岩石弹塑性本构关系

合集下载

岩土类材料弹塑性力学模型及本构方程

岩土类材料弹塑性力学模型及本构方程

岩土类材料弹塑性力学模型及本构方程TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-岩土类材料的弹塑性力学模型及本构方程摘要:本文主要结合岩土类材料的特性,开展研究其在受力变形过程中的弹性及塑性变形的特点,描述简化的力学模型特征及对应的适用条件,同时在分析研究其弹塑性力学模型的基础上,探究了关于岩土类介质材料的各种本构模型,如M-C、D-P、Cam、D-C、L-D及节理材料模型等,分析对应使用条件,特点及公式,从而推广到不同的材料本构模型的研究,为弹塑性理论更好的延伸发展做一定的参考性。

关键词:岩土类材料,弹塑性力学模型,本构方程不同的固体材料,力学性质各不相同。

即便是同一种固体材料,在不同的物理环境和受力状态中,所测得的反映其力学性质的应力应变曲线也各不相同。

尽管材料力学性质复杂多变,但仍是有规律可循的,也就是说可将各种反映材料力学性质的应力应变曲线,进行分析归类并加以总结,从而提出相应的变形体力学模型。

第一章岩土类材料地质工程或采掘工程中的岩土、煤炭、土壤,结构工程中的混凝土、石料,以及工业陶瓷等,将这些材料统称为岩土材料。

岩土塑性力学与传统塑性力学的区别在于岩土类材料和金属材料具有不同的力学特性。

岩土类材料是颗粒组成的多相体,而金属材料是人工形成的晶体材料。

正是由于不同的材料特性决定了岩土类材料和金属材料的不同性质。

归纳起来,岩土材料有3点基本特性:1.摩擦特性。

2.多相特性。

3.双强度特性。

另外岩土还有其特殊的力学性质:1.岩土的压硬性,2.岩土材料的等压屈服特性与剪胀性,3.岩土材料的硬化与软化特性。

4.土体的塑性变形依赖于应力路径。

对于岩土类等固体材料往往在受力变形的过程中,产生的弹性及塑性变形具备相应的特点,物体本身的结构以及所加外力的荷载、环境和温度等因素作用,常使得固体物体在变形过程中具备如下的特点。

固体材料弹性变形具有以下特点:(1)弹性变形是可逆的。

岩石本构关系

岩石本构关系


x x

yx y

zx z

fx

0

xy x

y y

zy zfy源自0
xz
x

yz y

z z

fz

0
3.2.2 几何方程 1、平面问题的几何方程

x


u x

y


v y

xy


v x

u y
2、空间问题的几何方程(柯西方程)
x

u x
y

v y

z

w z

xy

v x

u y

yz

w y

v z

zx

w x

u z
3.2.3 物理方程(弹性本构关系)
1、研究背景:
(1)各种岩土工程,无一不和时间因素有关;
(2)是岩石力学的重要研究内容之一;
(3)存在的问题尚多,理论与实验研究仍有 待进一步加强。
3.3 岩石的流变特性
弹性(可恢复)
岩 与时间无关的变形
塑性(不恢复)


蠕变

与时间有关的—流变 松弛
岩石的时间效应
弹性后效
流变的概念
矿山岩体力学
华北科技学院 安全工程学院
2019/12/11
1
上次课内容
岩石的变形性质
岩石的变形有弹性变形、塑性变形和粘性变形三种.

