信息光学课后习题解答 苏显渝主编
信息光学课后习题解答_苏显渝主编
k 2 2 ( x0 y0 ) U0 ( x0 , y0 ) A0 P( x0 , y0 ) exp j 2f
x 0 y0 k 2 2 exp j ( x y A0 circ( ) 0 ) 2f 0 D1 / 2
2 2
将此式代入菲涅耳衍射公式
0 x1
0 1.5 计算下列一维卷积
x 1 (1) ( 2 x 3) rect( ) 2 x 1 x 1 ( 2) rect( ) rect( ) 2 2
其它
( 3) comb ( x ) rect( x )
解(1)
(1) ( 2 x 3) rect( x 1 1 3 x 1 ) ( x ) rect( ) 2 2 2 2
x y0
2 x 0 y0 e xp( jkf ) exp ( jkf ) D 1 circ( )dx0 dy0 A0 U (0,0, f ) A0 D1 / 2 j f j f 4 2 2 2 D1 I 0 106 I (0,0, z ) A0 4 f
f ( x ) cos2 x 的响应
试计算各自对输入函数 g1 ( x ) 和 g2 ( x ) 解: H1 ( ) rect( )
H 2 ( )
1 rect( ) 3 3
1 F ( ) ( 1) ( 1) 2 1 G1 ( ) H 1 ( ) ( 1) ( 1) 2 1 rect( ) ( 1) ( 1) 0 2
n
0
n
n为奇数
2 ( x 2n )
1.4 计算下面两个函数的一维卷积
信息光学课后作业
1.在如图所示相干成像系统中,物体的复振幅透过率为1(,){1cos[2()]}2a b t x y f x f y π=++为了使像面能得到它的像,问(1)若采用圆形光阑,直径应大于多少?(2)若采用矩形光阑,各边边长应大于多少?解:物体的频谱为(,){(,})y T t x ξη=F 111(,)(,)(,)244a b a b f f f f δξηδξηδξη=+−−+++物体有三个频谱分量,在频谱面上的位置分别是(0,0),(,)a b f f 和(,)a b f f −−。
要使像面上得到物体的像,则必须要求这三个频率分量都通过系统,即系统的截止频率要大于这三个频率分量中的任何一个分量的频率。
(1)若采用圆形光阑,假设光阑直径为D,系统的截止频率2c Dfξλ=根据上面的分析,要使像面上得到物体的像,必须要求c ξ>即要求2D fλ>(2)若采用矩形光阑,假设其大小为a b ×,则系统的截止频率22cx cy a f b f ξλξλ⎧=⎪⎪⎨⎪=⎪⎩根据上面的分析,要使像面上得到物体的像,必须要求cx acy b f f ξξ=⎧⎪⎨=⎪⎩即要求22aba ffb ff λλ=⎧⎨=⎩2.物体的复振幅透过率可以用矩形波表示,它的的基频是50mm -1。
通过圆形光瞳的透镜成像。
透镜焦距为10cm,物距为20cm,照明波长为0。
6um 。
为了使像面出现条纹,在相干照明和非相干照明的条件下,分别确定透镜的最小直径应为多少?解:要使像面上出现条纹,则必须至少使矩形波的基频成分通过系统,而矩形波的基频分量的频率为50mm -1,因此要求系统的截止频率至少要大于这个基频值。
已知透镜焦距为f =10cm,物距d =20cm,则根据透镜成像关系111if d d =+可确定像距i d ,带入上述数值,有20cm i d =。
(1)对于相干照明系统,系统截止频率为2c iD d ξλ=式中,D为透镜直径,λ=0。
信息光学习题答案1(word文档良心出品)
第一章 习题解答1.1 已知不变线性系统的输入为 ()()x x g c o mb= 系统的传递函数⎪⎭⎫⎝⎛b f Λ。
若b 取(1)50=.b (2)51=.b ,求系统的输出()x g '。
并画出输出函数及其频谱的图形。
答:(1)()(){}1==x x g δF 图形从略,(2)()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。
1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零, (1)如果L a 1<,Wb 1<,试证明()()y x f y x f b x a x ab ,,sinc sinc =*⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1 证明:(){}(){}(){}()()(){}(){}()y x,f b x sinc a x sinc ab bf af rect y x f y x,f bf af rect y x f Wf L f rect y x f y x,f y x y x yx *⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1==∴=⎪⎪⎭⎫⎝⎛=,,F F ,,F ,,F F 1-(2)如果L a 1>, Wb 1>,还能得出以上结论吗? 答:不能。
