第十一章复合材料的力学性能
复合材料的力学性能
可编辑ppt
8
2 结果与讨论
要使植物纤维/ 聚丙烯复合材料具备良好的力学性
能,首先要解决好两者之间相容性的问题。由于植
物纤维有较强的极性,使其与非极性聚丙烯的界面
润湿性、界面粘合性极差,因而未经表面处理的
植物纤维与聚丙烯复合材料的机械强度很低,无使
用价值。所以,选择不同的表面改性剂对植物纤维
进行表面改性,增加其与聚丙烯的相容性,是使复合
表面改性剂对植物纤维/ 聚丙烯复 合材料力学性能的影响
可编辑ppt
1
采用不同的表面改性剂(苯甲酸、硬脂酸、 有机硅烷) 对植物纤维/ 聚丙烯复合体系进 行了处理,研究了表面改性剂对体系力学性 能的影响规律,探讨了复合材料界面粘接机 理,分析了力学性能的变化规律。研究结果 表明,苯甲酸的加入可以使复合材料的拉伸 强度有较大提高,但冲击强度下降;经硬脂 酸处理的复合材料,其冲击强度有明显提高; 经有机硅烷处理的复合材料,拉伸强度及冲 击强度均有所提高。
反应后,使纤维与聚丙烯具有了良好的相容性,有
利于植物纤维在聚丙烯中的分散。另外,与苯甲酸
不同的是,硬脂酸具有较长的碳链结构,这种长链
结构一方面可以跟聚丙烯有较好的相容性,另一方
面也可以伸入到聚丙烯相中,与聚丙烯的分子链相
互缠绕。
可编辑ppt
12
其结果是:前者提高了植物纤维对聚丙烯的 增强效果;而后者则减弱了聚丙烯分子间的 相互作用力,这样,就有利于吸收外界的冲 击能,减少应力集中现象。两者综合作用的 结果,表现为硬脂酸的加入对复合材料拉伸 强度的影响不大,而冲击强度则有明显的提 高。
选择苯甲酸、硬脂酸和有机硅烷为表 面改性剂来改善植物纤维和聚丙烯的 粘接性,并探讨不同表面改性剂对复合 材料性能的影响。
复合材料的力学性能与结构设计
复合材料的力学性能与结构设计复合材料是由两种或两种以上的材料组合而成的材料,具有优异的力学性能和结构设计潜力。
在本文中,将探讨复合材料的力学性能以及如何进行结构设计。
一、复合材料的力学性能复合材料由于多种材料的组合,具有独特的力学性能。
以下将讨论复合材料在强度、刚度和韧性方面的性能。
1. 强度由于不同材料之间的协同作用,复合材料通常具有很高的强度。
这是由于各个组成材料的优点相互弥补,从而提高整体强度。
例如,纤维增强复合材料中的纤维可以提供很高的强度,而基体材料可以增加韧性。
2. 刚度复合材料具有很高的刚度,这是由于组成材料之间的相互作用。
纤维增强复合材料中的纤维可以提供很高的刚度,而基体材料可以提供弹性和柔韧性。
因此,复合材料在受力时可以保持其形状和结构的稳定性。
3. 韧性复合材料通常具有较高的韧性,这是由于材料的组合结构所致。
纤维增强复合材料中的纤维可以分散和吸收能量,从而提高材料的韧性。
相反,在单一材料中,这种能量分散效应很少出现。
二、复合材料的结构设计复合材料的结构设计是为了实现所需的力学性能和功能。
以下将介绍复合材料结构设计的关键因素。
1. 材料选择合理的材料选择是进行复合材料结构设计的关键因素。
不同材料具有不同的力学性能和化学特性,因此需要根据应用需求选择合适的材料组合。
例如,在需要高强度和刚度的应用中,可以选择纤维增强复合材料。
2. 界面控制复合材料中不同材料之间的界面是其力学性能的重要因素。
界面的控制可以通过界面处理和表面改性来实现。
例如,通过添加粘合剂或增加表面处理剂,可以增强纤维与基体之间的结合,提高界面的力学性能。
3. 结构设计结构设计是为了实现所需的功能和性能。
在复合材料结构设计中,需要考虑材料的排布方式、层压顺序和几何形状等因素。
通过合理设计复合材料的结构,可以充分发挥其力学性能,同时满足应用需求。
三、结论复合材料具有优异的力学性能和结构设计潜力。
通过合理选择材料、控制界面以及进行结构设计,可以充分发挥复合材料的力学性能。
复合材料力学性能
复合材料力学性能复合材料力学性能是指复合材料在力学加载下的行为和性能。
复合材料是由两种或两种以上不同类型的材料组成的复合体,通常包括增强相和基体相。
增强相是由具有较高强度和刚度的材料制成,而基体相是由具有较高韧性和耐用性的材料制成。
复合材料的力学性能直接影响着其在各种应用领域的使用。
复合材料的力学性能包括强度、刚度、韧性和抗疲劳性等方面。
首先是强度。
强度是指材料在受到外界力作用下抵抗断裂或变形的能力。
复合材料通常具有较高的强度,特别是拉伸、压缩和弯曲强度。
这是因为增强相的存在使得复合材料能够承受更大的力。
同时,复合材料还具有较高的拉伸、剪切和压缩模量,这使得它们在应力下更加稳定。
其次是刚度。
刚度是指材料对应力产生相应应变的能力。
复合材料通常具有较高的刚度,这使得它们在应用中具有更好的稳定性和振动性能。
刚度取决于增强相的类型、层数和配比等因素。
然后是韧性。
韧性是指材料在受到外界力作用下承受变形和断裂的能力。
复合材料通常具有较高的韧性,这是由于其基体相的存在,基体相能够吸收能量并阻止裂纹的扩展。
