与圆的切线有关的计算与证明25712

合集下载

三招求圆的切线方程

三招求圆的切线方程

三招求圆的切线方程江西省永丰中学 吴全根求圆的切线方程主要分为已知切线的斜率k 或已知切线上一点两种情况,而已知切线上一点又可分为点在圆上和点在圆外两种情况,面对这几种情况各采用什么方法求圆的切线方程呢?下面教你三招.一、公式法 可求过圆上一点的切线方程. 公式如下:① 过圆x 2+y 2= r 2上点P (x 0,y 0)的切线方程为x 0x+y 0y= r 2.② 过圆(x-a)2+(y-b)2= r 2上点P (x 0,y 0)的切线方程为(x 0-a)(x-a)+(y 0-b)(y-b)= r 2. ③ 过圆x 2+y 2+Dx+Ey+F=0上点P (x 0,y 0)的切线方程 x 0x+y 0y+D 20x x ++E 20y y ++F=0 . 点评:(1)公式②中当a=b=0时即为公式①.(2)上述公式是利用“圆的切线垂直过切点的半径”这一性质推导的,当切线的斜率不存在时公式也适用.(3)当你忘记了这些公式,可利用公式推导方法求之.例1 求过点A (4,1)且与圆(x-2)2+(y+1)2=8 相切的切线方程.解一:(公式法) (4-2)2 +(1+1)2=8 ∴ 点A (4,1)在圆上,∴ 圆的切线方程为(4-2)(x-2)+(1+1) (y+1)=8,即x+y-5=0.解二:(公式推导法) 圆心C (2,-1)∴k AC =1 ∴ 过点A 的切线的斜率k= -1. ∴ 所求切线方程为y-1= -1(x- 4),即x+y-5=0.二、待定系数法 可求过圆外一点P(x 0,y 0)的圆的切线方程或求已知切线的斜率k 的切线方程. 此时可设圆的切线方程为y-y 0=k(x-x 0)或y=kx+b,然后利用“圆心到直线的距离等于半径” 这一性质求k .例2 求过点M (2,4)向圆(x-1)2+(y+3)2=1所引的切线方程.解:设所求切线方程为y-4=k(x-2)即kx-y-2k+4=0 (倾斜角不为900), d=114232=++-+k k k ,∴k=724,∴切线方程为24x-7y-20=0. 当倾斜角为900时,切线方程为x=2. ∴ 过M 点的切线方程为24x-7y-20=0或 x=2. 点评:因为过圆外一点P (x 0,y 0)引圆的切线有两条,故用此法求切线的斜率k 一般有两个值, 若k 只有一个值,说明还有一条切线,其斜率不存在,方程为x=x 0 ,应补回来.三、判别式法 其依据是圆的切线的定义.例3 已知圆C :x 2+y 2+2x-4y+3=0 ,若圆C 的切线在坐标轴上的截距绝对值相等,求此切线方程.解:(1)当截距不为0时,设切线方程为y=-x+b 或y=x+c 分别代人圆C 的方程得2x 2-2(b-3)x+(b 2- 4b+3)=0,或2x 2+2 (c-1)x+(c 2- 4c+3)=0直线与圆相切,上述两方程均有等根,∴∆=0,由此可得:b=3 或 b= -1,c=5 或 c=1 ∴切线方程为x+y-3=0 或x+y+1=0 或x-y+5=0 或x-y+1=0.(2) 当截距为0时,类似可求此时切线的方程为y=(2±6)x.点评:(1)此题也可以用方法二求解;(2)截距相等时别忘了截距为0的情况.。

圆的切线公式

圆的切线公式

圆的切线公式圆的切线是指与圆相切且与圆的切点处的切线。

圆的切线公式是用来计算切线的方程,用于描述切线的位置和性质。

下面将详细介绍圆的切线公式及其应用。

一、圆的切线公式的推导设圆的方程为(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为半径。

假设切点的坐标为(x₀,y₀),切线的斜率为k。

要求切线方程,首先需要确定切线斜率k的值。

由于切线与圆相切,所以切线与从圆心到切点的半径垂直。

而半径的斜率可以通过切点的坐标与圆心坐标求得,设斜率为k₁。

则有:k₁ = (y₀-b)/(x₀-a)由于切线与半径垂直,所以切线的斜率k为半径斜率k₁的负倒数,即:k = -1/k₁ = -(x₀-a)/(y₀-b)切线方程为y-y₀ = k(x-x₀),代入切线斜率k的值,得到切线方程为:y-y₀ = -(x₀-a)/(y₀-b)(x-x₀)二、圆的切线方程的应用圆的切线公式在几何学和物理学中具有广泛的应用。