因为这时(){}(){}()y x yx bf af rect y x f Wf L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫⎝⎛。
1.3 对一个空间不变线性系统,脉冲响应为 ()()()y x y x h δ77=sinc ,试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。
(必要时,可取合理近似) (1)()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}xcos x cos f rect x cos y 7x sin x cos y x h y x f y x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F F F F F ,F ,F F ,(2)()()⎪⎭⎫ ⎝⎛75⎪⎭⎫⎝⎛754=2y rect x rect x cos y x f π,答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect x rect x cos f rect f sinc 75f sinc x cos y 7x sin y rect x rect x cos y x h y x f y x g x y x ππδπF F F F F ,F ,F F ,(3)()()[]⎪⎭⎫⎝⎛758+1=3x rect x cos y x f π,答: ()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫ ⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫ ⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75f sinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g y x x y x x y x x x x y x δδδδδπδπF F F F F F F F ,(4)()()()()()y rect x rect x comb y x f 22*=4, 答:()()()()(){}()(){}{}()()()()()()()()()()()()(){}()()x π6cos x π2cos f f f f f f f f f f f rect f f δf f δf f δf f δf rect f sinc 2f sinc f f comb y 7x sin y rect x rect x comb y x g y x y x y x y x y x x yx y x y x y x x y x y x 1060-3180+250=3+0530-3-0530-1+1590+1-1590+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛-3-2120-1+6370+1-6370+41=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛41=722*=1-1-1-1-2...,.,.,.,.,F ,.,.,.,F F F F F ,δδδδ0.25δδδ1.4 给定一个不变线性系统,输入函数为有限延伸的三角波 ()()x x rect x comb x g i Λ*⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛50⎪⎭⎫ ⎝⎛331=对下述传递函数利用图解方法确定系统的输出。
信息光学习题答案
信息光学习题答案信息光学习题答案第一章线性系统分析简要说明以下系统是否有线性和平移不变性. g?x??df?x?;g?x???f?x?dx; dx?g?x??f?x?;g?x??????f????h?x????d?;2???f???exp??j2????d? 解:线性、平移不变;线性、平移不变;非线性、平移不变;线性、平移不变;线性、非平移不变。
证明comb(x)exp(j?x)?comb(x) ???comb????x? ?x??1?证明:左边=comb???????n?????(x?2n)??2??(x?2n) ?2?n????2?n????2?n??????x??2?右边?comb(x)?comb(x)exp(j?x)?? ?n?????(x?n)??exp(j?x)?(x?n)n?????n???? ??(x?n)??exp(jn?)?(x?n)n???? n?????(x?n)??(?1)n???n?(x?n)?当n为奇数时,右边=0,当n为偶数时,右边=2所以当n为偶数时,左右两边相等。
n?????(x?2n) (x) 证明??(sin?x)?comb证明:根据复合函数形式的δ函数公式?[h(x)]??i?1n?(x?xi)h?(xi ),h?(xi)?0 式中xi是h(x)=0的根,h?(xi)表示h(x)在x?xi处的导数。