韧性通常通过测量断裂韧性来评估。
最后是抗疲劳性。
抗疲劳性是指材料在经过长时间循环加载后仍然能保持其性能和强度的能力。
复合材料通常具有较好的抗疲劳性能,这是由于增强相的存在,增强相能够在应力加载下分散和吸收应力。
除了以上几个方面,复合材料的力学性能还受到其制备工艺、层数和组织结构等因素的影响。
制备工艺的不同会导致复合材料的性能有所差异。
层数的增加会提高复合材料的强度和刚度,但也会增加制备难度。
组织结构的优化能够提高复合材料的性能。
综上所述,复合材料具有强度、刚度、韧性和抗疲劳性等优良的力学性能。
这些性能的提高在很大程度上推动了复合材料在航空、汽车、建筑等领域的广泛应用。
随着材料科学和制备技术的进步,复合材料的力学性能还将不断得到改善和优化。
复合材料力学性能
23
9.1.4环境条件对复合材料性能的影响
复合材料都是在一定的环境条件下使用的,因此了解 在各种环境条件下材料性能的变化是重要的。这些环境 条件如暴露于水,水蒸气或腐蚀性介质中,低温和高温 及进行长期物理和化学稳定性试验的各种条件等。一般 来讲,在这些不利的环境条件下,复合材料的性能要降 低。这是由于环境因素影响了纤维、基体材料和界面的 性能。
降低界面强度可使大范围脱胶或分层,从而增加冲 击能。 所以弱界面的拉伸强度比较低,但冲击强度比较高。
9
4)纤维拔出
当脆性的或不连续的纤维嵌于韧性基体 中时,会发生纤维拔出。
纤维断裂在其本身的薄弱横截面上,这个 截面不一定与复合材料断裂面重合。纤维断 裂在基体中引起的应力集中因基体屈服而得 到缓和,因此阻止了基体裂纹。在这种情况 下,断裂以纤维从基体中拔出的破坏方式进 行。
4
复合材料的破坏可以认为是从材料中固有 的小缺陷发源的。例如,有缺陷的纤维, 基体与纤维界面处的缺陷和界面不良反应 物等。在形成的裂纹尖端及其附近,有可 能以发生纤维断裂、基体变形和开裂、纤 维与基体分离(纤维脱粘)、纤维拔出等 模式破坏。现分述如下。
5
纤维复合材料中裂纹尖模型
6
分别讨论各种破坏机理。
25
2)基体效应
(1)在高温条件下老化。 一般来讲,有机高分子材料在高温下是不稳定的,且经 历一个由热裂解引起的化学衰变过程。如果裂解反应持续足 够长时间,或是反应的非常快,材料就会发生本质的破坏, 以至基体材料分解成气体挥发。这种激烈的裂解反应严重影 响复合材料的完整性,且限制复合材料的使用温度。温度与 时间是影响裂解过程的两个参数。基体的分解会导致复合材 料刚度和强度大大下降。可见,复合材料的最高使用温度通 常是由基体的热稳定性所支配的。
复合材料力学性能的研究
复合材料力学性能的研究复合材料是由两种或以上的材料组成的复合体,具有优异的力学强度和轻质化优势,广泛应用于汽车、航空、航天等领域。
然而,复合材料的力学性能研究一直以来都是一个热门的研究方向。
一、复合材料的组成复合材料的组成较复杂,第一种材料通常称为基质,第二种材料称为增强材料(纤维或颗粒),第三种称为填料。
其中最常见的基质材料为树脂,增强材料有碳纤维、玻璃纤维等。
填料主要用来填充空隙,在预制过程中保持形状。
二、复合材料的力学性能复合材料具有优异的力学性能,包括强度、硬度、韧性、蠕变等方面。
通常,强度是复合材料最突出的优点,这是由于增强材料的高强度和基质材料的高韧性共同作用的结果。
但是,复合材料由于材料变化的复杂性,其确切的力学性能参数往往难以量化,这增加了其性能评估的难度。
三、复合材料力学性能的研究方法针对复合材料的力学性能研究,主要有以下几种方法。
1.试验方法试验是研究复合材料力学性能的最主要方法之一,包括拉伸试验、弯曲试验、疲劳试验、冲击试验等。
通过试验,可以得出复合材料的强度和韧性等力学性能参数,并获得材料断口形态、疲劳裂纹扩展行为等信息。
2.数值模拟方法数值模拟方法可以通过有限元分析等手段,模拟复合材料受力及响应过程。
数值模拟方法可以提供与试验相同的结果,但是具有更高的计算精度和更广的适用范围。
3.微观力学建模方法微观力学建模方法利用分子力学理论和计算力学等技术探究复合材料的微观结构与力学性能的关系。
微观力学建模方法可以研究单个增强纤维或颗粒的力学性能,并且强调了复合材料性能与其微观结构的密切关系。
四、复合材料力学性能的应用由于复合材料具有优异的力学性能,因此在汽车、航空航天、医疗器械、体育用品等领域广泛应用。
例如,在航空航天领域,即将使用的“星际飞船”使用了大量的碳纤维增强复合材料,以减轻飞船重量,提高载荷和性能。
此外,复合材料的轻质化特点也为能源、环境等领域的应用提供了更广阔的展望。
第十一章复合材料的力学性能解析
单元在1方向拉伸
ε1 = εf = εm
复合材料单元上的合力:
P 1A f Af+ mAm
E1 EfVf EmVm
混合定则:纤维和基体对复合材料的力学性 能所做的贡献与其体积分数成正比。
举例
碳纤维/环氧树脂复合材料的相关数据如下: E f 180000 MPa,Vf 0.548, Em 3000 MPa 求E1?
