单相桥式全控整流及有源逆变电路的MATLAB仿真

合集下载

整流电路matlab仿真

整流电路matlab仿真

实验一:单相桥式全控整流电路的性能研究一、实验目的1.加深理解单相桥式全控整流电路的工作原理2.研究单相桥式变流电路整流的全过程3.掌握单相桥式全控整流电路MATLAB的仿真方法,会设置各模块的参数。

二、预习内容要点1. 单相桥式全控整流带电阻性负载的运行情况2. 单相桥式全控整流带阻感性负载的运行情况3. 单相桥式全控整流带具有反电动势负载的运行情况三、实验仿真模型1、电路结构单相桥式全控整流电路的电路用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。

2、建模在MATLAB新建一个Model,命名为dianlu1,同时模型建立如下图所示单相桥式阻感负载整流电路四、实验内容及步骤1.对单相桥式全控整流带电阻性负载的运行情况进行仿真并记录分析改变脉冲延迟角时的波形(至少3组)。

以延迟角30°为例(1)器件的查找以下器件均是在MATLAB R2014a环境下查找的,其他版本类似。

有些常用的器件比如示波器、脉冲信号等可以在库下的Sinks、Sources中查找;其他一些器件可以搜索查找(2)连接说明有时查找出来的器件属性并不是我们想要的例如:变压器可以双击变压器进入属性后,取消three windings transformer就是单相变压器。

(3)参数设置1.双击交流电源把电压设置为220V,频率为50Hz;2.双击脉冲把周期设为0.02s,占空比设为10%,延迟角设为30度,由于属性里的单位为秒,故把其转换为秒即,30×0.02/360;3.双击负载把电阻设为20Ω,电感设为0.1H;4.双击示波器把Number of axes设为5,同时把History选项卡下的Limit data points to last 前面的对勾去掉;5.晶闸管参数保持默认即可(4)仿真波形及分析1.当供电给纯电阻负载a.触发角α=0°c. α=90°从图中可以看出输出电压Ud的电压波形相对延迟角为30度时的波形向后推迟了,同理可以得出输出电压Ud的平均值变小了。

单相桥式全控整流电路Matlab仿真(完美)资料-共18页

单相桥式全控整流电路Matlab仿真(完美)资料-共18页

目录完美篇单相桥式全控整流电路仿真建模分析 (1)(一)单相桥式全控整流电路(纯电阻负载) (2)1.电路的结构与工作原理 (2)2.建模 (3)3仿真结果与分析 (4)4小结 (6)(二)单相桥式全控整流电路(阻-感性负载) (7)1.电路的结构与工作原理 (7)2.建模 (8)3仿真结果与分析 (10)4.小结 (12)(三)单相桥式全控整流电路(反电动势负载) (13)1.电路的结构与工作原理 (13)2.建模 (14)3仿真结果与分析 (16)4小结 (18)单相桥式全控整流电路仿真建模分析一、实验目的1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。

2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。

二.实验内容(一)单相桥式全控整流电路(纯电阻负载) 1.电路的结构与工作原理1.1电路结构U1U2Ud Id+ -T VT3VT1VT2VT4abR 单相桥式全控整流电路(纯电阻负载)的电路原理图(截图)1.2工作原理用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。

(1)在u2正半波的(0~α)区间:晶闸管VT1、VT4承受正压,但无触发脉冲。

四个晶闸管都不通。

假设四个晶闸管的漏电阻相等,则u T1.4= u T2.3=1/2 u2。

(2)在u2正半波的ωt=α时刻:触发晶闸管VT1、VT4使其导通。

电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且u T1.4=0。

此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则u T2.3=1/2 u2。

晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。

(3)在u2负半波的(π~π+α)区间:晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。

单相桥式全控整流电路MATLAB仿真实验报告(下)

单相桥式全控整流电路MATLAB仿真实验报告(下)

一、单相桥式全控整流电路(电阻性反电势)1.电路结构与工作原理(1)电路结构TidE(2)工作原理1)若是感性负载,当u2在正半周时,在ωt=α处给晶闸管VT1加触发脉冲,VT1导通后,电流从u2正端→VT1→L→R→VD4→u2负端向负载供电。

u2过零变负时,因电感L的作用使电流连续,VT1继续导通。

但a点电位低于b点,使电流从VD4转移至VD2,VD4关断,电流不再流经变压器二次绕组,而是经VT1和VD2续流,则ud=0。

2)在u2负半周ωt=π+α时刻触发VT3使其导通,则向VT1加反压使之关断,u2经VT3→L→R→VD2→u2端向负载供电。

u2过零变正时,VD4导通,VD2关断。

VT3和VD4续流,u d又为零。

此后重复以上过程。

2.建模3.仿真结果分析α=30°单相全控桥式反电势负载(电阻性)α=60°单相全控桥式反电势负载(电阻性)α=90°单相全控桥式反电势负载(电阻性)4.小结若α <δ时,触发脉冲到来时,晶闸管承受负电压,不可能导通。

