基因克隆载体-噬菌体
噬菌体
包装容量
• λ噬菌体载体可插入长 噬菌体载体可插入长5-20kb的外来 的外来DNA,这 噬菌体载体可插入长 的外来 , 比质粒载体能插入的DNA长得多;而且包装 长得多; 比质粒载体能插入的 长得多 的λ噬菌体感染大肠杆菌要比质粒转化细菌的 噬菌体感染大肠杆菌要比质粒转化细菌的 效率高得多,所以λ噬菌体载体常用于构建 效率高得比质粒载体复杂。 • 理论上的极限值可达 理论上的极限值可达23kb,但事实上较为有 , 效的克隆范围仅为15kb左右 效的克隆范围仅为 左右
(3)外源片断与载体的连接 ) • 通过载体的粘性末端,将载体连接成多 通过载体的粘性末端,将载体连接成多 联体,以利于将两个cos位点之间的片断 联体,以利于将两个 位点之间的片断 装入噬菌体颗粒
(4)重组噬菌体的体外包装,形成有感染 )重组噬菌体的体外包装, 力的噬菌体颗粒 • 利用特殊材料,制备噬菌体包装蛋白 利用特殊材料, • 连接产物与包装蛋白混合时,就可完成 连接产物与包装蛋白混合时, 包装反应, 包装反应,形成有感染力的噬菌体颗粒 • 包装蛋白对所包装的 包装蛋白对所包装的DNA大小有高度选 大小有高度选 择性, 范围: 分子的75%- % 择性, 范围:λDNA分子的 %- 分子的 %-105%
基因克隆载体 (λ噬菌体载体 噬菌体载体) 噬菌体载体
• 噬菌体(bacteriophage):是感染细菌、真菌、 噬菌体(bacteriophage):是感染细菌、真菌、 放线菌或螺旋体等微生物的病毒。 放线菌或螺旋体等微生物的病毒。 不同的噬菌体在电镜下有三种形态:蝌蚪形、 不同的噬菌体在电镜下有三种形态:蝌蚪形、 微球形和丝形。大多数噬菌体呈蝌蚪形, 微球形和丝形。大多数噬菌体呈蝌蚪形,由头 部和尾部两部分组成。 部和尾部两部分组成。 • 头部 核心:核酸( 核心:核酸(DNA或RNA) 或 ) 衣壳:蛋白质, 衣壳:蛋白质,六边形立体对称 • 尾部 蛋白质 尾部( 蛋白质) 尾髓、尾鞘、尾板、尾丝、 尾髓、尾鞘、尾板、尾丝、尾刺 与吸附宿主有关
22基因工程载体-噬菌体载体201909
(五)λ-DNA作为载体的优点
1) 体外包装病毒颗粒,高效感染E.coli 2)2) 装载外源能力为25kb,大于质粒 3)3) 筛选方便 4)4) 重组λ-DNA分子提取容易
二、单链噬菌体载体
(一)单链噬菌体载体
单链环状DNA的丝状大肠杆菌噬菌体: M13、f1、fd 噬菌体
M13 噬菌体
单链DNA噬菌体载体
插入式载体可携带的外源DNA片段较 替换式为小。
• ◆ λ噬菌体载体可接受15 kb-23 kb的外源 DNA片段,它既可作为克隆载体,也可作 为表达载体,广泛用于各类基因库的构建。
1. 重组噬菌体的分子量必须在野生型噬 菌体 分子量大小的75%至105%之间。
筛选标记: 蓝白斑(LacZ)、噬菌斑等。
噬菌粒载体(phagemid vectors)
由质粒载体与单链噬菌体载体的复制 起点结合而成的新型载体系列。
MCS lacZ’ lacI
噬菌体ori
质粒ori
Ampr
1、噬菌粒载体的特点
①分子量小
约3000bp(比M13小)
②克隆能力大 能插入10kb的外源DNA。
③两种复制形式
既具有质粒的复制起点,又具有噬菌体的复制
•噬菌体颗粒的大小是受其DNA的大小制约的, 这一点正好与λ噬菌体相反。所以M13噬菌体并不 存在包装限制的问题。
M13单链 DNA噬菌 体的生命
周期
RF DNA
Phage M13 replication in the host cell: Nicked by gene 2 protein
RNA pol +
(2)λ 替换型载体(取代型 e.g. EMBL3载, 体DA)SH
第三章 基因克隆的载体
没有获得载体的寄主细胞 在Amp或Tet中都死亡。
获得载体的寄主细胞 在Amp或Tet其中之一中死亡。
外源基因BamH I Amp中存活 但在Tet中死亡
外源基因Pst I Tet中存活 但在Amp中死亡
② 分子小,克隆能力大 载体越小越好。 >10kb的DNA在纯化过程中容易断裂。
③ 高拷贝数
2. 质粒载体相关知识介绍
(4)pBluescript SK
pBluescript SK is similar to the pGEM vectors except that it also carries an origin of replication for a filamentous phage, f1. f1 uses a single stranded DNA molecule as a genome and pBluescript KS