下面将介绍几个常见的应用场景。

1. 切线长度的计算根据切线方程,可以计算切线的长度。

设切点为P(x₀,y₀),切线与圆的交点为Q(x₁,y₁),则切线长度等于PQ的长度。

将切线方程和圆的方程联立,解方程组得到交点坐标(x₁,y₁)。

然后,通过两点间距离公式计算PQ的长度。

2. 切线的位置关系通过圆的切线公式,可以判断切线与圆的位置关系。

切线与圆相切的条件是切线方程有且只有一个解,即判别式为0。

将切线方程与圆的方程联立,得到一个二次方程。

计算该二次方程的判别式,如果判别式为0,则说明切线与圆相切;如果判别式大于0,则说明切线与圆相交;如果判别式小于0,则说明切线与圆没有交点。

3. 切线的角度通过圆的切线公式,可以计算切线与水平线之间的夹角。

切线的斜率等于切线与水平线的夹角的正切值。

设切线斜率为k,切线与水平线的夹角为θ,则有k = tan(θ)。

通过反正切函数,可以求得切线与水平线的夹角θ的值。

圆的切线证明方法归纳

圆的切线证明方法归纳

圆的切线证明方法归纳切线是指与圆相切且与圆的半径垂直的直线。

在几何学中,圆的切线是一个重要的概念。

证明圆的切线有许多不同的方法,下面将介绍一些常见的证明方法。

1.垂直切线法:这是最常见的证明方法之一。

具体步骤如下:(1)假设圆的半径r,圆心O,切点A和切线上的一点T。

(2)连接OA,并且将OA延长到交切线于点T。

(3)根据勾股定理可得:OA^2 =OT^2 + AT^2。

(4)由于OT和AT都是切线的一部分,所以OT和AT都垂直于OA。

(5)根据垂直定理可知OT和AT平方和等于OA的平方,即OT^2 + AT^2 = OA^2。

(6)根据步骤4和5可得:AT^2 = OA^2 - OT^2。

(7)OT是半径,所以OT^2= r^2,代入上式得:AT^2 = OA^2 -r^2。

(8)AT是切线的一部分,所以AT > 0。

因此,OA^2 - r^2 > 0。

(9)根据正数平方根的性质,OA^2 - r^2的平方根存在。

(10)所以,根据步骤9,AT存在,即OT与切线上的一点T并非同一点。

(11)由于OT与圆的半径相交于点O,所以OT是与半径垂直的直线,即切线。

2.切线垂直与半径的证明:这种证明方法基于一个重要的定理:切线垂直于半径。

具体步骤如下:(1)假设圆的半径r,圆心O,切点A和切线上的一点T。

(2)连接OA和OT。

(3)由于AO是圆的半径,所以AO与圆心O的向量相等,即AO = OT。

(4)由于切线与圆相切,切点A是切线上的一点,所以OA与切线垂直。

(5)根据向量几何的性质可得,向量OA与向量OT垂直。

(6)根据定义,切线上的每一个点与圆心都构成一个向量,这个向量与向量OA垂直。

(7)所以,根据步骤6,切线与所有圆心上的向量都垂直,即切线垂直于半径。

3.外切圆的切线证明:这种证明方法适用于外切圆。

具体步骤如下:(1)假设有一个三角形ABC,其中AB和BC是两条直线段,角ABC是直角。

(完整word)证明圆的切线的七种常用方法

(完整word)证明圆的切线的七种常用方法

证明圆的切线的七种常用方法证明一条直线是圆的切线的方法及辅助线的作法1、连半径、证垂直:当直线和圆有一个公共点时,把圆心和这个公共点连接起来,然后证明直线垂直于这条半径,简称“连半径,证垂直”2、作垂直,证半径:当直线和圆的公共点没有明确时,可以过圆心作直线的垂线,再证圆心到直线的距离等于半径,简称“作垂直,证半径”类型一、有公共点:连半径,证垂直方法1、勾股定理逆定理法证垂直1.如图,AB为⊙O的直径,点P为AB延长线上一点,点C为圆⊙O上一点,PC=8,PB=4,AB=12,求证:PC是⊙O的切线.方法2、特殊角计算法证垂直2、如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求∠P的度数;(2)求证:PA是⊙O的切线;(3)若PD=5,求⊙O的直径.方法3、等角代换法证垂直3、如图,已知Rt△ABC中,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E。

求证:DE是⊙O的切线;方法4、平行线性质法证垂直4、如图,已知平行四边形OABC的三个顶点A、B、C在以O为圆心的半圆上,过点C作CD⊥AB,分别交AB、AO的延长线于点D、E,AE交半圆O于点F,连接CF.且︒=E,点B是的中点∠30(1)判断直线DE与半圆O的位置关系,并说明理由;(2)求证CF=OC(2)若半圆O的半径为6,求DC的长.方法5 全等三角形法证垂直5、如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,且四边形AOCD 是平行四边形,过点D 作⊙O 的切线,交OC 的延长线于点F ,连接BF ,求证:BF 是⊙O 的切线。

类型二、无公共点:做垂直,证半径方法6 角平分线的性质法证半径6.如图,在Rt △ABC 中,∠B =90°,∠BAC 的平分线交BC 于点D ,E 为AB 上的一点,DE =DC ,以D 为圆心,DB 长为半径作⊙D ,AB =5,EB =2.(1)求证:AC 是⊙D 的切线;(2)求线段AC 的长.O D C F方法7 全等三角形法证半径7.已知四边形ABCD 中,∠BAD =∠ABC =90°,CD BC AD =+,以AB 为直径的⊙O 。

圆切线证明的方法

圆切线证明的方法

切线证明法切线的性质定理: 圆的切线垂直于经过切点的半径切线的性质定理的推论1: 经过圆心且垂直于切线的直线必经过切点. 切线的性质定理的推论2: 经过切点且垂直于切线的直线必经过圆心 切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线. 切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。