增韧石墨 石墨
混杂复合材料 玻璃纤维
空中巨无霸-A380 机身蒙皮-GLARE材料
目前商用飞机上复合材料仅占全机重 量的50%,部分直升机已达90%
超级跑车-碳纤维复合材料
碳纤维/树脂复合材料
生产充气船及其胶布制品,采用国际 上先进的A级RTP复合材料
新型日光温室复合材料 温室骨架和纵拉杆全部采用复合材料制成
单向连续纤维增强复合材料
连续纤维在基体中呈同向平行等距排列。
单向复合材料微观力学性能
弹性模量由纤维和基体的性能及其相对体 积含量共同确定。
Cij Cij (E f , f ,V f , Em , m ,Vm )
细观结构单元
f=Ef f
m=E m m
1方向:ε1= εf= εm 2方向:ε2= Vfεf +Vmεm, σ = σ f = σm
增强相-分散的,被基体包围,承受载荷作 用。
近代复合材料主要有纤维增强复合材料和 粒子增强复合材料。
复合材料按基体材料分类
复合材料
树脂基
金属基
陶瓷基
热固性
热塑性
碳基
玻璃基
水泥基
复合材料按功能分类
复合材料
结构复合材料
功能复合材料
力
电、磁、光、热、放射性
复合材料的力学性能分析
复合材料的力学性能分析复合材料是由两种或以上的不同材料在力学上结合形成的材料,具有高强度、高模量、低密度、耐腐蚀等优良特性,被广泛应用于汽车、航空、航天、体育用品等领域。
然而,复合材料的力学性能与其组成材料、制备工艺、结构形式密切相关,需要经过细致的分析才能充分发挥其优势。
一、组成材料的力学性能分析复合材料由纤维和基体材料结合形成,其中纤维通常是碳纤维、玻璃纤维、芳纶纤维等,基体材料通常是树脂、金属等。
因此,复合材料的力学性能与其组成材料密切相关。
1.纤维材料的力学性能纤维材料具有很高的强度和刚度,可以充分发挥复合材料的优势。
常用的纤维材料有碳纤维、玻璃纤维、芳纶纤维等。
其中,碳纤维的强度和刚度最高,但价格也最昂贵,适用于高端领域;玻璃纤维强度和刚度较低,价格相对便宜,适用于一般领域;芳纶纤维具有较高的温度和化学稳定性,适用于高温环境。
2.基体材料的力学性能基体材料主要起粘结纤维材料的作用,因此需要具有较好的强度和可塑性。
常用的基体材料有环氧树脂、酚醛树脂、聚丙烯等。
环氧树脂具有较好的成型性和高强度,适用于高端领域;酚醛树脂价格相对便宜,但强度和成型性较差,适用于一般领域;聚丙烯具有良好的化学稳定性和低密度,适用于航空、航天等领域。
二、制备工艺对力学性能的影响分析复合材料制备工艺是影响其力学性能的重要因素之一。
常用的制备工艺有手工层叠法、自动层叠机法、注塑成型法等。
1.手工层叠法手工层叠法是复合材料制备的最早方法之一,其优点是成本低,适用于小批量生产;缺点是生产效率低,工艺难以控制,制品质量不稳定,易产生接触、空气泡等缺陷。
2.自动层叠机法自动层叠机法是指利用专用机器进行自动化生产的方法,其优点是生产效率高,无人工干预,制品质量稳定;缺点是设备成本高,不适用于小批量生产,工艺仍需改进和控制。
3.注塑成型法注塑成型法是将熔融状态的树脂注入到预制的模具中,并在高温高压下形成制品的方法,其优点是最大程度地消除了接触缺陷、空气泡等缺陷,制品密实,精度高,产品性能稳定;缺点是成本高,需要专用模具,适用于大批量生产。
第十一章复合材料的力学性能.