岩土工程中的弹塑性理论与分析技术

岩土工程中的弹塑性理论与分析技术

岩土工程中的弹塑性理论与分析技术岩土工程中的弹塑性理论与分析技术是研究岩土材料在受力作用下的弹性和塑性变形特性的理论和方法。

这些理论和技术在岩土工程设计、施工和监测中具有重要的应用价值。

本文将从弹塑性理论的基本概念、应用范围以及分析技术的具体方法等方面进行阐述。

弹塑性理论是研究岩土材料在受力作用下的弹性和塑性变形特性的理论。

弹性是指岩土材料在受力作用下能够恢复原状的能力,而塑性是指岩土材料在受力作用下会发生不可逆的变形。

弹塑性理论的基本假设是岩土材料在受力作用下是具有弹塑性的,并且可以通过一定的数学模型来描述其力学行为。

岩土工程中的弹塑性理论主要包括弹性理论、弹塑性理论和塑性理论。

弹性理论是最基本的弹塑性理论,它假设岩土材料在受力作用下只发生弹性变形,而不发生塑性变形。

弹塑性理论则是在弹性理论的基础上引入了塑性变形的概念,它假设岩土材料在受力作用下既可以发生弹性变形,也可以发生塑性变形。

塑性理论则是假设岩土材料在受力作用下只发生塑性变形,而不发生弹性变形。

在岩土工程中,弹塑性理论的应用范围非常广泛。

首先,弹塑性理论可以用于岩土工程设计中的荷载和变形计算。

通过建立合适的弹塑性模型,可以对岩土体在受力作用下的变形和破坏进行合理预测,从而指导工程设计和施工。

其次,弹塑性理论可以用于岩土体力学性质的试验研究。

通过对岩土体在不同应力状态下的弹塑性行为进行试验研究,可以获取岩土材料的力学参数,为岩土工程的设计和施工提供可靠的依据。

此外,弹塑性理论还可以用于岩土体的动力响应分析、岩土体的稳定性分析等方面。

在岩土工程中,弹塑性分析技术是基于弹塑性理论的具体计算方法。

弹塑性分析技术主要包括弹塑性有限元分析、弹塑性强度折减法、弹塑性反分析等方法。

弹塑性有限元分析是一种基于有限元法的弹塑性分析方法,通过建立合适的有限元模型和弹塑性本构关系,可以对岩土体在受力作用下的变形和破坏进行数值模拟。

弹塑性强度折减法是一种基于强度折减原理的弹塑性分析方法,通过将岩土体的强度参数按照一定的折减系数进行计算,可以对岩土体在受力作用下的变形和破坏进行估计。

岩石本构模型.

岩石本构模型.

岩石本构模型.岩石材料本构模型建立方法一、岩石本构模型的定义岩石本构关系是指岩石在外力作用下应力或应力速率与其应变或应变速率的关系。

岩石变形性质为弹塑性或粘弹塑性变形,变形性质主要通过本构关系来反映,本构关系,即研究弹塑性或粘弹塑性本构关系。

岩石是一种非均匀的各向异性的材料,内含微裂纹,有时还有宏观的缺陷如裂纹、空穴、甚至节理等。

对这些缺陷存在且材料对缺陷敏感时往往容易发生事故。

脆性材料不同于韧性材料,对缺陷十分敏感。

由于岩石结构非均质和非连续的复杂性,到目前为止,还没有一个统一成熟的岩石力学本构关系。

研究岩石本构关系的方法,概括起来主要有以下两种:(1)唯象学方法①用实验或断裂理论研究岩石的破坏准则。

其基本点是假设在强度极限以前岩石本构关系可以近似用线性关系描述;②塑性力学,流变力学及损伤力学方法。

塑性力学有经典和广义塑性力学两部分。

经典塑性力学理论主要适用于金属材料,广义塑性理论适用于岩石材料。

内时理论和流变力学在描述岩石时效方面的特性中发挥重要作用。

损伤力学是以微观裂纹为出发点来深入研究介质的力学形态,及基础是内变量理论。

(2)物理力学机理方面岩石在初始状态下呈现微观缺陷,在本构理论中必须考虑其影响。

依据一定的细观或微观力学机理,建立细观或微观力学模型,并借助于一定的宏观力学方法以建立宏观本构关系。

建立岩石本构关系一般通过两个途径:①利用岩石单轴或三轴试验获得的应力应变曲线,通过数理统计的回归方法建立本构方程;②在实验观察的基础上,提出某种基本假设,从而建立一个力学模型,并推导出相应的本构方程。

二、岩石的本构关系分类本构关系分类以下三类:①弹性本构关系:线性弹性、非线性弹性本构关系。

②弹塑性本构关系:各向同性、各向异性本构关系。

③流变本构关系:岩石产生流变时的本构关系。

流变性是指如果外界条件不变,应变或应力随时间而变化的性质。

2.1 岩石弹性本构关系1. 平面弹性本构关系2. 空间问题弹性本构关系2.2 岩石塑性本构关系塑性状态时,应力-应变关系是多值的,取决于材料性质和加-卸载历史。