表达型质粒载体
装有强化外源基因表达的转录、翻译、纯 化的元件,主要用来使外源基因表达出 蛋白质产物。
注意启动子的性质,终止子、起始 密码、终止密码的阅读正确。 如果在大肠杆菌里表达,必须把所克隆 的真核生物的基因臵于大肠杆菌的转 录—翻译信号控制之下。
① 表达载体的结构
1)普通载体元件 复制起始点ORI、 选择标记、 多克隆位点MCS
1.质粒的生物学特性
(4)质粒的复制类型 一种质粒在宿主细胞中存
在的数目称为该质粒的拷贝数。据拷贝数将质粒分为 两种复制型:“严紧型”质粒(stigent plasmid), 拷贝数为1-3;“松弛型”质粒(relaxed plasmid), 拷贝数为10-60。不过,即使是同一质粒,其拷贝数在 不同的寄主细胞间也可能有很大的变化。
动物基因工程—基因克隆载体
B、在非必需区组入选择标记基因
C、构建的λDNA载体不应小于36.4kb
基因工程载体构建
③用λDNA作载体比用质粒作载体的优点:
A、可容纳较大的外源DNA片段(15-23kb,质粒一般<10kb)
B、λDNA进入细菌细胞容易,不象质粒载体那样需要采用化学介导
法才能进入细菌细胞
物细胞(或蓝藻细胞)中进行高效表达。
基因工程载体构建
2、植物病毒克隆载体
构建植物病毒克隆载体的基本策略是:
对病毒DNA(包括RNA反转录的DNA)进行加工,消除其对植物的致
病性,保留其通过转导或转染能进入植物细胞的特性,使携带的目的基因导
入植物细胞。
目前应用最多的植物病毒克隆载体是:利用CaMV(花椰菜花叶病毒)
TGMV)、非洲木薯花叶病毒(ACMV)、玉米线条病毒(MSV)、小麦矮缩病毒
(WDV)
RNA病毒:雀麦草花叶病毒(BMV)、大麦条纹花叶病毒(BSMV)、蕃茄丛矮病
毒(TBSV)、马铃薯X病毒(PVX)、烟草花叶病毒(TMV)、烟草蚀刻病毒(
TEV)、李痘病毒(PPV)等
基因工程载体构建
2、植物病毒克隆载体
根据这些性质构建了一系列分别适用于不同生物的病毒克隆载体,把
感染细菌的病毒专门称为噬菌体,由此构建的载体则称为噬菌体载体 。
基因工程载体构建
基因工程载体构建
基因工程载体构建
(1)λ噬菌体克隆载体
①λDNA构建克隆载体的依据:
A、λ噬菌体由DNA(λDNA)和外壳蛋白组成,对大肠杆菌具有很高的感
动 物 生 物 技 术
基因工程载体构建
基因工程载体构建
基因工程载体构建
第2章 基因克隆的载体——质粒和噬菌体
第2章基因克隆的载体——质粒和噬菌体载体:携带外源DNA进入宿主细胞的工具。
一、载体的功能:1.运送外源基因高效转入受体细胞2.为外源基因提供复制能力或整合能力3.为外源基因的扩增或表达提供条件二、载体应具备的条件:1.具有对受体细胞的可转移性2.具有与特定受体细胞相适应的复制位点或整合位点3.长度尽可能小,以提高其载装能力4.具有多种单一的酶切位点5.具有合适的选择性标记附图:图 3-1 自主复制型载体和附加载体的扩增方式2.1 质粒质粒是存在于细菌细胞质中独立于染色体而自主复制的共价、封闭、环状双链DNA分子(Covalently closed Circular DNA, ccc DNA),并不是细菌生长所必需的,但可以赋予细菌某些抵御外界环境因素不利影响的能力。
分子量在1-200kb之间。
一、质粒的基本特性:(一)自主复制性质粒DNA携带有自己的复制起始区(ori)以及一个控制质粒拷贝数的基因,因此它能独立于宿主细胞的染色体DNA而自主复制。
不同的质粒在宿主细胞内的拷贝数也不同,少则几个多则几百个不等,当然由于质粒上并没有复制酶的基因,所以其复制需要使用宿主细胞复制染色体DNA的多种酶群。
(二)不相容性利用同一复制系统的不同质粒(RNAI RNAII Rop因子)如果被导入同一细胞中,它们在复制及随后分配到子细胞的过程中,就会彼此竞争,它们在单细胞中的拷贝数也会有差异,拷贝多的复制更快,结果在细菌繁殖几代之后,细菌的子细胞中绝大多数都含有占优势的质粒,因而这两种质粒中只能有一种长期稳定地留在细胞中,这就是所谓的质粒不相容性。
(三)可扩增性质粒就其复制方式而言分为两类:松弛型复制及严谨型复制。
pMB1或ColEI 类质粒复制子的复制完全依靠宿主细胞提供的半衰期较长的复制酶及蛋白因子(DNA聚合酶I,III,RNA聚合酶以及dnaB、dnaC、dnaD、dnaZ的产物),因此在蛋白质合成中断时,质粒复制能持续合成,这样当用氯霉素抑制蛋白质合成并阻断细菌染色体复制时,带有pMB1或ColEI复制子的质粒将利用丰富的原料大量复制,最后每个细胞可以积聚2000-3000个拷贝,这叫做氯霉素扩增。