8/9/2021
21
在第I阶段,纤维和基体都处于弹性变形状态,复合 材料也处于弹性变形状态,且
8/9/2021
22
8/9/2021
23
复合材料进入变形第II阶段时,纤维仍处于弹性状态, 但基体已产生塑性变形,此时复合材料的应力为:
由于载荷主要由纤维承担,所以随着变形的增加,纤 维载荷增加较快,当达到纤维抗拉强度时,纤维破断, 此时基体不能支持整个复合材料载荷,复合材料随之 破坏。
(2)剪切型 纤维之间同向弯曲,基体
主要产生剪切变形,这种 屈曲模式较为常见。
8/9/2021
27
复合材料沿纤维方向受压时,可以认为纤维在基体内的 承力形式像弹性杆。
假设基体仅提供横向支持,载荷由纤维均摊,复合材料 的抗压强度由纤维在基体内的微屈曲临界应力控制。
将单向纤维复合材料简化成纤维和基体薄片相间粘接的 纵向受压杆件,当外载荷增至一定值后,纤维开始失稳, 产生屈曲。
纤维复合材料的比模量大,因而它的自振频率很高,在加载 速率下不容易出现因共振而快速断裂的现象。
同时复合材料中存在大量纤维,与基体的界面,由于界面对 振动有反射和吸收作用,所以复合材料的振动阻尼强,即使 激起振动也会很快衰减。
(5) 可设计性强
通过改变纤维、基体的种类和相对含量,纤维集合形式及排 布方式等可满足复合材料结构和性能的设计要求。
第十一章 复合材料的力学性能
8/9/2021
1
20世纪60年代以来,航天、航空、电子、汽车等高技术领 域的迅速发展,对材料性能的要求日益提高,单一的金属、 陶瓷、高分子材料已难以满足迅速增长的性能要求。
为了克服单一材料性能上的局限性,人们越来越多的根据 构件的性能要求和工况条件,选择两种或两种以上化学、 物理性质不同的材料,按一定的方式、比例、分布组合成 复合材料,使其具有单一材料所无法达到的特殊性能或综 合性能。
复合材料力学性能与微观结构
复合材料力学性能与微观结构在当今的材料科学领域,复合材料因其出色的性能而备受关注。
复合材料并非单一的物质,而是由两种或两种以上不同性质的材料通过特定的工艺组合而成。
这种独特的组合方式赋予了复合材料在力学性能方面的显著优势,而其力学性能又与微观结构有着紧密的关联。
要理解复合材料的力学性能,首先得明白什么是力学性能。
简单来说,力学性能就是材料在受到外力作用时所表现出的特性,比如强度、硬度、韧性、弹性模量等。
强度指的是材料抵抗破坏的能力,硬度则反映了材料抵抗局部变形的能力,韧性表示材料吸收能量并在断裂前发生较大塑性变形的能力,而弹性模量则衡量了材料在弹性范围内应力与应变的比值。
复合材料的力学性能之所以出色,很大程度上得益于其微观结构的复杂性和多样性。
以纤维增强复合材料为例,通常由高强度的纤维(如碳纤维、玻璃纤维等)嵌入到基体材料(如树脂)中形成。
在这种微观结构中,纤维承担了主要的载荷,而基体则起到传递载荷、保护纤维以及协同变形的作用。
由于纤维具有很高的强度和模量,因此能够显著提高复合材料的整体强度和刚度。
微观结构中的纤维排列方式也对力学性能产生重要影响。
如果纤维是单向排列的,那么复合材料在纤维方向上的强度和模量会非常高,但在垂直于纤维方向上的性能则相对较弱。
为了克服这一局限性,常常采用多向编织或交叉铺层的方式来排列纤维,从而使复合材料在各个方向上都具有较好的力学性能。
除了纤维增强复合材料,颗粒增强复合材料也是常见的类型之一。
在这种复合材料中,细小的颗粒均匀分布在基体中。
这些颗粒可以阻碍位错运动,从而提高材料的强度。
颗粒的大小、形状、分布以及与基体的结合强度等因素都会影响复合材料的力学性能。
此外,复合材料的界面也是微观结构中的关键部分。
界面是指纤维或颗粒与基体之间的过渡区域。
良好的界面结合能够有效地传递载荷,提高复合材料的性能;而界面结合不良则可能导致载荷传递不畅,甚至出现界面脱粘等问题,从而降低复合材料的力学性能。
复合材料力学性能
复合材料力学性能复合材料是由两种或两种以上不同性质的材料组成的材料,具有轻质、高强度、耐腐蚀等特点,因此在航空航天、汽车制造、建筑等领域得到广泛应用。
复合材料的力学性能是评价其质量和可靠性的重要指标,包括强度、刚度、韧性、疲劳性能等方面。
本文将就复合材料的力学性能进行探讨。
首先,复合材料的强度是其最基本的力学性能之一。
强度是材料抵抗外部力量破坏的能力,通常包括拉伸强度、压缩强度、剪切强度等。
复合材料的强度受到纤维和基体的影响,纤维的强度决定了复合材料的整体强度,而基体则起到了支撑和保护纤维的作用。
因此,合理选择和设计纤维和基体的材料和结构对于提高复合材料的强度至关重要。
其次,复合材料的刚度也是其重要的力学性能之一。
刚度是材料抵抗变形的能力,通常体现为弹性模量。
复合材料由于其纤维的高强度和基体的刚度,具有较高的整体刚度,能够在外部载荷作用下保持较小的变形,因此在工程应用中得到了广泛的应用。
另外,复合材料的韧性也是其重要的力学性能之一。
韧性是材料抵抗断裂的能力,通常体现为断裂韧性和冲击韧性。
复合材料由于其纤维的高强度和基体的韧性,具有较高的整体韧性,能够在受到冲击载荷时不易发生断裂,因此在航空航天等领域得到了广泛的应用。
最后,复合材料的疲劳性能也是其重要的力学性能之一。