一、要证明某直线是圆的切线,如果已知直线过圆上的某一个点,那么作出过这一点的半径,证明直线垂直于半径.【例1】如图1,已知AB 为⊙O 的直径,点D 在AB 的延长线上,BD =OB ,点C 在圆上,∠CAB =30º.求证:DC 是⊙O 的切线.思路:要想证明DC 是⊙O 的切线,只要我们连接OC ,证明∠OCD =90º即可.证明:连接OC ,BC .∵AB 为⊙O 的直径,∴∠ACB =90º.∵∠CAB =30º,∴BC =21AB =OB .∵BD =OB ,∴BC =21OD .∴∠OCD =90º.∴DC 是⊙O 的切线.【评析】一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线. 【例2】如图2,已知AB 为⊙O 的直径,过点B 作⊙O 的切线BC ,连接OC ,弦AD ∥OC .求证:CD 是⊙O 的切线.图1思路:本题中既有圆的切线是已知条件,又证明另一条直线是圆的切线.也就是既要注意运用圆的切线的性质定理,又要运用圆的切线的判定定理.欲证明CD 是⊙O 的切线,只要证明∠ODC =90º即可.证明:连接OD .∵OC ∥AD ,∴∠1=∠3,∠2=∠4. ∵OA =OD ,∴∠1=∠2.∴∠3=∠4. 又∵OB =OD ,OC =OC ,∴△OBC ≌△ODC .∴∠OBC =∠ODC .∵BC 是⊙O 的切线,∴∠OBC =90º.∴∠ODC =90º. ∴DC 是⊙O 的切线.【例3】如图2,已知AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为D .求证:AC 平分∠DAB .思路:利用圆的切线的性质——与圆的切线垂直于过切点的半径.证明:连接OC .∵CD 是⊙O 的切线,∴OC ⊥CD . ∵AD ⊥CD ,∴OC ∥AD .∴∠1=∠2. ∵OC =OA ,∴∠1=∠3.∴∠2=∠3. ∴AC 平分∠DAB .【评析】已知一条直线是某圆的切线时,切线的位置一般是确定的.在解决有关圆的切线问题时,辅助线常常是连接圆心与切点,得到半径,那么半径垂直图3切线.【例4】如图1,B、C是⊙O上的点,线段AB经过圆心O,连接AC、BC,过点C作CD⊥AB于D,∠ACD=2∠B.AC是⊙O的切线吗?为什么?解:AC是⊙O的切线.理由:连接OC,∵OC=OB,∴∠OCB=∠B.∵∠COD是△BOC的外角,∴∠COD=∠OCB+∠B=2∠B.∵∠ACD=2∠B,∴∠ACD=∠COD.∵CD⊥AB于D,∴∠DCO+∠COD=90°.∴∠DCO+∠ACD=90°.即OC⊥AC.∵C为⊙O上的点,∴AC是⊙O的切线.【例5】如图2,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB的延长线上的一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB.求证:DE是⊙O的切线.证明:连接OC,则OA=OC,∴∠CAO=∠ACO,∵AC平分∠EAB,∴∠EAC=∠CAO=∠ACO,∴AE∥CO,又AE⊥DE,∴CO⊥DE,∴DE是⊙O的切线.二、直线与圆的公共点未知时须通过圆心作已知直线的垂直线段,证明此垂线段的长等于半径【例6】如图3,AB=AC,OB=OC,⊙O与AB边相切于点D.证明:连接OD,作OE⊥AC,垂足为E.∵AB=AC,OB=OC.∴AO为∠BAC角平分线,∠DAO=∠EAO∵⊙O与AB相切于点D,∴∠BDO=∠CEO=90°.∵AO=AO∴△ADO≌△AEO,所以OE=OD.∵OD是⊙O的半径,∴OE是⊙O的半径.∴⊙O与AC边相切.【例7】如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F.求证:EF与⊙O相切.证明:连结OE,AD.∵AB是⊙O的直径,∴AD ⊥BC. 又∵AB=BC , ∴∠3=∠4.∴BD=DE ,∠1=∠2. 又∵OB=OE ,OF=OF , ∴△BOF ≌△EOF (SAS ). ∴∠OBF=∠OEF. ∵BF 与⊙O 相切, ∴OB ⊥BF. ∴∠OEF=900. ∴EF 与⊙O 相切.说明:此题是通过证明三角形全等证明垂直的【例8】如图,AD 是∠BAC 的平分线,P 为BC 延长线上一点,且PA=PD.求证:PA 与⊙O 相切. 证明一:作直径AE ,连结EC.∵AD 是∠BAC 的平分线, ∴∠DAB=∠DAC. ∵PA=PD , ∴∠2=∠1+∠DAC. ∵∠2=∠B+∠DAB , ∴∠1=∠B. 又∵∠B=∠E , ∴∠1=∠E ∵AE 是⊙O 的直径,∴AC ⊥EC ,∠E+∠EAC=900.⌒ ⌒∴∠1+∠EAC=900. 即OA ⊥PA.∴PA 与⊙O 相切.证明二:延长AD 交⊙O 于E ,连结OA ,OE. ∵AD 是∠BAC 的平分线, ∴BE=CE ,∴OE ⊥BC.∴∠E+∠BDE=900. ∵OA=OE , ∴∠E=∠1. ∵PA=PD , ∴∠PAD=∠PDA. 又∵∠PDA=∠BDE, ∴∠1+∠PAD=900 即OA ⊥PA.∴PA 与⊙O 相切说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用. 【例9】如图,AB=AC ,AB 是⊙O 的直径,⊙O 交BC 于D ,DM ⊥AC 于M求证:DM 与⊙O 相切. 证明一:连结OD. ∵AB=AC , ∴∠B=∠C.∵OB=OD ,⌒ ⌒∴∠1=∠B.∴∠1=∠C. ∴OD ∥AC. ∵DM ⊥AC , ∴DM ⊥OD.∴DM 与⊙O 相切证明二:连结OD ,AD. ∵AB 是⊙O 的直径, ∴AD ⊥BC.又∵AB=AC,∴∠1=∠2. ∵DM ⊥AC , ∴∠2+∠4=900 ∵OA=OD , ∴∠1=∠3. ∴∠3+∠4=900. 即OD ⊥DM.∴DM 是⊙O 的切线说明:证明一是通过证平行来证明垂直的.证明二是通过证两角互余证明垂直的,解题中注意充分利用已知及图上已知.【例10】 如图,已知:AB 是⊙O 的直径,点C 在⊙O 上,且∠CAB=300,BD=OB ,D 在AB 的延长线上.求证:DC 是⊙O 的切线 证明:连结OC 、BC. ∵OA=OC , ∴∠A=∠1=∠300.∴∠BOC=∠A+∠1=600.又∵OC=OB , ∴△OBC 是等边三角形. ∴OB=BC. ∵OB=BD , ∴OB=BC=BD. ∴OC ⊥CD.∴DC 是⊙O 的切线.说明:此题解法颇多,但这种方法较好.【例12】 如图,AB 是⊙O 的直径,CD ⊥AB ,且OA 2=OD ·OP. 求证:PC 是⊙O 的切线. 证明:连结OC∵OA 2=OD ·OP ,OA=OC , ∴OC 2=OD ·OP ,OCOPOD OC . 又∵∠1=∠1, ∴△OCP ∽△ODC. ∴∠OCP=∠ODC.∵CD⊥AB,∴∠OCP=900.∴PC是⊙O的切线.说明:此题是通过证三角形相似证明垂直的【例13】如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F.求证:CE与△CFG的外接圆相切.分析:此题图上没有画出△CFG的外接圆,但△CFG是直角三角形,圆心在斜边FG的中点,为此我们取FG的中点O,连结OC,证明CE⊥OC即可得解.证明:取FG中点O,连结OC.∵ABCD是正方形,∴BC⊥CD,△CFG是Rt△∵O是FG的中点,∴O是Rt△CFG的外心.∵OC=OG,∴∠3=∠G,∵AD∥BC,∴∠G=∠4.∵AD=CD,DE=DE,∠ADE=∠CDE=450,∴△ADE≌△CDE(SAS)∴∠4=∠1,∠1=∠3.∵∠2+∠3=900,∴∠1+∠2=900.即CE⊥OC.∴CE与△CFG的外接圆相切二、若直线l与⊙O没有已知的公共点,又要证明l是⊙O的切线,只需作OA⊥l,A为垂足,证明OA是⊙O的半径就行了,简称:“作垂直;证半径”【例14】如图,AB=AC,D为BC中点,⊙D与AB切于E点.求证:AC与⊙D相切.证明一:连结DE,作DF⊥AC,F是垂足.∵AB是⊙D的切线,∴DE⊥AB.∵DF⊥AC,∴∠DEB=∠DFC=900.∵AB=AC,∴∠B=∠C.又∵BD=CD,∴△BDE≌△CDF(AAS)∴DF=DE.∴F在⊙D上.∴AC是⊙D的切线证明二:连结DE,AD,作DF⊥AC,F是垂足.∵AB与⊙D相切,∵AB=AC,BD=CD,∴∠1=∠2.∵DE⊥AB,DF⊥AC,∴DE=DF.∴F在⊙D上.∴AC与⊙D相切.说明:证明一是通过证明三角形全等证明DF=DE的,证明二是利用角平分线的性质证明DF=DE的,这类习题多数与角平分线有关.【例15】已知:如图,AC,BD与⊙O切于A、B,且AC∥BD,若∠COD=900.求证:CD是⊙O的切线.证明:连结OA,OB,作OE⊥CD于E,延长DO交CA延长线于F.∵AC,BD与⊙O相切,∴AC⊥OA,BD⊥OB.∵AC∥BD,∴∠F=∠BDO.又∵OA=OB,∴△AOF≌△BOD(AAS)∴OF=OD.∵∠COD=900,∴CF=CD,∠1=∠2.又∵OA⊥AC,OE⊥CD,∴E点在⊙O上.∴CD是⊙O的切线.。

圆切线证明的方法(完整资料).doc

圆切线证明的方法(完整资料).doc

【最新整理,下载后即可编辑】切线证明法切线的性质定理: 圆的切线垂直于经过切点的半径切线的性质定理的推论1: 经过圆心且垂直于切线的直线必经过切点.切线的性质定理的推论2: 经过切点且垂直于切线的直线必经过圆心切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。