岩土工程中的弹塑性理论与分析技术

岩土工程中的弹塑性理论与分析技术

岩土工程中的弹塑性理论与分析技术岩土工程是研究土体和岩石力学行为以及相关工程问题的学科。

在岩土工程中,土体和岩石常常会受到外力的作用,从而产生弹性变形和塑性变形。

弹性变形是指在加载或卸载外力后,土体和岩石能够恢复到原始形状的能力。

而塑性变形是指土体和岩石在加载或卸载外力后,无法完全恢复原始形状的能力。

为了研究土体和岩石在弹性和塑性阶段的力学特性,人们提出了弹塑性理论与分析技术。

弹塑性理论与分析技术是将弹性理论与塑性理论相结合,用于描述土体和岩石在受力过程中的力学行为。

弹塑性理论首先研究土体和岩石的弹性行为。

弹性是指土体和岩石在外力作用下,能够恢复到原始形状的能力。

弹性理论利用应力和应变的关系来描述土体和岩石的弹性行为。

常见的弹性理论有胡克定律、泊松比理论等。

这些理论可以用来计算土体和岩石的弹性应力、应变和变形。

然而,在实际的工程中,土体和岩石常常会出现塑性变形。

塑性变形是指土体和岩石在加载或卸载外力后,无法完全恢复原始形状的能力。

塑性行为涉及到土体和岩石内部颗粒的移动和变形,因此塑性变形的研究要比弹性变形复杂得多。

弹塑性理论与分析技术的目的就是要研究土体和岩石的弹塑性行为,并提供相应的分析方法。

弹塑性理论与分析技术的主要内容包括:1. 弹性塑性模型:弹塑性模型是描述土体和岩石在加载或卸载过程中的应力和应变关系的数学模型。

常见的模型有Cam-Clay模型、Mohr-Coulomb模型、Drucker-Prager模型等。

这些模型可以用来计算土体和岩石的应力应变状态,从而得到土体和岩石的强度参数和变形特性。

2.弹塑性本构关系:弹塑性本构关系是描述土体和岩石在受力过程中力学行为的数学方程。

本构关系可以用来计算土体和岩石的应力、应变和变形。

常见的本构关系有弹性本构关系、弹塑性本构关系等。

这些本构关系可以用来计算土体和岩石的弹性和塑性变形。

3.弹塑性分析方法:弹塑性分析方法可以用来计算土体和岩石的应力、应变和变形。

岩石弹塑性本构模型

岩石弹塑性本构模型

常温常压下岩石的典型应力-应变曲线
如图所示为一般岩石在普通室温和大气压条件下进行 的单轴压缩试验典型应力-应变曲线,曲线大致分为四 个区域:
第I阶段(OA段):应力-应变曲线上弯,即随着 变形的增加,产生同样大小的应变所需增加的应 力越来越大; 第II阶段(AB段):应力-应变曲线接近与直线, 它的斜率即为岩石的弹性模量E,B点对应的应力 称为弹性极限或屈服应力;
从弹性状态开始第一次屈服的屈服条件称初始屈服条 件,他可以表示为:
Hale Waihona Puke f ij 0当产生了塑性变形,屈服条件的形式发生变化,此时 的屈服条件称后继屈服条件,他可以表示为:
f
ij
,
p ij
,
0
其中,
p ij
D p ijkl kl
p
ij
d
p ij
=
p
ij
d
p ij
p
p ij
第IV阶段(CD段):出现应力降低、应变增加的现象, 称为应变软化。
岩石单轴压缩试验表明:
(1)在塑性状态,弹塑性材料具有历史相关性或路径 相关性,这使得本构方程的表述要比非线性弹性复杂;
(2)岩石体积应变和平均压力之间不是线性的,岩石 体积应变既有静水压力作用下的压缩体积应变,又有 受剪引起的塑性体积应变。在硬化阶段,压缩体积应 变是主要的,表现为岩石的体积压缩。而在软化阶段, 岩石的塑性体积应变不断增大,岩石体积膨胀,称为 剪胀现象;
ij
=
1+vs Es
ij
vs Es
kkij
和 ij
K
s
2 3
Gs
kk ij
2Gs sij
式中:Es是材料的割线杨氏模量;vs是割线泊松比;

第7章岩体本构关系与强度理论

第7章岩体本构关系与强度理论

σ σc
σ
利用图7-10中的关系,有:
σ3
1 2
(1 3)
1 2
(1


3)


ctg 2
sin 2

1.双向压7 缩应4力2圆,2.双向拉压应力圆,
3..双向拉伸应力圆 图7-10 二次抛物型强度包络线
其中:


n( t )


1 3 2
sin 2
(
1 3 )2 2


2

(
1


3
)
2
规定:
1、σ1为最大主应力 、σ2 为中间主应力、 σ3 为最小主应力 ;
2、压应力为正,拉应力为负,剪应力以逆时 针为正。位移与应变的规定也一样。
二、 岩石弹性本构关系 1.平面弹性本构关系
据广义虎克定理有:
成E/(1- μ 2) ,μ换成μ/(1- μ)。
2. 空间问题弹性本构方程
x

1 E
x

( y
z )

y

1 E
y

( z
x )

z

1 E
z

( x

y )


yz

2(1 E
) yz , zx
1
1 f f2
2
f

f
)
σ1
1 tan2 c
1 3tg 2 (45 / 2) 2ctg(45 / 2)
σc
arc( tan2 θ)

岩石本构关系

岩石本构关系
按应力求解时,变换基本方程和边界条件 为应力分量的函数,求出应力分量后,代 入弹性本构关系,求出应变分量,再代入 几何方程求出位移分量。
3.2.5 平面问题的求解
按位移求解时,变换基本方程和边界条件 为位移分量函数,求出位移分量后,代入 几何方程求出变形分量,再代入本构方程 求出应力分量。

v y

xy


v x

u y
2、空间问题的几何方程(柯西方程)
x

u x
y

v y

z

w z

xy

v x

u y

yz

w y

v z

zx

w x

u z
3.2.3 物理方程(弹性本构关系)
混合求解时,变换部分基本方程和边界条 件为只包含部分未知函数,先求出这部分 未知函数以后,再应用适当方程求出其他 的未知函数。
以上这些方法我们已在弹性力学中学习了 这里不再熬述。
3.3 岩石流变理论
岩石的变形不仅表现出弹性和塑性,而且也具有流 变性质,岩石的流变包括蠕变、松弛和弹性后效。
平衡微分方程

几何方程

物理方程或本构方程

结合边界条件

应力场解 位移场解
求解岩石力学问题的基本步骤图解
3.2.1 平衡微分方程 1、平面问题的平衡微分方程:

x
x

yx
y

fx

0


xy
x

y
y

岩石本构模型.

岩石本构模型.