疲劳性能是材料在交变载荷下抵抗疲劳断裂的能力,复合材料由于其纤维和基体的结构特点,具有较好的疲劳性能,能够在长期交变载荷下保持较高的强度和韧性,因此在汽车制造等领域得到了广泛的应用。
综上所述,复合材料的力学性能是评价其质量和可靠性的重要指标,强度、刚度、韧性、疲劳性能等方面的性能都是其重要的表征。
因此,在复合材料的设计和制造过程中,需要充分考虑这些力学性能,合理选择和设计材料和结构,以确保复合材料具有良好的力学性能,能够满足工程应用的要求。
复合材料力学性能
13
3)影响复合材料冲击性能的因素
讨论了复合材料的能量吸收机理之后,就不难理解 材料性质对冲击性能的影响了,因为纤维性质不同、 基体韧性不同,界面强度不同会导致不同的破坏模式, 从而大大地影响复合材料的冲击性能。
27
(3)渗透作用。
水或其他化学介质通过对聚合物基体的渗透,对基体有两 种作用。一种是物理作用,它是介质分子经扩散渗透进入大 分子链间空隙,破坏大分子间的次价键,引起基体材料溶胀。 这种作用实际上是增塑基体,化学介质就是增塑剂,化学介 质的吸收同材料环境温度的增大是等效的,溶胀后的基体玻 璃化温度下降、模量降低,吸湿量越大,性能下降越大。化 学介质或水能否溶胀基体,主要取决于两者的分子极性是否 接近或溶解参数是否接近。另一种是化学作用,它是介质分 子与大分子发生化学反应,如氧化、水解等,使大分子链的 主价键断裂,从而降低基体材料强度。能否发生这种作用主 要取决于大分子链中的特征基团。
4
复合材料的破坏可以认为是从材料中固有 的小缺陷发源的。例如,有缺陷的纤维, 基体与纤维界面处的缺陷和界面不良反应 物等。在形成的裂纹尖端及其附近,有可 能以发生纤维断裂、基体变形和开裂、纤 维与基体分离(纤维脱粘)、纤维拔出等 模式破坏。现分述如下。
5
纤维复合材料中裂纹尖模型
6
分别讨论各种破坏机理。
提高复合材料冲击韧性的途径有:基体增韧、合适 的界面强度、采用混杂纤维复合材料。
14
9.1.2 复合材料的疲劳性能
复合材料在应用过程 中,由于承受变动载 荷或反复承受应力, 即使应力低于屈服强 度,也会导致裂纹萌 生和扩展,以至构件 材料断裂而失效,或 使其力学性质变坏。
复合材料力学性能
复合材料力学性能复合材料是由两种或两种以上的不同材料按照一定规律组合而成的材料。
与传统材料相比,复合材料具有独特的力学性能,以下将分别从强度、刚度、韧性、疲劳性能以及抗冲击性能等方面详细介绍复合材料的力学性能。
首先是复合材料的强度。
由于复合材料采用了不同种类的材料组合,在强度上具有明显的优势。
根据不同材料的组合方式和比例,复合材料可以获得高于单一材料的强度水平。
此外,由于复合材料具有随机分布的纤维增强体,使得复合材料具有较好的抗层状剪切破坏能力,提高了材料的整体强度。
其次是复合材料的刚度。
复合材料在刚性方面比传统材料更优越。
这是因为纤维增强体具有高弹性模量和高刚度特性,并且材料中纤维的方向性可以调整,所以在应力作用下,纤维能够承受更多的外力而不易产生位移。
因此,在力学应用中,复合材料能够提供更高的刚度和更小的变形。
再次是复合材料的韧性。
韧性是指材料在受到外力作用下产生破坏之前能够吸收的能量。
与传统材料相比,复合材料具有更好的韧性。
这是因为在复合材料中纤维的分布可以有效地防止裂纹扩展,同时由于纤维的存在可以将应力分散到整个材料中,从而提高韧性。
此外,复合材料也可以通过调整纤维增强体的类型和量来改善韧性。
复合材料的疲劳性能也是其重要的力学性能之一、在疲劳应力作用下,材料会出现裂纹的扩展,从而导致材料失效。
复合材料由于具有纤维增强体和基体的分离结构,在疲劳载荷下,纤维增强体能够吸收部分载荷,减缓增长速率,提高疲劳寿命。
此外,纤维增强体还能够增加复合材料的纵向和横向强度,降低应力集中,从而提高疲劳性能。
此外,复合材料的抗冲击性能也值得关注。
复合材料由于纤维增强体的存在,使得其在受冲击或振动载荷下具有更好的表现。
纤维增强体能够吸收冲击能量,减缓冲击载荷的传递,从而降低材料的损伤程度和失效概率。
综上所述,复合材料具有一系列优异的力学性能,如强度、刚度、韧性、疲劳性能和抗冲击性能等。
这得益于其具有多种材料的组合优势以及纤维增强体的特殊结构。
复合材料力学性能
复合材料力学性能
复合材料是指由两种或两种以上的材料组成的材料,经过一定的加工和制造工艺得到的具有新的组织和性能的材料。
复合材料的力学性能主要包括强度、刚度和韧性。
首先,复合材料具有很高的强度。
由于多种材料的组合,复合材料能够充分发挥各种材料的优点,从而提高材料的强度。
比如碳纤维复合材料,由于纤维之间有着良好的结合和排列,其强度比传统的金属材料高出数倍甚至数十倍。
这使得复合材料在航空航天、汽车、建筑等领域的应用非常广泛。
其次,复合材料还具有很高的刚度。
刚度是指材料抵抗形变和变形的能力,复合材料由于结构的合理性和纤维的高强度,使得其刚度远远高于传统的金属材料。
这使得复合材料能够在高温或高速等极端环境下能够保持其形状和性能,从而保证了材料的使用寿命和安全性。
另外,复合材料还具有很高的韧性。
韧性是指材料抵抗破裂和断裂的能力,复合材料通过纤维之间的相互支撑和吸收能量的机制,使得其具有很高的韧性。