于是??(sin?x)??n?????(x?n)???co mb(x) 1 计算图题所示的两函数的一维卷积。
解:设卷积为g(x)。
当-1≤x≤0时,如图题(a)所示,g(x)??1?x0(1??)(1?x??)d??111?x?x3 326 图题当0 2??2?2??2?2?2?x?2设卷积为g(x),当x≤0时,如图题(a)所示,g(x)??0d??x?2 当0 2 图题g(x)??d??2?x x2?x?1?2,x?0 g(x)?2?x?1?,x?0?2即g(x)?2??? ?x??2?(x)?rect(x)?1已知exp(??x2)的傅立叶变换为exp(???2),试求?exp?x2???exp?x2/2?2解:设y??????????? ?x,z??? 即??exp(??y2)??exp(???2) 1????F?,? 得ab?ab?2坐标缩放性质??f(ax,by)???exp?x2???????exp(?y2/??? exp(??z2)??exp(??2?2)2??exp?x/2???2?????exp??y?/2??2 ? ??2??exp(?2??2z2)?2??exp(?2??2?2)计算积分.????sinc?x?dx?? 4??2?x?cos?xdx?? sinc?解:应用广义巴塞伐定理可得? sinc(x)sinc(x)dx?????2222 ?(?)?(?)d??(1?? )d??(1??)d??????103??021???1?1?1?????s inc(x)cos?xdx????(?)?????d????(?)?????d ??2???2?2????????2?1??1??1??1 ??????????? 2??2??2?? 应用卷积定理求f?x??sinc?x?sinc?2x?的傅里叶变换. 3解:??sinc(x)sinc(2x)????sinc(x)????sinc( 2x)??1???rect(?)?rect?? 2?2?当?31????时,如图题(a)所示,2211??3 G(?)??2du??? 2?12当?11???时,如图题(b)所示,2211??2 G(?)??1du?1 2??2当13???时,如图题(c)所示,22113 G(?)??1du??? 2??222G(ξ)的图形如图题(d)所示,图可知G(?)?3???1?????????? 4?3/2?4?1/2? 图题 4 设f?x??exp??x,??0,求??f?x????解:?exp(??x)???????f?x?dx?? ?0?? ?0??exp(?x)exp(?j2??x)dx??exp(??x)exp(? j2??x)dx ?2??2??(2??)2??? exp(??x)dx?2??2?(2??)2???02? 设线性平移不变系统的原点响应为h?x??exp??x?step?x?,试计算系统对阶跃函数step?x?的响应. 解:阶跃函数定义step(x)??线性平移不变系统的原点响应为h?x??exp??x?step?x??exp??x?,所以系统对解阶跃函数step?x?的响应为g(x)?step(x)?h(x)??1,?0,x?0得x?0x?0 ??0exp[?(x??)]d??1?exp(?x), x?0 有两个线性平移不变系统,它们的原点脉冲响应分别为h1?x??sinc?x?和h2?x??sinc?3x?.试计算各自对输入函数f?x??cos2?x的响应g1?x?和g2?x?. 解:已知一平面波的复振幅表达式为U(x,y,z)?Aexp[j(2x?3y?4z)] 试计算其波长λ以及沿x,y,z方向的空间频率。
信息光学习题答案及解析
信息光学习题答案第一章 线性系统分析1.1 简要说明以下系统是否有线性和平移不变性. (1)()();x f dxdx g =(2)()();⎰=dx x f x g (3)()();x f x g = (4)()()()[];2⎰∞∞--=αααd x h f x g(5)()()απξααd j f ⎰∞∞--2exp解:(1)线性、平移不变; (2)线性、平移不变; (3)非线性、平移不变; (4)线性、平移不变; (5)线性、非平移不变。
1.2 证明)()ex p()(2x comb x j x comb x comb +=⎪⎭⎫ ⎝⎛π证明:左边=∑∑∑∞-∞=∞-∞=∞-∞=-=⎥⎦⎤⎢⎣⎡-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛n n n n x n x n x x comb )2(2)2(2122δδδ∑∑∑∑∑∑∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=--+-=-+-=-+-=+=n nn n n n n n x n x n x jn n x n x x j n x x j x comb x comb )()1()()()exp()()()exp()()exp()()(δδδπδδπδπ右边当n 为奇数时,右边=0,当n 为偶数时,右边=∑∞-∞=-n n x )2(2δ所以当n 为偶数时,左右两边相等。
