.∴BF EF EFFC=.又DF =1, BD=DC=3, ∴ BF =2, FC =4.∴EF = ………………………………………………… 3分∵∠EFC =90°, ∴∠BFE =90°.由勾股定理,得2223BE BF EF =+=. ……………………4分 EF ∥AD , ∴21BE BF EA FD ==. ∴3AE =. ……………………………………………………5分26. (本小题满分5分)解:BC +DE 的值为34. ……………………………………………………2分解决问题: 连接AE ,CE ,如图.∵四边形ABCD 是平行四边形, ∴AB // DC .∵四边形ABEF 是矩形,∴AB // FE ,BF =AE . ∴DC // FE .∴四边形DCEF 是平行四边形. ………………………………………………3分 ∴ CE // DF . ∵AC =BF =DF , ∴AC =AE =CE .∴△ACE 是等边三角形. …………………………………………………………4分 ∴∠ACE =60°. ∵CE ∥DF ,∴∠AGF =∠ACE =60°. …………………………………………………………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27. (本小题满分7分)解:(1)∵抛物线2212y x x =-+与y 轴交于点A ,∴点A 的坐标为(0,2). (1)分∵2211(232)212y x x x -+==+-,∴抛物线的对称轴为直线1x =,顶点B 的坐标为(1,32). …………2分又∵点C 与点A 关于抛物线的对称轴对称,xyO –5–4–3–2–112345–3–2–11234567FE DABC GE C A BD F∴点C 的坐标为(2,2),且点C 在抛物线上. 设直线BC 的解析式为y kx b =+.∵直线BC 经过点B (1,32)和点C (2,2),∴322 2.,k b k b ⎧+=⎪⎨⎪+=⎩ 解得121.k b ⎧=⎪⎨⎪=⎩, ∴直线BC 的解析式为112y x =+.…………………………3分(2) ∵抛物线2212y x x =-+中,当4x =时,6y =,∴点D 的坐标为(4,6). ………………4分∵直线112y x =+中,当0x =时,1y =, 当4x =时,3y =,∴如图,点E 的坐标为(0,1),点F 的坐标为(4,3).设点A 平移后的对应点为点'A ,点D 平移后的对应点为点'D . 当图象G 向下平移至点'A 与点E 重合时, 点'D 在直线BC 上方, 此时t =1;…………………………………………………………5分当图象G 向下平移至点'D 与点F 重合时,点'A 在直线BC 下方,此时t =3.……………………………………………………………………………………6分 结合图象可知,符合题意的t 的取值范围是13t <≤.……………………………7分28. (本小题满分7分)(1)补全图形,如图1所示.…………………………………………………………1分GFEDCBA图1 图2(2)方法一:证明:连接BE ,如图2. ∵四边形ABCD 是菱形, ∴AD ∥BC . 120ADC ∠=︒, 60DCB ∴∠=︒.AC 是菱形ABCD 的对角线,∴1302DCA DCB ∠=∠=︒. ……………………………………………………………2分180100EDC DEC DCA ∴∠=︒-∠-∠=︒.由菱形的对称性可知, 50BEC DEC ∠=∠=︒,100EBC EDC ∠=∠=︒.……………………………………………………………………3分 100GEB DEC BEC ∴∠=∠+∠=︒. GEB CBE ∴∠=∠. 50FBC ∠=︒,50EBG EBC FBC ∴∠=∠-∠=︒.…………………………………………………………4分 EBG BEC ∴∠=∠. 在△GEB 与△CBE 中,,,,GEB CBE BE EB EBG BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GEB ≌△CBE .EG BC ∴=. ………………………………………………………………………………5分 方法二:证明:连接BE ,设BG 与EC 交于点H ,如图3. ∵四边形ABCD 是菱形, ∴AD ∥BC . 120ADC ∠=︒,GFEDCBAGF D60DCB ∴∠=︒. AC 是菱形ABCD 的对角线,∴1302DCA DCB ∠=∠=︒. ………………………2分180100EDC DEC DCA ∴∠=︒-∠-∠=︒.由菱形的对称性可知,50BEC DEC ∠=∠=︒,100EBC EDC ∠=∠=︒.……………………………………………3分50FBC ∠=︒,图350EBG EBC FBC BEC ∴∠=∠-∠=︒=∠. ………………………………………………4分 BH EH ∴=.在△GEH 与△CBH 中,,,,GEH CBH EH BH EHG BHC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GEH ≌△CBH .EG BC ∴=. ………………………………………………………………………………5分 (3)AE BG +. …………………………………………………………………7分 29.(本小题满分8分)解:(1)① ; ……………………………………………………………………1分② 点B . ………………………………………………………………………2分(2)依题意,3(2)y x x =-+-≥图象上的点P 的限变点必在函数3,13,21x x y x x -+⎧=⎨--<⎩≥≤的图象上.2≤b '∴,即当1x =时,b '取最大值2.当2b '=-时,23x -=-+.5x ∴=. ………………………………………3分 当5b '=-时,53x -=-或53x -=-+.2x ∴=-或8x =. ………………………………4分 52≤≤b '-,由图象可知,k 的取值范围是58≤≤k .……………………………………………5分(3)2222()y x tx t t x t t =-++=-+,∴顶点坐标为(,)t t .………………………………………………………………6分若1t <,b '的取值范围是≥b m '或≤b n ',与题意不符. 若1≥t ,当1≥x 时,y 的最小值为t ,即m t =;当1x <时,y 的值小于2[(1)]t t --+,即2[(1)]n t t =--+.22∴=-=+-+=+.(1)1s m n t t t t∴s关于t的函数解析式为211)s t t(.……………………………7分=+≥当t=1时,s取最小值2.∴s的取值范围是s≥2.………………………………………………………8分。

2015年北京初三一模数学分类汇编------几何综合(含答案)

2015年北京初三一模数学分类汇编------几何综合(含答案)

E
A
C
B
H
C
图2
A
1
O B
2
D H
E
C
图 1-1
E
B
H
C
1 2, AH BH, 4 3,
∴△AHE≌△BHF,„„„„„„„„„3 分 ∴EH=FH. ∵∠FHE=90°,∴△FHE 是等腰直角三角形, ∴∠BEH=45°.„„„„„„„„„4 分
图 1-2
D
1 DCB 30 .………………………2 分 2
A
F G D
EDC 180 DEC DCA 100 .
E
H
C
由菱形的对称性可知, BEC DEC 50 , EBC EDC 100 . B ……………………………………………3 分 FBC 50 ,图 3 EBG EBC FBC 50 BEC .………………………………………………4 分 BH EH . 在 △GEH 与 △CBH 中,
1(燕山一模) △ABC 中,∠ABC=45°,AH⊥BC 于点 H,将△AHC 绕点 H 逆时针旋转 90°后,点 C 的对应 点为点 D,直线 BD 与直线 AC 交于点 E,连接 EH.
A D B H
图1 (1)如图 1,当∠BAC 为锐角时, ①求证:BE⊥AC; ②求∠BEH 的度数; (2)当∠BAC 为钝角时, 请依题意用实线补全图 2,并用等式表示出线段 EC,ED,EH 之间的数量关系. (1)①证明:∵AH⊥BC 于点 H,∠ABC=45°, ∴△ABH 为等腰直角三角形, ∴AH=BH,∠BAH=45°, ∴△AHC 绕点 H 逆时针旋转 90°得△BHD, 由旋转性质得,△BHD≌△AHC, ∴∠1=∠2.„„„„„„„„„1 分 ∵∠1+∠C=90°, ∴∠2+∠C=90°, ∴∠BEC=90°,即 BE⊥AC.„„„„„„„„„2 分 ②解法一:如图 1-1, ∵∠AHB=∠AEB=90°, ∴A,B,H,E 四点均在以 AB 为直径的圆上,„„„„„„„„„3 分 ∴∠BEH=∠BAH=45°.„„„„„„„„„4 分 A 解法二:如图 1-2, 过点 H 作 HF⊥HE 交 BE 于 F 点,∴∠FHE=90°, 1 即∠4+∠5=90°. D 又∵∠3+∠5=∠AHB=90°, F ∴∠3=∠4. 4 5 在△AHE 和△BHF 中, 2 3

2015年北京中考数学一模29题汇编(含答案)

2015年北京中考数学一模29题汇编(含答案)
(2)如图,作点P关于x轴的对称点P′,连接P′Q,P′Q与x轴的交点即为“等高点”M,此时“等高距离”最小,最小值为线段P′Q的长.………………………3分
∵P(1,2),
∴P′(1,-2).
设直线P′Q的表达式为 ,
根据题意,有
,解得 .
∴直线P′Q的表达式为 .……………4分
当 时,解得 .
即 .………………………………………………………………………5分
,即当 时, 取最大值2.
当 时, .
.………………………………………3分
当 时, 或 .
或 .………………………………4分

由图象可知, 的取值范围是 .
……………………………………………5分
(3) ,
顶点坐标为 .………………………6分
若 , 的取值范围是 或 ,与题意不符.
若 ,当 时, 的最小值为 ,即 ;
12.(石景山) 29.在平面直角坐标系 中,点 在直线 上,以 为圆心, 为半径的圆与 轴的另一个交点为 .给出如下定义:若线段 ,⊙ 和直线 上分别存在点 ,点 和点 ,使得四边形 是矩形(点 顺时针排列),则称矩形 为直线 的“理想矩形”.
例如,下图中的矩形 为直线 的“理想矩形”.
(1)若点 ,四边形 为直线 的“理想矩形”,则点 的坐标为;
∴ ..…….3分

∴ ,即 .∴ .
∴点 到直线 的距离为 ..…….4分
② ..…….6分
(3) 或 ..…….8分
6.(房山)29.
解:【探究】①1;5;……………2分
②=.…………………3分
【应用】(1)① ;……………………4分
②1.……………………5分