相比于传统的金属材料,复合材料在受到冲击或挤压等外力作用时,能够有很好地承载和分散应力,从而减少裂纹的扩展和破坏的发生。
总之,复合材料具有很高的力学性能,包括强度、刚度和韧性。
这些性能使得复合材料成为目前工程领域中的重要材料,广泛应用于各个领域。
随着科技的不断进步和材料的不断发展,相
信复合材料的力学性能还会不断提高,为人们的生活和工作带来更多的便利和创新。
复合材料的力学性能
复合材料的力学性能
§11.1 复合材料概论 §11.2 单向复合材料的力学性能 §11.3 短纤维复合材料的力学性能 §11.4 复合材料的断裂、冲击和疲劳
1
§11.1 复合材料概论
一、定义和分类
1、定义
由两种或两种以上异质、异形、异性的材料复合 形成的新型材料。
2、分类
按基体分:金属基复合材料;无机非金属复合材 料;聚合物复合材料。
Vfcrmu fu Nhomakorabea* m
* m
(式11-41)
∴当Vf<Vfmin时 复合材料的抗拉强度σCLu=σmu(1-Vf)
12
2、抗压强度 基体在纵向压缩中起重要作用。 基体给予纤维侧向支持,使纤维不屈曲。 拉压型和剪切型失稳模型中,纵向抗压强度 分别为 式11-44和式11-45
“纤维的微弯曲和基体剪切失稳是复合材料 纵向压缩的两个主要破坏机理”。
渡;
三次结构(多层)形成多个铺层。
2、连续纤维与非连续纤维增强
连续纤维增强 方向性明显,性能受纤维的
粗细、数量、排列的影响。
非连续纤维增强 纤维的长度与直径之比
L/d,提高剪切强度。
返回
5
§11.2 单向复合材料的力学性能
一、单向复合材料及其结构模型
1、定义 连续纤维在基体中呈同向平行排列的复 合材料,叫做单向连续纤维增强复合材料。
三、强度
按混合定律计算。 用纤维的平均应力代替(11-39)中的纤维抗拉强度。
返回
15
§11.4 复合材料的断裂、冲击和疲劳
一、断裂
1、损伤累积机理
裂纹萌生:缺陷处 扩展: 2、非累积损伤机理 ①接力破坏 ②脆性粘接断裂机理 ③最薄弱环节破坏机理 3、复合材料的破坏形式 ①纤维断裂 ②基体变形和开裂 ③纤维脱胶 ④纤维拨出
复合材料力学性能
复合材料力学性能复合材料是由两种或两种以上的材料组合而成的新型材料,具有轻质、高强度、耐腐蚀等优点,在航空航天、汽车制造、建筑工程等领域有着广泛的应用。
复合材料的力学性能是其重要的品质之一,对于材料的设计、选择和应用具有重要的指导意义。
首先,复合材料的强度是其力学性能的重要指标之一。
复合材料的强度包括拉伸强度、压缩强度、剪切强度等。
拉伸强度是指材料在拉伸加载下的抗拉能力,而压缩强度则是指材料在受到压缩加载时的抗压能力。
剪切强度则是指材料在受到剪切加载时的抗剪能力。
这些强度指标直接影响着复合材料在实际工程中的使用性能,因此需要通过严格的实验测试和理论分析来评定和预测复合材料的强度性能。
其次,复合材料的刚度也是其力学性能的重要指标。
刚度是指材料在受力作用下的变形抵抗能力,包括弹性模量、剪切模量等。
复合材料的刚度决定了其在受力时的变形程度,对于结构件的设计和稳定性具有重要的影响。
因此,评定复合材料的刚度性能也是非常重要的。
另外,复合材料的疲劳性能也是其力学性能的重要方面。
在实际工程中,材料往往需要承受反复加载和卸载的作用,这就需要材料具有良好的疲劳性能。
复合材料的疲劳性能包括疲劳寿命、疲劳极限等指标,这些指标直接关系到材料的使用寿命和安全性,因此也需要进行严格的评定和测试。
最后,复合材料的耐热性、耐腐蚀性等特殊性能也是其力学性能的重要方面。
在高温环境下,复合材料需要具有良好的耐热性能,而在腐蚀介质中,复合材料也需要具有良好的耐腐蚀性能。
这些特殊性能直接关系到复合材料在特殊环境下的应用性能,因此也需要引起重视。
综上所述,复合材料的力学性能是其重要的品质之一,对于材料的设计、选择和应用具有重要的指导意义。
评定复合材料的力学性能需要通过严格的实验测试和理论分析,以确保材料具有良好的强度、刚度、疲劳性能和特殊性能,从而满足实际工程的需求。
只有如此,复合材料才能发挥其优越的性能,为各个领域的发展提供有力支撑。
复合材料的力学性能
提高复合材料损伤容限与断裂韧性的途径
• 材料选择与优化:选择具有优异力学性能和耐腐蚀性能的材料,优化材料的组 成和结构,可以提高复合材料的损伤容限和断裂韧性。
• 增强相与基体的匹配:增强相与基体之间的界面粘结力和相容性对复合材料的 性能具有重要影响。通过改善增强相与基体之间的匹配关系,可以提高复合材 料的损伤容限和断裂韧性。
04
因此,在选择和应用复合材料时,需要考虑环境因素对其力学性能的 影响。
05
复合材料的疲劳性能
疲劳失效的机理
疲劳失效是指复合材料在循环载荷作用 下,经过一段时间后发生的断裂现象。
疲劳失效通常是由材料内部的微裂纹萌 疲劳失效的机理包括应力集中、裂纹扩
生、扩展和连接导致的。
展和界面脱粘等。
疲劳性能的测试与表征
损伤容限与断裂韧性
损伤容限:材料在受到损伤后 仍能保持其使用性能的能力。
断裂韧性:材料抵抗裂纹扩展 的能力。
复合材料的损伤容限和断裂韧 性取决于增强相的分布、大小 和形状,以及基体与增强相之 间的界面粘结强度。
通过优化复合材料的结构设计 ,可以提高其损伤容限和断裂 韧性,从而提高其整体性能和 使用寿命。