基因克隆主要载体系统
低分子量的质粒易于操作,克隆外源片断后 仍能有效的转化给受体细胞,同时低分子量的质粒 对限制酶具有多重识别位点的几率也较低;较高 的拷贝数可获得大量的克隆基因
a
11
(三)质粒载体的选择记号
新陈代谢特性; 对大肠杆菌素E1的免疫性; 抗菌素抗性; 四环素抗性、氨苄青霉素抗性、 链霉素抗性、卡那霉素抗性 大多数质粒本身带有抗菌素基因; 抗菌素抗性记号便于操作、易于选择。
a
8
a
9
(一) 质粒载体
质粒载体包括以下两种: 1.克隆的质粒载体
允许外源的DNA插入,储存。主要是 DNA水平上的操作。 2.基因表达的质粒载体 允许外源DNA的插入、储存和表达。
a
10
(二) 质粒载体必须具备的基本条件
(1) 具有复制起点; 自我增值的基本条件,一般具一个复制子。
(2) 具有抗菌素抗性; 理想的质粒载体具有两种抗菌素抗性基因。
具尾部结构的二十面体型、 线状体型 核酸类型:最常见的是双链线性DNA、双链环形 DNA、 单链环形DNA、单链线形DNA、单链RNA。
a
17
噬菌体的溶菌生命周期
噬菌体的生命周期分为溶菌周期和溶源周期
只具有溶菌生长周期的噬菌体颗粒叫烈性噬菌体。 烈性噬菌体溶菌生长的基本过程: 1、吸附 吸附到位于感染细胞表面的特殊接受器上 2、注入 噬菌体DNA穿过细胞壁注入寄主细胞 3、转变 被感染的细胞成为制造噬菌体颗粒的场所 4、合成 大量合成噬菌体特有的核酸和蛋白质 5、组装 包装了DNA头部和尾部组装成噬菌体的颗粒 6、释放 合成的子代噬菌体颗粒从寄主细胞内释放出来
基因克隆主要载体系统
基因工程常用的三种载体
基因工程常用的三种载体基因工程是一门综合性的学科,其中一个关键方面是使用载体进行基因转移和操控。
载体是一种可以携带和传递特定基因的DNA分子。
在基因工程中,常用的载体有质粒、噬菌体和人工染色体。
下面将详细介绍这三种载体的相关信息。
1. 质粒(Plasmid)质粒是一种环状双链DNA分子,通常存在于细菌细胞内,也可通过人工方法导入其他生物体内。
质粒是最常用的基因工程载体,因其结构相对简单且易于操作,可以携带外源基因并通过转染等方法传递到细胞中。
质粒的大小通常在1-20千碱基对之间,具有自主复制和不受宿主基因组限制的能力。
质粒常用于基因克隆、表达以及基因敲除等研究。
例如,在基因克隆中,通过将目标基因插入质粒中的多克隆位点,可以将质粒转化到宿主细胞中进行扩增和分析。
质粒也常用于表达外源基因,可以将目标基因与促进其表达的启动子及调控元件结合在一起,构建表达载体进入目标细胞中,使其产生目标蛋白。
2. 噬菌体(Bacteriophage)噬菌体是一种寄生于细菌的病毒,是基因工程中另一常用的载体。
噬菌体具有高度选择性对细菌进行感染和复制的能力,因此可以利用噬菌体来转移和表达外源基因。
噬菌体载体通常比质粒大,可以携带更长的DNA序列。
噬菌体常用于噬菌体展示技术和抗体库构建。
噬菌体展示技术是一种用于筛选蛋白质相互作用、抗体或潜在药物靶点的方法。
通过将目标多肽或蛋白质与噬菌体表面蛋白基因融合,在噬菌体所感染的细菌中进行筛选。
另外,噬菌体也常用于构建噬菌体抗体库,通过大规模的筛选,筛选出具有特定抗体活性的噬菌体克隆。
3. 人工染色体(Artificial Chromosome)人工染色体是通过基因工程方法人为合成的染色体模拟体,在某些情况下可用于携带超长的DNA分子。
人工染色体被设计成可以稳定传递和复制的DNA分子,通常包括一个原核或真核的起始序列、一个中央控制区域和一个终止序列。
人工染色体在基因组学和基因治疗研究中发挥着重要作用。
第四章基因克隆的载体、噬菌体载体
溶源周期的主要特征
λ噬菌体的特征: 1、噬菌体的DNA分子注入细菌细胞 2、经过短暂的转录之后,需要合成一种整合酶,于是
转录活性便被一种阻遏物所关闭 3、噬菌体的DNA分子插入到细菌染色体基因组DNA上,
变成原噬菌体 4、细菌继续生长、增值,噬菌体的基因作为细菌染色
体的一部分进行复制。
烈性噬菌体溶菌生长的基本过程:
1、吸附 吸附到位于感染细胞表面的特殊接受器上 2、注入 噬菌体DNA穿过细胞壁注入寄主细胞 3、转变 被感染的细胞成为制造噬菌体颗粒的场所 4、合成 大量合成噬菌体特有的核酸和蛋白质 5、组装 包装了DNA头部和尾部组装成噬菌体的颗粒 6、释放 合成的子代噬菌体颗粒从寄主细胞内释放出来
替换式载体
野生型噬菌体染色体的中段对于噬菌体的感染和复制是非必要的, 外源DNA可以取代这一片段,例如Charon 4A、 λEMBL 3/4、 Charon40等载体,这些载体是用Lac 5(乳糖操纵子的大部分系列, 包括完整的Lac Z)替换入噬菌体的中间区段,同时将Lac5作为选择 标记,使用时用EcoRI水解,去掉中间的片段,再与欲克隆片段在体