海淀区2015九年级期末数学试题和答案

海淀区2015九年级期末数学试题和答案

2015-2016海淀区初三数学期末试题 2015.11.方程2350x x --=的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定是否有实数根 2.在Rt △ABC 中,∠C =90º,35BC AB ==,,则sin A 的值为A.35 B.45 C. 34 D. 433.若右图是某个几何体的三视图,则这个几何体是A. 长方体B. 正方体C. 圆柱D. 圆锥4.小丁去看某场电影,只剩下如图所示的六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号.若小丁从中随机抽取一个,则抽到的座位号是偶数的概率是 A.16 B. 13 C. 12 D. 235.如图,△ABC 和△A 1B 1C 1是以点O 为位似中心的位似三角形,若C 1为OC 的中点,AB =4,则A 1B 1的长为A. 1B. 2C. 4D. 86.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数3=-y x的图象上的两点,若x 1<0<x 2,则下列结论正确的是A .y 1<0<y 2B .y 2<0<y 1C .y 1<y 2<0D .y 2<y 1<07.如图,AB 是半圆O 的直径,AC 为弦,OD ⊥AC 于D ,过点O 作 OE ∥AC 交半圆O 于点E ,过点E 作EF ⊥AB 于F .若AC =2,则OF 的长为A .12B .34C .1D .2 8.如图1,在矩形ABCD 中,AB <BC ,AC ,BD 交于点O .点E 为线段AC 上的一个动点,连接DE ,BE ,过E 作EF ⊥BD 于F .设AE =x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的图1 图2A .线段EFB .线段DEC .线段CED .线段BE 二、填空题(本题共16分,每小题4分)9.若扇形的半径为3cm ,圆心角为120°,则这个扇形的面积为__________ cm 2.10.在某一时刻,测得一根高为2m 的竹竿的影长为1m ,同时测得一栋建筑物的影长为12m ,那么这栋建筑物的高度为 m.11.如图,抛物线2y ax =与直线y =bx +c 的两个交点坐标分别为()2,4A -,()1,1B ,则关于x 的方程20ax bx c --=的解为__________.12.对于正整数n ,定义210()=()10,,≥n n F n f n n ⎧<⎨⎩,其中()f n 表示n 的首位数字、末位数字的平方和.例如:2(6)636F ==,()22(123)1231310F f ==+=.规定1()()F n F n =,1()(())k k F n F F n +=(k 为正整数).例如:()()112312310F F ==,21(123)((123))(10)1F F F F ===.(1)求:2(4)F =____________,2015(4)F =______________; (2)若3(4)89m F =,则正整数m 的最小值是_____________. 三、解答题(本题共30分,每小题5分) 13.计算:()()1201511sin 30 3.142-⎛⎫-+-π-+ ⎪⎝⎭.14.如图,△ABC 中,AB =AC ,D 是BC 中点,BE ⊥AC 于E . 求证:△ACD ∽△BCE .15.已知m 是一元二次方程2320x x --=的实数根,求代数式(1)(1)1m m m+--的值.16.抛物线22y x =平移后经过点(0,3)A ,(2,3)B ,求平移后的抛物线的表达式.17.如图,在平面直角坐标系xOy 中,正比例函数2y x =与反比例函数ky x=的图象交于A ,B 两点,A 点的横坐标为2,AC ⊥x 轴于点C ,连接BC .(1)求反比例函数的解析式; (2)若点P 是反比例函数ky x=图象上的一点,且满足△OPC 与△ABC 的面积相等,请直接写出点P 的坐标.B18.如图,△ABC 中,∠ACB =90°,4sin 5A =, BC =8,D 是AB 中点,过点B 作直线CD 的垂线,垂足为E . (1)求线段CD 的长; (2)求cos ABE ∠的值.四、解答题(本题共20分,每小题5分) 19.已知关于x 的一元二次方程()2220mx m x -++=有两个不相等的实数根12,x x .(1)求m 的取值范围; (2)若20x <,且121x x >-,求整数m 的值.20. 某工厂生产的某种产品按质量分为10个档次,据调研显示,每个档次的日产量及相应为了便于调控,此工厂每天只生产一个档次的产品.当生产质量档次为x 的产品时,当天的利润为y 万元.(1)求y 关于x 的函数关系式;(2)工厂为获得最大利润,应选择生产哪个档次的产品?并求出当天利润的最大值.A21.如图,四边形ABCD 是平行四边形,点A ,B ,C 在⊙O 上,AD 与⊙O 相切,射线AO 交BC 于点E ,交⊙O 于点F .点P 在射线AO 上,且∠PCB =2∠BAF . (1)求证:直线PC 是⊙O 的切线;(2)若ABAD =2,求线段PC 的长.22.阅读下面材料:小明观察一个由11⨯正方形点阵组成的点阵图,图中水平与竖直方向上任意两个相邻点间的距离都是1.他发现一个有趣的问题:对于图中出现的任意两条端点在点阵上且互相不垂直的线段,都可以在点阵中找到一点构造垂直,进而求出它们相交所成锐角的正切值. 请回答: (1)如图1,A 、B 、C 是点阵中的三个点,请在点阵中找到点D ,作出线段CD ,使得CD ⊥AB ;(2)如图2,线段AB 与CD 交于点O .为了求出AOD ∠的正切值,小明在点阵中找到了点E ,连接AE ,恰好满足AE CD ⊥于F ,再作出点阵中的其它线段,就可以构造相似三角形,经过推理和计算能够使问题得到解决.请你帮小明计算:OC =_______________;tan AOD ∠=_______________;C图1 图2 图3参考小明思考问题的方法,解决问题:如图3,计算:tan AOD ∠=_______________.五、解答题(本题共22分,第23题7分,第24题7分,第25小题8分) 23.在平面直角坐标系xOy 中,反比例函数ky x=的图象经过点(1,4)A ,(,)B m n . (1) 求代数式mn 的值;(2) 若二次函数2(1)y x =-的图象经过点B ,求代数式32234m n m n mn n -+-的值; (3) 若反比例函数k y x=的图象与二次函数2(1)y a x =-的图象只有一个交点,且该交点在直线y x =的下方,结合函数图象,求a 的取值范围.24.如图1,在△ABC 中,BC =4,以线段AB 为边作△ABD ,使得AD=BD , 连接DC ,再以DC 为边作△CDE ,使得DC = DE ,∠CDE =∠ADB =α.(1)如图2 ,当∠ABC=45°且α=90°时,用等式表示线段AD ,DE 之间的数量关系;(2)将线段CB 沿着射线CE 的方向平移,得到线段EF ,连接BF ,AF . ① 若α=90°,依题意补全图3, 求线段AF 的长; ②请直接写出线段AF 的长(用含α的式子表示).图2 图3 备用图BBB图1图325. 在平面直角坐标系xOy 中,设点()11,P x y ,()22,Q x y 是图形W 上的任意两点.定义图形W 的测度面积:若12x x -的最大值为m ,12y y -的最大值为n ,则S m n =为图形W 的测度面积.例如,若图形W 是半径为1的⊙O .当P ,Q 分别是⊙O 与x 轴的交点时,如图1,12x x - 取得最大值,且最大值m =2;当P ,Q 分别是⊙O 与y 轴的交点时,如图2,12y y -取得最大值,且最大值n =2.则图形W 的测度面积4S mn ==.(1)若图形W 是等腰直角三角形ABO ,OA =OB =1.①如图3,当点A ,B 在坐标轴上时,它的测度面积S = ; ②如图4,当AB ⊥x 轴时,它的测度面积S = ;(2)若图形W 是一个边长为1的正方形ABCD ,则此图形测度面积S 的最大值为 ;(3)若图形W 是一个边长分别为3和4的矩形ABCD ,求它的测度面积S 的取值范围.图1图2数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写的较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分.3.评分参考中所注分数,表示考生正确做到步应得的累加分数。

海淀区2014-2015第一学期初三期末数学统考试题及答案

海淀区2014-2015第一学期初三期末数学统考试题及答案

2014-2015海淀区初三数学第一学期期末练习 2015.11.方程2350x x --=的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定是否有实数根 2.在Rt △ABC 中,∠C =90º,35BC AB ==,,则sin A 的值为A.35 B.45 C. 34 D. 433.若右图是某个几何体的三视图,则这个几何体是A. 长方体B. 正方体C. 圆柱D. 圆锥4.小丁去看某场电影,只剩下如图所示的六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号.若小丁从中随机抽取一个,则抽到的座位号是偶数的概率是 A.16 B. 13 C. 12 D. 235.如图,△ABC 和△A 1B 1C 1是以点O 为位似中心的位似三角形,若C 1为OC 的中点,AB =4,则A 1B 1的长为A. 1B. 2C. 4D. 86.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数3=-y x的图象上的两点,若x 1<0<x 2,则下列结论正确的是A .y 1<0<y 2B .y 2<0<y 1C .y 1<y 2<0D .y 2<y 1<07.如图,AB 是半圆O 的直径,AC 为弦,OD ⊥AC 于D ,过点O 作 OE ∥AC 交半圆O 于点E ,过点E 作EF ⊥AB 于F .若AC =2,则OF 的长为A .12B .34C .1D .2 8.如图1,在矩形ABCD 中,AB <BC ,AC ,BD 交于点O .点E 为线段AC 上的一个动点,连接DE ,BE ,过E 作EF ⊥BD 于F .设AE =x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的D FEOCOFDAExyO图1 图2A .线段EFB .线段DEC .线段CED .线段BE 二、填空题(本题共16分,每小题4分)9.若扇形的半径为3cm ,圆心角为120°,则这个扇形的面积为__________ cm 2.10.在某一时刻,测得一根高为2m 的竹竿的影长为1m ,同时测得一栋建筑物的影长为12m ,那么这栋建筑物的高度为 m.11.如图,抛物线2y ax =与直线y =bx +c 的两个交点坐标分别为()2,4A -,()1,1B ,则关于x 的方程20ax bx c --=的解为__________.12.对于正整数n ,定义210()=()10,,≥n n F n f n n ⎧<⎨⎩,其中()f n 表示n 的首位数字、末位数字的平方和.例如:2(6)636F ==,()22(123)1231310F f ==+=.规定1()()F n F n =,1()(())k k F n F F n +=(k 为正整数).例如:()()112312310F F ==,21(123)((123))(10)1F F F F ===.(1)求:2(4)F =____________,2015(4)F =______________; (2)若3(4)89m F =,则正整数m 的最小值是_____________. 三、解答题(本题共30分,每小题5分) 13.计算:()()1201511sin 30 3.142-⎛⎫-+-π-+ ⎪⎝⎭.14.如图,△ABC 中,AB =AC ,D 是BC 中点,BE ⊥AC 于E . 求证:△ACD ∽△BCE .15.已知m 是一元二次方程2320x x --=的实数根,求代数式(1)(1)1m m m+--的值.16.抛物线22y x =平移后经过点(0,3)A ,(2,3)B ,求平移后的抛物线的表达式.17.如图,在平面直角坐标系xOy 中,正比例函数2y x =与反比例函数ky x=的图象交于A ,B 两点,A 点的横坐标为2,AC ⊥x 轴于点C ,连接BC .(1)求反比例函数的解析式; (2)若点P 是反比例函数ky x=图象上的一点,且满足△OPC 与△ABC 的面积相等,请直接写出点P 的坐标.ECBA18.如图,△ABC 中,∠ACB =90°,4sin 5A =, BC =8,D 是AB 中点,过点B 作直线CD 的垂线,垂足为E . (1)求线段CD 的长; (2)求cos ABE ∠的值.四、解答题(本题共20分,每小题5分) 19.已知关于x 的一元二次方程()2220mx m x -++=有两个不相等的实数根12,x x .(1)求m 的取值范围; (2)若20x <,且121x x >-,求整数m 的值.20. 某工厂生产的某种产品按质量分为10个档次,据调研显示,每个档次的日产量及相应为了便于调控,此工厂每天只生产一个档次的产品.当生产质量档次为x 的产品时,当天的利润为y 万元.(1)求y 关于x 的函数关系式;(2)工厂为获得最大利润,应选择生产哪个档次的产品?并求出当天利润的最大值.A21.如图,四边形ABCD 是平行四边形,点A ,B ,C 在⊙O 上,AD 与⊙O 相切,射线AO 交BC 于点E ,交⊙O 于点F .点P 在射线AO 上,且∠PCB =2∠BAF . (1)求证:直线PC 是⊙O 的切线;(2)若ABAD =2,求线段PC 的长.22.阅读下面材料:小明观察一个由11⨯正方形点阵组成的点阵图,图中水平与竖直方向上任意两个相邻点间的距离都是1.他发现一个有趣的问题:对于图中出现的任意两条端点在点阵上且互相不垂直的线段,都可以在点阵中找到一点构造垂直,进而求出它们相交所成锐角的正切值. 请回答: (1)如图1,A 、B 、C 是点阵中的三个点,请在点阵中找到点D ,作出线段CD ,使得CD ⊥AB ;(2)如图2,线段AB 与CD 交于点O .为了求出AOD ∠的正切值,小明在点阵中找到了点E ,连接AE ,恰好满足AE CD ⊥于F ,再作出点阵中的其它线段,就可以构造相似三角形,经过推理和计算能够使问题得到解决.请你帮小明计算:OC =_______________;tan AOD ∠=_______________;C图1 图2 图3参考小明思考问题的方法,解决问题:如图3,计算:tan AOD ∠=_______________.五、解答题(本题共22分,第23题7分,第24题7分,第25小题8分) 23.在平面直角坐标系xOy 中,反比例函数ky x=的图象经过点(1,4)A ,(,)B m n . (1) 求代数式mn 的值;(2) 若二次函数2(1)y x =-的图象经过点B ,求代数式32234m n m n mn n -+-的值; (3) 若反比例函数k y x=的图象与二次函数2(1)y a x =-的图象只有一个交点,且该交点在直线y x =的下方,结合函数图象,求a 的取值范围.24.如图1,在△ABC 中,BC =4,以线段AB 为边作△ABD ,使得AD=BD , 连接DC ,再以DC 为边作△CDE ,使得DC = DE ,∠CDE =∠ADB =α.(1)如图2 ,当∠ABC=45°且α=90°时,用等式表示线段AD ,DE 之间的数量关系;(2)将线段CB 沿着射线CE 的方向平移,得到线段EF ,连接BF ,AF . ① 若α=90°,依题意补全图3, 求线段AF 的长; ②请直接写出线段AF 的长(用含α的式子表示).图2 图3 备用图BBB图1图325. 在平面直角坐标系xOy 中,设点()11,P x y ,()22,Q x y 是图形W 上的任意两点.定义图形W 的测度面积:若12x x -的最大值为m ,12y y -的最大值为n ,则S mn =为图形W 的测度面积.例如,若图形W 是半径为1的⊙O .当P ,Q 分别是⊙O 与x 轴的交点时,如图1,12x x - 取得最大值,且最大值m =2;当P ,Q 分别是⊙O 与y 轴的交点时,如图2,12y y -取得最大值,且最大值n =2.则图形W 的测度面积4S mn ==.(1)若图形W 是等腰直角三角形ABO ,OA =OB =1.①如图3,当点A ,B 在坐标轴上时,它的测度面积S = ; ②如图4,当AB ⊥x 轴时,它的测度面积S = ; (2)若图形W 是一个边长为1的正方形ABCD ,则此图形测度面积S 的最大值为 ; (3)若图形W 是一个边长分别为3和4的矩形ABCD ,求它的测度面积S 的取值范围.图1图2数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写的较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分.3.评分参考中所注分数,表示考生正确做到步应得的累加分数。

2015中考海淀区初三一模数学试卷及答案

2015中考海淀区初三一模数学试卷及答案

CE 为⊙O 的直径,且点 F 在 ⊙O 上, ∴ ∠EFC=90° . CE⊥AB, ∴ ∠BEC=90° .
E O A
∴ ∠BEF +∠FEC = ∠FEC + ∠ECF =90° . ∴ ∠BEF = ∠ECF . ∴ tan ∠BEF = tan ∠ECF . ∴ BF = EF .
∠CBE , ∠GEB = BE = EB, ∠EBG = ∠BEC ,
∴ △GEB ≌ △CBE . ∴ EG = BC . ………………………………………………………………………………5 分 方法二: 证明:连接 BE,设 BG 与 EC 交于点 H,如图 3. ∵四边形 ABCD 是菱形, F ∴AD∥BC. G ∠ADC = 120° , D ∴∠DCB = 60° . AC 是菱形 ABCD 的对角线, ∴ ∠DCA = 30 . ………………………2 分 ∠DCB =°
19. (本小题满分 5 分) 解: ( x − 2 y ) 2 − ( x − y )( x + y ) − 2 y 2
400—650—7766
=x 2 − 4 xy + 4 y 2 − ( x 2 − y 2 ) − 2 y 2 ………………………………………………2 分 = −4 xy + 3 y 2 ……………………………………………………………………3 分
二、填空题(本题共 18 分,每小题 3 分) 题号 11 12 13 0.6 14 15 小明(1 分) ; 一组对边平行且 相等的四边形是 平行四边形 (2 分) 16 30° 或 150° (只答对 一个 2 分, 全对 3 分)
= y kx ( k > 0 )
答案 a(a+b)(a-b) 如, y = x