这种降低主要是由于基体的热 膨胀和热塑性变形引起的,因 为基体的热膨胀系数通常高于 纤维。
在高温环境下,复合材料的弹 性模量可能会大幅度降低,这 对其在高温环境下的应用产生 不利影响。
04
复合材料的强度与韧性
纤维增强复合材料的强度与韧性
1
纤维增强复合材料的强度和韧性主要取决于纤维 和基体的性质,以及纤维在基体中的分布和排列。
下降。
选择适当的基体材料和配方,以 及优化基体与纤维的界面粘结, 可以提高复合材料的强度和韧性。
复合材料的力学性能
(2)力学特征:形变量很大(流动)
形变不可逆
模量极小
(3)Tf与摩尔平均质量有关
2.1 高分子材料的力学状态
结晶聚合物的力学三态及其转变
结晶聚合物的非晶区具有非晶态聚合物的力学三态 轻度结晶聚合物
晶区起交联点作用。温度,非晶区进入高弹态, 整个材料具有韧性和强度。
结晶度>40% 晶区互相衔接,贯穿成连续相。观察不到明显的 非晶区玻璃化转变现象。
2. 复合材料的 力学性能
2.1 高分子材料的力学状态
物质的物理状态
相态 凝胶态
热力学概念 动力学概念
凝胶态
力学状态
根据物质对外场(外部作用)特别是外力场 的响应特性划分。
按物质力学性能随温度变化的特性划分。
2.1 高分子材料的力学状态
气态 物质的力学三态 液态
固态
温度增加
聚合物力学状态具有特殊性。原因:
所以可得近似式:
E1≈ Ef ·Vf E2≈ Em/ Vm
E1≈ Ef ·Vf
E2≈ Em/ Vm
0
Vp
3、单层板的面内剪切模量G12 典型体积元所承受的外加剪切应力和所产生的变形如 图所示
假定:τ =τf=τm 且复合材料的剪切特性是线性的,则总 剪切变形D=γW γ:复合材料的剪切应变; W:试样宽度
σ1·A= σf ·Af+ σm ·Am 若复合材料纤维体积含量为Vf , 基体体积含量 为Vm,则:
Vf=Af/A Vm=Am/A Vf+Vm=1 则代入σ1·A= σf ·Af+ σm ·Am得
σ1= σf ·Vf+ σm ·Vm 由σ= E·ε得
E1= Ef ·Vf+ Em ·Vm 或 E1= Ef ·Vf+ Em ·(1-Vf)
复合材料的力学性能.
第11章复合材料的力学性能
1.解释下列名词:
(1 )纤维的临界体积分数;(2) 纤维的最小体积分数;(3 )短纤维的临界长度;(4) 单向短纤维复合材料;(5) 比强度、比模量;(6 )单向复合材料的纵泊松比、横泊松比。
2.试述纤维复合材料的基本特点。
复合材料受力时纤维和基体各起什么作用?
3.复合材料性能常数在什么条件下符合并联混合律?什么条件下符合串联混合律?并联与串联混合律的形式有什么不同?
4.短纤维复合材料的强度与哪些因素有关?为什么纤维越长,短纤维复合材料的强度越高?
5.试述复合材料疲劳性能的特点。
6. 何谓“混合定则”?它是在什么前提下推导出来的?
7. 纤维的体积分数值对复合材料的纵向抗拉强度有何影响?如何确定临界纤维体积分数?
8. 哪些因素影响复合材料的刚度和强度?
9. 正轴应力—应变关系可用哪些参数来表示?
10. 什么是耦合现象?
11. 复合材料铺层设计时,要注意哪些问题?
12. 短纤维增强复合材料有哪些优缺点?
13. 何谓“临界纤维长度”?它与哪些参量有关?
14. 如何估算短纤维增强复合材料的强度?
15. 复合材料断裂有哪几种模式?
16. 与金属材料相比,复合材料的疲劳性能有哪些显著的特点?
1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间短纤维杂乱增强 纤维少,作用弱,性能变差,但横向拉伸 强度和剪切强度高,可制复杂件,效率高。
性能(与同类长纤维增强材料相比):
纤维增强复合材料力学特性
短纤维增强复合材料的应力传递
单纤维微元体: 纤维线弹性, 界面结合完全。
(r ) f (2rf dz) e (r )( f d f )
2 f 2 f
2 纤维上的应力分布: f f 0 rf
z
0
τdz
理想状态下纤维应力沿纤维向的变化情况
若假设纤维末端不传递正应力,即σf0=0,
纤维上正应力分布可简化为:
2 s z f rf
正应力随纤维长度增加而增加。
纤维临界长度
纤维传递应力达到其强度极限时的纤维最 小长度称为临界长度。 短纤维复合材料中纤维的长度应大于临界 长度,这时才可能充分发挥纤维的增强作 用。
细观结构单元
f =E f f
m=E m m
1方向:ε1= εf= εm 2方向:ε2= Vfεf +Vmεm, σ = σ f = σm
单元在1方向拉伸
ε1 = εf = εm
复合材料单元上的合力:
P 1A f A f + m A m
E1 Ef Vf EmVm
碳化硅纤维/ 环氧
石墨纤维/铝 钢 铝合金 钛合金
2.0
2.2 7.8 2.8 4.5
1.5
0.8 1.4 0.5 1.0
7.5
3.6 1.8 1.7 2.2
130
231 210 77 110
6.5
10.5 2.7 2.8 2.4
260
-Hale Waihona Puke 2.1 复合材料的变形常规材料:均质,各向同 性; 复合材料: ①非均质,位置影响性能 ②各向异性,不同方向性 能不同
什么是复合材料?