岩石材料本构模型建立方法一、岩石本构模型的定义岩石本构关系是指岩石在外力作用下应力或应力速率与其应变或应变速率的关系。

岩石变形性质为弹塑性或粘弹塑性变形,变形性质主要通过本构关系来反映,本构关系,即研究弹塑性或粘弹塑性本构关系。

岩石是一种非均匀的各向异性的材料,内含微裂纹,有时还有宏观的缺陷如裂纹、空穴、甚至节理等。

对这些缺陷存在且材料对缺陷敏感时往往容易发生事故。

脆性材料不同于韧性材料,对缺陷十分敏感。

由于岩石结构非均质和非连续的复杂性,到目前为止,还没有一个统一成熟的岩石力学本构关系。

研究岩石本构关系的方法,概括起来主要有以下两种:(1)唯象学方法①用实验或断裂理论研究岩石的破坏准则。

其基本点是假设在强度极限以前岩石本构关系可以近似用线性关系描述;②塑性力学,流变力学及损伤力学方法。

塑性力学有经典和广义塑性力学两部分。

经典塑性力学理论主要适用于金属材料,广义塑性理论适用于岩石材料。

内时理论和流变力学在描述岩石时效方面的特性中发挥重要作用。

损伤力学是以微观裂纹为出发点来深入研究介质的力学形态,及基础是内变量理论。

(2)物理力学机理方面岩石在初始状态下呈现微观缺陷,在本构理论中必须考虑其影响。

依据一定的细观或微观力学机理,建立细观或微观力学模型,并借助于一定的宏观力学方法以建立宏观本构关系。

建立岩石本构关系一般通过两个途径:①利用岩石单轴或三轴试验获得的应力应变曲线,通过数理统计的回归方法建立本构方程;②在实验观察的基础上,提出某种基本假设,从而建立一个力学模型,并推导出相应的本构方程。

二、岩石的本构关系分类本构关系分类以下三类:①弹性本构关系:线性弹性、非线性弹性本构关系。

②弹塑性本构关系:各向同性、各向异性本构关系。

③流变本构关系:岩石产生流变时的本构关系。

流变性是指如果外界条件不变,应变或应力随时间而变化的性质。

2.1 岩石弹性本构关系1. 平面弹性本构关系2. 空间问题弹性本构关系2.2 岩石塑性本构关系塑性状态时,应力-应变关系是多值的,取决于材料性质和加-卸载历史。

岩石弹塑性本构模型讲课资料

岩石弹塑性本构模型讲课资料

4、弹塑性本构方程
塑性状态时应力-应变关系是多值的,取决材料性质和加载
-卸载历史。
1)全量理论:描述塑性变形中全量关系的理论,称形变
理论或小变性理论。
汉基(Hencky)、依留申等依据类似弹性理论的广义胡克 定律,提出如下公式:
xx m 2Gxx m,xy Gxy
yy m 2G yy m ,yz Gyz
一、非线性弹性理论
在岩石力学中使用弹塑性理论是将岩石介质看作是一 种连续介质,严格来说,岩石介质的应力-应变关系都 是非线性的。
本构关系是关于一个物质质点的力学性质,一般认为 他是与应力和应变有关,而与应力梯度和应变梯度无 关。为了直观的描述质点的状态,引入应力空间和应 变空间两个概念。
用Cauchy方法给出的本构方程
和 dij K t2 3G t dkkij2G tdsij
式 中 : E t 是 材 料 的 切 线 杨 氏 模 量 ; v t 是 切 线 泊 松 比 ; K t 是 切 线 体 积 模 量 ; G t 是 切 线 剪 切 模 量 ;
二、应力空间表述的弹塑性本构 关系
1、应力-应变关系的多值性 同一应力有多个应变值与它对应,本构关系采用应力
硬化材料的屈服面模型
(1)等向硬化-软化模型:塑性变形发展时,屈服面做均匀 扩大(硬化)或均匀收缩(软化),如果 f * 0是初始屈服面,
那么等向硬化-软化模型的后继屈服面可表示为
ff*ijH 0
(2)随动硬化模型:塑性变形发展时,屈服面的大小和形状
保持不变,仅是整体的在应力空间中做平动,其后继屈服面可
按Cauchy方法可以这样定义弹性介质:在外力作用下, 物体内各点的应力状态和应变状态之间存在着一一对 应的关系,弹性介质的响应仅与当时的状态有关,而 与应力路径或应变路径无关,假设了应力和应变都是 瞬时发生的。

北京交通大学高等岩石力学2岩石的强度理论与弹塑性本构模型

北京交通大学高等岩石力学2岩石的强度理论与弹塑性本构模型
2 岩石的弹塑性本构模型与强度理论
主要内容: 岩石的非线性弹性本构 岩石的弹塑性本构 岩石的弹塑性耦合现象 岩石的强度理论
2.1 岩石的非线性弹性本构
弹性是指物体在外力作用下产生的变形,在外力 卸除后,变形可以完全恢复的特性,具有这种特性 的物体称为弹性体。
按着Cauchy方法定义:弹性体内各点的应力状 态和应变状态存在着一一对应关系。
d ij