北京海淀区2015—2016学年第一学期初三数学期末试题及答案

北京海淀区2015—2016学年第一学期初三数学期末试题及答案

海淀区九年级第一学期期末练习数 学 试 卷(分数:120分 时间:120分钟)学校 姓名 准考证号 一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项前的字母填在表格中相应的位置. 题号 1 2 3 4 5 6 7 8 9 10 答案1.在△ABC 中,∠C=90°,BC=3,AB=5,则sin A 的值是A .53B .54C .34D .432.如图,△ABC 内接于⊙O ,若o 100AOB ∠=,则∠ACB 的度数是 A .40° B .50° C .60° D .80°3.抛物线2(2)1y x =-+的顶点坐标是 A .(21)--,B .(21)-,C .(21)-,D .(21),4. 若点A (a ,b )在双曲线3y x=上,则代数式ab -4的值为 A .12- B .7- C .1- D .1 5.如图,在ABCD 中,E 是AB 的中点,EC 交BD 于点F ,则△BEF 与△DCF 的面积比为A .49 B .19C .14D .126.抛物线22y x =向左平移1个单位,再向下平移3个单位,则平移后的抛物线的解析式为A .()2213y x =++ B .()2213y x =+- C .()2213y x =-- D .()2213y x =-+7.已知点(11,x y )、(22,x y )、(33,x y )在双曲线1y x=上,当3210x x x <<<时,1y 、2y 、 3y 的大小关系是FEA BOCAA .321y y y <<B .231y y y <<C .213y y y <<D .132y y y << 8.如图,AB 是⊙O 的直径,C 、D 是圆上的两点.若BC=8,2cos 3D =, 则AB 的长为 A .8133 B .163 C .2455D .129.在平面直角坐标系xOy 中,A 为双曲线6y x=-上一点,点B 的坐标为(4,0).若 △AOB 的面积为6,则点A 的坐标为 A .(4-,32) B .(4,32-)C .(2-,3)或(2,3-)D .(3-,2)或(3,2-)10.如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++ 与x 轴只有一个交点M ,与平行于x 轴的直线l 交于A 、BAB =3,则点M 到直线l 的距离为A .52 B .94 C .2 D .74二、填空题(本题共18分,每小题3分)11.请写出一个图象在第二、四象限的反比例函数解析式 . 12.已知关于x 的方程260x x m -+= 有两个不相等的实数根,则m 的取值范围是 .13.如图,在平面直角坐标系xOy 中,△ABC 与△'''A B C 顶点的横、 纵坐标都是整数.若△ABC 与△'''A B C 是位似图形,则位似中心的坐标是 .14.正比例函数1y k x =与反比例函数2k y x=的图象交于A 、B 两点,若 点A 的坐标是(1,2),则点B 的坐标是___________.15.古算趣题:“笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭.有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足.借问竿长多少数, 谁人算出我佩服.”若设竿长为x 尺,则可列方程为 .16.正方形CEDF 的顶点D 、E 、F 分别在△ABC 的边AB 、BC 、AC 上.(1)如图,若tan 2B =,则BE BC的值为 ;(2)将△ABC 绕点D 旋转得到△'''A B C ,连接'BB 、'CC .AOBCD若'32'5CC BB =,则tan B 的值为 . 三、解答题(本题共72分,第17~26题,每小题5分,第27题6分,第28题8分,第29题8分) 17.计算:2sin 303tan 60cos 45︒+︒-︒.18.解方程:2250x x +-=.19.如图,D 是AC 上一点,DE ∥AB ,∠B =∠DAE . 求证:△ABC ∽△DAE .20.已知m 是方程210x x +-=的一个根,求代数式2(1)(1)(1)m m m +++-的值.21.已知二次函数28y x bx =++的图象与x 轴交于A 、B 两点,点A 的坐标为(2,0)-,求点B 的坐标. 22.如图,矩形ABCD 为某中学课外活动小组围建的一个生物苗圃园,其中两边靠墙(墙足够长),另外两边用长度为16米的篱笆(虚线部分)围成.设AB 边的长度为x 米,矩形ABCD 的面积为y 平方米. (1)y 与x 之间的函数关系式为 (不要求写自变量的取值范围); (2)求矩形ABCD 的最大面积.23.如图,在△ABC 中,∠ACB =90︒,D 为AC 上一点,DE ⊥AB 于点E ,AC =12,BC =5. (1)求cos ADE ∠的值;(2)当DE DC =时,求AD 的长.24.如图,在平面直角坐标系xOy 中,双曲线xmy =与直线 2-=kx y 交于点A (3,1). (1)求直线和双曲线的解析式;EABCDBACDE(2)直线2-=kx y 与x 轴交于点B ,点P 是双曲线 x my =上一点,过点P 作直线PC ∥x 轴,交y轴于点C ,交直线2-=kx y 于点D .若DC =2OB ,直接写出点P 的坐标为 .25.如图,小嘉利用测角仪测量塔高,他分别站在A 、B 两点测得塔顶的仰角45,50.αβ=︒=︒AB 为10米.已知小嘉的眼睛距地面的高度AC 为米,计算塔的高度.(参考数据:sin 50︒取,cos50︒取,tan50︒取1.2)26.如图,△ABC 内接于⊙O ,过点B 作⊙O 的切线DE ,F 为射线BD 上一点,连接CF . (1)求证:CBE A ∠=∠;(2)若⊙O 的直径为5,2BF =,tan 2A =,求CF 的长.27.如图,在平面直角坐标系xOy 中,定义直线x m =与双曲线n ny x=的交点,m n A (m 、n 为 正整数)为 “双曲格点”,双曲线n ny x=在第一象限内的部分沿着竖直方向平移或以平行 于x 轴的直线为对称轴进行翻折之后得到的函数图象为其“派生曲线”.ED F OB CA(1)①“双曲格点”2,1A 的坐标为 ;②若线段4,34,n A A 的长为1个单位长度,则n = ; (2)图中的曲线f 是双曲线11y x=的一条“派生曲线”,且经过点2,3A ,则f 的解析式为 y = ; (3)画出双曲线33y x =的“派生曲线”g (g 与双曲线33y x=不重合),使其经过“双曲格 点”2,a A 、3,3A 、4,b A .28.(1)如图1,△ABC 中,90C ∠=︒,AB 的垂直平分线交AC 于点D ,连接BD .若AC =2, BC =1,则△BCD 的周长为 ;(2)O 为正方形ABCD 的中心,E 为CD 边上一点,F 为AD 边上一点,且△EDF 的周长等于AD 的长.①在图2中求作△EDF (要求:尺规作图,不写作法,保留作图痕迹);②在图3中补全图形,求EOF ∠的度数; ③若89AF CE=,则OF OE的值为 .29.在平面直角坐标系xOy 中,定义直线y ax b =+为抛物线2y ax bx =+的特征直线,C ,a b ()为其特征点.设抛物线2y ax bx =+与其特征直线交于A 、B 两点(点A 在点B 的左侧).(1)当点A 的坐标为(0,0),点B 的坐标为(1,3)时,特征点C 的坐标为 ; (2)若抛物线2y ax bx =+如图所示,请在所给图中标出点A 、点B 的位置;(3)设抛物线2y ax bx =+的对称轴与x 轴交于点D ,其特征直线交y 轴于点E ,点F 的坐 标为(1,0),DE ∥CF .①若特征点C 为直线4y x =-上一点,求点D 及点C 的坐标;②若1tan 22ODE <∠<,则b 的取值范围是 . 海淀区九年级第一学期期末数学练习答案及评分标准201一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17~26题,每小题5分,第27题6分,第28题8分,第29题8分) 17.(本小题满分5分)解:原式2122⎛=+ ⎝⎭……………………………3分 1122=+ ……………………………4分 =……………………………5分18.(本小题满分5分) 解法一:522=+x x .15122+=++x x . ……………………………2分 6)1(2=+x . ……………………………3分61±=+x . 16-±=x . ∴161-=x ,162--=x . ……………………………5分解法二:521-===c b a ,,.∆=ac b 42-)5(1422-⨯⨯-=204+==240>. …………………………2分∴2b x a-±=221-±=⨯ ……………………………3分22-±=1=-±.∴161-=x ,162--=x . ………………………………5分19.(本小题满分5分) 证明:∵DE //AB ,∴∠CAB =∠EDA . ………………………………3分 ∵∠B =∠DAE ,∴△ABC ∽△DAE . ………………………………5分 20.(本小题满分5分)解:∵m 是方程210x x +-=的一个根,∴210m m +-=. ………………………………1分 ∴21m m +=.∴22211m m m =+++-原式 ………………………………3分 222m m =+2=. ………………………………5分 21.(本小题满分5分)解:∵二次函数28y x bx =++的图象与x 轴交于点A (2,0)-, ∴0428b =-+. ………………………………1分∴6b =. ………………………………2分∴二次函数解析式为268y x x =++. ………………………………3分 即(2)(4)y x x =++ .∴二次函数(2)(4)y x x =++与x 轴的交点B 的坐标为(4,0)-. ……5分22.(本小题满分5分)解:(1)216y x x =-+; ………………………………2分(2)∵216y x x =-+,∴2(8)64y x =--+. ………………………………4分∵016x <<,∴当8x =时,y 的最大值为64.答:矩形ABCD 的最大面积为64平方米. ………………………………5分 23.(本小题满分5分)解:解法一:如图,(1)∵DE ⊥AB ,∴∠DEA =90°. ∴∠A+∠ADE =90°. ∵∠ACB =90︒, ∴∠A+∠B =90°.∴∠ADE =∠B . ………………………………1分 在Rt △ABC 中,∵AC =12,BC =5, ∴AB =13. ∴5cos 13BC B AB ==. ∴5cos cos 13ADE B ∠==. ………………………………2分 (2)由(1)得5cos 13DE ADE AD ∠==,设AD 为x ,则513DE DC x ==.………………………………3分∵ 12AC AD CD =+=,∴ 51213x x +=. .………………………………4分解得263x =. ∴ 263AD =. …………………………5分 解法二:(1) ∵90DE AB C ⊥∠=︒,, ∴90DEA C ∠=∠=︒. ∵A A ∠=∠, ∴△ADE ∽△ABC .∴ADE B ∠=∠. ………………………… 1分在Rt △ABC 中,∵12,5AC BC ==, ∴13.AB = ∴5cos .13BC B AB == ∴5cos cos .13ADE B ∠==…………………………2分 (2) 由(1)可知 △ADE ∽△ABC .∴ .DE AD BC AB= ………………………………3分 设AD x =,则12DE DC x ==-.∴12513x x-=. .………………………………4分 解得263x =.∴263AD =.…………………………5分24.(本小题满分5分)解:(1) ∵直线2-=kx y 过点A (3,1),∴132k =-. ∴1k =.∴直线的解析式为2y x =-. ………………………………2分 ∵双曲线xmy =过点A (3,1), ∴3m =.∴双曲线的解析式为3y x=. ………………………………3分 (2)3,22⎛⎫⎪⎝⎭或1,62⎛⎫-- ⎪⎝⎭. ………………………………5分25.(本小题满分5分) 解:如图,依题意,可得10==AB CD ,5.1==AC FG ,︒=∠90EFC .在Rt △EFD 中,∵β=50︒,2.1tan ==FDEFβ, ∴FD EF 2.1=.在Rt △EFC 中,∵α=45︒,∴FD EF CF 2.1==. ………………………2分∵10=-=FD CF CD ,∴50=FD .∴602.1==FD EF . ……………………4分∴5.615.160=+=+=FG EF EG .答:塔的高度为5.61米. ………………………………5分26.(本小题满分5分)解:如图,(1)连接BO 并延长交⊙O 于点M ,连接MC .∴∠A =∠M ,∠MCB =90°.∴∠M +∠MBC =90°.∵DE 是⊙O 的切线,∴∠CBE +∠MBC =90°.∴M CBE ∠=∠.∴A CBE ∠=∠. ………………………………2分(2) 过点C 作CN DE ⊥于点N .∴ 90CNF ∠=︒.由(1)得,M CBE A ∠=∠=∠.∴tan tan tan 2M CBE A =∠==.在Rt △BCM 中,∵5tan 2BM M ==,, ∴25BC =. ………………………………3分在Rt △CNB 中,∵25tan 2BC CBE =∠=,, ∴42CN BN ==,. .………………………………4分∵2BF =,∴4FN BF BN =+=.在Rt △FNC 中,∵4,4FN CN ==,∴42CF =. …………………………5分27.(本小题满分6分)解:(1)①(2,12); ………………………………1分 ②7; ………………………………2分(2)11y x=+; ………………………………4分 (3)如图. ………………………………6分28. (本小题满分8分)解:(1)3; ………………………………1分(2)①如图,△EDF 即为所求; ………………………………3分②在AD 上截取AH ,使得AH =DE ,连接OA 、OD 、OH .∵点O 为正方形ABCD 的中心,∴OA OD =,90AOD ∠=︒,1245∠=∠=︒.∴△ODE ≌△OAH . ………………………………4分∴DOE AOH ∠=∠,OE OH =.∴90EOH ∠=︒.∵△EDF 的周长等于AD 的长,∴EF HF =. ………………………………5分∴△EOF ≌△HOF .∴45EOF HOF ∠=∠=︒. ………………………………6分 ③223. ………………………………8分29.(本小题满分8分)解:(1)(3,0); ……………………1分(2)点A 、点B 的位置如图所示;…………………………3分(3)①如图,∵特征点C 为直线4y x =-上一点,∴4b a =-.∵抛物线2y ax bx =+的对称轴与x 轴交于点D ,∴对称轴22bx a =-=.∴点D 的坐标为2,0(). (4)分 ∵点F 的坐标为(1,0),∴1DF =.∵特征直线y =ax +b 交y 轴于点E ,∴点E 的坐标为0,b ().∵点C 的坐标为,a b (),∴CE ∥DF .∵DE ∥CF ,∴四边形DECF 为平行四边形.∴1CE DF ==.………………………………5分∴1a =-.∴特征点C 的坐标为1,4-(). ………………………………6分②102b -≤<或548b <<. ………………………………8分。