为了使晶闸管可靠导通,要求触发脉冲有足够的宽度,保证当晶闸管开始承受正电压时,触发脉冲仍然存在。

这样,相当于触发角被推迟,即α=δ。

二、单相桥式全控整流电路(阻感性反电势)1.建模2.仿真结果分α=30°单相全控桥式反电势负载(阻感性)α=60°单相全控桥式反电势负载(阻感性)α=90°单相全控桥式反电势负载(阻感性)3.小结当电枢电感不足够大时,输出电流波形断续,为此通常在负载回路串接平波电抗器以减小电流脉动,延迟晶闸管导通时间;如果电流足够大,电流就连续。

单相桥式全控整流及有源逆变电路的实现与仿真研究

单相桥式全控整流及有源逆变电路的实现与仿真研究

单相桥式全控整流及有源逆变电路的实现研究与仿真设计摘要本文以单相桥式全控整流及有源逆变电路为研究对象,介绍了单相桥式全控整流及有源逆变电路的工作原理,并对MATLAB/Simulink模块中电力电子仿真所需要的电力系统模块做了简要的说明,介绍了单相桥式全控整流及有源逆变电路的主要环节整流及有源逆变的工作原理,并且分析了几种常见的触发角,在此基础上运用MATLAB软件分别对电路的仿真进行了设计;实现了对单相桥式全控整流及有源逆变电路的仿真。

关键词:Simulink;单相桥式全控整流及有源逆变电路;仿真设计AbstractBased on single bridge rectifying and full control of active inverter circuits for research object, introduces the whole point of single-phase bridge rectifying and active inverter circuit principle of work, and on MATLAB/Simulink module power electronic simulation need power system module provides a brief explanation, introduces the whole point of single-phase bridge rectifying and active inverter circuits of the main rectifier and active link inverter principle of work, and analyzes some common triggering Angle, on the basis of using MATLAB software simulation of the circuit design, The realization of single-phase bridge rectifying and full control of the active inverter circuits. Keywords:Simulink, Single-phase bridge rectifying and active all control circuit, Simulation design目录第1章绪论 (1)1.1 课题背景 (1)1.2 整流技术的发展概况 (1)1.3 系统仿真概述 (2)第2章单相桥式全控整流及有源逆变的工作原理 (4)2.1 整流电路概述 (4)2.2有源逆变概述 (4)2.3 单相桥式全控整流电路的工作原理 (5)2.3.1 工作原理 (5)2.3.2 参数计算公式 (7)2.4 单相桥式全控有源逆变的工作原理 (8)2.4.1 工作原理 (8)2.4.2 逆变颠覆 (9)2.4.3 最小逆变角限制 (9)2.5 晶闸管整流电路的触发控制 (9)2.5.1 锯齿波的形成环节 (10)2.5.2 移相控制环节 (10)2.5.3 脉冲的形成环节 (11)2.5.4 脉冲的输出环节 (11)第3章单相桥式全控整流及有源逆变的实验 (12)3.1 单相桥式全控整流及有源逆变的电路图 (12)3.2 单相桥式全控整流电路的实验 (13)3.3 单相桥式有源逆变电路的实验 (14)3.4 逆变颠覆现象的观察 (16)第4章单相桥式全控整流及有源逆变的仿真 (17)4.1 单相桥式全控整流及有源逆变的仿真模型 (17)4.1.1 仿真模型的设计 (17)4.1.2 仿真模型模块的参数设置 (17)4.2 模型仿真及仿真结果 (28)4.3 仿真过程中问题的解决及一些技巧 (34)4.3.1 如何根据原理建立仿真模型 (34)4.3.2 调试中参数设置方法 (34)4.3.3 创建模型的一些技巧 (35)第5章总结 (36)5.1 论文主要内容总结 (36)5.2 实验过程总结 (36)5.3 仿真过程总结 (37)5.4 设计和开发方面的不足 (37)参考文献 (38)致谢 (39)附录实验接线图 (40)第1章绪论1.1课题背景在电力电子技术中,可控整流电路是非常重要的章节,整流电路是将交流电变为直流电的电路,其应用非常广泛。

单相桥式全控整流电路Matlab仿真(完美)

单相桥式全控整流电路Matlab仿真(完美)

目录完美篇单相桥式全控整流电路仿真建模分析 (1)(一)单相桥式全控整流电路(纯电阻负载) (2)1.电路的结构与工作原理 (2)2.建模 (3)3仿真结果与分析 (4)4小结 (6)(二)单相桥式全控整流电路(阻-感性负载) (7)1.电路的结构与工作原理 (7)2.建模 (8)3仿真结果与分析 (10)4.小结 (12)(三)单相桥式全控整流电路(反电动势负载) (13)1.电路的结构与工作原理 (13)2.建模 (14)3仿真结果与分析 (16)4小结 (18)单相桥式全控整流电路仿真建模分析一、实验目的1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。