一、要证明某直线是圆的切线,如果已知直线过圆上的某一个点,那么作出过这一点的半径,证明直线垂直于半径.【例1】如图1,已知AB 为⊙O 的直径,点D 在AB 的延长线上,BD =OB ,点C 在圆上,∠CAB =30º.求证:DC 是⊙O 的切线.思路:要想证明DC 是⊙O 的切线,只要我们连接OC ,证明∠OCD =90º即可.证明:连接OC ,BC .∵AB 为⊙O 的直径,∴∠ACB =90º.∵∠CAB =30º,∴BC =21AB =OB .图1∵BD =OB ,∴BC =21OD .∴∠OCD =90º.∴DC 是⊙O 的切线.【评析】一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线.【例2】如图2,已知AB 为⊙O 的直径,过点B 作⊙O 的切线BC ,连接OC ,弦AD ∥OC .求证:CD 是⊙O 的切线.思路:本题中既有圆的切线是已知条件,又证明另一条直线是圆的切线.也就是既要注意运用圆的切线的性质定理,又要运用圆的切线的判定定理.欲证明CD 是⊙O 的切线,只要证明∠ODC =90º即可.证明:连接OD .∵OC ∥AD ,∴∠1=∠3,∠2=∠4. ∵OA =OD ,∴∠1=∠2.∴∠3=∠4. 又∵OB =OD ,OC =OC ,∴△OBC ≌△ODC .∴∠OBC =∠ODC .∵BC 是⊙O 的切线,∴∠OBC =90º.∴∠ODC =90º. ∴DC 是⊙O 的切线.【例3】如图2,已知AB 为⊙O 的直径,C 为⊙O 上一点,图2AD 和过C 点的切线互相垂直,垂足为D .求证:AC 平分∠DAB .思路:利用圆的切线的性质——与圆的切线垂直于过切点的半径.证明:连接OC .∵CD 是⊙O 的切线,∴OC ⊥CD . ∵AD ⊥CD ,∴OC ∥AD .∴∠1=∠2. ∵OC =OA ,∴∠1=∠3.∴∠2=∠3. ∴AC 平分∠DAB .【评析】已知一条直线是某圆的切线时,切线的位置一般是确定的.在解决有关圆的切线问题时,辅助线常常是连接圆心与切点,得到半径,那么半径垂直切线.【例4】 如图1,B 、C 是⊙O 上的点,线段AB 经过圆心O ,连接AC 、BC ,过点C 作CD ⊥AB 于D ,∠ACD =2∠B .AC 是⊙O 的切线吗?为什么? 解:AC 是⊙O 的切线. 理由:连接OC , ∵OC =OB , ∴∠OCB =∠B .∵∠COD 是△BOC 的外角, ∴∠COD =∠OCB +∠B =2∠B . ∵∠ACD =2∠B , ∴∠ACD =∠COD . ∵CD ⊥AB 于D ,∴∠DCO +∠COD =90°. ∴∠DCO +∠ACD =90°. 即OC ⊥AC .图3O ABCD2 31∵C为⊙O上的点,∴AC是⊙O的切线.【例5】如图2,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB的延长线上的一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB.求证:DE是⊙O的切线.证明:连接OC,则OA=OC,∴∠CAO=∠ACO,∵AC平分∠EAB,∴∠EAC=∠CAO=∠ACO,∴AE∥CO,又AE⊥DE,∴CO⊥DE,∴DE是⊙O的切线.二、直线与圆的公共点未知时须通过圆心作已知直线的垂直线段,证明此垂线段的长等于半径【例6】如图3,AB=AC,OB=OC,⊙O与AB边相切于点D.证明:连接OD,作OE⊥AC,垂足为E.∵AB=AC,OB=OC.∴AO为∠BAC角平分线,∠DAO=∠EAO∵⊙O与AB相切于点D,∴∠BDO=∠CEO=90°.∵AO=AO∴△ADO≌△AEO,所以OE=OD.∵OD是⊙O的半径,∴OE是⊙O的半径.∴⊙O与AC边相切.【例7】如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F.求证:EF与⊙O相切.证明:连结OE,AD.∵AB是⊙O的直径,∴AD⊥BC.又∵AB=BC,∴∠3=∠4.⌒⌒∴BD=DE,∠1=∠2.又∵OB=OE,OF=OF,∴△BOF≌△EOF(SAS).∴∠OBF=∠OEF.∵BF与⊙O相切,∴OB⊥BF.∴∠OEF=900.∴EF与⊙O相切.说明:此题是通过证明三角形全等证明垂直的【例8】如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD.求证:PA与⊙O相切.证明一:作直径AE,连结EC.∵AD是∠BAC的平分线,∴∠DAB=∠DAC.∵PA=PD,∴∠2=∠1+∠DAC.∵∠2=∠B+∠DAB,∴∠1=∠B.又∵∠B=∠E,∴∠1=∠E∵AE是⊙O的直径,∴AC⊥EC,∠E+∠EAC=900.∴∠1+∠EAC=900. 即OA⊥PA.∴PA与⊙O相切.证明二:延长AD交⊙O于E,连结OA,OE.∵AD是∠BAC的平分线,⌒⌒∴BE=CE,∴OE⊥BC.∴∠E+∠BDE=900.∵OA=OE,∴∠E=∠1.∵PA=PD,∴∠PAD=∠PDA.又∵∠PDA=∠BDE,∴∠1+∠PAD=900即OA⊥PA.∴PA与⊙O相切说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用.【例9】如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M求证:DM与⊙O相切. 证明一:连结OD.∵AB=AC,∴∠B=∠C.∵OB=OD,∴∠1=∠B.∴∠1=∠C.∴OD∥AC.∵DM⊥AC,∴DM⊥OD.∴DM与⊙O相切证明二:连结OD,AD.∵AB是⊙O的直径,∴AD⊥BC.又∵AB=AC,∴∠1=∠2.∵DM⊥AC,∴∠2+∠4=900∵OA=OD,∴∠1=∠3.∴∠3+∠4=900. DC即OD⊥DM.∴DM是⊙O的切线说明:证明一是通过证平行来证明垂直的.证明二是通过证两角互余证明垂直的,解题中注意充分利用已知及图上已知.【例10】如图,已知:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,D在AB的延长线上.求证:DC是⊙O的切线证明:连结OC、BC.∵OA=OC,∴∠A=∠1=∠300.∴∠BOC=∠A+∠1=600.又∵OC=OB,∴△OBC是等边三角形.∴OB=BC.D ∵OB=BD,∴OB=BC=BD.∴OC⊥CD.∴DC是⊙O的切线.说明:此题解法颇多,但这种方法较好.【例12】如图,AB是⊙O的直径,CD⊥AB,且OA2=OD·OP.求证:PC是⊙O的切线.证明:连结OC∵OA 2=OD ·OP ,OA=OC , ∴OC 2=OD ·OP ,OCOPOD OC. 又∵∠1=∠1, ∴△OCP ∽△ODC. ∴∠OCP=∠ODC. ∵CD ⊥AB , ∴∠OCP=900. ∴PC 是⊙O 的切线.说明:此题是通过证三角形相似证明垂直的【例13】 如图,ABCD 是正方形,G 是BC 延长线上一点,AG 交BD 于E ,交CD 于F. 求证:CE 与△CFG 的外接圆相切.分析:此题图上没有画出△CFG 的外接圆,但△CFG 是直角三角形,圆心在斜边FG 的中点,为此我们取FG 的中点O ,连结OC ,证明CE ⊥OC 即可得解. 证明:取FG 中点O ,连结OC.∵ABCD 是正方形,∴BC ⊥CD ,△CFG 是Rt △ ∵O 是FG 的中点,∴O是Rt△CFG的外心.∵OC=OG,∴∠3=∠G,∵AD∥BC,∴∠G=∠4.∵AD=CD,DE=DE,∠ADE=∠CDE=450,∴△ADE≌△CDE(SAS)∴∠4=∠1,∠1=∠3.∵∠2+∠3=900,∴∠1+∠2=900.即CE⊥OC.∴CE与△CFG的外接圆相切二、若直线l与⊙O没有已知的公共点,又要证明l是⊙O的切线,只需作OA⊥l,A为垂足,证明OA是⊙O的半径就行了,简称:“作垂直;证半径”【例14】如图,AB=AC,D为BC中点,⊙D与AB切于E 点.求证:AC与⊙D相切.证明一:连结DE,作DF⊥AC,F是垂足.∵AB是⊙D的切线,∴DE⊥AB.∵DF⊥AC,∴∠DEB=∠DFC=900.∵AB=AC,∴∠B=∠C.又∵BD=CD,∴△BDE≌△CDF(AAS)∴DF=DE.∴F在⊙D上.∴AC是⊙D的切线证明二:连结DE,AD,作DF⊥AC,F是垂足.∵AB与⊙D相切,∴DE⊥AB.∵AB=AC,BD=CD,∴∠1=∠2.∵DE⊥AB,DF⊥AC,∴DE=DF.∴F在⊙D上.∴AC与⊙D相切.说明:证明一是通过证明三角形全等证明DF=DE的,证明二是利用角平分线的性质证明DF=DE的,这类习题多数与角平分线有关.【例15】已知:如图,AC,BD与⊙O切于A、B,且AC ∥BD,若∠COD=900.求证:CD是⊙O的切线.证明:连结OA,OB,作OE⊥CD于E,延长DO交CA延长线于F.∵AC,BD与⊙O相切,∴AC⊥OA,BD⊥OB.∵AC∥BD,∴∠F=∠BDO.又∵OA=OB,∴△AOF≌△BOD(AAS)∴OF=OD.∵∠COD=900,∴CF=CD,∠1=∠2.又∵OA⊥AC,OE⊥CD,∴OE=OA.∴E点在⊙O上.∴CD是⊙O的切线.。