北京市海淀区2015年12月初三数学反比例函数全章测试含答案

北京市海淀区2015年12月初三数学反比例函数全章测试含答案

北京市海淀区普通中学2015年12月初三数学 反比例函数全章测试(60分钟,满分100分)一.填空题:(每题6分,共48分)1.函数13--=x y 的自变量的取值范围是 . 2.反比例函数xy 6=当自变量2-=x 时,函数值是 .3.图象经过点)4,2(--A 的反比例函数的解析式为 . 4.当0<x 时,反比例函数xy 3-=中,变量y 随x 的增大而 . 5.函数2||)1(--=k x k y 是y 关于x 反比例函数,则它的图象不经过 的象限.6.反比例函数x ky =与一次函数2+=x y 图象的交于点),1(a A -,则=k . 7.反比例函数xk y 1+=的图象经过),(11y x A ,),(22y x B 两点,其中021<<x x 且21y y >,则k 的范围是 .8.已知:点A 在反比例函数图象上,B x AB 轴于点⊥,点C (0,1),且ABC ∆的面积是3,如图,则反比 例函数的解析式为 .二.选择题:(每题5分,共35分)9.下列函数中,变量y 是x 的反比例函数的是( ).A . 21xy =B .1--=x y C .32+=x y D .11-=x y 10.在物理学中压力F ,压强p 与受力面积S 的关系是:SFp =则下列描述中正确的是( ).A 当压力F 一定时,压强p 是受力面积S 的正比例函数B 当压强p 一定时,压力F 是受力面积S 的反比例函数C 当受力面积S 一定时,压强p 是压力F 的反比例函数D 当压力F 一定时,压强p 是受力面积S 的反比例函数11.反比例函数xy 6=与一次函数1+=x y 的图象交于点)3,2(A ,利用图象的对称性可知它们的另一个交点是( ).A )2,3(B )2,3(--C )3.2(--D )3,2(-12.若r 为圆柱底面的半径,h 为圆柱的高.当圆柱的侧面积一定时,则h 与r 之间函数关系的图象大致是( ).13.某气球内充满了一定质量的气体,当温度不变时,气球 内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图 象如图所示. 当气球内的气压大于140kPa 时,气球将爆炸,为了安全起见,气体体积应( ). (13题图) A .不大于3m 3524;B .不小于3m 3524;C .不大于3m 3724;D.不小于3m 372414k 1-能是( ). AB C D15.正方形ABCD 的顶点A (2,2),B(-2,2)C(-2,-2),反比例函数xy 2=与x y 2-=的图象均与正方形ABCD的边相交,如图,则图中的阴影部分的面积是( ) . A 、2 B 、4 C 、8 D 、6三.解答题:(16题5分,17、18、19题每题4分,共17分) 16.时,面条的总长度y (m )是面条的粗细(横截面积)S (图所示.⑴写出y (m )与S (mm 2)的函数关系式;⑵求当面条粗1.6 mm 2时,面条的总长度是多少米?A .B .C .D .17.如图,正方形ABCD 的边长是2,E ,F 分别在BC ,CD 两边上,且E ,F 与BC ,CD 两边的端点不重合,AEF ∆的面积是1,设BE=x ,DF=y.(1)求y 关于x 函数的解析式;(2) 判断在(1)中,y 关于x 的函数是什么函数? (3)写出此函数自变量x 的范围.18.已知:反比例函数的图象经过)2,1(a a A )1,12(aaa a B ---两点, 〈1〉 求反比例函数解析式;〈2〉 若点C )1,(m 在此函数图象上,则ABC ∆的面积是 .(填空)19.如图,已知直线m x y +=1与x 轴,y轴分别交于点A 、B ,与双曲线xky =2(x <0)分别交于点C 、D ,且点C 的坐标为(-1,2). ⑴ 分别求出直线及双曲线的解析式;⑵利用图象直接写出,当x 在什么范围内取值时,21y y >.xyD C BAO答案1.1≠x ;2.3-=y ;3.xy 8=;4.增大;5.第一、三象限;6. ,1- 7.1->k 8.xy 6=;9.B ;10.D ;11.B ;12.B ;13.B ;14.D ;15.C 16.(1) x y 128= (2)80m ;17.(1)3+=x y xy 2-=(2)12-<<-x18.<1>x y 2=,<2> 3 19.(1)xy 2=(2)反比例函数(3)20<≤x。

海淀区2015-2016学年第一学期九年级期末数学试题及答案(word版)

海淀区2015-2016学年第一学期九年级期末数学试题及答案(word版)

海淀区九年级第一学期期末练习数 学 试 卷(分数:120分 时间:120分钟) 2016.1学校 姓名 准考证号 一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项前的字母填在表格中相应的位置.A .53 B .54 C .34D .432.如图,△ABC 内接于⊙O ,若o 100AOB ∠=,则∠ACB 的度数是 A .40° B .50° C .60° D .80° 3.抛物线2(2)1y x =-+的顶点坐标是 A .(21)--,B .(21)-,C .(21)-,D .(21),5.如图,在ABCD 中,E 是AB 的中点,EC 交BD 于点F ,则△BEF 与△DCF 的面积比为A .49 B .19 C .14D .126.抛物线22y x =向左平移1个单位,再向下平移3个单位,则平移后的抛物线的解析式为A .()2213y x =++ B .()2213y x =+- C .()2213y x =-- D .()2213y x =-+B7.已知点(11,x y )、(22,x y )、(33,x y )在双曲线1y x=上,当3210x x x <<<时,1y 、2y 、 3y 的大小关系是A .321y y y <<B .231y y y <<C .213y y y <<D .132y y y << 8.如图,AB 是⊙O 的直径,C 、D 是圆上的两点.若BC=8,2cos 3D =,则AB 的长为 A B .163 C D .129.在平面直角坐标系xOy 中,A 为双曲线6y x=-上一点,点B 的坐标为(4,0).若 △AOB 的面积为6,则点A 的坐标为 A .(4-,32) B .(4,32-)C .(2-,3)或(2,3-)D .(3-,2)或(3,2-)10.如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++ 与x 轴只有一个交点M ,与平行于x 轴的直线l 交于A 、B 两点.若AB =3,则点M 到直线l 的距离为A .52 B .94 C .2 D .74二、填空题(本题共18分,每小题3分)11.请写出一个图象在第二、四象限的反比例函数解析式 . 12.已知关于x 的方程260x x m -+= 有两个不相等的实数根,则m 的取值范围是 .13.如图,在平面直角坐标系xOy 中,△ABC 与△'''A B C 顶点的横、 纵坐标都是整数.若△ABC 与△'''A B C 是位似图形,则位似中心的坐标14.正比例函数1y k x =与反比例函数2k y x=的图象交于A 、B 两点,若 点A 的坐标是(1,2),则点B 的坐标是___________.15.古算趣题:“笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭.有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足.借问竿长多少数, 谁人算出我佩服.”若设竿长为x 尺,则可列方程为 .16.正方形CEDF 的顶点D 、E 、F 分别在△ABC 的边AB 、BC 、AC 上.(1)如图,若tan 2B =,则BE BC的值为 ;(2)将△ABC 绕点D 旋转得到△'''A B C ,连接'BB 、'CC .若''5CC BB =,则tan B 的值为 . 三、解答题(本题共72分,第17~26题,每小题5分,第27题6分,第28题8分,第29题8分)17.计算:2sin 303tan 60cos 45︒+︒-︒. 18.解方程:2250x x +-=.19.如图,D 是AC 上一点,DE ∥AB ,∠B =∠DAE . 求证:△ABC ∽△DAE .20.已知m 是方程210x x +-=的一个根,求代数式2(1)(1)(1)m m m +++-的值.21.已知二次函数28y x bx =++的图象与x 轴交于A 、B 两点,点A 的坐标为(2,0)-,求点B 的坐标.22.如图,矩形ABCD 为某中学课外活动小组围建的一个生物苗圃园,其中两边靠墙(墙足够长),另外两边用长度为16米的篱笆(虚线部分)围成.设AB 边的长度为x 米,矩形ABCD 的面积为y 平方米.(1)y 与x 之间的函数关系式为 (不要求写自变量的取值范围); (2)求矩形ABCD 的最大面积.23.如图,在△ABC 中,∠ACB =90︒,D 为AC 上一点,DE ⊥AB 于点E ,AC =12,BC =5. (1)求cos ADE ∠的值;(2)当DE DC =时,求AD 的长.A24.如图,在平面直角坐标系xOy 中,双曲线xmy =与直线 2-=kx y 交于点A (3,1). (1)求直线和双曲线的解析式;(2)直线2-=kx y 与x 轴交于点B ,点P 是双曲线xmy =上一点,过点P 作直线PC ∥x 轴,交y 轴于点C ,交直线2-=kx y 于点D .若DC =2OB ,直接写出点P 的坐标为 .25.如图,小嘉利用测角仪测量塔高,他分别站在A 、B 两点测得塔顶的仰角45,50.αβ=︒=︒AB 为10米.已知小嘉的眼睛距地面的高度AC 为1.5米,计算塔的高度.(参考数据:sin 50︒取0.8,cos50︒取0.6,tan50︒取1.2)26.如图,△ABC 内接于⊙O ,过点B 作⊙O 的切线DE ,F 为射线BD 上一点,连接CF . (1)求证:CBE A ∠=∠;(2)若⊙O 的直径为5,2BF =,tan 2A =,求CF 的长.27.如图,在平面直角坐标系xOy 中,定义直线x m =与双曲线n ny x=的交点,m n A (m 、n 为 正整数)为 “双曲格点”,双曲线n ny x=在第一象限内的部分沿着竖直方向平移或以平行 于x 轴的直线为对称轴进行翻折之后得到的函数图象为其“派生曲线”.(1)①“双曲格点”2,1A 的坐标为 ;②若线段4,34,n A A 的长为1个单位长度,则n = ; (2)图中的曲线f 是双曲线11y x=的一条“派生曲线”,且经过点2,3A ,则f 的解析式为 y = ; (3)画出双曲线33y x =的“派生曲线”g (g 与双曲线33y x=不重合),使其经过“双曲格 点”2,a A 、3,3A 、4,b A .28.(1)如图1,△ABC 中,90C ∠=︒,AB 的垂直平分线交AC 于点D ,连接BD .若AC =2, BC =1,则△BCD 的周长为 ;(2)O 为正方形ABCD 的中心,E 为CD 边上一点,F 为AD 边上一点,且△EDF 的周长等于AD 的长.①在图2中求作△EDF (要求:尺规作图,不写作法,保留作图痕迹); ②在图3中补全图形,求EOF ∠的度数; ③若89AF CE=,则OF OE的值为 .29.在平面直角坐标系xOy 中,定义直线y ax b =+为抛物线2y ax bx =+的特征直线,C ,a b ()为其特征点.设抛物线2y ax bx =+与其特征直线交于A 、B 两点(点A 在点B 的左侧).(1)当点A 的坐标为(0,0),点B 的坐标为(1,3)时,特征点C 的坐标为 ; (2)若抛物线2y ax bx =+如图所示,请在所给图中标出点A 、点B 的位置;(3)设抛物线2y ax bx =+的对称轴与x 轴交于点D ,其特征直线交y 轴于点E ,点F 的坐 标为(1,0),DE ∥CF .①若特征点C 为直线4y x =-上一点,求点D 及点C 的坐标;②若1tan 22ODE <∠<,则b 的取值范围是 .海淀区九年级第一学期期末数学练习答案及评分标准2016.1一、选择题(本题共30分,每小题3分)三、解答题(本题共72分,第17~26题,每小题5分,第27题6分,第28题8分,第29题8分)17.(本小题满分5分)解:原式2122⎛=+ ⎝⎭……………………………3分 1122=+ ……………………………4分 =……………………………5分18.(本小题满分5分) 解法一:522=+x x .15122+=++x x . ……………………………2分 6)1(2=+x . ……………………………3分 61±=+x . 16-±=x .∴161-=x ,162--=x . ……………………………5分解法二:521-===c b a ,,. ∆=ac b 42-)5(1422-⨯⨯-=204+==240>. …………………………2分∴2b x a-±=221-±=⨯ ……………………………3分22-±=1=-.∴161-=x ,162--=x . ………………………………5分 19.(本小题满分5分) 证明:∵DE //AB ,∴∠CAB =∠EDA . ………………………………3分 ∵∠B =∠DAE ,∴△ABC ∽△DAE . ………………………………5分 20.(本小题满分5分)解:∵m 是方程210x x +-=的一个根,∴210m m +-=. ………………………………1分 ∴21m m +=.∴22211m m m =+++-原式 ………………………………3分 222m m =+2=. ………………………………5分 21.(本小题满分5分)解:∵二次函数28y x bx =++的图象与x 轴交于点A (2,0)-, ∴0428b =-+. ………………………………1分∴6b =. ………………………………2分∴二次函数解析式为268y x x =++. ………………………………3分 即(2)(4)y x x =++ .∴二次函数(2)(4)y x x =++与x 轴的交点B 的坐标为(4,0)-. ……5分22.(本小题满分5分)解:(1)216y x x =-+; ………………………………2分(2)∵216y x x =-+,∴2(8)64y x =--+. ………………………………4分∵016x <<,∴当8x =时,y 的最大值为64.答:矩形ABCD 的最大面积为64平方米. ………………………………5分 23.(本小题满分5分)解:解法一:如图,(1)∵DE ⊥AB ,∴∠DEA =90°. ∴∠A+∠ADE =90°. ∵∠ACB =90︒, ∴∠A+∠B =90°.∴∠ADE =∠B . ………………………………1分在Rt △ABC 中,∵AC =12,BC =5, ∴AB =13. ∴5cos 13BC B AB ==. ∴5cos cos 13ADE B ∠==. ………………………………2分 (2)由(1)得5cos 13DE ADE AD ∠==, 设AD 为x ,则513DE DC x ==.………………………………3分 ∵ 12AC AD CD =+=,∴ 51213x x +=. .………………………………4分解得263x =. ∴ 263AD =. …………………………5分 解法二:(1) ∵90DE AB C ⊥∠=︒,,A∴90DEA C ∠=∠=︒. ∵A A ∠=∠, ∴△ADE ∽△ABC .∴ADE B ∠=∠. ………………………… 1分 在Rt △ABC 中,∵12,5AC BC ==, ∴13.AB = ∴5cos .13BC B AB == ∴5cos cos .13ADE B ∠==…………………………2分 (2) 由(1)可知 △ADE ∽△ABC .∴ .DE AD BC AB = ………………………………3分 设AD x =,则12DE DC x ==-. ∴12513x x-=. .………………………………4分 解得263x =.∴263AD =.…………………………5分 24.(本小题满分5分)解:(1) ∵直线2-=kx y 过点A (3,1),∴132k =-. ∴1k =.∴直线的解析式为2y x =-. ………………………………2分 ∵双曲线xmy =过点A (3,1), ∴3m =.∴双曲线的解析式为3y x=. ………………………………3分 (2)3,22⎛⎫⎪⎝⎭或1,62⎛⎫-- ⎪⎝⎭. ………………………………5分 25.(本小题满分5分) 解:如图,依题意,可得10==AB CD ,5.1==AC FG ,︒=∠90EFC .在Rt △EFD 中,∵β=50︒,2.1tan ==FD EF β, ∴FD EF 2.1=.在Rt △EFC 中,∵α=45︒,∴FD EF CF 2.1==. ………………………2分∵10=-=FD CF CD ,∴50=FD .∴602.1==FD EF . ……………………4分∴5.615.160=+=+=FG EF EG .答:塔的高度为5.61米. ………………………………5分26.(本小题满分5分)解:如图,(1)连接BO 并延长交⊙O 于点M ,连接MC .∴∠A =∠M ,∠MCB =90°.∴∠M +∠MBC =90°.∵DE 是⊙O 的切线,∴∠CBE +∠MBC =90°.∴M CBE ∠=∠.∴A CBE ∠=∠. ………………………………2分(2) 过点C 作CN DE ⊥于点N .∴ 90CNF ∠=︒.由(1)得,M CBE A ∠=∠=∠.∴tan tan tan 2M CBE A =∠==.在Rt △BCM 中, ∵5tan 2BM M ==,,∴BC = ………………………………3分在Rt △CNB 中,∵tan 2BC CBE =∠=, ∴42CN BN ==,. .………………………………4分∵2BF =,∴4FN BF BN =+=.G在Rt △FNC 中,∵4,4FN CN ==,∴CF = …………………………5分27.(本小题满分6分)解:(1)①(2,12); ………………………………1分 ②7; ………………………………2分(2)11y x=+; ………………………………4分 (3)如图. ………………………………6分28. (本小题满分8分)解:(1)3; ………………………………1分(2)①如图,△EDF 即为所求; ………………………………3分②在AD 上截取AH ,使得AH =DE ,连接OA 、OD 、OH .∵点O 为正方形ABCD 的中心,∴OA OD =,90AOD ∠=︒,1245∠=∠=︒.∴△ODE ≌△OAH . ………………………………4分 ∴DOE AOH ∠=∠,OE OH =.∴90EOH ∠=︒.∵△EDF 的周长等于AD 的长,∴EF HF =. ………………………………5分∴△EOF ≌△HOF .∴45EOF HOF ∠=∠=︒. ………………………………6分③3. ………………………………8分 29.(本小题满分8分)解:(1)(3,0); ……………………1分(2)点A 、点B 的位置如图所示;…………………………3分(3)①如图,∵特征点C 为直线4y x =-上一点,∴4b a =-.∵抛物线2y ax bx =+的对称轴与x 轴交于点D , ∴对称轴22b x a=-=.∴点D 的坐标为2,0(). ……………………………4分 ∵点F 的坐标为(1,0),∴1DF =.∵特征直线y =ax +b 交y 轴于点E ,∴点E 的坐标为0,b (). ∵点C 的坐标为,a b (), ∴CE ∥DF .∵DE ∥CF ,∴四边形DECF 为平行四边形.∴1CE DF ==.………………………………5分∴1a =-.∴特征点C 的坐标为1,4-(). ………………………………6分 ②102b -≤<或548b <<. ………………………………8分。