2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。

二.实验内容(一)单相桥式全控整流电路(纯电阻负载)1.电路的结构与工作原理1.1电路结构R单相桥式全控整流电路(纯电阻负载)的电路原理图(截图)1.2工作原理用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。

(1)在u2正半波的(0~α)区间:晶闸管VT1、VT4承受正压,但无触发脉冲。

四个晶闸管都不通。

假设四个晶闸管的漏电阻相等,则u T1.4= u T2.3=1/2 u2。

(2)在u2正半波的ωt=α时刻:触发晶闸管VT1、VT4使其导通。

电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且u T1.4=0。

此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则u T2.3=1/2 u2。

晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。

(3)在u2负半波的(π~π+α)区间:晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。

此时,u T2.3=u T1.4=1/2 u2。

单相桥式全控整流电路Matl新编仿真

单相桥式全控整流电路Matl新编仿真

单相桥式全控整流电路M a t l新编仿真Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT目录(((3468单相桥式全控整流电路仿真建模分析一、实验目的1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。

2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。

二.实验内容(一)单相桥式全控整流电路(纯电阻负载)1.电路的结构与工作原理电路结构单相桥式全控整流电路(纯电阻负载)的电路原理图(截图)工作原理用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。

(1)在u2正半波的(0~α)区间:晶闸管VT1、VT4承受正压,但无触发脉冲。

四个晶闸管都不通。

假设四个晶闸管的漏电阻相等,则==1/2 u2。

(2)在u2正半波的ωt=α时刻:触发晶闸管VT1、VT4使其导通。

电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且=0。

此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则=1/2 u2。

晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。

(3)在u2负半波的(π~π+α)区间:晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。

此时,==1/2 u2。

(4)在u2负半波的ωt=π+α时刻:触发晶闸管VT2、VT3,元件导通,电流沿b→VT3→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(u d=-u2)和电流,且波形相位相同。

此时电源电压反向加到晶闸管VT1、VT4上,使其承受反压而处于关断状态。

晶闸管VT2、VT3一直要导通到ωt=2π为止,此时电源电压再次过零,晶闸管阳极电流也下降为零而关断。

单相桥式全控整流电路反电动势负载MATLAB仿真

单相桥式全控整流电路反电动势负载MATLAB仿真

电力电子仿真实验报告一、课程设计名称单相桥式全控整流电路反电动势负载MATLAB仿真二、设计任务及条件1.设计条件:1)电源电压:交流100V/50Hz2)输出功率:1KW3)移相范围:30∘−150∘4)反电势:E=70V2.要求完成的主要任务;(1)主电路设计(包括整流元件定额的选择和计算等),讨论晶闸管电路对电网及系统功率因数的影响。

2)触发电路设计:触发电路选型(可使用集成触发器),同步信号的产生。

(3)晶闸管的过电压保护与过电流保护电路设计,计算保护元件参数并选择保护元件型号。

4)利用仿真软件分析电路的工作过程。

三、设计原理1.主电路原理图.∵工作原理:当整流电压的瞬时值ud小于反电势E时,晶闸管承受反压而关断,这使得晶闸管导通角减小。

晶闸管导通时,ud=u2,id=ud−ER,晶闸管关断时,ud=E。

与电阻负载相比晶闸管提前了电角度δ停止导电,δ称作停止导电角。

δ=arcsinE2U2若α<8时,触发脉冲到来时,晶闸管承受负电压,不可能导通。

为了使晶闸管可靠导通,要求触发脉冲有足够的宽度,保证当晶闸管开始承受正电压时,触发脉冲仍然存在。

这样,相当于触发角被推迟,即α=8。

四、保护电路的设计在电力电子电路中,除了电力电子器件参数选择合适、驱动电路设计良好外,采用合适的过电压、过电流、du/dt保护和di/dt保护也是必要的。

4.1过电压保护以过电压保护的部位来分,有交流侧过压保护、直流侧过电压保护和器件两端的过电压保护三种。

图4-1过电压抑制措施及配置位置F%避雷器D%变压器静电屏蔽层C%静电感应过电压抑制电容RC;%阀侧浪涌过电压抑制用RC电路RC-%阀侧浪涌过电压抑制用反向阻断式RC电路RV%压敏电阻过电压抑制器RC3%阀器件换相过电压抑制用RC电路RCD判阀器件关断过电压抑制用RCD电路(1)交流侧过电压保护可采用阻容保护或压敏电阻保护。

a.阻容保护(即在变压器二次侧并联电阻R和电容C进行保护)单相阻容保护的计算公式如下:C≥6∗i0%∗SU22(μF)R≥2.3∗U22S∗uK96i0(Ω)S:变压器每相平均计算容量(VA);U2:变压器副边相电压有效值(V);i0%;变压器激磁电流百分值;U%:变压器的短路电压百分值。

单相桥式全控整流电路MATLAB仿真实验报告材料(上)

单相桥式全控整流电路MATLAB仿真实验报告材料(上)