2.2λ噬菌体载体
溶菌阶段
(复制和释放)
λ phage
48.5 kb in length Linear or circular genomecos ends(cohesive-end site )
5‘-CGGGGCGGCGACCTCG-3’ 3’-GCCCCGCCGCTGGAGC-5’
外进行重组、包装。而后,感染E.coli使之在E.coli内繁殖,并裂解 E.coli,形成空斑。
spi-选择 λ噬菌体的red和gam基因产物可抑制噬菌体在宿主细菌 中正常生长,red-和gam-突变型λ噬菌体则可正常生长。当置换型载 体的可置换片段中放上red和gam基因后,外源DNA片段取代了置换 片段,则同时除去了red、gam基因,就可在宿主菌中生长,否则就 不能正常生长。
克隆载体的名词解释
克隆载体的名词解释克隆载体是分子生物学实验中常用的工具,用于携带并负载外源DNA片段,以实现基因克隆和基因工程。
克隆载体可由天然或人工合成的DNA构建而成,广泛用于基础研究、基因表达、基因治疗等领域。
本文将从克隆载体的定义、组成结构、常见类型以及应用等方面对其进行解释。
一、克隆载体的定义克隆载体是指用于将目标外源DNA导入到宿主细胞或有机体中,并在其中进行自主复制、表达和传递的DNA分子。
克隆载体具有一系列特定的序列和功能元件,包括起始子、终止子、选择标记、荧光蛋白等,以确保成功实现目标DNA的克隆和表达。
二、克隆载体的组成结构克隆载体通常由一个或多个元件组成,包括DNA序列、选择标记、表达载体以及复制起源,具体结构如下:1. DNA序列:克隆载体内含有目标外源DNA的序列,其大小和类型因实验需求而异。
DNA序列通常具有特定的限制性内切酶切位点,以便于将外源DNA片段定向插入到载体中的特定位置。
2. 选择标记:为了筛选成功克隆和转入宿主细胞的载体,克隆载体通常携带有选择标记基因,如抗生素抗性基因或荧光蛋白基因。
这些标记基因在宿主细胞中可以提供对抗生素的耐药性或特定荧光表达,从而方便筛选出含有目标外源DNA的成功克隆载体。
3. 表达载体:对于需要进行表达的克隆载体,其内部还包含有启动子、终止子以及表达宿主基因的相关元件。
这些元件协同作用,使得克隆载体能够在宿主细胞中进行基因的转录和翻译,从而实现目标基因的表达。
4. 复制起源:为了保证克隆载体能够在宿主细胞中独立复制,克隆载体通常还含有复制起源序列。
复制起源序列可以与宿主细胞的复制系统相互配合,使得克隆载体能够被复制并遗传到下一代细胞中。
三、克隆载体的常见类型克隆载体具有多种类型,根据其应用和特性的不同,常见的克隆载体包括质粒、噬菌体、合成DNA以及病毒载体等。
1. 质粒(Plasmid):质粒是环状的双链DNA分子,常见于细菌和真核生物中。
质粒通常具有小分子大小(约1-10 kb),较容易复制和操纵。
四、基因克隆载体(一)
2、pBR322
p—plasmid,BR分别为该质粒的两位主要构 建者F. Bolivar和R.L. Rodriguez姓氏的头一个字 母,“322”为实验编号。
含有双抗基因(Apr,Tcr)和Col E1复制起始 子。
融合型蛋白表达载体:pET28a
非融合型蛋白表达载体:pKK223-3(强启动子Ptac)
(三)、质粒载体的构建
构建质粒克隆载体的基本策略如下:
① 构建的质粒克隆载体应该是能在转化的受体细胞中进行 有效的复制并且作为质粒克隆载体,希望在受体细胞中 有较多的拷贝数。 * 选择松弛型质粒复制起始子(Ori)
克隆载体(cloning vector): 指能够把外源DNA片段带入受体细胞,并进
行稳定遗传的DNA或RNA分子
穿梭载体(shuttle vector): 带有两种不同的复制起始位点,可以在两种
不同的生物体中复制的质粒载体
表达载体(expression vector) 一种克隆载体,可以使插入的外源DNA片段
严紧型质粒(stringent plasmid):拷贝数少,1-数个, 松弛型质粒(relaxed plasmid) :拷贝数多,10个以上
(提取质粒时,可添加氯霉素)
4. 质粒的不亲和性(Incompatible):
两种类似的不同质粒不能存在于同一细胞中。 亲和质粒、不亲和质粒
5. 质粒的可转移性:
D) Tra基因:指令宿主细胞合成菌毛(Pilus)和细胞表面物, 促使宿主细胞与受体细胞表面结合,遗传物质的转移