1 t
Et
d ij

t
Et
d kk ij

d ij


K
t

2 3
Gt
d

kk
ij

2Gtd ij
在岩土工程计算中使用比较多是Duncan-Zhang模型
1

3

a
1 b1
1 3
(1 3)u
Ei
1
(1 3 ) 1
1 0
deij

deiej

deipj

1 2G
dSij

dSij
③ 基于Pramdtl-Reuss流动法则的增量本构
d ij

1 2
E
d
m ij

1 2G
dSij

dSij
塑性应变增量用塑性势函数表示
d
p ij

deipj

d
g
ij
若屈服函数为f,则 f=g 时为相关流动法则; f≠g 为非相关流动法则
若岩石的破坏符合M-C准则,则
(1 3 ) f

2c cos 2 3 sin 1 sin

岩土类材料弹塑性力学模型及本构方程

岩土类材料弹塑性力学模型及本构方程

岩土类材料的弹塑性力学模型及本构方程摘要:本文主要结合岩土类材料的特性,开展研究其在受力变形过程中的弹性及塑性变形的特点,描述简化的力学模型特征及对应的适用条件,同时在分析研究其弹塑性力学模型的基础上,探究了关于岩土类介质材料的各种本构模型,如M-C、D-P、Cam、D-C、L-D及节理材料模型等,分析对应使用条件,特点及公式,从而推广到不同的材料本构模型的研究,为弹塑性理论更好的延伸发展做一定的参考性。

关键词:岩土类材料,弹塑性力学模型,本构方程不同的固体材料,力学性质各不相同。

即便是同一种固体材料,在不同的物理环境和受力状态中,所测得的反映其力学性质的应力应变曲线也各不相同。

尽管材料力学性质复杂多变,但仍是有规律可循的,也就是说可将各种反映材料力学性质的应力应变曲线,进行分析归类并加以总结,从而提出相应的变形体力学模型。

第一章岩土类材料地质工程或采掘工程中的岩土、煤炭、土壤,结构工程中的混凝土、石料,以及工业陶瓷等,将这些材料统称为岩土材料。

岩土塑性力学与传统塑性力学的区别在于岩土类材料和金属材料具有不同的力学特性。

岩土类材料是颗粒组成的多相体,而金属材料是人工形成的晶体材料。

正是由于不同的材料特性决定了岩土类材料和金属材料的不同性质。

归纳起来,岩土材料有3点基本特性:1.摩擦特性。

2.多相特性。

3.双强度特性。

另外岩土还有其特殊的力学性质:1.岩土的压硬性,2.岩土材料的等压屈服特性与剪胀性,3.岩土材料的硬化与软化特性。

4.土体的塑性变形依赖于应力路径。

对于岩土类等固体材料往往在受力变形的过程中,产生的弹性及塑性变形具备相应的特点,物体本身的结构以及所加外力的荷载、环境和温度等因素作用,常使得固体物体在变形过程中具备如下的特点。

固体材料弹性变形具有以下特点:(1)弹性变形是可逆的。

物体在变形过程中,外力所做的功以能量(应变能)的形式贮存在物体内,当卸载时,弹性应变能将全部释放出来,物体的变形得以完全恢复; (2)无论材料是处于单向应力状态,还是复杂应力状态,在线弹性变形阶段,应力和应变成线性比例关系;(3)对材料加载或卸载,其应力应变曲线路径相同。

岩石力学与工程课后习题与思考解答

岩石力学与工程课后习题与思考解答

第一章岩石物理力学性质3.常见岩石的结构连接类型有哪几种?各有什么特点?答:岩石中结构连接的类型主要有两种,分别是结晶连接和胶结连接。

结晶连接指矿物颗粒通过结晶相互嵌合在一起。

这类连接使晶体颗粒之间紧密接触,故岩石强度一般较大,抗风化能力强;胶结连接指岩石矿物颗粒与颗粒之间通过胶结物连接在一起,这种连接的岩石,其强度主要取决于胶结物及胶结类型。

7.岩石破坏有几种形式?对各种破坏的原因作出解释。

答:岩石在单轴压缩载荷作用下,破坏形式包含三种:X状共轭面剪切破坏、单斜面剪切破坏和拉9.答:力-10.答:(若A<(2;(4)从C(3并不断向破坏段应力-应变曲线靠近,在循环荷载加载到一定程度,岩石将发生疲劳破坏,通过全应力-应变图可看出,高应力状态下加载循环荷载,岩石在较短时间内发生破坏,在低应力状态下加载循环荷载则需要较长时间才发生破坏。

11.在三轴压缩试验条件下,岩石的力学性质会发生哪些变化?答:三轴压缩试验条件下,岩石的抗压强度显着增大;岩石的变形显着增大;岩石的弹性极限显着增大;岩石的应力-应变曲线形态发生明显变化,表明岩石由弹性向弹塑性变化。

14.简述岩石在单轴压缩条件下的变形特征。

答:单轴压缩条件下岩石变形特征分四个阶段:(1)空隙裂隙压密阶段(0A段):试件中原有张开结构面或微裂隙逐渐闭合,岩石被压密,试件(2)弹性变形至微弹性裂隙稳定发展阶段(AC段):岩石发生弹性形变,随着载荷加大岩石发生轴向压缩,横向膨胀,总体积缩小。