单相桥式全控整流电路MATLAB仿真一、单相桥式全控整流电路(电阻性负载)1.电路结构与工作原理(1)电路结构如图1-1所示为典型单相桥式全控整流电路,共用了四个晶闸管,两只晶闸管接成共阳极,两只晶闸管接成共阴极,每一只晶闸管是一个桥臂,桥式整流电路的工作方式特点是整流元件必须成对以构成回路,负载为电阻性。

idR图1-1(2)工作原理1)在u2正半波的(0~α)区间,晶闸管VT1、VT4承受正向电压,但无触发脉冲,晶闸管VT2、VT3承受反向电压。

因此在0~α区间,4个晶闸管都不导通。

假如4个晶闸管的漏电阻相等,则U t1.4= U t2.3=1/2u2。

2)在u2正半波的(α~π)区间,在ωt=α时刻,触发晶闸管VT1、VT4使其导通。

3)在u2负半波的(π~π+α)区间,在π~π+α区间,晶闸管VT2、VT3承受正向电压,因无触发脉冲而处于关断状态,晶闸管VT1、VT4承受反向电压也不导通。

4)在u2负半波的(π+α~2π)区间,在ωt=π+α时刻,触发晶闸管VT2、VT3使其元件导通,负载电流沿b→VT3→R→VT2→α→T的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(u d=-u2)和电流,且波形相位相同。

表1-1 各区间晶闸管的导通、负载电压和晶闸管端电压情况2.建模图1-3 单相桥式全控整流电路(电阻性负载)3.仿真结果分析1) α=30º,R=1Ω,period=0.02s,peakamplitude=10V,frequency=50HZ,phase delay(secs)1=1/600,phase delay(secs)2=1/600 +0.01;图1-4α=30°单相双半波可控整流仿真结果(电阻性负载)2) α=30º,R=1Ω,period=0.02s,peakamplitude=10V,frequency=50HZ,phase delay(secs)1=1/300,phase delay(secs)2=1/300 +0.01;图1-5α=60°单相双半波可控整流仿真结果(电阻性负载)3) α=30º,R=1Ω,period=0.02s,peakamplitude=10V,frequency=50HZ,phase delay(secs)1=1/200,phase delay(secs)2=1/200 +0.01;图1-6α=90°单相双半波可控整流仿真结果(电阻性负载)4.小结尽管整流电路的输入电压U2是交变的,但负载上正负两个半波均有相同的电流流过,输出电压一个周期脉动两次,由于桥式整流电路在正、负半周均能工作,变压器二次绕组正在正、负半周均有大小相等、方向相反的电流流过,消除了变压器的电流磁化,提高了变压器的有效利用率。

单相桥式全控整流及有源逆变电路的MATLAB仿真

单相桥式全控整流及有源逆变电路的MATLAB仿真

单相桥式全控整流及有源逆变电路的MATLAB 仿真图1 单相桥式全控整流知识点回顾:整流(AC/DC)就是将交流变化为方向不变,大小为纹波的直流,相信大家都很清楚,这里就不详细介绍整流啦! 逆变(DC/AC),按负载性质的不同,逆变分为有源逆变和无源逆变。

如果把逆变电路的交流侧接到交流电源上,将直流电能经过直—交变换,逆变成与交流电源同频率的交流电返回到电网上去,叫有源逆变,其相应的装置是有源逆变器。

而将直流电能经过变换逆变成交流电能直接消耗在非电源性负载上者,叫无源逆变,其相应的装置是变频器。

逆变与整流是变流装置的两种不同工作状态,能在同一套变流装置上实现,只是其工作条件不一样而已。

首要条件是变流装置内部,使直流电压d U 改变极性,从而使功率的流向有可能发生逆转。

当控制角︒<≤900α时,变流装置工作在整流状态,直流电压d U 与直流电流d I 是同一方向,装置将交流电能转换成直流电能供给直流负载;当控制角︒≤<︒18090α时,变流装置工作在逆变状态,由于晶闸管的单向导电性,电流d I 方向不变,而直流电压d U 改变了极性,装置将直流电能转换成交流电能输向电网或非电源性负载。

其次是外部调件,必须是提供直流能源,而且是d U E >。

仿真环境:MATLAB 7.90(R2009b)实验一:电感性负载整流1.电路搭建3.参数设置4个晶闸管设置如上图,内阻为0.001欧,门槛电压值为0.8V,吸收电阻为10欧,吸收电容为4.7e-6。

交流电源模块幅值为100V,频率为50Hz。

电感为10e-3,电阻为2。

2个选择器都是以1为基准值的电压形式输出,所以选择[2],两路输入,一路输出。

左边是给T1和T4脉冲的,右边是给T2和T3的,幅值为1.1V ,高于晶闸管的门槛0.8V ,周期为0.02s ,也就是50Hz ,脉宽为0.001,延迟分别是0.00333s 和0.01333s ,这两个数值是这样得来的,按照关系式︒=360Tt α,控制角α在︒<≤900α之间为整流,我选择60°,周期为0.02s ,那就得出第一个脉冲在0.00333s 的时候到来,互补的两套管在一个周期内各导通一次,所以第二个就要加0.01s 。