E)抗性基因:抗菌素抗性基因,Apr,Tcr, F) 产毒素基因:大肠杆菌素基因(Col-质粒) G) 降解基因:降解重金属、有机物和农药等 H) 致瘤基因:诱导某些组织形成肿瘤,如Ti质粒,Ri质粒
基因工程的载体种类
基因⼯程的载体种类基因⼯程的载体对于外源基因的复制、扩增、传代乃⾄表达⾄关重要,其必需具备以下条件:①具有有效运载能⼒,能够进⼊宿主细胞;②对多种限制酶有单⼀或较少的切点,最好是单⼀切点,即本⾝是⼀个复制⼦,携带外源基因前后均能在宿主细胞内⾃主复制,或者能够整合到宿主细胞中;③在宿主中能控制外源基因的表达活动;④要有筛选标记,鉴定⽅便,装卸⼿续简单;⑤容易控制,安全可靠。
在基因⼯程(DNA重组)中,使⽤的载体有:①克隆载体(clone vector),即以繁殖DNA分⼦为⽬的的载体;②穿梭载体(shuttle vecto),⽤于真核⽣物DNA⽚段在原核⽣物中增殖,然后在转⼊真核⽣物细胞宿主表达;③表达载体(express vector),⽤于⽬的基因的表达。
现在对载体提出了更⾼的要求,如:⾼拷贝数、具有强启动⼦和稳定的mRNA、具有⾼的分离稳定性和结构稳定性、转化频率⾼、宿主范围⼴、插⼊外源基因容量⼤且可以重新完整地复制与转录、和宿主细胞匹配等。
此外,载体在宿主不⽣长或低⽣长速率时仍能⾼⽔平地表达⽬的基因。
但达到上述要求的载体很少,尤其是当动物细胞作为宿主细胞时,⽬前能⽤的主要时病毒,进⼊宿主的⽬的基因⼀般只能是⼀个基因,⽽以基因组或多个基因同时进⾏重组还有⼀定困难。
⼀、质粒克隆载体除酵母杀伤质粒(killer plasmid)为RNA外,其他质粒多位环状DNA分⼦,每个质粒都有⼀段DNA复制起始点的序列,帮助实现质粒的复制。
质粒⼀般决定抗⽣素的抗性、产⽣抗⽣素酶系、糖酵解酶系、降解芳⾹族化合物酶系、肠毒素及限制-修饰酶系等。
其中严紧型复制控制质粒的复制与宿主染⾊体同步,并与宿主蛋⽩质合成有关,与DNA聚合酶I活性⽆关,蛋⽩质合成停⽌,质粒与宿主染⾊体复制亦停⽌,故只有1个或少数⼏个拷贝;⽽松弛型复制控制质粒的复制与宿主染⾊体复制不同步,与蛋⽩质合成⽆关,与DNA聚合酶I活性有关,蛋⽩质合成停⽌,质粒仍可复制,故可以在宿主有10—206个拷贝。
植物基因工程中的λ噬菌体载体
•右臂:长约10kb,控 制溶菌和溶原生长最重 要的调控基因和序列、 以及λDNA复制起始均 在这区域内。
➢ 基因组长约50kb ,至少包括61个基因,除少数例外,大多数编码基因均是按功能的相似 性成簇排列。左右臂包含λDNA复制、噬菌体结构蛋白合成、组装成熟噬菌体、溶菌生 长所需全部序列;对溶菌生长来说,中段是非必需的。 植物基因工程中的λ噬菌体载体
植物基因工程中的λ噬菌体载体
λ早使用的载体 系统,其主要优点是插入片段的装载容量大,适合于 全长的eDNA克隆,不仅质量高、代表性好,而且重组 噬菌体颗粒的感染活性在替换或插入某些标志基因,如上述的可 供蓝白筛选lacZ’序列和多克隆位点等。
• 建立重组λDNA分子的体外包装系统。
• 与一般的质粒载体不同, 噬菌体转染前需要利用噬菌体外 壳蛋白和噬菌体DNA加工酶组成的混合物(包装抽提物
• )在体外将连接好的DNA线性分子包装成噬菌体颗粒
植物基因工程中的λ噬菌体载体
植物基因工程中的λ噬菌 体载体
2020/11/20
植物基因工程中的λ噬菌体载体
载体(vector)是把一个有用的目的DNA片段通过重 组DNA技术,送进受体细胞中去进行繁殖和表达的工 具。 植物基因工程技术中尤为重要的是载体,不同目的 基因需要采用不同的载体。 组成植物基因工程载体系统常见的几种载体有:
右臂,填充片断的存在会影响连接效率, 必须纯化左臂和右臂。
植物基因工程中的λ噬菌体载体
(3)外源片断与载体的连接 • 通过载体的粘性末端,将载体连接成多联
体,以利于将两个cos位点之间的片断装入 噬菌体颗粒
植物基因工程中的λ噬菌体载体
(4)重组噬菌体的体外包装,形成有感染力 的噬菌体颗粒
基因工程 考试 重点 噬菌体载体
第二章 DNA重组克隆的单元操作练习题噬菌体载体(练习题)一、填空题1.噬菌体之所以被选为基因工程载体,主要有两方面的原因:一是;二是。
2.第一个报道的全测序的单链DNA 噬菌体是φX174,DNA 长5386 个碱基对,共个基因,为一环状DNA 分子,基因组的最大特点是。
3.λ噬菌体的基因组DNA 为kb,有多个基因。
在体内,它有两种复制方式,扩增时(早期复制)按复制,成熟包装(晚期复制)则是按复制。
它有一个复制起点,进行向复制。
λ噬菌体的DNA 既可以以线性存在又可以环状形式存在,并且能够自然成环。
其原因主要是在λ噬菌体线性DNA 分子的两端各有一个个碱基组成的天然黏性末端。
这种黏性末端可以自然成环。