与圆的切线有关的计算与证明

与圆的切线有关的计算与证明

与圆的切线有关的计算与证明(1)类型之一 与切线的性质有关的计算或证明 【经典母题】如图Z12- 1,0 O 的切线PC 交直径AB 的延长线于点P, C 为切点,若/ P =30°,0O 的半径为1,贝U PB 的长为 1.【解析】如答图,连结0C.••• PC 为 O O 的切线,•••/ PC0 = 90°, 在 Rt A 0CP 中0C = 1,Z P = 30°, •••OP = 2OC = 2,••• PB = OP-0B = 2- 1 = 1.【思想方法】 (1)已知圆的切线,可得切线垂直于过切点的半径; ⑵已知圆 的切线,常作过切点的半径,得到切线与半径垂直. 【中考变形】[2017天津]已知AB 是O 0的直径,AT 是O 0的切线,/ ABT= 50°, BT 交O 0于点C, E 是AB 上一点,延长CE 交O 0于点D.(1) 如图Z12-2①,求/ T 和/CDB 的大小; (2) 如图②,当BE= BC 时,求/ CD0的大小.图 Z12- 1经典母题答图A ①图 Z12-2解:⑴如答图①,连结AC,••• AT 是。

O 的切线,AB 是。

O 的直径, ••• AT 丄AB,即/ TAB= 90°,vZ ABT = 50°,AZ T = 90°—/ABT = 40由AB 是 O O 的直径,得Z ACB = 90•••Z CAB = 90°— Z ABC = 40°,:Z CDB =Z CAB = 40°;⑵如答图②,连结AD ,在厶 BCE 中,BE= BC ,Z EBC = 50• Z BCE =Z BEC = 65°,:Z BAD = Z BCD = 65 v OA = OD ,•••/ ODA =Z OAD = 65°,vZ ADC =Z ABC = 50°,• Z CDO =Z ODA —Z ADC = 65°— 50°= 15° . 【中考预测】[2017宿迁]如图Z12 — 3, AB 与O O 相切于点B, BC 为O O 的弦,OC 丄OA, OA 与BC 相交于点P.⑴求证:AP = AB;(2)若OB = 4, AB = 3,求线段BP 的长.图Z12— 3 中考预测答图解:(1)证明:v OC= OB ,:Z OCB =Z OBC,中考变形答图① 中考变形答图②••• AB是O O的切线,二OB丄AB,•••/ OBA= 90°,AZ ABP+/ OBC = 90°,v OC X AO,A Z AOC = 90°,•••/ OCB+ Z CPO= 90°,vZ APB=/ CPO,•••/ APB=Z ABP,A AP= AB;⑵如答图,作 OH丄BC于H.在Rt A OAB中,v OB= 4, AB= 3,•••OA= 32+ 42= 5,v AP = AB = 3,••• PO = 2.在 Rt A POC 中,PC= OC2+ OP2= 2 5,v 1P C• OH = 2OC• OP,OH =••• CH _ OC2—OH2_ 855,v OH 丄 BC,i CH _ BH,二 BC_2CH _^^,••• BP_BC—PC_ 165^ — 2 5_655.5 1 5类型之二与切线的判定有关的计算或证明【经典母题】已知:如图Z12 — 4, A是。

证明圆的切线范文

证明圆的切线范文

证明圆的切线范文圆的切线是与圆的边界相切且只与圆相交于切点的直线。

证明圆的切线需要运用几何知识和性质,下面将进行详细的证明。

假设有一个圆,圆心为O,半径为r。

现在我们要证明,通过圆上一个点A的直线可以与圆相切。

首先,连接圆心O和切点C,得到OC的直线段。

根据圆的性质可知,OC与圆的边界相切于切点C。

设切线与圆相交于点B,由于切线是直线,所以OB是切线的一部分。

我们知道,圆的半径是由圆心到圆上任意一点的线段。

所以,OA是圆的半径,OC也是圆的半径。

根据三角形的性质可知,三角形OAB和三角形OCB为等腰三角形,即OA=OC、OB=OC。

所以我们可以得到OAB和OCB为等腰三角形。

利用等腰三角形的性质可知,当一个角的两边相等时,那么这个角为直角。

所以,∠OCB为直角。

而OC是切线的一部分,所以OC与切线垂直。

综上所述,我们证明了通过圆上的一个点A的直线可以与圆相切,并且切线与半径OC是垂直的。

此外,还可以证明圆的切线只与圆相交于切点的部分。

假设有一个圆,圆心为O,半径为r。

现在我们要证明,通过圆上一个点A的直线只与圆相交于切点。

首先,连接圆心O与切点C,得到OC的直线段。

设切线与圆相交于点B,那么根据切线的定义,OB是切线的一部分,并且OB与圆心O不重合。

为了证明直线AB只与圆相交于切点C,我们假设直线AB与圆相交于另外一个点D。

连接圆心O与点D,得到OD的直线段。

由于AB与圆相交于点D,所以OD与切线AB之间必然存在一个角∠ODB。

下面我们来分析∠ODB的大小。

根据圆的性质可知,圆上的任意两条边界之间的角都是圆心角。

而∠OCB是圆心角,那么∠OCB是OD与OB之间的一个角。

由于OC与切线AB垂直,所以∠OCB为直角。

即OD与OB之间的∠OCB为直角。

而∠ODB为∠OCB的补角,由余角定理可知,补角为直角的角也是直角。

所以∠ODB为直角,也就是说OD与切线AB垂直。

同时,由于OD与切线AB相交于点D,那么OD也是切线AB的一部分,即切线AB与半径OD垂直。

圆的切线证明过程

圆的切线证明过程

圆的切线证明过程
圆的切线证明过程:经过半径的外端并且垂直于这条半径的直线是圆的切线。

切线的性质定理:圆的切线垂直于经过切点的半径。

根据这两条定理,我们就可以得到证明圆的切线的一般思路。

1、连半径,证垂直
2、作垂线,证半径
一、若直线L过⊙O上某一点A,证明L是⊙O的切线,只需连OA,证明OA⊥L就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直。