单相桥式全控整流电路Matlab仿真(完美)

单相桥式全控整流电路Matlab仿真(完美)

目录完美篇单相桥式全控整流电路仿真建模分析 (1)(一)单相桥式全控整流电路(纯电阻负载) (2)1.电路的结构与工作原理 (2)2.建模 (3)3仿真结果与分析 (4)4小结 (6)(二)单相桥式全控整流电路(阻-感性负载) (7)1.电路的结构与工作原理 (7)2.建模 (8)3仿真结果与分析 (10)4.小结 (12)(三)单相桥式全控整流电路(反电动势负载) (13)1.电路的结构与工作原理 (13)2.建模 (14)3仿真结果与分析 (16)4小结 (18)单相桥式全控整流电路仿真建模分析一、实验目的1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。

2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。

二.实验内容(一)单相桥式全控整流电路(纯电阻负载)1.电路的结构与工作原理1.1电路结构R单相桥式全控整流电路(纯电阻负载)的电路原理图(截图)1.2工作原理用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。

(1)在u2正半波的(0~α)区间:晶闸管VT1、VT4承受正压,但无触发脉冲。

四个晶闸管都不通。

假设四个晶闸管的漏电阻相等,则u T1.4= u T2.3=1/2 u2。

(2)在u2正半波的ωt=α时刻:触发晶闸管VT1、VT4使其导通。

电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且u T1.4=0。

此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则u T2.3=1/2 u2。

晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。

(3)在u2负半波的(π~π+α)区间:晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。

此时,u T2.3=u T1.4=1/2 u2。

单相桥式全控整流电路Matlab仿真(完美)资料

单相桥式全控整流电路Matlab仿真(完美)资料

目录单相桥式全控整流电路仿真建模分析 (1)(一) ................................... 单相桥式全控整流电路(纯电阻负载)21. ................................................................................................................................ 电路的结构与工作原理 (2)2•建模 (3)3仿真结果与分析 (4)4小结 (6)(二) .................................. 单相桥式全控整流电路(阻-感性负载)71.电路的结构与工作原理 (7)2•建模 (8)3仿真结果与分析 (10)4.小结 (12)(三) ................................. 单相桥式全控整流电路(反电动势负载)131.电路的结构与工作原理 (13)2•建模 (14)3仿真结果与分析 (16)4小结 (18)单相桥式全控整流电路仿真建模分析一、实验目的1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。

2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。

二.实验内容(一)单相桥式全控整流电路 (纯电阻负载)1. 电路的结构与工作原理1.1电路结构单相桥式全控整流电路(纯电阻负载)的电路原理图 (截图)1.2工作原理用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶 闸管是一个桥臂。

(1) 在U2正半波的(0~a )区间:晶闸管VT1、VT4承受正压,但无触发脉冲。

四个晶闸管都不通。

假设四个 晶闸管的漏电阻相等,贝U uT1.4= uT2.3=1/2 u2。

(2) 在u2正半波的3 t=a 时刻:触发晶闸管 VT1、VT4使其导通。

电流沿 a -VT1 -R -VT4-b -Tr 的二次 绕组一a 流通,负载上有电压(ud=u2)和电流输出,两者波形相位相同且uT1.4=0。

单相桥式全控整流及有源逆变电路的MATLAB仿真

单相桥式全控整流及有源逆变电路的MATLAB仿真

学号02天津城建大学控制系统仿真大作业单相整流—逆变电路仿真模型学生姓名王飞虎班级13电气12班成绩控制与机械工程学院2014年 6 月 20 日目录一、仿真电路原理图: ............................................. 错误!未定义书签。

二、单相桥式不可控整流原理: ..................................... 错误!未定义书签。

三.电路搭建 ...................................................... 错误!未定义书签。

四.元件提取 ...................................................... 错误!未定义书签。

五.参数设置 ...................................................... 错误!未定义书签。

六.结果分析 ...................................................... 错误!未定义书签。

七.结论: ........................................................ 错误!未定义书签。

参考文献: ....................................................... 错误!未定义书签。

绪论:整流(AC/DC)就是整流,是指将交流电变换为直流电称为AC/DC变换,这正变换的功率流向是由电源传向负载,称之为整流。

逆变(DC/AC),按负载性质的不同,逆变分为有源逆变和无源逆变。

如果把逆变电路的交流侧接到交流电源上,将直流电能经过直—交变换,逆变成与交流电源同频率的交流电返回到电网上去,叫有源逆变,其相应的装置是有源逆变器。

而将直流电能经过变换逆变成交流电能直接消耗在非电源性负载上者,叫无源逆变,其相应的装置是变频器。

单相桥式全控整流电路的MATLAB仿真分析

单相桥式全控整流电路的MATLAB仿真分析

622010年第5期(总第93期)et单相桥式全控整流电路的MATLAB仿真分析刘玉娟南京信息工程大学 江苏南京 21044摘 要:单相可控整流电路中应用最多的是单相桥式全控整流电路。