成环后的黏性末端部位就叫做位点。
4.根据噬菌体的包装能力,将野生型λ噬菌体的基因组DNA 改造成插入型载体,该载体的最小分子大小约为kb,插入的外源片段最大不超过kb。
5.野生型的M13 不适合用作基因工程载体,主要原因是和。
6.黏粒(cosmid)是质粒—噬菌体杂合载体,它的复制子来自、COS 位点序列来自,最大的克隆片段达到kb。
7.有两类改造型的λ噬菌体载体,即插入型和取代型。
从酶切点看,插入型为个,取代型为个。
8.野生型的丸噬菌体DNA 不宜作为基因工程载体,原因是:(1) (2) (3) 。
9.M13 单链噬菌体的复制分为三个阶段:(1) (2) (3) 。
10.噬菌粒是由质粒和噬菌体DNA 共同构成的,其中来自质粒的主要结构是,而来自噬菌体的主要结构是。
11 .M13 单链噬菌体基因2 和基因4 之间的IG 区有三个最重要的功能,即(1)(2) (3) 。
12.野生型的M13 有10 个基因,分为三个功能集团,其中与复制有关的两个基因是:和。
13.以λ噬菌体载体和黏粒载体构建文库时,起始DNA 的长度是不同的,前者为kb,后者为kb。
14.λ噬菌体载体由于受到包装的限制,插入外源DNA 片段后,总的长度应在噬菌体基因组的的范围内。
第九章 基因克隆载体
接合型质粒(传递性质粒) 非接合型质粒
严密型质粒(stringent plasmid)
严密型质粒通常是一些具有自身传递能力的大质粒,复制与 宿主菌密切相关,宿主菌内只有1-2个质粒拷贝存在,当宿主 菌蛋白合成停止时,质粒的DNA复制也就随之停止
松弛型质粒 (relaxed plasmid)
第九章 基因克隆载体
第一节
概述
1、载体
要把一个有用的基因通过基因工程手段送进生物细胞中, 需要运载工具,携带外源基因进入受体细胞的这种工具叫
载体(Vector)。
(1)质粒 (2)噬菌体 (3)质粒-噬菌体杂合载体 (4)人工染色体载体
2、载体的性质
1)它必须具有能够在某些宿主细胞中独立地自我复制和表达的能 力。
pJDB 219
选用哪种类型的真菌质粒?
转化频率 YEps:103—105 YIps:1-10 转化子的稳定性 YEps:不稳定 YIps:稳定
第三节 噬菌体载体
噬菌体的研究历史,是同 分子生物学、分子遗传学的创 立和发展过程密切相关的。DNA 复制机理的阐明、转录的终止 作用、连接酶和解旋酶的发现 、位点特异的重组作用、SOS修 复机制等,均是以噬菌体为材 料取得的重要研究成果。依据 噬菌体的复制和生活周期等特 点,已经构建了许多料。
•7
三、质粒在基因工程中的应用优点 ①体积小,便于DNA的分离和操作; ②呈环状,使其化学分离过程中能保持性能稳定; ③有不受核基因组控制的独立复制起始点; ④拷贝数多,使外源DNA 可很快扩增; ⑤存在抗药性基因等选择性标记,便于含质粒克
隆的检出和选择(如E.coli 的pBR322质粒)。
四、质粒的分离与鉴定 分离:细胞的裂解、蛋白质和RNA去除以及质粒 DNA与染色体DNA分离。 鉴定:电镜、琼脂糖或聚丙烯酰胺凝胶电泳及密 度梯度离心法。
基因克隆的载体噬菌粒载体
基因克隆的载体噬菌粒载体
第3页
4. 存在着一个多克隆位点区,所以许各种不一样类型外 源DNA片段,不经修饰便可直接插入到载体分子上;
5. 因为多克隆位点区阻断了大肠杆菌lacZ基因5’端编码区,可按照IPTG组织化学显色反应试验, 筛选重组子;
基因克隆的载体噬菌粒载体
第2页
常见噬菌粒载体pUC118和pUC119
是一对分别由pUC18和pUC19质粒与野生型M13噬菌体基 因间隔区(IG)重组而成噬菌粒载体。
1. 含有较小分子量共价、闭合、环形基因组DNA,可克 隆10kb外源DNA片段,并易于进行分离与操作;
2. 编码一个ampr基因作为选择记号,所以只有携带 pUC118或pUC119噬菌粒载体大肠杆菌转化子细胞,才 能够在含有氨苄青霉素培养基中生长,便于转化子选择;
6. lacZ基因是置于lac开启子控制之下,这么插入 外源基因便会以融合蛋白质形式表示;
7. 含有质粒复制起点,在没有辅助噬菌体情况下, 克隆外源基因能够像质粒一样按常规方式,复 制形成大量双链DNA分子
基因克隆的载体噬菌粒载体
第4页
8. 带有一个M13噬菌体复制起点,在有辅 助噬菌体感染寄主细胞中,能够合成出 单链DNA拷贝,并包装成噬菌体颗分泌 到培养基中;
第6页
pBluescript噬菌粒载体
基T3和T7噬菌体开 启子,能够定向指导外源基因转录活动;
2. 同时含有一个单链噬菌体M13或f1复制起点 和一个来自ColE1质粒复制起点,在不一样情 况下,能够采取不一样复制形式,分别合成单 链或双链DNA;