2015年北京中考各区县数学一模压轴题(答案版)

2015年北京中考各区县数学一模压轴题(答案版)

压轴题答案1. 海淀区27. (本小题满分7分)解:(1)∵抛物线2212y x x =-+与y 轴交于点A ,∴点A 的坐标为(0,2).…………………………………………1分 ∵2211(232)212y x x x -+==+-,∴抛物线的对称轴为直线1x =,顶点B 的坐标为(1,32).…………2分又∵点C 与点A 关于抛物线的对称轴对称,∴点C 的坐标为(2,2),且点C 在抛物线上. 设直线BC 的解析式为y kx b =+.∵直线BC 经过点B (1,32)和点C (2,2),∴322 2.,k b k b ⎧+=⎪⎨⎪+=⎩解得121.k b ⎧=⎪⎨⎪=⎩, ∴直线BC 的解析式为 112y x =+.…………………………3分(2)∵抛物线2212y x x =-+中,当4x =时,6y =,∴点D 的坐标为(4,6).………………4分∵直线112y x =+中,当0x =时,1y =, 当4x =时,3y =,∴如图,点E 的坐标为(0,1),点F 的坐标为(4,3).设点A 平移后的对应点为点'A ,点D 平移后的对应点为点'D . 当图象G 向下平移至点'A 与点E 重合时,点'D 在直线BC 上方, 此时t =1;…………………………………………………………5分当图象G 向下平移至点'D 与点F 重合时,点'A 在直线BC 下方,此时t =3.……………………………………………………………………………………6分 结合图象可知,符合题意的t 的取值范围是13t <≤.……………………………7分28. (本小题满分7分)(1)补全图形,如图1所示.…………………………………………………………1分GF EDCBA图1 图2(2)方法一:证明:连接BE ,如图2. ∵四边形ABCD 是菱形, ∴AD ∥BC . 120ADC ∠=︒, 60DCB ∴∠=︒.AC 是菱形ABCD 的对角线, ∴1302DCA DCB ∠=∠=︒.……………………………………………………………2分 180100EDC DEC DCA ∴∠=︒-∠-∠=︒.由菱形的对称性可知, 50BEC DEC ∠=∠=︒, 100EBC EDC ∠=∠=︒.……………………………………………………………………3分 100GEB DEC BEC ∴∠=∠+∠=︒. GEB CBE ∴∠=∠. 50FBC ∠=︒,50EBG EBC FBC ∴∠=∠-∠=︒.…………………………………………………………4分 EBG BEC ∴∠=∠. 在△GEB 与△CBE 中,,,,GEB CBE BE EB EBG BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GEB ≌△CBE .GF EDCBAEG BC ∴=.………………………………………………………………………………5分方法二:证明:连接BE ,设BG 与EC 交于点H ,如图3. ∵四边形ABCD 是菱形, ∴AD ∥BC . 120ADC ∠=︒, 60DCB ∴∠=︒.AC 是菱形ABCD 的对角线,∴1302DCA DCB ∠=∠=︒.………………………2分180100EDC DEC DCA ∴∠=︒-∠-∠=︒.由菱形的对称性可知,50BEC DEC ∠=∠=︒,100EBC EDC ∠=∠=︒.……………………………………………3分50FBC ∠=︒,图350EBG EBC FBC BEC ∴∠=∠-∠=︒=∠.……………………………4分 BH EH ∴=.在△GEH 与△CBH 中,,,,GEH CBH EH BH EHG BHC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GEH ≌△CBH .EG BC ∴=.………………………………………………………………………………5分 (3)AE BG +=. …………………………………………………………………7分 29.(本小题满分8分)解:(1)①;……………………………………………………………………1分②点B .………………………………………………………………………2分 (2)依题意,3(2)y x x =-+-≥图象上的点P 的限变点必在函数3,13,21x x y x x -+⎧=⎨--<⎩≥≤的图象上.2≤b '∴,即当1x =时,b '取最大值2.当2b '=-时,23x -=-+.5x ∴=.………………………………………3分 当5b '=-时,53x -=-或53x -=-+.2x ∴=-或8x =.………………………………4分 52≤≤b '-,由图象可知,k 的取值范围是58≤≤k .……………………………………………5分A(3)2222()y x tx t t x t t =-++=-+,∴顶点坐标为(,)t t .………………………………………………………………6分若1t <,b '的取值范围是≥b m '或≤b n ',与题意不符. 若1≥t ,当1≥x 时,y 的最小值为t ,即m t =; 当1x <时,y 的值小于2[(1)]t t --+,即2[(1)]n t t =--+. 22(1)1s m n t t t t ∴=-=+-+=+.∴s 关于t 的函数解析式为211)s t t =+≥ ( .……………………………7分当t=1时,s 取最小值2.∴s 的取值范围是s ≥2.………………………………………………………8分2. 西城区27.解:(1)∵ 二次函数21y x bx c =++的图象1C 经过(1,0)-,∴10,3.b c c -+=⎧⎨=-⎩ ………………………………1分解得2,3.b c =-⎧⎨=-⎩………………………………… 2分∴ 抛物线1C 的函数表达式为3221--=x x y . …………………………………… 3分 (2)∵ 22123=(1)4y x x x =----,∴ 抛物线1C 的顶点为(1,4)- ∴ 平移后抛物线2C 的顶点为(0,0),它对应的函数表达式为22y x =.… 5分 (3)a ≥1-(见图7).………………………………………………………………7分28.解:(1)90,12.……………………………………………………………………… 2分 (2)结论:90AHB ∠=︒,AF BE =. 证明:如图8,连接AD .∵ AB =AC ,∠BAC =60°, ∴ △ABC 是等边三角形. ∵ D 为BC 的中点,∴ AD ⊥BC . ∴ ∠1+∠2=90°. 又∵ DE ⊥AC , ∴ ∠DEC =90°. ∴ ∠2+∠C =90°. ∴ ∠1=∠C =60°.设AB =BC=k (0k >), 则124kCE CD ==,DE =. ∵ F 为DE 的中点,∴12DF DE ==,AD AB ==.∴AD BC =,DF CE ∴ =BC AD CE DF .…………………………………………………………3分 又∵ ∠1=∠C , ∴ △ADF ∽△BCE .………………………………………………… 4分∴AF AD BE BC ==,………………………………………………… 5分 ∠3=∠4. 又∵ ∠4+∠5=90°,∠5=∠6, ∴ ∠3+∠6=90°. ∴ 90AHB ∠=︒.………………………………………………………6分(3)1tan 9022α︒-().………………………………………………………………7分注:写1cos 2sin αα+或其他答案相应给分.29.解:(1)3.(每空各1分)…………………………………………………… 2分(2)-1.…………………………………………………………………………… 4分(3)①如图9,过点O 分别作射线OE 、OF 的垂线OG 、OH ,则图形M 为:y 轴正半轴,∠GOH 的边及其内部的所有点(图中的阴影部分).……………………………………………………………………………… 7分 说明:(画图2分,描述1分)(图形M 也可描述为:y 轴正半轴,直线x y 33=下方与直线x y 33-=下方重叠的部分(含边界)) ②34.…………………………………………………………………………8分3. 东城区27.解:(1)∵抛物线()210y ax bx a =++≠过点()1,0A -,()1,1B ,∴10,1 1.a b a b -+=⎧⎨++=⎩∴1,21.2a b ⎧=-⎪⎪⎨⎪=⎪⎩ ∴抛物线的函数关系式为211122y x x =-++. …………2分 (2)∵122b x a =-=,()0,1C ∴抛物线211122y x x =-++的对称轴为直线12x =. 设点E 为点A 关于直线12x =的对称点,则点E 的坐标为()2,0. 连接EC 交直线12x =于点D ,此时ACD △的周长最小. 设直线EC 的函数表达式为y kx m =+,代入,E C 的坐标,则2m 0,1.k m +=⎧⎨=⎩解得1,21.k m ⎧=-⎪⎨⎪=⎩所以,直线EC 的函数表达式为112y x =-+. 当12x =时,34y =. ∴ 点D 的坐标为13,24⎛⎫⎪⎝⎭. …………4分(3)存在.①当点A 为直角顶点时,过点A 作AC 的垂线交y 轴于点M ,交对称轴于点1P .∵AO OC ⊥,1AC AP ⊥,∴90AOM CAM ∠=∠=︒. ∵()0,1C ,()1,0A -, ∴1OA OC ==. ∴45CAO ∠=︒.∴45OAM OMA ∠=∠=︒. ∴1OA OM ==.∴点M 的坐标为()0,1-.设直线AM 对应的一次函数的表达式为11y k x b =+,代入,A M 的坐标,则1110,1.k b b -+=⎧⎨=-⎩解得111,1.k b =-⎧⎨=-⎩所以,直线AM 的函数表达式为1y x =--.令12x =,则32y =-. ∴点1P 的坐标为13,22⎛⎫-⎪⎝⎭. …………5分 ②当点C 为直角顶点时,过点C 作AC 的垂线交对称轴于点2P ,交x 轴于点N . 与①同理可得Rt CON △是等腰直角三角形, ∴1OC ON ==. ∴点N 的坐标为()1,0. ∵2CP AC ⊥,1AP AC ⊥, ∴21CP AP ∥.∴直线2CP 的函数表达式为1y x =-+. 令12x =,则12y =. ∴点2P 的坐标为11,22⎛⎫⎪⎝⎭. …………6分 综上,在对称轴上存在点1P 13,22⎛⎫- ⎪⎝⎭,2P 11,22⎛⎫⎪⎝⎭,使ACP △成为以AC 为直角边的直角三角形.…………7分 28.解:(1)当60α=︒时, BD A A '⊥. ------------1分(2)补全图形如图1,B D A A '⊥仍然成立;------------3分(3)猜想BD A A '⊥仍然成立.证明:作AE C C '⊥,A F C C ''⊥,垂足分别为点,E F ,如图2,则90AEC A FC ''∠=∠=︒. ∵BC BC '=,∴BCC BC C ''∠=∠. ∵90ACB A C B ''∠=∠=︒,∴90ACE BCC '∠+∠=︒,'90A C F BC C ''∠+∠=︒. ∴ACE A C F ''∠=∠. 在AEC △和A FC ''△中,90,,,AEC A FC ACE A C F AC A C ''∠=∠=︒⎧⎪''∠=∠⎨⎪''=⎩∴AEC A FC ''△≌△. ∴AE A F '=.图2 图1在AED △和A FD '△中,90,,,AEC A FD ADE A DF AE A F '∠=∠=︒⎧⎪'∠=∠⎨⎪'=⎩∴AED A FD '△≌△. ∴AD A D '=. ∵AB A B '=,∴'ABA △为等腰三角形. ∴BD A A '⊥------------7分29.解:(1)∵20x ≥, ∴2x -1≥-1. ∴2-x -1>2.∴{}2min 2x =--1,-2. ┉┉2分 (2) ∵()2211x x k x k -+=-+-2,∴()2111x k k -+--≥. ∵2min{2,3}3x x k -+-=-,∴13k --≥. ∴2k -≥. ┉┉5分(3) 37m -≤≤. ┉┉8分4. 朝阳区 27. 解:(1)∵ 点A 在直线x y =,且点A 的横坐标是-3,∴ A (-3,-3) . ………………………………………………………………1分 把A (-3,-3)代入x ax y 42+=,解得a =1. … …………………………………………………………………2分 ∴M 1 : x x y 42+=,顶点为(-2,-4) . ∴M 2的顶点为(1,-1) .∴M 2的表达式为x x y 2-2=. …………3分(2)①由题意,C (2,2),∴F (4,2) . ………………………………4分 ∵直线n x y +=经过点F , ∴2=4+n .解得n =-2. ………………………5分② n >3,n <-6. …………… …7分28.解:(1)①补全图形,如图1所示. ………………………1分②由题意可知AD =DE ,∠ADE =90°. ∵DF ⊥BC , ∴∠FDB =90°.∴∠ADF =∠EDB . ……………………………………2分 ∵∠C =90°,AC =BC , ∴∠ABC =∠DFB =90°. ∴DB =DF .∴△ADF ≌△EDB . ……………………………………3分 ∴AF =EB .在△ABC 和△DFB 中, ∵AC =8,DF =3,∴AC=,DF=. ………………………………………………………………4分 AF =AB -BF=即BE= …………………………………………………………………………5分 (2BD =BE +AB. ……………………………………………………………………7分29. 解:(1)A 、B ……………………………………………………………………………2分(2)如图,作点P 关于x 轴的对称点P ′,连接P ′Q ,P ′Q 与x 轴的交点即为“等高点”M ,此时“等高距离”最小,最小值为线段P ′Q 的长. ………………………3分 ∵P (1,2), ∴ P ′ (1,-2).设直线P ′Q 的表达式为b kx y +=, 根据题意,有⎩⎨⎧=+-=+242b k b k ,解得⎪⎩⎪⎨⎧-==31034b k . 图1∴直线P ′Q 的表达式为31034-=x y . ……………4分 当0=y 时,解得25=x . 即25=t . ………………………………………………………………………5分 根据题意,可知PP ′=4,P Q =3, P Q ⊥PP ′, ∴5''22=+=PQ PP Q P .∴“等高距离”最小值为5. …………………………………………………6分(3)Q (554,552)或Q (554-,552). ………………………………8分5. 丰台区27 . 解:(1)∵抛物线22y x mx n =++过点 A (-1,a ),B (3,a ), ∴抛物线的对称轴x =1..