1.3 证明)()(sin x comb x =ππδ 证明:根据复合函数形式的δ函数公式0)(,)()()]([1≠''-=∑=i ni i i x h x h x x x h δδ式中i x 是h(x)=0的根,)(i x h '表示)(x h 在i x x =处的导数。
于是)()()(sin x comb n x x n =-=∑∞-∞=πδπππδ1.4 计算图题1.1所示的两函数的一维卷积。
解:设卷积为g(x)。
当-1≤x ≤0时,如图题1.1(a)所示, ⎰+-+=-+-=xx x d x x g 103612131)1)(1()(ααα图题1.1当0 < x ≤1时,如图题1.1(b)所示, ⎰+-=-+-=13612131)1)(1()(xx x d x x g ααα 即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤≤--+=其它,010,61213101,612131)(33x x x x x x x g 1.5 计算下列一维卷积。
信息光学答案
信息光学一、2、从傅立叶光学的角度看,透镜的作用是 实现物体的傅里叶变换 。
5、 给出下式的傅立叶变换(1) =⇒)(rect t )(s i n c ε(2) ⇒)exp(0t i ω )(20ωωπδ- 。
二、4、傅里叶变换透镜和普通透镜的区别:在消除球差和彗差时,必须满足剩余一定的畸变量,使理想成像点位置与空间频率成线性关系。
三、2、已知一平面波的复振幅表达式为 )]143142141(exp[),,(z y x j A z y x U ++=,求此波在传播方向的空间频率以及沿z y x ,,方向的空间频率。
解:由)]cos cos cos (exp[),,(γβαz y x jk z y x U ++=可得143cos ,142cos ,141cos ===γβαk k k 149cos ,144cos ,141cos 222222===γβαk k k 由1cos cos cos 222=++γβα可得1=k , (1)又有 λπ2=k (2) 由(1)和(2)式可得πλ2= 所以 πλ211==f 因此 1423cos ,141cos ,1421cos πλγξπλβηπλαε====== 5、判断系统)()(x f dxd x g =是否有线性和平移不变性。
解:有题可设)()(111x f dx d x g =,)()(222x f dx d x g = )()()()()()(2211222111222111x g a x g a x f dx d a x f dx d a x f a dx d x f a dx d +=+=+故系统满足线性)()()()(00101011x x g x x f x x d d x x f dx d -=--=-故系统也具有平移不变性因此 系统满足线性和平移不变性6、已知)()()(x g x h x f =*,证明若其中一个函数发生x 0的位移,证明 )()()(00x x g x h x x f -=*-.证明:已知)()()(x g x h x f =*, 通过变换,要求得到)()()(00x x g x h x x f -=*-.有一维卷积公式:⎰∞∞--=*t t x h t f x h x f d )()()()(因此: )('d )'()'('d )'()'(d )()()()(000''000x x g t t x x h t f t x t x h t f x t t t t x h x t f x h x x f x t t -=--=--=-=--=*-⎰⎰⎰∞∞-∞∞--=∞∞-替换,上式可得:用7、F =)}({x δ F -1 =}1{ 证明:⎰+∞∞--=)(2εδπεdx e x j 证明:F =)}({x δ⎪⎩⎪⎨⎧≠===-⎰⎰+∞∞-∞+∞-0,00,1)0()2exp()(x x dx dx x j x δπεδF -1 =}1{=⎰+∞∞-επεd x j )2exp(1)(x δ对于⎰+∞∞--=)(2εδπεdx e x j 的证明见教材9页,认真看一下对以后的学习后继课程有用,考试不做要求。
信息光学原理第一章习题答案
信息光学 补充习题0-1. 已知函数U (x )=A exp(j 2πf 0x ),求下列函数,并作出函数的图形(1) | U (x ) |2 (2) U (x ) + U*(x ) (3) | U (x ) + U*(x ) |20-2. 已知函数 f (x )=rect (x +2)+rect (x -2),求下列函数,并作出函数的图形.(1) f (x-1) (2) f (x )sgn(x )0-3. 画出下列函数的图形(1) ⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛=2rect 4rect )(x x x f (2))tri(2tri 2)(x x x g -⎪⎭⎫⎝⎛= (3))tri(22tri 2)(x x x h -⎪⎭⎫ ⎝⎛=(4) ))step(tri()(x x x p = 0-4计算:(1) sinc(x )δ (x ) (2) sinc(x )δ (x-0.5) (3) sinc(x )δ (x-1) (4) (3x +5) δ (x+3)0-5:已知连续函数f (x ),若x 0 > b > 0, 利用δ 函数可筛选出函数在x = x 0 + b 的值,试写出运算式。