3. 编码有一个胺苄青霉素抗性基因,供作转化 子记号;
基因工程载体噬菌体载体
基因转殖
噬菌体载体可以在转基因植 物和动物中嵌入外源基因, 实现基因转殖和遗传改良。
洗牌策略
利用噬菌体载体的洗牌策略, 可以分离和筛选特定的DNA 或蛋白质序列,用于疾病诊 断和药物研发。
噬菌体载体的优势与限制
1 优势
高效的DNA复制和表达能力、容易获取和构建、适用于广泛的宿主细胞、可高表达目标 基因。
农业改良
噬菌体载体在基因工程研究中仍 有很大潜力,可以用于新型基因 编辑技术和药物运荷系统的开发。
噬菌体载体可以应用于药物运输、 基因疗法和肿瘤免疫治疗等领域 的创新药物开发。
噬菌体载体可用于改良农作物、 提高农作物的抗害能力和产量。
2 限制
容量有限、宿主细胞影响表达水平、病毒复制可能导致细胞毒性和免疫反应。
噬菌体载体构建与筛选方法
1
构建方法
通过DNA重组技术将目标DNA序列插入到噬菌体载体的适当位置,并使用DNA连接酶连接两 者。
2
筛选方法
利用选择标记和可视化标记(如荧光蛋白)来鉴定带有目标DNA序列的噬菌体载体。
噬菌体载体在基因表达与蛋白质生产中的 应用
基因工程载体噬菌体载体
了解噬菌体载体的定义、结构与类型以及在基因工程中的应用。探讨其优势 与限制,构建与筛选方法,以及在基因表达与蛋白质生产中的应用。最后, 展望噬菌体载体的未来发展趋势。
噬菌体载体的定义
噬菌体载体是指噬菌体基因组中携带外源DNA序列的DNA分子。它可以被用 来传递、复制和表达外源基因,对研究和应用领域具有重要意义。
Байду номын сангаас
基因表达
噬菌体载体可用于高效表达外 源基因,生产重组蛋白质,如 药物、酶和抗原。
蛋白质纯化
基因载体名词解释
基因载体名词解释基因载体是指用于携带、传递和复制基因的分子或生物体。
在基因工程和生物技术领域,基因载体通常是指能够容纳外源DNA序列的DNA分子或细胞,常被用于基因克隆、基因表达、基因转移等实验和应用中。
常见的基因载体包括质粒、噬菌体、噬菌体样粒子、大肠杆菌、酵母、昆虫细胞等。
这些载体被广泛用于基因工程实验和技术,在研究和应用中起到了至关重要的作用。
质粒是最常用的基因载体之一,是一种小型环状DNA分子,可以自主复制和传递,对于分子克隆和基因表达都非常有用。
质粒通常具有选择性标记基因(如抗生素抗性基因),可以通过选择性培养来筛选出带有目标基因的质粒。
此外,质粒还可以携带其他附加基因元件,如启动子、终止子、启动子和信号序列等,在基因表达中发挥重要作用。
另一种常见的基因载体是噬菌体,是一种感染细菌的病毒。
噬菌体可以携带外源DNA序列,并在细菌中进行复制和表达。
噬菌体可以用于高效地产生大量目标蛋白,因此在基因表达和蛋白生产中具有广泛应用。
此外,还有噬菌体样粒子,它是由噬菌体的基因组包裹在蛋白质壳中构成的粒子,可以携带大片的外源DNA序列,并在细胞中进行复制和表达,常用于基因克隆和基因转移实验。
在真核生物中,常用的基因载体包括酵母和昆虫细胞。
酵母是一种单细胞真核生物,具有较高的基因组稳定性和蛋白表达能力,在基因工程和蛋白生产中被广泛运用。
昆虫细胞也具有较高的蛋白表达能力,被广泛用于重组蛋白的产生和应用。
总的来说,基因载体是在基因工程和生物技术领域中不可或缺的工具,能够携带外源DNA序列,并在细胞中进行复制、传递和表达。
基因载体的选择和设计对于实现特定的实验目标和应用需求至关重要。
09927基因工程原理6(30加
(1)大小4-6kb
(2)抗药标记
(3)质粒复制起点
(4)cos 片段的λDNA
(5)RE切点
粘粒载体pHC79兼具了λ 噬菌体载体和pBR322质 粒载体两方面的优点, 带有来自pBR322的完整 复制子、Ampr、Tetr基 因和来自λDNA的cos序 列及其两侧与噬菌体包 装有关的序列。其克隆 能力为31~45kb,能够 被包装成为具有感染能 力的噬菌体颗粒。
3.2.1.4 λ噬菌n):寄主细胞捕获噬菌 体DNA 的过程。或重组噬菌体DNA分子感染 并进入大肠杆菌的过程。
转导作用(transduction):以噬菌体颗粒为 媒介转移遗传物质的过程。
转化作用(transformation):将质粒等外源 DNA引入细胞的过程。
3.2.1.5 重组λDNA分子的体外包装 见教材111页
噬菌体载体
• λ噬菌体DNA改造系统
λgt系列(插入型,适用cDNA克隆) λEMBL系列(置换型,适用基因组克隆)
3.2.2 cosmid克隆载体
——cosmid = cos site-carrying plasmid 3.2.2.1 构建cosmid克隆载体的策略 具有噬菌体载体的高转导性能:保留cos位点以