……. 1分 ∵抛物线最低点的纵坐标为-4 , ∴抛物线的顶点是(1,-4)..……. 2分 ∴抛物线的表达式是22(1)4y x =--, 即2242y x x =--..…3分把A (-1,a )代入抛物线表达式,求出4a =..……. 4分(2)∵抛物线顶点(1,4)C -关于y 轴的对称点为点D ,∴(1,4)D --.求出直线CD 的表达式为4y =-. .……. 5分求出直线BD 的表达式为22y x =-,当1x =时,0y =..……. 6分 所以40t -<≤..……. 7分28.(1)①作图.……. 1分GF E BC(P )A DADE ∆(或PDE ∆).…….2分②过点P 作PN ∥AG 交CG 于点N ,交CD 于点M ,.…….3分∴CPM CAB ∠=∠.∵∠CPE =12∠CAB ,∴∠CPE =12∠CPN .∴∠CPE =∠FPN .∵PF CG ⊥,∴∠PFC =∠PFN =90°.∵PF =PF ,∴PFC ∆≌PFN ∆.∴CF FN =..…….4分 由①得:PME ∆≌CMN ∆.∴PE CN =.∴12CF CF PE CN ==..…….5分 (2)1tan 2α..…….7分29. (1)4;.…….2分(2)①直线21y x =+记为l ,过点M 作MH l ⊥,垂足为点H ,.…….3分 ∵EOF MHE ∆∆∽∴MH ME OFEF =,即71MH=.∴5MH =..…….4分.…….6分.…….8分6. 通州27. 解:(1)设抛物线解析式为2)1(-=x a y ,由抛物线过点)10(,A ,可得122+-=x x y ………..(2分) (2)如图:G F EC D A PNM1………………………………………..(5分)(3)-4<m<0 ………………………………………..(7分)28.(2)结论:成立. ………………………..(1分)(3)结论:成立.………………………..(2分)证明:过点E作EG∥BC交AB延长线于点G,……………..(3分)∵四边形ABCD为菱形,∴AB=BC,又∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠ACB=60°,…………………………..(4分)又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE=GE ,∴BG=CE,…………………………..(5分)又∵CF=AE,∴GE=CF,………………………………………..(6分)又∵∠BGE=∠ECF=60°,∴△BGE≌△ECF(SAS),∴BE=EF.………………………………………..(7分)29.(1)点D是线段AB的“邻近点”;…………………..(2分)(2)∵点H(m,n)是线段AB的“邻近点”,点H(m,n)在直线y=x-1上,∴n =m-1; ………………………………………..(3分)直线y=x-1与线段AB交于(4,3)①当m≥4时,有n=m-1≥3,又AB∥x轴,∴此时点H(m,n)到线段AB的距离是n-3,∴0≤n-3≤1,∴4 ≤m≤5,…………………………………..(4分)②当m≤4时,有n=m-1 ∴n≤3,又AB∥x轴,∴此时点H(m,n)到线段AB的距离是3-n,∴0≤3-n ≤1,∴ 3≤m ≤4, ………………………………………..(5分) 综上所述,3≤m ≤5; ………………………………………..(6分) (3)31b --≤≤+ ………………………………………..(8分)7. 石景山 27.解:(1)将()3,0A 代入,得1m =.∴抛物线的表达式为223y x x =--. (1)分B 点的坐标()1,0-. ………………2分(2)()222314y x x x =--=--.∵当21x -<<时,y 随x 增大而减小; 当13x ≤<时,y 随x 增大而增大, ∴当1x =,min 4y =-; ………………3分 当2x =-,5y =.∴y 的取值范围是45y -≤<.…………4分(3)当直线y kx b =+经过()1,0B -和点()4,2时,解析式为2255y x =+.…….…………… …5分 当直线y kx b =+经过()2,5--和点 ()4,2时,解析式为7863y x =-.………. ……………6分 结合图象可得,b 的取值范围是8235b -<<. ………….7分28.解:(1)正确画出图形. ……………1分(2)①CA FH DF =+.……………2分l证明:过点F 作FG ⊥CA 于点G . ……3分 ∵FH ⊥BA 于点H ,90A ∠=︒,FG ⊥CA , ∴四边形HFGA 为矩形. ∴AG FH =,FG ∥AB . ∴GFC EBC ∠=∠. ……………4分 由(1)和平移可知, ∠ECB =EBC ∠=∠GFC , ∠FDC =90A ∠=︒. ∴∠FDC =∠FGC =90°. ∵FC CF =,∴△FGC ≌△CDF .∴CG FD =. ………………………5分 ∴DF FH GC AG +=+.即DF FH AC +=. ……………6分②CA DF FH =-. ………………7分29.解:(1)()1,0D -.(2)连结,AO AC ,过点A 作AF y ⊥则5AC AO ==3145EF AE =∠=︒∴=∴∴在Rt AEB ∆AB = ∴在Rt ∆得,BC =∴所求“理想矩形”ABCD 面积为 AB BC ⨯=.……………………………………………………5分(3)“理想矩形”面积的最大值是5. ………………………………6分()()1,23,2D ---或. ………………………………8分图3G8. 平谷27.解:(1)∵抛物线y=ax2+x+c(a≠0)经过A(﹣1,0),B(2,0)两点,∴10420a ca c-+=⎧⎨++=⎩,解得12ac=-⎧⎨=⎩.∴抛物线为y=﹣x2+x+2①; (1)∴顶点D(12,94). (2)(2)如图,作EN∥BC,交y轴于N,过C作CM⊥EN于M,令x=0,得y=2,∴OC=OB=2.∴∠OCB=45°.∵EN∥BC,∴∠CNM=∠OCB=45°.∵CM⊥EN于M,∴∠CNM=∠CMN=45°.∴MN =CM=2.∴CN=1.∴直线NE的解析式为:把②代入①,解得1xy=⎧⎨=⎩∴E(1,2).(3)过E作EF⊥AB于F∴tan∠EOF=2,又∵tan∠α=2,∴∠EOF=∠α,∵∠EOF=∠EAO+∠AEO=∠α,∠EAO+∠EPO=∠α,∴∠EPO=∠AEO,∵∠EAO=∠P AE,∴△AEP∽△AOE, (5)∴AP AEAE AO=,∵AE AO∴AP=8,∴OP=7,∴()7,0P,由对称性可得,()'5,0P-∴()7,0P或()5,0-.28.解:(1)E (1)延长DA 到点E ,使AE =CN ,连接BE ∵∠BAD +∠C =180°. ∴∠EAB =∠C .又∵AB =BC ,AE =CN , ∴△ABE ≌△CBN . ∴∠EBA =∠CBN ,BE =BN .…………………………………………………………2 ∴∠EBN =∠ABC .∵∠ABC =80°,∠MBN =40°, ∴∠EBM =∠NBM =40°. ∵BM =BM ,∴△EBM ≌△NBM .∴EM =NM .…………………………………………………………………………3 ∴MN =AM +CN .……………………………………………………………………4 (2) (5)MN <AM+CN .................................................................................6 (31 (8)29.解:(112(2)由于二次函数2y x x k =--的图象开口向上,对称轴为1x =,……………………………………………………………………3 ∴二次函数22y x x k =--在闭区间[1,2]内,y 随x 的增大而增大.当x =1时,y =1, ∴k =2-.当x =2时,y =2, ∴k =2-.即图象过点(1,1)和(2,2)∴当1≤x≤2时,有1≤y≤2,符合闭函数的定义, ∴k =2-.……………………………………………………………………………4 (3)因为一次函数()0y kx b k =+≠是闭区间[],m n 上的“闭函数”,根据一次函数的图象与性质,有:(Ⅰ)当0k >时,即图象过点(m ,m )和(n ,n )mk b mnk b n+=⎧⎨+=⎩,……………………………………………………………………5 解得10k b =⎧⎨=⎩.∴y x =……………………………………………………………………………6 (Ⅱ)当0k <时,即图象过点(m ,n )和(n ,m )mk b n nk b m +=⎧⎨+=⎩,解得1k b m n =-⎧⎨=+⎩∴y x m n =-++,………………………………………………………………7 ∴一次函数的解析式为y x =或y x m n =-++.9. 门头沟 27.(本小题满分7分)(1)证明:∵ △= (m +1)2-4×(-1)×(m +2)=(m +3)2. ……………………………………………………………1分∵ m >0, ∴ (m +3)2>0, 即 △>0,∴ 原方程有两个不相等的实数根. (2)分 (2)解:∵ 抛物线抛物线y =-x 2+(m +1)x +(m +2)经过点(3,0),∴ -32+3(m +1)+(m +2)=0,………………………………………………3分 ∴ m =1.∴ y =-x 2+2x +3. (4)分(3)解:∵ y =-x 2+2x +3=-(x -1)2+4,∴ 该抛物线的顶点为(1,4).∴ 当直线y =k (x +1)+4经过顶点(1,4)时, ∴ 4=k (1+1)+4, ∴ k =0, ∴ y =4.∴ 此时直线y =k (x +1)+4与y 轴交点的纵坐标为 4. ………………………5分∵ y =-x 2+2x +3, ∴ 当x =0时,y =3,∴ 该抛物线与y 轴的交点为(0,3).∴ 此时直线y =k (x +1)+4与y 轴交点的纵坐标为 3. ………………………6分 ∴ 3<t ≤4. …………………………………………………………………7分28.(本小题满分7分)解:(1)DE. (1)分 (2)DE 、BF 、BP 三者之间的数量关系是BF +BP=DE . (2)分理由如下: ∵ ∠ACB =90°,D 是AB 的中点,∠A =30° ∴ DC =DB ,∠CDB =60°. ∵ 线段DP 绕点D 逆时针旋转60°得到线段DF , ∴ ∠PDF =60°,DP =DF . 又∵∠CDB =60°,∴ ∠CDB -∠PDB =∠PDF -∠PDB , ∴ ∠CDP =∠BDF . ∴ △D C P ≌△D B F .………………………………………………………3分∴ CP =BF .而 CP =BC -BP , ∴ BF +BP =BC ,……………………………………………………………4分在Rt △CDE 中,∠DEC =90°,∴ tan DEDCE CE∠=, ∴ CEDE , ∴ BC =2CEDE , ∴ BF +BP=DE ................................................................5分 (3)BF +BP =2DE tan α,BF -BP =2DE tan α. (7)分29.(本小题满分8分)解:(1)4,2a ; (2)分 (2)13; (3)分(3)① ∵ F 1的碟宽︰F 2的碟宽=2:1,∴12222:1a a =. ∵ a 1=13,∴ a 2=23 (4)分 又∵ 由题意得F 2的碟顶坐标为(1,1), (5)分 ∴ ()222113y x =-+ (6)分 ② F 1,F 2,...,F n 的碟宽的右端点在一条直线上;........................7分 其解析式为y =-x +5. (8)分10. 怀柔27.解:(1)∵二次函数y=(a-1)x 2+2x+1与x 轴有交点,令y=0,则(a-1)x 2+2x+1=0,∴=4-4(a-1)0∆≥,解得a ≤2. …………………………………1分. ∵a 为正整数. ∴a=1、2又∵y=(a-1)x 2+2x+1是二次函数,∴a-1≠0,∴a ≠1, ∴a 的值为2. ………………………………………2分(2)∵a=2,∴二次函数表达式为y=x 2+2x+1,将二次函数y=x 2+2x+1化成顶点式y=(x+1)2二次函数图象向右平移m 个单位,向下平移m 2+1个单位后的表达式为y=(x+1-m )2-(m 2+1).此时函数的顶点坐标为(m-1, -m 2-1). …………………………………4分 当m-1<-2,即m <-1时, x=-2时,二次函数有最小值-3, ∴-3=(-1-m )2-(m 2+1),解得32m =-且符合题目要求. ………………………………5分 当 -2≤m-1≤1,即-1≤m ≤2,时,当 x= m-1时,二次函数有最小值-m 2-1=-3,解得m =.∵m =-1≤m ≤2的条件,舍去.∴m =.……………………………………6分当m-1>1,即m >2时,当 x=1时,二次函数有最小值-3, ∴-3=(2-m )2-(m 2+1),解得32m =,不符合m >2的条件舍去. 综上所述,m 的值为32-……………………………………7分 28.解:(1)补全图形,如图1所示. …………………………… 1分(2)连接AD ,如图2.∵点D 与点B 关于直线AP 对称,∴AD=AB ,∠DAP = ∠BAP =30°.∵AB=AC, ∠BAC =60°. ∴AD=AC, ∠DAC =120°.∴2∠ACE+60°+60°=180°∴∠ACE =30°…………………………… 3分(3)线段AB,CE,ED 可以构成一个含有60°角的三角形. …………………………… 4分P E D C BAP E D C BA证明:连接AD,EB,如图3.∵点D与点B关于直线AP对称,∴AD=AB,DE=BE,可证得∠EDA= ∠E BA.∵AB=AC,AB=AD.∴AD=AC, ∴∠ADE= ∠ACE.∴∠ABE= ∠ACE.设AC,BE交于点F,又∵∠AFB= ∠CFE.∴∠B AC= ∠BEC=60°.∴线段AB,CE,ED可以构成一个含有60°角的三角形.………7分29. 解:(1)x=2.…………………………1分.(2)①C点坐标为: )…………………………3分.②由①C点坐标为: )再求得其它一个点C1),或(0,-2)等代入表达式y=kx+b,解得b=-2 k⎧⎪⎨=⎪⎩∴直线的表达式是2y=-.………………………5分.动点C运动形成直线如图所示.……………6分.EC≤<…………………………8分.FPCADE。