本文使用MATLAB软件对带电阻负载和带阻感负载的单相桥式全控整流电路进行了仿真分析。

实例证明,仿真的结果与理论分析结果基本一致。

实践表明,在教学中将MATLAB仿真分析与理论教学相结合,有利于提高学生的动手能力,也有利于学生对理论知识的理解和掌握。

关键词:MATLAB;仿真;单相桥式全控整流电路收稿日期:2009-11-06作者简介:刘玉娟,硕士,讲师。

632010年第5期(总第93期)E-642010年第5期(总第93期)et MATLAB simulation and analysis of single phase bridge controlled recti fi er circuitLiu YujuanNanjing university of information science & technology,Nanjing,210044,ChinaAbstract: Single phase bridge controlled rectifier circuit is widely used in the project.In this paper, single phase bridge controlled rectifier circuit with resistance load and with resistance and inductance load had been simulated and analyzed in MATLAB. Example shows that simulation results are basically consistent with the theoretical analysis results. Teaching practice has proved that MATLAB simulation combined with theoretical teaching would not only help to improve students hands-on ability, but also help students understand and master the theoretical knowledge.Key words: MATLAB; simulation; single phase bridge controlled rectifier。

单相桥式有源逆变电路在matlab中的建模与仿真

单相桥式有源逆变电路在matlab中的建模与仿真

单相桥式有源逆变电路在matlab中的建模与仿真由于近年来科学技术的迅猛发展,出现了许多新的电子元件,其中最重要的之一是单相桥式有源逆变电路。

随着新兴技术的发展,单相桥式有源逆变器已经成为电子工业中最重要的电路之一。

因此,仿真技术的发展已经有助于研究单相桥式有源逆变电路的特性和功能。

本文介绍了MATLAB在模拟单相桥式有源逆变电路的功能上的优点,并且结合仿真实例,详细介绍了如何使用MATLAB进行仿真,探讨了单相桥式有源逆变电路的特性和功能。

单相桥式有源逆变电路是一种单相驱动电路,其特点是体积小、重量轻,对输出电压、电流和功率有良好的控制能力,以满足多种应用要求。

主要应用领域包括家用电器、装饰、医疗、仪表和电动汽车等。

为了更好地研究单相桥式有源逆变电路,仿真技术已经发展成为一种常用的仿真方法。

MATLAB是当今最先进的建模和仿真软件,其拥有强大的仿真功能,可以对单相桥式有源逆变器的特性和功能进行精确的仿真。

为了实现MATLAB中单相桥式有源逆变器的仿真,首先需要在MATLAB中创建一个新的工程文件,然后在其中包含函数块图,变量块、控制块等。

函数块图可以帮助用户创建函数结构和参数,以实现对单相桥式有源逆变器各个模块的仿真和控制。

变量块可以为仿真建立参数,以模拟单相桥式有源逆变器的行为。

控制块可以实现单相桥式有源逆变器的调节,以便更好地模拟实际应用的情况。

使用MATLAB进行单相桥式有源逆变电路的仿真,可以更好地检验单相桥式有源逆变器的功率特性、响应特性以及控制特性。

通过MATLAB仿真,用户可以更好地了解单相桥式有源逆变器的运行特性和其他特性,从而可以更有效地实现应用。

总结来看,基于MATLAB的单相桥式有源逆变电路仿真是一种高效、精确的仿真方法,可以用来检验和优化单相桥式有源逆变器的结构和功能。

目前,已经有不少应用实例,证明MATLAB技术可以有效地完成对单相桥式有源逆变器的仿真和模拟。

MATLAB的强大功能和灵活的模块化特性,正在为研究单相桥式有源逆变器提供新的方向和可能性。

matlab仿真——单相桥式全控整流电路

matlab仿真——单相桥式全控整流电路

matlab仿真——单相桥式全控整流电路设计课题: 单相桥式全控整流电路姓名:学院: 信息工程学院专业: 电子信息科学与技术班级: 09级学号:日期 2010-2011第三学期指导教师: 李光明张军蕊单相桥式全控整流电路一、问题描述及工作原理1、单相桥式全控整流电路(电阻性负载)单相桥式全控整流电路(电阻性负载)如图1所示,电路由交流电源、整流变压器、晶闸管、负载以及触发电路组成。

我所要分析的问题是α为不同值时,输出电压及电流的波形变化。

idR图1其工作原理如下:(1)在u2正半波的(0~α)区间,晶闸管VT1、VT4承受正向电压,但无触发脉冲,晶闸管VT2、VT3承受反向电压。

因此在0~α区间,4个晶闸管都不导通。

假如4个晶闸管的漏电阻相等,则Ut1.4= Ut2.3=1/2u2。

(2)在u2正半波的(α~π)区间,在ωt=α时刻,触发晶闸管VT1、VT4使其导通。

(3)在u2负半波的(π~π+α)区间,在π~π+α区间,晶闸管VT2、VT3承受正向电压,因无触发脉冲而处于关断状态,晶闸管VT1、VT4承受反向电压也不导通。