两种或两种以上不同性能、不同形态的固 体材料,以微观或宏观的形式复合而成的 一种多相材料,性能与组成物质不同。
命名: 增强物名在前, 基体名在后,如 碳纤维环氧复合 材料。
基体相-连续的,粘结、支持、保护增强物 和传递应力作用。 增强相-分散的,被基体包围,承受载荷作 用。 近代复合材料主要有纤维增强复合材料和 粒子增强复合材料。
3 连续纤维增强复合材料的强度
1 各向异性材料的应力-应变关系 2 单层板的应力-应变关系 3 单层板强度理论
单向连续纤维增强复合材料
连续纤维在基体中呈同向平行等距排列。
单向复合材料微观力学性能
弹性模量由纤维和基体的性能及其相对体 积含量共同确定。
Cij Cij (E f , f ,V f , Em , m ,Vm )
混合定则:纤维和基体对复合材料的力学性 能所做的贡献与其体积分数成正比。
举例
碳纤维/环氧树脂复合材料的相关数据如下:
E f 180000 MPa,V f 0. 548 , Em 3000 MPa
求E1?
E1 110 MPa
5
实测值为 103860 MPa ,与预测值较接近。
单元在2方向单向拉伸
ε2 = Vfεf +Vmεm, σ = σ f = σm
1 Vf Vm E2 Ef Em
Ef Em E2 Vm Ef Vf Em
图7-5 E2/Em随纤维体积含量的变化图
纵向应力-应变曲线
基 体 和 纤 维 应 力 应 变 曲 线
变形和断裂:
①纤维和基体弹性 变形; ②纤维弹变,基体 非弹变; ③两者都非弹变; ④纤维断裂,进而 整体断裂。
石 器 时 代
复合材料发展史
天然复合材料:竹、木、茅草、贝壳、骨骼 传统复合材料:麻刀(纸筋)石灰;土坯 (草秆、粘土);钢筋混凝土; 通用复合材料:1940年,玻璃纤维增强塑料 (GFRP) 先进复合材料:1960年后,结构复合材料→ 单功能复合材料→多功能复合材料→机敏材 料和智能材料。
复合材料的应力-应变曲线特征
曲线处于纤维和基体的应力-应变曲线之间。 曲线的位置取决于纤维的体积分数。 纤维体积分数越高,曲线越接近纤维的应力-应变 曲线;
当基体体积分数高时,曲线则接近基体应力-应变 曲线。
4 短纤维增强复合材料的强度
类型:
单向短纤维增强
面内短纤维杂乱增强
典型复合材料和常用材料性能对比
密度
材料 (g/c m3) 1.6 2.1
拉伸强 度
(GPa) 1.8 1.6
比强度
107(m m) 11.3 7.6
拉伸模 量
(GPa) 128 220
比模量
109(m m) (kg· cm /cm2) 8.0 10.5 76 -
冲击强 度
碳纤维/环氧 硼纤维/环氧
复合材料按基体材料分类
复合材料
树脂基
金属基
陶瓷基
热固性
热塑性
碳基
玻璃基
水泥基
复合材料按功能分类
复合材料
结构复合材料
功能复合材料
力
电、磁、光、热、放射性
耐腐蚀、耐烧蚀、生物相容性、隐身等
复合材料的应用-飞机用
增韧石墨 石墨 混杂复合材料 玻璃纤维
空中巨无霸-A380
机身蒙皮-GLARE材料
目前商用飞机上复合材料仅占全机重 量的50%,部分直升机已达90%
超级跑车-碳纤维复合材料
碳纤维/树脂复合材料
生产充气船及其胶布制品,采用国际 上先进的A级RTP复合材料
新型日光温室复合材料 温室骨架和纵拉杆全部采用复合材料制成
热塑性复合材料
碳/碳复合材料
2 复合材料的性能特点
① ② ③ ④ ⑤ ⑥ ⑦
比强度、比刚度(比模量)大 力学性能可以设计 抗疲劳性能好 减震性好 通常都能耐高温 过载时安全性好 有很好的加工工艺性
复合材料的力学性能
内容提要
1 复合材料概述 2 复合材料的变形 3 连续纤维增强复合材料的强度 4 短纤维增强复合材料的强度 5 纤维增强复合材料的断裂与疲劳
1 复合材料概述
人类发展史和材料发展史息息相关。 人类历史上各方面进步与新材料的发现、制造 和应用分不开。 新材料时代(高分子材料、复合材料和智能材 料)。 陶 器 时 代 青 铜 器 时 代 铁 器 时 代 新 材 料 时 代
5 纤维增强复合材料的断裂与疲劳
断裂过程:
①
形成微观裂纹;
②
微观裂纹稳定扩展,与其它微观裂纹相接而 达到宏观裂纹尺度;
在临界应力水平下宏观裂纹不稳定扩展。
③
断裂方式: 单个组分断裂或组分间界面分离(如层合板)。