(3)非稳定破裂发展阶段(CD段):微破裂发生质的变化,破裂不断发展直至试件完全破坏,体积由压缩转为扩容,轴向应变和体积应变速率迅速增大。

(4)破裂后阶段(D点以后):岩块承载力达到峰值强度后,内部结构遭到破坏,试件保持整体状,随着继续施压,裂隙快速发展,出现宏观断裂面,此后表现为宏观断裂面的块体滑移。

第三章地应力及其测量3.简述地壳浅部地应力分布的基本规例。

答:(2(3(4(5(6(74.答:水力致、局部应5.θ=0为Ps=σ2,利用上述公式,在测算出岩石抗拉强度T后,就能计算出原岩应力σ1和σ2。

岩石本构模型-4.3

岩石本构模型-4.3

岩石材料本构模型建立方法一、岩石本构模型的定义岩石本构关系是指岩石在外力作用下应力或应力速率与其应变或应变速率的关系。

岩石变形性质为弹塑性或粘弹塑性变形,变形性质主要通过本构关系来反映,本构关系,即研究弹塑性或粘弹塑性本构关系。

岩石是一种非均匀的各向异性的材料,内含微裂纹,有时还有宏观的缺陷如裂纹、空穴、甚至节理等。

对这些缺陷存在且材料对缺陷敏感时往往容易发生事故。

脆性材料不同于韧性材料,对缺陷十分敏感。

由于岩石结构非均质和非连续的复杂性,到目前为止,还没有一个统一成熟的岩石力学本构关系。

研究岩石本构关系的方法,概括起来主要有以下两种:(1)唯象学方法①用实验或断裂理论研究岩石的破坏准则。

其基本点是假设在强度极限以前岩石本构关系可以近似用线性关系描述;②塑性力学,流变力学及损伤力学方法。

塑性力学有经典和广义塑性力学两部分。

经典塑性力学理论主要适用于金属材料,广义塑性理论适用于岩石材料。

内时理论和流变力学在描述岩石时效方面的特性中发挥重要作用。

损伤力学是以微观裂纹为出发点来深入研究介质的力学形态,及基础是内变量理论。

(2)物理力学机理方面岩石在初始状态下呈现微观缺陷,在本构理论中必须考虑其影响。

依据一定的细观或微观力学机理,建立细观或微观力学模型,并借助于一定的宏观力学方法以建立宏观本构关系。

建立岩石本构关系一般通过两个途径:①利用岩石单轴或三轴试验获得的应力应变曲线,通过数理统计的回归方法建立本构方程;②在实验观察的基础上,提出某种基本假设,从而建立一个力学模型,并推导出相应的本构方程。

二、岩石的本构关系分类本构关系分类以下三类:①弹性本构关系:线性弹性、非线性弹性本构关系。

②弹塑性本构关系:各向同性、各向异性本构关系。

③流变本构关系:岩石产生流变时的本构关系。

流变性是指如果外界条件不变,应变或应力随时间而变化的性质。

2.1 岩石弹性本构关系1. 平面弹性本构关系2. 空间问题弹性本构关系2.2 岩石塑性本构关系塑性状态时,应力-应变关系是多值的,取决于材料性质和加-卸载历史。

第5讲-岩石的本构关系

第5讲-岩石的本构关系

反之亦然。
3
二、 岩石弹性本构关系 1.平面弹性本构关系
据广义虎克定理有:
x
1 E
x
( y
z )
y
1 E
y
( z
x )
z
1 E
z
( x
y )
yx
1 G
yz
,
zx
1 G
zz
,
xy
1 G
xy
式中:E为物体的弹性模量; 为泊松比;G为剪切弹性模量, E
G
2(1 ) 4
d
p ij
Q
ij
(7-18)
式中: 是一正的待定有限量,它的具体数值和材料硬化法则有关。
15
(7-18)式称为塑性流动法则,对于稳定的应变硬
化材料,Q 通常取与后继屈服函数F 相同的形式,当
Q=F 时,这种特殊情况称为关联塑性。
对于关联塑性,塑性流动法则可表示为:
d
p ij
F ij
其总应变增量表示为:
生了变化的屈服条件。
f
ij
,
p ij
,
0
式中:
ij
为总应力,
p ij
为塑性应力,
为标量的内变量,它可以代表塑性功,塑性体
积应变,或等效塑性应变。
屈服面:屈服条件在几何上可以看成是应力空间中的超曲面。
初始屈服面和后继屈服面。 10
分类:按塑性材料屈服面的大小和形状是否发生变化。 理想塑性材料(不变化)和硬化材料(变化)。
塑性加载:对材料施加应力增量后,材料从 一种塑性状态变化到另一种塑性状态,且有新的 塑性变形出现;
中性变载:对材料施加应力增量后,材料从一 种塑性状态变化到另一种塑性状态,但没有新的 塑性变形出现;