M13吸附到 性须的末端
蛋白质外壳脱落,变 成M13DNA
M13DNA作模板, 合成M13 “-”,形 成双链DNA
子链被包装 成噬菌体
挤压出寄 主细胞
单链DNA变成双链DNA
(2)M13DNA的复制
复制叉沿“-”链摸板移 动,合成子代(+) DNA
蛋白作用“+” 上形成切口
复制型M13DNA
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
细菌人工染色体载体BAC
在大肠杆菌F因子的基础上发展而来,容量 比YAC小,但具有YAC无可比拟的优点:
1. 可稳定遗传 2. 嵌合现象少 3. 操作容易
Thank You
YAC)。
酵利于基因克隆 包含的片段可以包含内含子和调控区 克隆的基因可以和酶、转录因子等相互作用
酵母人工染色体载体的不足
1. 存在嵌合现象
插入序列可能来自多个片段
2. 稳定性差
继代培养中容易丢失
3. 分离纯化操作难度大 4. 转化效率低
M13噬菌体载体
M13 噬菌体的增殖
在感染 E.coli 时,会产生临时的双链DNA分子。 双链DNA分子复制到一定数量时,停止复制,+ 链指导合成相关蛋白,-链指导合成+链DNA 。
M13噬菌体载体
M13噬菌体的构建策略 在间隔区(IS)添加选择标记基因和克隆位 点。
lacZ’ 基因
一、切去非必需区,抹去多余的限制性酶 切位点
用点突变或甲基化酶处理等方法使必须区内的
酶切位点失效,避免外源DNA插入非必须区。
λ类噬菌体载体的构建策略
二、加入选择标记基因
1. 包装容量 只有特定大小的片段才可以包装,大小选择 2. lac基因 颜色显示
λ类噬菌体载体的构建策略
三、体外包装系统
λ类噬菌体
溶源方式:
进入细菌的λDNA可整合入细菌的染色质DNA中, 细菌染色体DNA复制,传给细菌后代,这个稳定 潜伏在细菌染色质DNA中的λDNA称为原噬菌体, 含有原噬菌体的细菌称为溶源菌。 λDNA的整合是可逆的,原噬菌体可从宿主DNA 中切出,进入溶菌性方式的繁殖。
λ噬菌体载体的构建策略
λ类噬菌体
λ类噬菌体DNA全长48520bp
λ类噬菌体有50多个基因,功能相近的聚集
成簇
λ类噬菌体DNA有些区域对λ类噬菌体的生 长并非必须,可以缺失或被外源DNA取代
λ噬菌体
溶菌生长模式 溶源生长模式
λ类噬菌体
溶菌方式:
在条件适合细菌繁殖时,利用宿主菌中的酶类和 原料,λDNA上基因表达合成构成噬菌体头、尾和 尾丝所需的各种蛋白质,λDNA经多次复制合成许 多子代λDNA,于是装配成许多子代的λ噬菌体, 最后裂菌,释放出新的λ噬菌体。
和选择标记,可以在两种不同类群宿主中存活和 复制的质粒载体。 制备。
YEp24载体常用于酵母菌高水平表达外源目的基因。
穿梭质粒有利于对质粒的分子生物学操作和大量
酵母人工染色体载体
构建方法:
将酵母染色体的端粒,复制起点和着丝粒以及 必要的选择基因序列克隆到大肠杆菌的pBR322 中,获得的质粒就成为酵母人工染色体载体(
含有复制起始点 ori
YEp24载体
构成:
2μm质粒复制起始点的2.2kb片段 酵母染色体基因组URA3 基因(尿嘧啶营养缺陷基 因)1.1kb片段 将上述两个片段分别接入pBR322质粒的EcoR I 和 Hind III位点
YEp24载体
YEp24载体
穿梭质粒:人工构建的具有两种不同复制起点
基因克隆载体
生物与食品工程学院
噬菌体克隆载体
能感染细菌的病毒统称为噬菌体
噬菌体有双链噬菌体,也有单链噬菌体。
双链噬菌体:λ类噬菌体 单链噬菌体:M13噬菌体
λ类噬菌体
DNA + 蛋白质外壳
λ噬菌体感染时,通过尾管将DNA注入大肠
杆菌,而将其蛋白质外壳留在受体细胞外
λ噬菌体在噬菌体中是线性DNA分子,进入 宿主细胞后,连接成环状,连接末端称为 cos位点
在lacZ’ 添加不同的链接杆
通过构建成对的M13载体,使外源DNA的双链都
可以随M13的“+”链一起复制。
酵母基因克隆载体
酵母:
1. 结构简单的真核生物 2. 培养廉价 3. 可以对外源基μm质粒
每个细胞含20~80个拷贝
能在酵母细胞内自我复制
E基因缺失的λ噬菌体 D基因缺失的λ噬菌体 混合
λ类噬菌体载体的应用
最长加载片段为16kb,最小表达
M13噬菌体载体
M13噬菌体是雄性大肠杆菌噬菌体,基因组为一
长度 6.4kb 的单链(+链)闭环 DNA 分子。 基因间隔区(IS区),可以突变、缺失、插入外 源DNA,不影响M13噬菌体的复制。 M13子代噬菌体通过细胞壁挤出,并不杀死细菌, 但细菌生长速度缓慢。