0-6:f (x )为任意连续函数, a > 0, 求函数g (x ) = f (x )[δ(x +a )- δ(x -a )], 并作出示意图。
0-7:已知连续函数f (x ), a > 0和b > 0 。
求出下列函数(写出最简式并画出示意图):(1) h (x ) = f (x )δ (ax -x 0) (2) g (x ) = f (x )comb[(x - x 0)/b]0-8:画函数图形(1) (2)0-9:若)()()(x g x h x f =*,证明:)()()(00x x g x h x x f -=*-0-10利用梳函数与矩形函数的卷积表示线光栅的透过率。
假定缝宽为a ,光栅常数为d ,缝数为N .0-11 利用包含脉冲函数的卷积表示下图所示 双圆孔屏的透过率。
信息光学课后习题解答 苏显渝主编63页PPT
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
拉
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
信息光学课后习题解答 苏 显渝主编
26、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。
信息光学教程全书习题及参考答案
−∞ −∞ ∞
∫ ∫ δ (x, y )dxdy = 1
−∞
=
∫ δ (x )dx ∫ δ ( y )dy
−∞ ∞ ∞ −∞ −∞
∞
= ab ∫ δ (ax )dx ∫ δ (by )dy = ab ∫
∞ ∞ ∞ ∞
−∞ −∞
∫ δ (ax, by )dxdy
即
−∞ −∞
1 ∫ ∫ δ (ax, by )dxdy = ab 1 δ ( x, y ) ab
F { f ( x, y )} =
∞
−∞
∫ f (x, y )exp(− j 2π (ξx ) + ηy )dxdy
令 x − y 平面上的极坐标为 (r , θ ) ;频率空间 ξ − η 平面上的极坐标为 ( ρ , φ ) 有: ⎨
⎧ x = r cos θ ⎩ y = r sin θ
⎧ξ = ρ cos φ ⎨ ⎩η = ρ sin φ
(1)按照菲涅耳衍射公式表示出光波传播到平面 L 时的光波场; (2)按照衍射的角谱理论表示出光波传播到平面 L 时的光波场。 参考答案: (1)
U1 (x, y) =
⎧ k ⎫ exp( jkd0 ) ∞ ∞ (x0 − x)2 + ( y0 − y)2 ⎬dx0dy0 U0 (x0 , y0 ) exp⎨ j ∫ ∫ jλd0 −∞−∞ ⎩ 2d0 ⎭
L{} 来表示,当
2
L{ f ( x, y)} = g (ξ ,η ) , L{ f
1 1
( x, y )} = g 2 (ξ ,η ) ,且 a1 、 a 2 为常数时,
L{a
1 1
f ( x, y ) + a 2 f 2 ( x, y )} = a1 g1 (ξ ,η ) + a 2 g 2 (ξ ,η )
信息光学原理第2章
2.1 光波的数学描述
2.1.5 复振幅分布的空间频谱(角谱)
利用傅里叶变换对位于单色光场中的xy平面上的复振幅分布进
行傅里叶分析,有
U x, y A fx, fy exp j2 fxx fy y dfxdfy
A fx, fy U x, yexp j2 fxx fy y dxdy
几何光学 (光与宏观物质的作用)
信息光学原理(电子工业出版社) 苏显渝 吕乃光 陈家壁
信息光学是光学和信息科学相结合的新的学科分支。 它研究以光为载体的信息的获取、信息的交换和处 理、信息的传递和传输,是信息科学的一个分支。 信息光学采用线性系统理论、傅里叶分析方法分析 各种光学现象。
第二章
标量衍射理论
cos2 cos2 cos2 1
2.1 光波的数学描述
对于如右图所示 的沿某一确定方向传播的平面波,在xy 平面上的复振幅为:
U x, y, z a exp jkz cos exp jk x cos y cos
a
exp
jkz
1
cos2
cos2
exp
jk
x
cos
y
cos
u x, y, z,t a x, y, zcos 2t x, y, z
其中,v是光波的时间频率;a(x,y,z)和(x,y,z)分别是P点光振动
的振幅和初相位。根据欧拉公式,可将该波函数表示为复指数函数 取实部的形式:
u x, y, z, t Re a x, y, z e j2tx,y,z
参考文献:
(1) W. Lauterborn, T.Kurz, M.Wiesenfeldt, Coherent optics, 北京:世界图书出版社,1998。
信息光学第五章苏显渝版作者窦柳明
R( x, y) O( x, y)
A
O
B
D
C
R
记录介质表面的光强分布:
I(x, y) O(x, y) R(x, y) O(x, y) R(x, y)
5.2 波前记录与再现
I(x, y) O(x, y) R(x, y) O(x, y) R(x, y)
全息:全部信息,振幅和相位。 以上这种记录和再现物光波的技术叫全息照相术(全息术)。
全息的波前记录和再现过程就是调制与解调的过程。其中参考 光波是载波,物光波是调制光波,干涉记录过程就是调制,衍 射再现就是解调。
5.1 光学全息概述
5.1.2 光全息发展历史概述
一、全息术的提出:
是由丹尼斯·盖伯(Dennis Gabor)发明的。1947年,他从事电 子显微镜研究工作,当时由于电子透镜的像差,使电子显微镜分辨 率的提高碰到了很大的困难,(理论分辨极限是0.4nm,而实际只能 达到1.2nm)。盖伯从布喇格(Bragg)的X射线衍射显微镜中受到 启发,设想不用任何透镜,用经物体衍射的电子波与相干的背景波 重叠,将物体衍射波的振幅和相位以干涉条纹的形式记录在照相底 片上(他首次称之为全息图),然后用波长比电子波波长大105倍的
tH ( x, y) tb ( O 2 RO RO )
用一束相干光波作为再现光波照射全息图,它在全息图平面 前的光场分布为C(x,y),则透过全息图的光场分布为:
U ( x, y) C( x, y)tH ( x, y) tbC OOC RCO RCO U1 U2 U3 U4
U1 :系数的作用仅仅改变照明光波C的振幅,并不改变C的特性。
信息光学教程全书习题及参考答案
理想成像系统、光波在自由空间的传播都具有线性光学系统的性质。 输入函数在输入面上的平移仅对应输出函数在输出面上的相应平移,即系统传输特性满 足线性平移不变的光学系统称为线性不变光学系统。用公式可以表示为:
L{ } a1 f1 (x − x1, y − y1 ) + a2 f 2 (x − x2 , y − y2 ) = a1g1 (ξ − ξ1,η −η1 ) + a2 g 2 (ξ − ξ2 ,η −η2 )
(x,
y)
=
exp( jkd0
jλd0
)∞ ∞
−∞−∞
U0
(x0
,
y0
)exp⎨⎧
⎩
j
k 2d0
(x0 − x)2 + (y0 − y)2
⎫ ⎬dx0dy0 ⎭
∫ ∫ ( ) [ ] U2
(x,
y)
=
exp( jkd1
jλd1
)∞ ∞
−∞−∞
U1
(x1,
y1
)
exp⎢⎡− ⎣
jk 2 f1
x12 + y12
−∞
a
比较以上两式有δ (at) = 1 δ (t) 。 a
(2)
按二维 δ 函数的定义:
∞∞
∫ ∫ δ (x, y)dxdy = 1
−∞ −∞
∞
∞
= ∫ δ (x)dx ∫ δ (y)dy
−∞
−∞
∞
∞
= ab ∫ δ (ax)dx ∫ δ (by)dy
−∞
−∞
∞∞
= ab ∫ ∫ δ (ax,by)dxdy
信息光学教程全书习题及参考答案
[
]
∞ ∞ ⎡ jk 2 2 exp( jkd1 ) U2 (x, y) = U1 ( x1 , y1 ) exp⎢− x1 + y1 ∫ ∫ jλd1 −∞−∞ ⎣ 2 f1
(
⎧ k ⎫ )⎤ [ (x − x) + ( y − y) ]⎬dx dy ⎥ exp⎨ j 2d
2 2
⎦
⎩
1
1
1
⎭
1
1
∞ ∞ ⎡ jk 2 2 ⎤ ⎧ k exp( jkd ) ( ) (x2 − x)2 + ( y2 − y)2 ⎫ U (x, y) = U x , y exp x2 + y2 ⎥ exp⎨ j ⎬dx2dy2 2 2 2 ⎢− ∫ ∫ jλd −∞ −∞ ⎭ ⎣ 2 f2 ⎦ ⎩ 2d
∫
+∞
0
ρ G ( ρ ) J 0 ( 2π r ρ ) d ρ
(以上两式中 J 0 为零阶第一类贝塞尔函数) 参考答案: (1) 设 g ( r , θ ) 在直角坐标下对应的函数为 f ( x, y ) ,按照傅里叶变换的定义,在直角坐标下为
F { f ( x, y )} =
∞
−∞
∫ f (x, y )exp(− j 2π (ξx ) + ηy )dxdy
习题 1-3,对于满足圆对称性的光学系统,函数 g R ( r ) 仅与半径 r 有关,试证明: (1) g R ( r ) 在极坐标下的博里叶变换为:
G ( ρ ) = 2π ∫
+∞
0
rg R ( r ) J 0 ( 2π r ρ )d r
(2) G ( ρ ) 在极坐标下的博里叶逆变换为:
g R ( r ) = 2π
信息光学课后习题解答-苏显渝主编
comb( x)
n
comb( x) rect( x)
rect( x)
=
1.6 已知 exp( x2 ) 的傅里叶变换为 exp( 2 ) 试求
exp( x2 ) ?
x2
e xp(
2
2
)
?