岩石力学岩体的本构关系与强度理论

岩石力学岩体的本构关系与强度理论

eij
si0j
(c 2G
3ip ) 2i0
si0jc
(1
2G
3ip ) 2c i0
eij
sij(21G
3ip ) 2i

3G ip ,有 3ip
i
2i
2G
所以: eij
1 2G
sij
这就是Hencky 本构方程,它 包括了弹性变形与塑性变形
eij
eiej
eipj
1 2G
sij
⑶ 应变偏量与应力偏量成比例
(2)非稳定蠕变:岩石承受的恒定荷载较大,当岩石应力超过 某一临界值时,变形随时间增加而增大,其变形速率逐渐增大,最 终导致岩体整体失稳破坏。
(3)岩石的长期强度:岩石的蠕变形式取决于岩石应力大小, 当应力小于某一临界值时,岩石产生稳定蠕变;当应力大于该值时, 岩石产生非稳定蠕变。则将该临界应力称为岩石的长期强度。
可见,σ、ε与时间t无关。
2、粘性介质及粘性元件(牛顿体)
d dt
tc
加载瞬间,无变形 即当t=0时,σ=σ0,ε=0,则 c=0
σ2
ωσ σ1
σ3
e2
ωdε e1
e3
3、Levy-Mises本构方程 因为ε0=0,所以eij=εij,εij=ε0δij+eij
⑴应变偏量的增量与应力偏量的关系
由假定⑴,并参照Page57和Page21
de1p s
de2p s
de3p s
1
2
3
d ip cos d
2 3
i
cos
d ip cos(d
⑴Lode试验 Lode参数代表Mohr圆心的相对位置
=2

第三章 岩石的弹塑性本构关系

第三章 岩石的弹塑性本构关系
Es • 由 Ks 3(1 2vs )
• 得:
Es Gs 2(1 s )
vs 1 1 Es 6Gs 9K s
Es 2Gs (1 s )
• (2-1)式可以写成
1 1 1 ij ij ij kk 2Gs 6Gs 9 K s
i 1, j 1,2,3 i 2, j 1,2,3 i 3, j 1,2,3
3. 克罗尼克尔符号 ij
• 定义:
0 ij 1
• 故有:
i j i j
ij ji
• 例1:在笛卡尔直角坐标系中:
i i i j ij
• 例2:单位矩阵可表示为


q 1 3
1 p ( 1 2 3 ) 3
用剪应力和平均应力来表示
• 有限元计算中常用的应力空间有:
J 2 ~ I1 空间,
I1 1 2 3
2.应力路径(stress route) 1)定义:应力空间中用来表示应力状态变 化历史的一条曲线。 2)举例: ① 不同应力空间中常规三轴加载条件下的
• i) 用三个主应力来表示:
• ii) 用二个主应力来表示:
• iii) 用剪应力和平均应力来表示
用剪应力和平均应力来表示 • 应力分解:
0 1 m 0 0 1 0 0 m 0 2 m 0 0 2 0 0 m 0 0 0 0 0 0 m 0 0 3 m 3
i 1,2,3 j 1,2,3
• 例6:
im mj ij
4. 置换符号 • 1)定义:
ijk
0 ijk 1 1

3第二章岩石力学弹塑性分析

3第二章岩石力学弹塑性分析

f f ( ij ) ( ) 0
(2) 随动强化模型: 随动强化模型是指屈服面的大小和形状不变, 它只是产生移动. 后继屈服面的一般方程为
p f f ( ij ij ) 0
α是材料参数,
(3) 混合强化模型: 其强化规律介于等向强化模型和随动强化模型 之间, 即既有扩大又有移动,后继屈服条件可写为
2 本构关系的复杂性: 在弹性阶段,弹性本构关系只用一组物理方程就可以描述,但在 塑性阶段,塑性本构关系通常要包含四组方程: (1) 屈服条件(初始屈服条件): 是用来判断是否从弹性状态到塑性 状态的条件或准则. 对于单向应力状态, 要判断它是否屈服, 只需判 断它的正应力是否达到屈服应力, 而对于复杂应力状态, 相应的应力 张量由六个应力分量决定,必须依据一定的准则判断, 这个准则就叫 做屈服条件或屈服准则. (2) 加(卸)载条件: 材料进入塑性状态以后继续塑性变形的过程, 叫做加载过程; 反之,推回到弹性状态的过程, 叫做卸载过程. 这两个 过程的本构关系是不一样的, 所以要进行判断. 判断加载的条件叫做 加载条件;判断卸载的条件叫做卸载条件; (3) 强化条件(后继屈服条件): 判断再次屈服的准则.材料屈服以后, 如果卸载后再加载,使其再次进入塑性状态, 这时候的屈服条件一般 不同与初始屈服条件, 称为强化条件(后继屈服条件).所以有些书把 (1)与(3)统称为屈服条件, 但分别称为初始屈服条件和后继屈服条件:
( 1 3 , 1 3 , 1 3 )
等倾线的方
1 2 3
(2) π平面 在应力空间中, 过坐标原点 并且以等倾线为法线的平面, 称 为π平面 . π平面 的方程为
σ2 L
1 2 3 0
4 屈服轨迹 π o σ1 屈服曲面与π平面的 交线称为屈服轨迹. 根据 研究,屈服轨迹具有如下 性质 σ3 (1) 对称性 (2) 外凸性:这是由Drucer公设得出的结论. Drucer公设:在加载和卸载的整个循环过程中,附加应力做功非 负.即