证明一条直线是圆的切线,主要有两个思路:1是证这条直线到圆心的距离等于这个圆的半径:2,是利用切线的判判定定理,证明这条直线经过一条半径的外端,并且和这条半径垂直.1不常用,一般常用2.
事实上,已知一直线与圆有公共点时,再过圆心作垂直,然后证明这条线段与半径相等,本质上就是证明垂足与公共点共点。

证相等能证出切线,同时也能证出共点,这就能说明直线与圆在公共点相切。

那么,这种做法是不是多此一举呢?视情况而定。

一般来讲,给出了公共点,连上证垂直是很显然的思路,而作垂直再证半径确实多此一举。

但有时候就是存在证垂直麻烦,而证半径反而简单的bt情况。

要是遇到这种情况,比起强行证垂直,还是大胆无畏做垂直证半径好啦!事实上,像这样证共点的方法,本质上是一类思想: 同一法。

对于已知一个性质的点,有时要证它的另一个性质很困难,这时换一种思维
方式,作出满足这个性质的点然后证与先前的点重合,有时反而会简单得多。

同一法正是基于这一思想。

(整理版)圆的切线的证明及应用

(整理版)圆的切线的证明及应用

圆的切线的证明及应用
1、能正确理解切线的概念,掌握切线的识别方法。

〔1〕经过半径的外端并且垂直这条半径的直线叫作圆的切线。

定义中有两个条件:一个是直线经过半径的外端,另一个是直线和这条半径垂直,两个条件缺一不可。

〔2〕从圆外一点可以引两条圆的切线,且两条切线长相等。

这一点与圆心的连线平分两条切线的夹角。

论等数学思想方法。

典例1:
如图,AB 为⊙O 的直径,C 是⊙O 上一点,D 在AB 的延长线上,且∠DCB =∠A 。

(1) CD 与⊙O 相切吗?请说明理由。

(2) 假设CD 与⊙O 相切,且∠D =300,BD =10,求⊙O 的半径。

典例2:
如图,⊙O 的直径AB =12,AM 、BN 是⊙O 的两条切线,DC 切⊙O 于点E ,交AM 于点D ,交BN 于点C ,C
D B O
设AD =x cm,BC=y cm,且y >x >0。

(1) 求y 与x 的函数关系式,并说明方尺函数是什么函数.
(2) 假设x 、y 是方程03022=+-m t t 的两根,求x 、y 的值。

(3) 求△COD 的面积.
练习:
如图,以线段AB 为直径的⊙O 交线段AC 于点E 。

点M 是AE 的中点,OM 交AC 于点D,∠BOE=600,∠C=600,BC=23. (1) 求证:BC 是⊙O 的切线;
(2) 求MD 的长度。

A D M E C O N
A O
B E M D。

圆的切线证明方法

圆的切线证明方法

圆的切线证明方法
圆的切线证明方法,以下是一种基本的证明方法:
设有一个圆,以O表示圆心,r 表示圆的半径,P 表示圆上的任意一点。

1. 通过圆心O 和点P 作直线OP,连接O 和P。

2. 在OP 上取一点Q,使得OP = OQ,即OQ = r。

3. 连接Q 和P。

4. 证明OP ⊥QP:
(a) 观察OPQ,由构造可知OP = OQ,∠OQP = ∠OPQ = 90,因此OP ⊥QP。

5. 检验点P 是否在圆上:
(a) 证明OP = r:
OP = OP (构造上有一个等边三角形OPQ)
OP = OQ (构造上OP = OQ)
OP = r(圆的定义)
(b) 证明点P 在圆上:
因为OP = r,所以点P 与圆心O 之间的距离等于圆的半径r,因此点P 在圆上。

6. 结论:直线OP 是圆的半径,通过点P 且垂直于切线QP。

这就是一种证明圆的切线的方法。

通过构造等边三角形和性质的推导,我们可以证明平面上任意一点到圆的切线垂直于半径,且点P 在圆上。

这种方法简单直观,容易理解。

当然,这只是其中一种证明方法,圆的切线还可以通过其它方法进行证明。

但这种证明方法是最基本和常用的一种,可以帮助我们理解圆与切线的关系。

证明圆的切线方法

证明圆的切线方法

证明圆的切线方法圆的切线是指与圆相切且经过切点的直线。

证明圆的切线有多种方法,下面将详细介绍三种常用的方法。

方法一:使用勾股定理证明切线长度与切点到圆心距离的关系。

设圆的圆心为O,切点为A,切线与圆的交点为B。

我们需要证明OA⊥AB。

1.根据勾股定理,可知直角三角形OAB成立。

因为OA为半径,AB为切线,所以OA⊥AB取证。

2.为了得到与切线相垂直的线段,我们取切点A为起点,用圆心O为终点,连接AO。

3.连接OB。

4.观察△OAB和△OBA,它们有共边OA,且OO相等且共线,所以两个三角形是全等三角形。

5.根据全等三角形的性质可知,∠OAB=∠OBA,又∠OAB为直角,所以∠OBA也是直角。

6.根据直角三角形的定义可知,线段OB⊥AB。

因此,我们证明了圆的切线与半径的垂直。

方法二:使用割线定理证明切线的长度。

设圆的圆心为O,半径为r,切点为A,切线与圆的交点为B,圆上的一点为C。

1.连接OA、OB、OC。

2.观察△OAB和△OAC,它们有共边OA,且∠OAB为直角,所以两个三角形是相似三角形。

3.根据相似三角形的性质可知,AB/OB=OA/OC。

4.由于直角三角形中,OA=r,所以AB/OB=r/OC。

5.由于OA⊥AB,所以∠OAB=90°,所以∠OCB也是直角。

6.根据直角三角形的定义可知,线段OC⊥CB。

由于OC⊥AB,且OC⊥CB,所以线段AB⊥CB。

因此,我们证明了圆的切线与半径的垂直。

方法三:使用割线与切线的交角性质证明切线的存在性。

设圆上的一点为P,切点为A,切线与圆的交点为B。

1.连接OA、OP。

2.观察△OAP,根据三角形内角和定理可知∠OAP+∠OPA+∠POA=180°。

3.∠POA为平行于弧PA的圆心角,根据圆心角的定义可知∠POA=1/2×弧PA。

4.切线与弦的夹角等于相应弧所对的圆心角的一半,所以∠APB=1/2×弧PA。

5.因为直线和平行线有关的几何性质之一是,被两条平行线截取的弦上的两个圆心角相等。

圆的切线证明的常用方法与技巧-4页

圆的切线证明的常用方法与技巧-4页

圆的切线证明的常用方法与技巧
一、证明圆的切线方法
证明一条直线是圆的切线除通过交点个数判断外,通常还有两种情况:类型一:有切点,连半径,证垂直
(一)利用角度转换证垂直
(二)利用勾股定理的逆定理证垂直
(三)利用全等证垂直
(四)利用垂径定理的推论证垂直
类型二:无切点,作垂直,证半径
二、题型演练
类型一:有切点,连半径,证垂直
(一)利用角度转换证垂直
(2)已知切点,连半径,证垂直
(二)利用勾股定理的逆定理证垂直
(三)利用全等证垂直
(四)利用垂径定理的推论证垂直
类型二:无切点,作垂直,证半径
课后练习。