2015年北京市海淀区九年级第一学期期末考试数学试卷(附答案)讲解

2015年北京市海淀区九年级第一学期期末考试数学试卷(附答案)讲解

2015年北京市海淀区九年级第一学期期末考试数学试卷满分:班级:_________ 姓名:_________ 考号:_________一、单选题(共8小题)1.方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定是否有实数根2.在Rt△ABC中,∠C=90º,,则的值为()A.B.C.D.3.若右图是某个几何体的三视图,则这个几何体是()A.长方体B.正方体C.圆柱D.圆锥4.小丁去看某场电影,只剩下如图所示的六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号.若小丁从中随机抽取一个,则抽到的座位号是偶数的概率是()A.B.C.D.5.如图,△ABC和△A1B1C1是以点O为位似中心的位似三角形,若C1为OC的中点,AB=4,则A1B1的长为()A.1B.2C.4D.86.已知点A(x1,y1),B(x2,y2)是反比例函数的图象上的两点,若x1<0<x2,则下列结论正确的是()A.y1<0<y2B.y2<0<y1C.y1<y2<0D.y2<y1<07.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为()A.B.C.1D.28.如图1,在矩形ABCD中,AB<BC,AC,BD交于点O.点E为线段AC上的一个动点,连接DE,BE,过E作EF⊥BD于F.设AE=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的()A.线段EF B.线段DEC.线段CE D.线段BE二、填空题(共4小题)9.若扇形的半径为3cm,圆心角为120°,则这个扇形的面积为__________ cm2.10.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为 m.11.如图,抛物线与直线y=bx+c的两个交点坐标分别为,,则关于x的方程的解为__________.12.对于正整数,定义,其中表示的首位数字、末位数字的平方和.例如:,.规定,(为正整数).例如:,.(1)求:____________,______________;(2)若,则正整数m的最小值是_____________.三、计算题(共1小题)13.计算:四、证明题(共1小题)14.如图,△ABC中,AB=AC,D是BC中点,BE⊥AC于E. 求证:△ACD∽△BCE.五、解答题(共11小题)15.已知是一元二次方程的实数根,求代数式的值.16.抛物线平移后经过点,,求平移后的抛物线的表达式.17.如图,在平面直角坐标系中,正比例函数与反比例函数的图象交于A,B两点,A点的横坐标为2,AC⊥x轴于点C,连接BC.(1)求反比例函数的解析式;(2)若点P是反比例函数图象上的一点,且满足△OPC与△ABC的面积相等,请直接写出点P的坐标.18.如图,△ABC中,∠ACB=90°,,BC=8,D是AB中点,过点B作直线CD的垂线,垂足为E.(1)求线段CD的长;(2)求的值.19.已知关于x的一元二次方程有两个不相等的实数根.(1)求m的取值范围;(2)若,且,求整数m的值.20.某工厂生产的某种产品按质量分为10个档次,据调研显示,每个档次的日产量及相应的单件利润如下表所示(其中x为正整数,且1≤x≤10):为了便于调控,此工厂每天只生产一个档次的产品.当生产质量档次为x的产品时,当天的利润为y万元.(1)求y关于x的函数关系式;(2)工厂为获得最大利润,应选择生产哪个档次的产品?并求出当天利润的最大值.21.如图,四边形ABCD是平行四边形,点A,B,C在⊙O上,AD与⊙O相切,射线AO,BC 于点E,交⊙O于点F.点P在射线AO上,且∠PCB=2∠BAF.(1)求证:直线PC是⊙O的切线;(2)若AB=,AD=2,求线段PC的长.22.阅读下面材料:小明观察一个由正方形点阵组成的点阵图,图中水平与竖直方向上任意两个相邻点间的距离都是1.他发现一个有趣的问题:对于图中出现的任意两条端点在点阵上且互相不垂直的线段,都可以在点阵中找到一点构造垂直,进而求出它们相交所成锐角的正切值.请回答:(1)如图1,A、B、C是点阵中的三个点,请在点阵中找到点D,作出线段CD,使得CD⊥AB;(2)如图2,线段AB与CD交于点O.为了求出的正切值,小明在点阵中找到了点E,连接AE,恰好满足于F,再作出点阵中的其它线段,就可以构造相似三角形,经过推理和计算能够使问题得到解决.请你帮小明计算:OC=_______________;=_______________;(3)参考小明思考问题的方法,解决问题:如图3,计算:=_______________.23.在平面直角坐标系中,反比例函数的图象经过点,.求代数式mn的值;若二次函数的图象经过点B,求代数式的值;若反比例函数的图象与二次函数的图象只有一个交点,且该交点在直线的下方,结合函数图象,求的取值范围.24.如图1,在△ABC中,BC=4,以线段AB为边作△ABD,使得AD=BD,连接DC,再以DC为边作△CDE,使得DC = DE,∠CDE=∠ADB=α.(1)如图2 ,当∠ABC=45°且α=90°时,用等式表示线段AD,DE之间的数量关系;(2)将线段CB沿着射线CE的方向平移,得到线段EF,连接BF,AF.①若α=90°,依题意补全图3,求线段AF的长;②请直接写出线段AF的长(用含α的式子表示).25.在平面直角坐标系xOy中,设点,是图形W上的任意两点.定义图形W的测度面积:若的最大值为m,的最大值为n,则为图形W的测度面积.例如,若图形W是半径为1的⊙O.当P,Q分别是⊙O与x轴的交点时,如图1,取得最大值,且最大值m=2;当P,Q分别是⊙O与y轴的交点时,如图2,取得最大值,且最大值n=2.则图形W的测度面积.(1)若图形W是等腰直角三角形ABO,OA=OB=1.①如图3,当点A,B在坐标轴上时,它的测度面积S= ;②如图4,当AB⊥x轴时,它的测度面积S= ;(2)若图形W是一个边长为1的正方形ABCD,则此图形测度面积S的最大值为;(3)若图形W是一个边长分别为3和4的矩形ABCD,求它的测度面积S的取值范围.答案部分1.考点:一元二次方程的根的判别式试题解析:根据方程判别式确定应该选A答案:A2.考点:锐角三角函数试题解析:在直角三角形中==答案:A3.考点:几何体的三视图试题解析:三视图指主视图、左视图、俯视图,所以结合几何体的三视图应该选圆锥,故选D答案:D4.考点:概率及计算试题解析:1号、4号、6号、3号、5号和2号6个数中,偶数是2号、4号、6号共3位数字,所以抽到的座位号是偶数的概率是=答案:C5.考点:位似图形试题解析:△ABC和△A1B1C1是以点O为位似中心的位似三角形,C1为OC的中点,∴B1为OB的中点,A1 为 OA的中点,∴A1B1= AB=2答案:B6.试题解析:反比例函数过二四象限,A点在第二象限的图象上,B点在第四象限的图象上,显然y10,y20,∴y2<0<y1,故选B答案:B7.考点:垂径定理及推论全等三角形的判定全等三角形的性质试题解析:AC 为弦,OD⊥AC于D,根据垂径定理得AD=AC=1,OE∥AC,∴,又 OD⊥AC于D,EF⊥AB于F∴, AO=EO,∴△AOD≌△EOF∴OF=AD=1,故选C答案:C8.考点:三角形的面积函数的表示方法及其图像试题解析:A中,三角形OBE的面积S等于B点到线段AO的距离h与OE乘积的一半,由等面积法可得,又等于EF和OB乘积的一半,即,则,OE=OA-x,h和OB都是定值,所以EF和x是一个一次函数的关系,不符合;B中,DE随着x的增大,先减小,后增大,而x=0时,DE=AD,x为AC时,DE=DC,DC<AD,符合题意,所以选B;C中,CE=AC-x,AC是定值,所以显然应该是个一次函数,不符合;D中,BE随着x的增大,先减小,后增大,而x=0时,BE=AB,x为AC时,BE=BC,BC 大于AB,所以不符合题意.答案:B9.考点:扇形面积的计算试题解析:根据扇形面积公式S=,将n=120°,r=3代入公式得3答案:310.考点:相似三角形判定及性质试题解析:根据三角形相似,测得高与影长的比为2:1得这栋建筑物的高度为24m答案:2411.考点:二次函数表达式的确定一次函数解析式的确定解一元二次方程试题解析:将代入抛物线解得a=1,将,代入y=bx+c解得b=-1,c=2,所以方程的解为答案:12.考点:函数的表示方法及其图像试题解析:∵,,,∴……可见每7个数一个循环,而,所以.(2)由(1)知,其中能被3整除的最小的为18,显然此时m=6.答案:(1)37,26(2)613.考点:幂的运算锐角三角函数试题解析:原式.答案:14.考点:相似三角形判定及性质试题解析:∵AB=AC,D是BC中点,∴AD⊥BC,∴∠ADC=90°∵BE⊥AC,∴∠BEC=90°.∴∠ADC=∠BEC在△ACD和△BCE中,∴△ACD∽△BCE.答案:见解析15.考点:代数式及其求值试题解析:由已知,可得∴∴原式=.答案:316.考点:二次函数图像的平移试题解析:设平移后抛物线的表达式为∵平移后的抛物线经过点,,∴解得所以平移后抛物线的表达式为解二:∵平移后的抛物线经过点,,∴平移后的抛物线的对称轴为直线.∴设平移后抛物线的表达式为∴∴所以平移后抛物线的表达式为答案:17.考点:反比例函数表达式的确定试题解析:(1)将代入中,得.∴点A坐标为.∵点A在反比例函数的图象上,∴.∴反比例函数的解析式为.(2)或答案:(1)反比例函数的解析式为(2)或18.考点:直角三角形与勾股定理锐角三角函数三角形的面积试题解析:(1)∵△ABC中,∠ACB=90°,,BC=8,∴.∵△ABC中,∠ACB=90°,D是AB中点,∴.(2)法一:过点C作CF⊥AB于F,如图.∴∠CFD=90°.在Rt△ABC中,由勾股定理得.∵,∴.∵BE⊥CE,∴∠BED=90°.∵∠BDE=∠CDF,∴∠ABE=∠DCF.∴.法二:∵D是AB中点,AB=10,∴.∴.在Rt△ABC中,由勾股定理得.∴.∴.∴.∵,∴.∵BE⊥CE,∴∠BED=90°.∴.答案:(1)(2)19.考点:一元二次方程的根的判别式解一元二次方程试题解析:(1)由已知,得且,∴且.(2)原方程的解为.∴或.∵,∴,.∴.∵,∴.∴.又∵,∴.∵m是整数,∴.答案:(1)且(2)20.考点:二次函数的实际应用试题解析:(1).(且x为整数).(2)∵.又∵且x为整数,∴当时,函数取得最大值1210.工厂为获得最大利润,应生产第9档次的产品,当天的最大利润为1210万元.答案:(1)(且x为整数).(2)应生产第9档次的产品,当天的最大利润为1210万元.21.考点:切线的性质与判定直角三角形与勾股定理平行四边形的性质相似三角形判定及性质试题解析:(1)连接OC.∵AD与⊙O相切于点A,∴FA⊥AD.∵四边形ABCD是平行四边形,∴AD∥BC,∴FA⊥BC.∵FA经过圆心O,∴F是的中点,BE=CE,∠OEC=90°.∴∠COF=2∠BAF.∵∠PCB=2∠BAF,∴∠PCB=∠COF.∵∠OCE+∠COF=180°-∠OEC=90°,∴∠OCE+∠PCB=90°.∴OC⊥PC.∵点C在⊙O上,∴直线PC是⊙O的切线.(2)∵四边形ABCD是平行四边形,∴BC=AD=2.∴BE=CE=1.在Rt△ABE中,∠AEB=90°,AB=,∴.设⊙O的半径为r,则,.在Rt△OCE中,∠OEC=90°,∴.∴.解得.∵∠COE=∠PCE,∠OEC=∠CEP =90°.∴△OCE∽△CPE.∴.∴.∴.答案:(1)见解析(2)22.考点:锐角三角函数图形与变换试题解析:(1)如图,找到点D,则发现AD=3,BD=4,AB=5,即三角形ADB是一个直角三角形,再找到点E,联结CD、CE,容易得知,三角形CED也是一个边长分别为3、4、5的直角三角形,所以联结CD后,恰好与AB垂直。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市海淀区初三数学一模试卷及答案数 学2015.5 一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.2015年北京市实施能源清洁化战略,全市燃煤总量减少到15 000万吨左右,将15 000用科学记数法表示应为A . 50.1510⨯B .41.510⨯C .51.510⨯D .31510⨯ 2.