解: 利用傅里叶变换的坐标缩放性质可求得答案
kx 2 k y 3 kz 4
k2 kx2 ky2 kz2 29
k 29 2
2 2 2 3 2 4
2 29
1
3 2
2
第二章习题解答
2.1单位振幅的平面波垂直入射到一半径为a的圆形孔径上,试 求菲涅耳衍射图样在轴上的强度分布。
2
2
2
2
1 rect( x
3 1 2)
1 rect ( x 2.5 )
2
2
2
2
(2) rect( x 1) rect( x 1)
2
2
rect( x 1)
2
rect( 1)
2
2 x
2 x0
0 x2
1 x2 2
2 x
g( x) 0 d x 2
1
2z 1
a2
exp( jkz)
jz
jk
2
e xp(
jk
2z
)
1
exp(
jkz)cos(k
a2 ) 2z
信息光学第二章习题答案
自由空间传输只是附加了空间频率相关的相位,相
对振幅分布不变。
当
时, f
2 x
fy2
1 2
H
fx, fy
0 。这说明该系统是一个低
通滤波器。
其截止频率为:0
f
2 x
fy2
1
2.6、光场从入射面经自由空间传输至某一距 离后,在观测面上某点得到零强度分布。现 在入射面上先后放置两互补衍射屏,试问在 观测点处先后所得的强度有什么关系?说明 理由。
x0 z
y0
z
2
解:用单位振幅的单色平面波垂直照明模块,其 透射光场为:
Ut x, y t1 xt2 y
夫琅和费衍射远场光场分布为:
U (x0,
y0 )
1
i z
e e ikz
i
k 2z
[
x02
y02
]
{Ut (x,
y)}
1
i z
e e ikz
1 2
t20t1' 0
e e i2 fxx i2 fxx
1 4
t1'0t2' 0
ei2
f x x 2
fy y
ei2
f x x 2
fy y
ei2
f x x 2
f y y
ei2
f x x 2
f y y
2.4、试阐述傅里叶自成像与一般几何成像 的不同。
x02
y02
)
i z
Xf x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x y0
1 U (0,0, z ) e xp( jkz) jz
x 0 y0 k 2 2 circ( a ) e xp j 2z ( x 0 y 0 ) dx0dy0 2 a 1 k 2 e xp( jkz) d e xp j 2z r rdr jz 0 0 1 2z 1 a2 e xp( jkz) e xp( jk ) 1 jz jk 2 2z
f ( x)
1, x0
x0 x0
h( x )
f ( x)
e x ,
0,
x0
其它
0,
h( x )
其它
1
1
0
x
1
0
x
(1)、将f (x)和h (x)变为f ()和h (),并画出相应的曲线
h( ) f ( )
1
1
0
1
0
(2)、将h() h(-) 只要将h()曲线相对纵轴折叠便得到其镜 像h(-)曲线。
x
0
f ( )h( x )d
-( x )
1 e
x 0
d
x
g( x0 )
1 e
x 0
-( x )
d 1 e
0
x
x0
1.11 有两个线性平移不变系统,它们的原点脉冲响应分别为
h1 ( x ) si nc( x ) 和 h2 ( x ) si nc( 3 x )
g1 ( x )
-1
G1 ( ) 0
1 G2 ( ) H 2 ( ) ( 1) ( 1) 2 1 1 rect( ) ( 1) ( 1) 3 3 2 1 ( 1) ( 1) 6 1 g2 ( x ) 2 ( ) cos 2 x G 3
0 x1
0 1.5 计算下列一维卷积
x 1 (1) ( 2 x 3) rect( ) 2 x 1 x 1 ( 2) rect( ) rect( ) 2 2
其它
( 3) comb x ) rect( x ) (
解(1)
(1) ( 2 x 3) rect( x 1 1 3 x 1 ) ( x ) rect( ) 2 2 2 2
h( x )
相乘、积分得卷积
g( x )
f ( )h( x )d (1 )(1 x )d
1 x 1 x
0 x
1
1 1 1 3 x x 3 2 6
1 1 1 x x3 3 2 6
g( x )
1 x 0
1 1 1 x x3 3 2 6
k 2 2 ( x0 y0 ) U0 ( x0 , y0 ) A0 P( x0 , y0 ) exp j 2f
x 0 y0 k 2 2 exp j ( x0 y0 ) A0 circ( ) D1 / 2 2f
2 2
将此式代入菲涅耳衍射公式
1 x
1
(3)位移 当 ( )
相乘、积分得卷积
g( x )
0 1 x
f ( )h( x )d
0
1 x
1
当
1 1 1 3 (1 )(1 x )d x x 0 3 2 6 f ( ) 0 x1 如图
解: ( x, y ) U