(4)在u2负半波的(π+α~2π)区间,在ωt=π+α时刻,触发晶闸管VT2、VT3使其元件导通,负载电流沿b→VT3→R→VT2→α→T的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(ud=-u2)和电流,且波形相位相同。

2、单相桥式全控整流电路(阻-感性负载)单相桥式全控整流电路(阻-感性负载)如图2所示:图2其工作原理如下:(1)在电压u2正半波的(0~α)区间。

晶闸管VT1、VT4承受正向电压,但无触发脉冲,VT1、VT4处于关断状态。

假设电路已经工作在稳定状态,则在0~α区间由于电感的作用,晶闸管VT2、VT3维持导通。

(2)在u2正半波的(α~π)区间。

在ωt=α时刻,触发晶闸管VT1、VT4使其导通,负载电流沿a→VT1→L→R→VT4→b→T的二次绕组→a流通,此时负载上有输出电压(ud=u2)和电流。

单相桥式全控整流电路Matlab仿真(完美)

单相桥式全控整流电路Matlab仿真(完美)

单相桥式全控整流电路Matlab仿真(完美)目录完美篇单相桥式全控整流电路仿真建模分析 (1)(一)单相桥式全控整流电路(纯电阻负载) (2)1.电路的结构与工作原理 (2)2.建模 (3)3仿真结果与分析 (4)4小结 (6)(二)单相桥式全控整流电路(阻-感性负载) (7)1.电路的结构与工作原理 (7)2.建模 (8)3仿真结果与分析 (10)4.小结 (12)(三)单相桥式全控整流电路(反电动势负载) (13)1.电路的结构与工作原理 (13)2.建模 (14)3仿真结果与分析 (16)4小结 (18)单相桥式全控整流电路仿真建模分析一、实验目的1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。

2、在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。

二.实验内容(一)单相桥式全控整流电路(纯电阻负载) 1.电路的结构与工作原理1.1电路结构U1U2Ud Id+ -T VT3VT1VT2VT4abR 单相桥式全控整流电路(纯电阻负载)的电路原理图(截图)1.2工作原理用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。

(1)在u2正半波的(0~α)区间:晶闸管VT1、VT4承受正压,但无触发脉冲。

四个晶闸管都不通。

假设四个晶闸管的漏电阻相等,则u T1.4= u T2.3=1/2 u2。

(2)在u2正半波的ωt=α时刻:触发晶闸管VT1、VT4使其导通。

电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(u d=u2)和电流输出,两者波形相位相同且u T1.4=0。

此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则u T2.3=1/2 u2。

晶闸管VT1、VT4—直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。

(3)在u2负半波的(π~π+α)区间:晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。

单相桥式全控整流电路课程设计-matlab

单相桥式全控整流电路课程设计-matlab

1 引言随着现代科学技术的不断进步,电力电子技术正以令人瞩目的发展速的,改变着我国电力工业的整体面貌。

电子技术包括信息电子技术和电力电子技术两大分支。

电力电子技术是一门新兴的应用于电力领域的电子技术,具体的说,就是使用电力电子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制(整流,逆变,斩波,变频,变相等)的技术。

电力电子涉及由半导体开关启动装置进行电源的控制与转换领域,包括交流变直流,直流变交流,交流变交流,直流变直流等四大电力变换技术。

整流电路(Rectifier)是电力电子电路中出现最早的一种,它的作用是把交流电能转换为直流电能供给直流用电设备。

整流电路的应用十分广泛,例如直流电动机,电镀、电解电源,同步发电机励磁,通信系统电源灯,大多数整流电路由变压器、整流主电路和滤波器等组成。

可以从各种角度对整流电路进行分类,主要的分类方法有:按组成的期间可分为不可控,半控,全控三种;按电路的结构可分为桥式电路和零式电路;按交流输入相数分为单相电路和多相电路;按变压器二次侧电流的方向是单向还是双向,又可分为单拍电路和双拍电路。

而单相整流电路中应用较多的是单相桥式全控整流电路。

2 单相桥式全控整流电路的结构与工作原理2.1电路结构电路图:图1 单相桥式全控整流电路(纯电阻负载)的电路原理图2.2 工作原理在单项桥式全控整流电路中,晶闸管VT1和VT4组成一对桥臂,VT2和VT3组成另一对桥臂。

在u2正半周(即a点电位高于b点电位),若4个晶闸管均不导通,负载电流i d 为零,u d 也为零,VT 1、VT 4串联承受电压u 2,设VT 1和VT 4的漏电阻相等,则各承受u2的一半。