右图是某几何体的三视图,该几何体是A. 三棱柱B. 三棱锥C. 长方体D.正方体 3.如图,数轴上两点A ,B 表示的数互为相反数,则点B 表示的数为2A0BA .-1B .1C .-2D .24.某游戏的规则为:选手蒙眼在一张如图所示的正方形黑白格子纸(九个小正方形面积相等)上描一个点,若所描的点落在黑色区域,获得笔记本一个;若落在白色区域,获得钢笔一支.选手获得笔记本的概率为A .12 B .45 C .49 D .595.如图,直线a 与直线b 平行,将三角板的直角顶点放在直线a 上,若∠1=40°,则∠2等于A . 40°B .50°C .60°D .140° 6.如图,已知∠AOB .小明按如下步骤作图:(1)以点O 为圆心,适当长为半径画弧,交OA 于D ,交OB 于点E . (2)分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧在∠AOB 的内部相交于点C . (3)画射线OC .根据上述作图步骤,下列结论正确的是A .射线OC 是AOB ∠的平分线 B .线段DE 平分线段OC C .点O 和点C 关于直线DE 对称D .OE =CEba 217.某次比赛中,15名选手的成绩如图所示,则 这15名选手成绩的众数和中位数分别是 A .98,95 B .98,98 C .95,98 D .95,958. 甲骑车到乙家研讨数学问题,中途因等候红灯停止了一分钟,之后又骑行了1.2千米到达了乙家.若甲骑行的速度始终不变,从出发开始计时,剩余的路程S (单位:千米)与时间t (单位:分钟)的函数关系的图象如图所示,则图中a 等于A .1.2B .2C .2.4D .69.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E .若60B ∠=︒,AC =3,则CD 的长为A . 6B .23C .3D .310.小明在书上看到了一个实验:如右图,一个盛了水的圆柱形容器内,有一个顶端拴了一根细绳的实心铁球,将铁球从水面下沿竖直方向慢慢地匀速向上拉动.小明将此实验进行了改进,他把实心铁球换成了材质相同的别的物体,记录实验时间t 以及容器内水面的高度h ,并画出表示h 与t 的函数关系的大致图象.如左下图所示.小明选择的物体可能是二、填空题(本题共18分,每小题3分) 11.分解因式:32a ab -=____________.12.写出一个函数y kx =(0k ≠),使它的图象与反比例函数1y x=的图象有公共点,这个函数的解析式为___________.13.某学习小组设计了一个摸球试验,在袋中装有黑,白两种颜色的球,这些球的形状大小质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋中摸出一个球,A B C D63S /千米t /分钟OE DCBOA记下颜色,再把它放回,不断重复.下表是由试验得到的一组统计数据:从这个袋中随机摸出一个球,是白球的概率约为 .(结果精确到0.1)14.如图,点C 为线段AB 上一点,将线段CB 绕点C 旋转,得到线段CD ,若DA AB ⊥,1AD =,BD =BC 的长为__________. 15. 在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD =BC ”,小红说“添加AB =DC ” .你同意 的观点, 理由是 .16.若三角形的某一边长等于其外接圆半径,则将此三角形称为等径三角形,该边所对的角称为等径角.已知△ABC 是等径三角形,则等径角的度数为 . 三、解答题(本题共30分,每小题5分) 17.计算:2022cos60(3.14π)--+-+-.18.解不等式组:345214.33x x x x +>-⎧⎪⎨-⎪⎩,≥19.已知43x y =,求代数式22(2)()()2x y x y x y y ---+-的值.20.如图,点A ,B ,C ,D 在同一条直线上,AB=FC ,∠A =∠F ,∠EBC =∠FCB . 求证: BE=CD .21.已知关于x 的方程220 (0)kx x k k--=≠. (1)求证:方程总有两个不相等的实数根; (2)若方程的两个实数根都是整数,求整数k 的值.22.列方程或方程组解应用题:为了响应学校提出的“节能减排,低碳生活”的倡议,班会课上小李建议每位同学都践行“双面打印,节约用纸”.他举了一个实际例子:打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求例子中的A4厚型纸每页的质量.(墨的质量忽略不计)四、解答题(本题共20分,每小题5分)23.如图,在□ABCD 中,∠BAD 的平分线交CD 于点E ,交BC 的延长线于点F ,连接BE ,∠F =45°. (1)求证:四边形ABCD 是矩形; (2)若AB =14,DE =8,求sin ∠AEB 的值.24.根据某研究中心公布的近几年中国互联网络发展状况统计报告的部分相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)从2011年到2014年,中国网民人数每年增长的人数近似相等,估算2015年中国网民的人数约为亿;(3)据某市统计数据显示,2014年末全市常住人口为476.6万人,其中网民数约为210万人.若2014年该市的网民学历结构与2014年的中国网民学历结构基本相同,请你估算2014年末该市网民学历是大专的约有万人.25.如图,在△ABC中,AB=AC,AD⊥BC于点D,过点C作⊙O与边AB相切于点E,交BC于点F,CE为⊙O的直径.(1)求证:OD⊥CE;(2)若DF=1,DC=3,求AE的长.AEB D CFO26.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC 中,DE ∥BC 分别交AB 于D ,交AC 于E .已知CD ⊥BE ,CD =3,BE =5,求BC +DE 的值.小明发现,过点E 作EF ∥DC ,交BC 延长线于点F ,构造△BEF ,经过推理和计算能够使问题得到解决(如图2).图1 图2 图3请回答:BC +DE 的值为_______.参考小明思考问题的方法,解决问题:如图3,已知□ABCD 和矩形ABEF ,AC 与DF 交于点G ,AC =BF =DF ,求∠AGF 的度数.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.在平面直角坐标系xOy 中,抛物线2212y x x =-+与y 轴交于点A ,顶点为点B ,点C 与点A 关于抛物线的对称轴对称. (1)求直线BC 的解析式;(2)点D 在抛物线上,且点D 的横坐标为4.将抛物线在点A ,D 之间的部分(包含点A ,D )记为图象G ,若图象G 向下平移t (0t >)个单位后与直线BC 只有一个公共点,求t 的取值范围.28.在菱形ABCD 中,120ADC ∠=︒,点E 是对角线AC 上一点,连接DE ,50DEC ∠=︒,将线段BC 绕点B 逆时针旋转50︒并延长得到射线BF ,交ED 的延长线于点G . (1)依题意补全图形;EDC BAEDCBA备用图(2)求证:EG BC =;(3)用等式表示线段AE ,EG ,BG 之间的数量关系:_____________________________.29.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若,1,1≥b a b b a ⎧'=⎨-<⎩,则称点Q 为点P 的限变点.例如:点()2,3的限变点的坐标是()2,3,点()2,5-的限变点的坐标是()2,5--.(1)①点)的限变点的坐标是___________;②在点()2,1A --,()1,2B -中有一个点是函数2y x=图象上某一个点的限变点, 这个点是_______________;(2)若点P 在函数3(2,2)y x x k k =-+->-≤≤的图象上,其限变点Q 的纵坐标b '的取值范围是52≤≤b '-,求k 的取值范围;(3)若点P 在关于x 的二次函数222y x tx t t =-++的图象上,其限变点Q 的纵坐标b '的取值范围是≥b m '或b n '<,其中m n >.令s m n =-,求s 关于t 的函数解析式及s 的取值范围.海淀区九年级第二学期期中练习数学试卷答案及评分参考2015.5一、 选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共30分,每小题5分) 17. (本小题满分5分) 解:原式=112142-⨯+ ………………………………………………………4分 14=+. ………………………………………………………………5分18. (本小题满分5分) 解: 345214.33x x x x +>-⎧⎪⎨-⎪⎩,≥ ② ①由不等式①得 3x <. ……………………………………………………2分由不等式②得 2≥x -. ……………………………………………………4分 ∴不等式组的解集为23≤x -<. ……………………………………………………5分19. (本小题满分5分)解: 22(2)()()2x y x y x y y ---+-2222244()2x xy y x y y =-+---………………………………………………2分243xy y =-+ ……………………………………………………………………3分()43y x y =--.…………………………………………………………………4分∵43x y =,∴原式= 0. ………………………………………………………………………5分20. (本小题满分5分) 证明:∠EBC =∠FCB ,ABE FCD ∴∠=∠. …………………………………………………………1分在△ABE 与△FCD 中, ,,,A F AB FC ABE FCD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴∆ABE ≌∆FCD .………………………………………………………………4分 ∴BE=CD . ………………………………………………………………………5分21. (本小题满分5分) (1)证明:0k ≠,∴220 kx x k--=是关于x 的一元二次方程.22(1)4()k k∆=--- ……………………………………………………1分90=>.∴方程总有两个不相等的实数根. ………………………………………2分(2)解:由求根公式,得x =. ∴1221,x x k k==-. …………………………………………………………4分 方程的两个实数根都是整数,且k 是整数,∴ 1k =-或1k =.…………………………………………………………5分22. (本小题满分5分)解: 设例子中的A4厚型纸每页的质量为x 克.………………………………………1分由题意,得40016020.8x x =⨯-. ………………………………………………2分 解得 4x =. ………………………………………………………3分 经检验, 4x =为原方程的解,且符合题意. ………………………………4分 答:例子中的A4厚型纸每页的质量为4克. …………………………………5分四、解答题(本题共20分,每小题5分) 23. (本小题满分5分) (1)证明:四边形ABCD 是平行四边形,∴AD //BC . ∴∠DAF=∠F .∠F =45°,∴∠DAE=45°.………………………………………1分 AF 是∠BAD 的平分线,45EAB DAE ∴∠=∠=. 90DAB ∴∠=.又四边形ABCD 是平行四边形,∴四边形ABCD 是矩形. …………………………2分(2)解:过点B 作BH AE ⊥于点H ,如图.四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∠DCB =∠D =90°.AB =14,DE =8, ∴ CE=6.在Rt △ADE 中,∠DAE=45°, ∴∠DEA =∠DAE=45°. ∴ AD=DE =8. ∴ BC =8.在Rt △BCE 中,由勾股定理得10BE ==. ……………………………………………3分 在Rt △AHB 中,∠HAB=45°,∴sin 4572BH AB =⋅= . …………………………………………4分在Rt △BHE 中,∠BHE=90°,。

相关文档
最新文档