1 k 2 exp( jkz) exp j ( x y 2 ) jz 2z 2 k 2 2 U0 ( x0 , y0 ) exp j 2z ( x 0 y 0 ) exp j z ( xx0 yy0 )dx0dy0
kx 2
k y 3
kz 4
k 2 k x k y kz 29
2 2 2
2 k 29
2 2 2 3 2 4
2 29
1
3 2 2
第二章习题解答
2.1单位振幅的平面波垂直入射到一半径为a的圆形孔径上,试 求菲涅耳衍射图样在轴上的强度分布。
-1
1.12 已知一平面波的复振幅表达式为
U ( x, y, z ) A e xp j(2 x 3 y 4 x )
试计算其波长以及沿x,y,z方向的空间频率。
U ( x, y, z ) A e xp jk r
A e xp j(k x x k y y kz z )
n n
( x n) e xp(j x )
( 1)n ( x n)
n
( x n) e xp(j n) (1) ( x n) ( x n)
n n
n
comb( x ) e xp(j x ) comb( x )
a 2 a 2 a 2 2 j e xp( jkz) si n ( ) j si n ( ) cos( ) 2 z 2z 2 z a 2 a 2 2 j e xp( jkz) si n( ) e xp(j ) 2 z 2z a 2 1 e xp(j 2 x ) 2 j e xp(jx ) sinx I ( 0,0, z ) 4 sin 2 2 z
解: 利用傅里叶变换的坐标缩放性质可求得答案
1 f (ax, by) F( , ) ab a b
2 x 2 ) e xp( x ) e xp(
exp( 2 2 )
2 2
x2 ) e xp exp( 2 2
2 e xp
2 2 x
?
2
2 2
2
2 e xp 2 2 2
1.10设线性平移不变系统的原点响应为 h( x ) e xp( x )step( x ) 试计算系统对阶跃函数step(x)的响应。 解: h( x ) exp( x )step( x ) e xp( x ) g( x ) step( x ) h( x ) f ( x ) h( x )
1
f ( )
h(- )
1
0
1
0
(3)、将曲线h(-)沿x轴平移x便得到h(x-),
当x 0时 , f ( )h( x ) 0
因此 g(x)=0
当x 0时, 计算积f(α)h(x α)曲线下面的面积 f ( )
1 h( x - )
0 x
g( x )
g( x )
2 2
1 2z 1 a2 e xp( jkz) e xp( jk ) 1 jz jk 2 2z 2 2 a a e xp( jkz)cos(k ) j si n ( k ) 1 2z 2z a 2 a 2 e xp( jkz)cos( ) j si n ( ) 1 z z a 2 a 2 a 2 e xp( jkz)cos( ) j 2 si n ( ) cos( ) 1 z 2 z 2 z a 2 a 2 a 2 e xp( jkz)cos(2 ) j 2 si n ( ) cos( ) 1 2z 2 z 2 z a 2 a 2 a 2 e xp( jkz) 2 si n2 ( ) j 2 si n ( ) cos( ) 2z 2 z 2 z a 2 a 2 a 2 e xp( jkz) j 2 si n ( ) j si n ( ) cos( ) 2 z 2z 2 z
第一章习题解答
x comb( ) comb( x ) e xp(j x ) comb( x ) 1.2 证明 2 x x comb 证: ( 2 ) ( 2 n) 2 ( x 2n) n n
ccomb( x ) e xp(j x )
1 k 2 2 U ( x, y ) exp( jkz) exp j ( x y ) jz 2z
2 k 2 2 U0 ( x0 , y0 ) exp j 2z ( x 0 y 0 ) exp j z ( xx0 yy0 )dx0dy0
x y0
2 x 0 y0 e xp( jkf ) exp( jkf ) D1 U (0,0, f ) A0 circ( D1 / 2 )dx0dy0 A0 j f 4 j f 2 2 2 D1 I 0 106 I (0,0, z ) A0 4 f
comb( x )
n
( x n) rect( x )
rect( x )
=
comb( x ) rect( x )
1.6 已知 exp( x 2 ) 的傅里叶变换为 exp( 2 ) 试求
e xp( x ) ?
2
x2 )? exp( 2 2
f ( x ) cos2 x 的响应
试计算各自对输入函数 g1 ( x ) 和 g2 ( x ) 解: H1 ( ) rect( )
H 2 ( )
1 rect( ) 3 3
1 F ( ) ( 1) ( 1) 2 1 G1 ( ) H 1 ( ) ( 1) ( 1) 2 1 rect( ) ( 1) ( 1) 0 2