若在触发角α处给VT1和VT 4加触发脉冲,VT 1、VT 4即导通,电流从a 端经VT 1、R 、VT 4流回电源b 端。

当u 2为零时,流经晶闸管的电流也降到零,VT 1和VT 4关断。

在u2负半周,仍在触发延迟角α处触发VT 2和VT 3(VT 2和VT 3的α=0处为ωt=π),VT 2和VT 3导通,电流从电源的b 端流出,经VT 3、R 、VT 2流回电源a 端。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单相桥式全控整流及有源逆变电路的MATLAB 仿真
图1 单相桥式全控整流
知识点回顾:
整流(AC/DC)就是将交流变化为方向不变,大小为纹波的直流,相信大家都很清楚,这里就不详细介绍整流啦! 逆变(DC/AC),按负载性质的不同,逆变分为有源逆变和无源逆变。

如果把逆变电路的交流侧接到交流电源上,将直流电能经过直—交变换,逆变成与交流电源同频率的交流电返回到电网上去,叫有源逆变,其相应的装置是有源逆变器。

而将直流电能经过变换逆变成交流电能直接消耗在非电源性负载上者,叫无源逆变,其相应的装置是变频器。

逆变与整流是变流装置的两种不同工作状态,能在同一套变流装置上实现,只是其工作条件不一样而已。

首要条件是变流装置内部,使直流电压d U 改变极性,从而使功率的流向有可能发生逆转。

当控制角︒<≤
900α时,
变流装置工作在整流状态,直流电压d U 与直流电流d I 是同一方向,装置将交流电能转换成直流电能供给直流负载;当控制角︒≤<
︒18090α时,变流装置工作在逆变状态,由于晶闸管的单向导电性,电流d I 方向不变,而直流
电压d U 改变了极性,装置将直流电能转换成交流电能输向电网或非电源性负载。

其次是外部调件,必须是提供直流能源,而且是d U E >。

仿真环境:
MATLAB (R2009b)
实验一:电感性负载整流
1.电路搭建
元件路径
晶闸管T SimPowerSystems/Power Electronics/Thyristor
交流电源AC100V SimPowerSystems/Electrical Sources/AC Voltage Source 脉冲发生器Pulse Generator Simulink/Sources/Pulse Generator
支路RLC SimPowerSystems/Elements/Series RLC Branch
电压测量Vd SimPowerSystems/Measurements/Voltage Measurement 电流测量SimPowerSystems/Measurements/Current Measurement 示波器Scope Simulink/Sinks/Scope
选择器Selector Simulink/Signal Routing/Selector
3.参数设置
4个晶闸管设置如上图,内阻为欧,门槛电压值为,吸收电阻为10欧,吸收电容为。

交流电源模块幅值为100V,频率为50Hz。

电感为10e-3,电阻为2。

2个选择器都是以1为基准值的电压形式输出,所以选择[2],两路输入,一路输出。

左边是给T1和T4脉冲的,右边是给T2和T3的,幅值为,高于晶闸管的门槛,周期为,也就是50Hz ,脉宽为,延
迟分别是和,这两个数值是这样得来的,按照关系式
︒=
360T
t α,控制角α在︒<≤900α之间为整流,我选择
60°,周期为,那就得出第一个脉冲在的时候到来,互补的两套管在一个周期内各导通一次,所以第二个就要加。

4.结果分析
如图,仿真时间为,第一二行为脉冲信号;第三行为负载的电压,一个周期内,符合全桥整流情况,由于有电感的存在,所以有负电压,但是负电压的面积比正的小,平均电压为正的直流电压。

第四行明显看到负载电流为平稳的纹波。

最后两个分别为T1和T2管的管压。

实验二:电感性负载的有源逆变
1.电路搭建
元件
路径
晶闸管 T SimPowerSystems/Power Electronics/Thyristor 交流电源 AC100V SimPowerSystems/Electrical Sources/AC Voltage Source 直流电源 DC100V
SimPowerSystems/Electrical Sources/DC Voltage Source 脉冲发生器 Pulse Generator Simulink/Sources/Pulse Generator
支路RLC SimPowerSystems/Elements/Series RLC Branch
电压测量 Vd SimPowerSystems/Measurements/Voltage Measurement 电流测量 SimPowerSystems/Measurements/Current Measurement 示波器Scope Simulink/Sinks/Scope
选择器 Selector Simulink/Signal Routing/Selector
3.参数设置
由于是逆变实验,设置控制角α为120°,根据公式︒=
360T
t α,就是,延迟为第二个脉冲信号,就是。

由于是逆变,保证反接的直流电动势大于交流电源的绝对值就可以了,这里设置100V完全可以。

4.结果分析
第一第二行为脉冲信号,第三行为交流侧电源的正弦信号;第四行为直流侧的电压,可见,一个周期内为正的面积比负的面积要小的多;第五行为直流纹波信号;可见直流侧功率为负,功率向交流侧传输,逆变成功;最后两行为管压。

武大东分08电气
简同学
2012/1/18 百分百原创,请尊重个人劳动成果。

关注个人微博,有时间上传个人最新作品并告诉大家。

提前祝大家新年快乐!
新浪微博:janenowitzki。

相关文档
最新文档