与圆的切线有关的证明与计算

与圆的切线有关的证明与计算

∴∠OBC=∠C=∠A=30°,
∴∠AOB=∠C+∠OBC=60°. ∵∠ABO=180°-(∠AOB+∠A)
=180°-(60°+30°)=90°,
∴AB⊥OB,∴AB为⊙O的切线. 【思想方法】 证明圆的切线常用两种方法“连半径,证 垂直”或者“作垂直,证半径”.
【中考变形】 1.如图,点C是⊙O的直径AB延长线上的一点, 且有BO=BD=BC. (1)求证:CD是⊙O的切线; (2)若半径OB=2,求AD的长.
【解析】
连结OC,因为PC为⊙O的切
线,所以∠PCO=90°,
在Rt△OCP中,OC=1,∠P=30°, 所以OP=2OC=2,所以PB=OP-OB
=2-1=1.
【思想方法】(1)已知圆的切线,可得切线垂直于过切点的半径; (2)已知圆的切线,常作过切点的半径,得到切线与半径垂直。
一题多解
练习:如图,AB是⊙O 的直径,⊙O交BC的中点于D,Leabharlann DE⊥AC. 求证:DE与⊙O相切.
的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE. (1)求AC,AD的长; (2)试判断直线PC与⊙O的位置关系,并说明理由.
解:(1)如图,连结BD,
∵AB是⊙O直径, ∴∠ACB=∠ADB=90°. 在Rt△ABC中,
AC= AB2-BC2= 102-62=8 cm.
∵CD平分∠ACB,
变式训练
规范书写
(昆明)如图,已知AB是⊙O的直径,过点E的直线EF 与AB的延长线交于点F,AC⊥EF,垂足为C,AE平分 ∠FAC。 求证:CF是⊙O的切线。(5分)
看看你能得几分?
(1)证明:连接OE……………1分 ∵AE平分∠FAC ∴∠CAE=∠OAE 又∵OA=OE, ∴ ∠OEA=∠OAE …………..…2分 ∴ ∠CAE=∠OEA ∴OE∥AC…………………....…3分 ∴∠OEF=∠ACF 又∵AC⊥EF ∴∠OEF=∠ACF=90° ∴OE⊥CF …………………...…4分 又∵点E在⊙O上 ∴CF是⊙O的切线…………..…5分

圆的切线证明及有关计算

圆的切线证明及有关计算
BC相切于点D、E,则AD为( B ) A.2.5 B.1.6 C.1.5 D.1
能力提升
3. (14.贺州 九下P102 第11题变式)
如图,AB,BC,CD分别与⊙O相切于E,F,G, 且AB∥CD,BO=6cm,CO=8cm.
(1)求证:BO⊥CO;
(2)求BE和CG的长.
能力提升
4. (13.南宁)如图,在△ABC中,∠BAC=90°, AB=AC,AB是⊙ O的直径,⊙O交BC于点D,
A.8 B.6 C.5 D.4
类型二 与切线判定有关的证明
3.已知如图,AB是⊙O的直径,⊙O过BC的中点D, 且
DE⊥AC于点E.
C
(1)求证:DE是⊙O的切线; (2)若∠C=30°,CD=10 cm,
求⊙O的直径.
D
E
A
·
O
B
分析: (1)若所证直线与圆的交点字母标出,则连接这条半径, 证明这条半径________所证直线;
两点,且∠P=70°,则∠C=__5__5_°__.
(变式) (12.贵港)如图,PA、PB切⊙O于A、B两点,点C
在⊙O上,且∠ACB=50°,则∠P=__8_0__°__.
2.如图,在等腰直角三角形ABC中,AB=AC=8,O为BC 的中点,以O为圆心作半圆,使它与AB,AC都相切,
切点分别为D,E,则⊙O的半径为( D )
(2)利用等腰三角形和直角三角形知识可求.
解:(1)连接OD,OD是半径, C
∵O是AB的中点,D是BC的中点,
D
∴OD是△ABC 中_位__线__, 即OD∥_A__C_.
E
A
·
O
B
∵DE⊥AC ,则DE_⊥__OD,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与圆的切线有关的计算与证明(1)类型之一与切线的性质有关的计算或证明【经典母题】如图Z12-1,⊙O的切线PC交直径AB的延长线于点P,C为切点,若∠P =30°,⊙O的半径为1,则PB的长为__1__.图Z12-1 经典母题答图【解析】如答图,连结OC.∵PC为⊙O的切线,∴∠PCO=90°,在Rt△OCP中,∵OC=1,∠P=30°,∴OP=2OC=2,∴PB=OP-OB=2-1=1.【思想方法】(1)已知圆的切线,可得切线垂直于过切点的半径;(2)已知圆的切线,常作过切点的半径,得到切线与半径垂直.【中考变形】[2017·天津]已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O于点C,E是AB上一点,延长CE交⊙O于点D.(1)如图Z12-2①,求∠T和∠CDB的大小;(2)如图②,当BE=BC时,求∠CDO的大小.图Z12-2解:(1)如答图①,连结AC,∵AT是⊙O的切线,AB是⊙O的直径,∴AT⊥AB,即∠TAB=90°,∵∠ABT=50°,∴∠T=90°-∠ABT=40°,由AB是⊙O的直径,得∠ACB=90°,∴∠CAB=90°-∠ABC=40°,∴∠CDB=∠CAB=40°;中考变形答图①中考变形答图②(2)如答图②,连结AD,在△BCE中,BE=BC,∠EBC=50°,∴∠BCE=∠BEC=65°,∴∠BAD=∠BCD=65°,∵OA=OD,∴∠ODA=∠OAD=65°,∵∠ADC=∠ABC=50°,∴∠CDO=∠ODA-∠ADC=65°-50°=15°.【中考预测】[2017·宿迁]如图Z12-3,AB与⊙O相切于点B,BC为⊙O的弦,OC⊥OA,OA与BC相交于点P.(1)求证:AP=AB;(2)若OB=4,AB=3,求线段BP的长.图Z12-3 中考预测答图解:(1)证明:∵OC=OB,∴∠OCB=∠OBC,∵AB是⊙O的切线,∴OB⊥AB,∴∠OBA=90°,∴∠ABP+∠OBC=90°,∵OC⊥AO,∴∠AOC=90°,∴∠OCB+∠CPO=90°,∵∠APB=∠CPO,∴∠APB=∠ABP,∴AP=AB;(2)如答图,作OH⊥BC于H.在Rt△OAB中,∵OB=4,AB=3,∴OA=32+42=5,∵AP=AB=3,∴PO=2.在Rt△POC中,PC=OC2+OP2=25,∵12PC·OH=12OC·OP,∴OH=OP·OCPC=455,∴CH=OC2-OH2=85 5,∵OH⊥BC,∴CH=BH,∴BC=2CH=165 5,∴BP=BC-PC=1655-25=655.类型之二与切线的判定有关的计算或证明【经典母题】已知:如图Z12-4,A是⊙O外一点,AO的延长线交⊙O于点C,点B在圆上,且AB=BC,∠A=30°,求证:直线AB是⊙O的切线.图Z12-4经典母题答图证明:如答图,连结OB,∵OB=OC,AB=BC,∠A=30°,∴∠OBC=∠C=∠A=30°,∴∠AOB=∠C+∠OBC=60°.∵∠ABO=180°-(∠AOB+∠A)=180°-(60°+30°)=90°,∴AB⊥OB,又∵OB为⊙O半径,∴AB是⊙O的切线.【思想方法】证明圆的切线常用两种方法“作半径,证垂直”或者“作垂直,证半径”.【中考变形】1.[2016·黄石]如图Z12-5,⊙O的直径为AB,点C在圆周上(异于A,B),AD ⊥CD.(1)若BC=3,AB=5,求AC的值;(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.图Z12-5 中考变形1答图解:(1)∵AB是⊙O直径,C在⊙O上,∴∠ACB=90°,又∵BC=3,AB=5,∴由勾股定理,得AC=4;(2)证明:如答图,连结OC,∵AC是∠DAB的平分线,∴∠DAC=∠BAC,又∵AD⊥DC,∴∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴∠DCA=∠CBA,又∵OA=OC,∴∠OAC=∠OCA,∵∠OAC+∠OBC=90°,∴∠OCA+∠ACD=∠OCD=90°,∴直线CD是⊙O的切线.2.[2017·南充]如图Z12-6,在Rt△ACB中,∠ACB=90°,以AC为直径作⊙O 交AB于点D,E为BC的中点,连结DE并延长交AC的延长线点F.(1)求证:DE是⊙O的切线;(2)若CF=2,DF=4,求⊙O直径的长.图Z12-6 中考变形2答图【解析】(1)连结OD,欲证DE是⊙O的切线,需证OD⊥DE,即需证∠ODE =90°,而∠ACB=90°,连结CD,根据“等边对等角”可知∠ODE=∠OCE =90°,从而得证;(2)在Rt△ODF中,利用勾股定理建立关于半径的方程求解.解:(1)证明:如答图,连结OD,CD.∵AC是⊙O的直径,∴∠ADC=90°.∴∠BDC=90°.又∵E为BC的中点,∴DE=12BC=CE,∴∠EDC=∠ECD.∵OD=OC,∴∠ODC=∠OCD.∴∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°.∴∠ODE=90°,∴DE是⊙O的切线;(2)设⊙O的半径为x.在Rt△ODF中,OD2+DF2=OF2,即x2+42=(x+2)2,解得x=3.∴⊙O的直径为6.【中考预测】如图Z12-7,AB是⊙O的直径,点C,D在⊙O上,∠A=2∠BCD,点E 在AB的延长线上,∠AED=∠ABC.(1)求证:DE与⊙O相切;(2)若BF=2,DF=10,求⊙O的半径.图Z12-7 中考预测答图解:(1)证明:如答图,连结OD.∵AB是⊙O的直径,∴∠ACB=90°,∴∠A+∠ABC=90°,∵∠BOD=2∠BCD,∠A=2∠BCD,∴∠BOD=∠A,∵∠AED=∠ABC,∴∠BOD+∠AED=90°,∴∠ODE=90°,即OD⊥DE,∴DE与⊙O相切;(2)如答图,连结BD,过点D作DH⊥BF于点H.∵DE与⊙O相切,∴∠ACD+∠BCD=∠ODB+∠BDE=90°,∵∠ACD=∠OBD,∠OBD=∠ODB,∴∠BDE=∠BCD,∵∠AED=∠ABC,∴∠AFC=∠DBF,∵∠AFC=∠DFB,∴△ACF与△FDB都是等腰三角形,∴FH=BH=12BF=1,∴HD=DF2-FH2=3,在Rt△ODH中,OH2+DH2=OD2,即(OD-1)2+32=OD2,∴OD=5.即⊙O的半径是5.BOAF CD与圆的切线有关的计算与证明(2)1.如图8,CD 是⊙0的切线,切点为A,AB 是⊙0的直径.E,F ⊙0上的点,(1)求证:∠DAE=∠FDE (2)若EF 图7⊙0的半径为1,过点A(2,0)的直线切⊙0于点B ,交y 轴于点C.(1)求线段AB 的长;(2)求以直线AC 为图象的一次函数的解析式.3、在△ABC 中,AB=AC ,内切圆O 与边BC 、AC 、AB 分别切于D 、E 、F. (1)求证:BF=CE ;(2)若∠C=30°,23CE ,求AC.4.如图10,在⊙O 中,∠ACB=∠BDC=60°,AC=cm 32, (1)求∠BAC 的度数; (2)求⊙O 的周长5 已知:如图,AB 是⊙O 的直径,AD 是弦,OC 垂直AD 于F 交⊙O 于E ,连结DE 、BE ,且∠C =∠BED .(1)求证:AC 是⊙O 的切线; (2)若OA =10,AD =16,求AC 的长.C ED A FO BM PAOCBA OB M N6. 如图,MP 切O ⊙于点M ,直线PO 交O ⊙于点A 、B ,弦AC MP ∥, (1)求证:MO BC ∥.(2补充)连结CM,当四边形BCMO 为菱形时,求∠P 的度数或反过来问:当30P ∠=°时,判断四边形BCMO 的形状,并说明理由.7. 如图,在ABC △中,AB AC =,以AB 为直径的O ⊙交BC 于点M ,MN AC ⊥于点N .(1)求证MN 是O ⊙的切线;(2)若1202BAC AB ∠==°,,求图中阴影部分的面积.8 如图,△ABC 内接于半圆,AB 是直径,过A 作直线MN ,若∠MAC=∠ABC . (1)求证:MN 是半圆的切线;(2)设D 是弧AC 的中点,连结BD 交AC 于G ,过D 作DE ⊥AB 于E ,交AC 于F . 求证:FD =FG .MN AE D CG B F9. 如图,半圆的直径10AB =,点C 在半圆上,6BC =. (1)求弦AC 的长;(2)若P 为AB 的中点,PE AB ⊥交AC 于点E ,求PE 的长.10. 已知:如图,AB 为O ⊙的直径,AB AC BC =,交O ⊙于点D ,AC 交O ⊙于点45E BAC ∠=,°.(1)求EBC ∠的度数; (2)求证:BD CD =.11. 如图,在ABC △中,AB AC =,AE 是角平分线,BM 平分ABC ∠交AE 于点M ,经过B M ,两点的O ⊙交BC 于点G ,交AB 于点F ,FB 恰为O ⊙的直径. 求证:AE 与O ⊙相切;PBC EA A O E DB OG E C MAF12. 如图,AB 是⊙O 的直径,C 是弧BD 的中点,CE ⊥AB ,垂足为E ,BD 交CE 于点F . (1)求证:CF BF =;(2选做)若2AD =,⊙O 的半径为3,求BC 的长.CBEFADO。

相关文档
最新文档