5.1-3 岩石力学与工程 岩石本构关系与强度理论

5.1-3 岩石力学与工程 岩石本构关系与强度理论

(5-12)
4. 塑性体的性能 1)当物体所受的应力小于屈服极限时,模型表现为 刚形体; 2)当物体所受的应力大于或等于屈服极限时,模型 表现为理想塑性体,即具有塑性流动的特点。
2014-4-21
14
(3)粘性元件(牛顿体N) 1.定义 牛顿流体是一种理想粘性体,即应力与应变速率成 正比,用符号N表示 。 2.力学模型
2014-4-21
10
5.3.3 基本元件
(1)弹性元件(虎克体H) 1.定义 如果材料在载荷作用下,其变形性质完全符合虎克 定律,即是一种理想的弹性体,则称此种材料为虎 克体,用符号H代表。 2.力学模型
图5-2 虎克体力学模型及其动态
2014-4-21 11
3.本构方程
K
(5-11)
(2)流变现象
1.流变性质:是指材料的应力-应变关系与时间因素 有关的性质。 2.流变现象:材料变形过程中具有时间效应的现象。 3.岩石的流变包括蠕变、松弛和弹性后效。
2014-4-21 6
4.蠕变:是当应力不变时,变形随时间的增加而增长 的现象。 5.松弛:是当应变不变时,应力随时间增加而减小的 现象。 6.弹性后效:是加载或卸载时,弹性应变滞后于应力 的现象。 7.粘性流动:即蠕变一段时间后卸载,部分应变永久 不恢复的现象。
图5-4 牛顿流体力学模型及其动态
2014-4-21 15
3.本构方程

d 或 dt
1

(5-13)
将(5-13)式积分,得:
t C
(5-14)
式中:C——积分常数,当时,C=0,则:
4.牛顿体的性质 1)从(5-15)式可以看出,当t=0时,ε=0。当应力 为 0 时,完成其相应的应变需要时间 t1 ,说明应变 与时间有关,牛顿体无瞬时变形。

岩土类材料弹塑性力学模型及本构方程

岩土类材料弹塑性力学模型及本构方程

岩土类材料的弹塑性力学模型及本构方程摘要:本文主要结合岩土类材料的特性,开展研究其在受力变形过程中的弹性及塑性变形的特点,描述简化的力学模型特征及对应的适用条件,同时在分析研究其弹塑性力学模型的基础上,探究了关于岩土类介质材料的各种本构模型,如M-C、D-P、Cam、D-C、L-D及节理材料模型等,分析对应使用条件,特点及公式,从而推广到不同的材料本构模型的研究,为弹塑性理论更好的延伸发展做一定的参考性。

关键词:岩土类材料,弹塑性力学模型,本构方程不同的固体材料,力学性质各不相同。

即便是同一种固体材料,在不同的物理环境和受力状态中,所测得的反映其力学性质的应力应变曲线也各不相同。

尽管材料力学性质复杂多变,但仍是有规律可循的,也就是说可将各种反映材料力学性质的应力应变曲线,进行分析归类并加以总结,从而提出相应的变形体力学模型。

第一章岩土类材料地质工程或采掘工程中的岩土、煤炭、土壤,结构工程中的混凝土、石料,以及工业陶瓷等,将这些材料统称为岩土材料。

岩土塑性力学与传统塑性力学的区别在于岩土类材料和金属材料具有不同的力学特性。

岩土类材料是颗粒组成的多相体,而金属材料是人工形成的晶体材料。

正是由于不同的材料特性决定了岩土类材料和金属材料的不同性质。

归纳起来,岩土材料有3点基本特性:1.摩擦特性。

2.多相特性。

3.双强度特性。

另外岩土还有其特殊的力学性质:1.岩土的压硬性,2.岩土材料的等压屈服特性与剪胀性,3.岩土材料的硬化与软化特性。

4.土体的塑性变形依赖于应力路径。

对于岩土类等固体材料往往在受力变形的过程中,产生的弹性及塑性变形具备相应的特点,物体本身的结构以及所加外力的荷载、环境和温度等因素作用,常使得固体物体在变形过程中具备如下的特点。

固体材料弹性变形具有以下特点:(1)弹性变形是可逆的。

物体在变形过程中,外力所做的功以能量〔应变能)的形式贮存在物体内,当卸载时,弹性应变能将全部释放出来,物体的变形得以完全恢复;(2)无论材料是处于单向应力状态,还是复杂应力状态,在线弹性变形阶段,应力和应变成线性比例关系;(3)对材料加载或卸载,其应力应变曲线路径相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
环中是可逆的,因而
(ij i0j )diej 0
i0j
于是有:
W DW D p ( ij i0j)dip j 0 i0j
(3) 德鲁克塑性公设的重要推论
W DW D p ( ij i0j)dip j 0 i0j
W D(ij a diji0 j)dip j 0
1 a 1 2
当i0j ij时,略去无穷小量 (ij i0j)dijp 0
不再是从原点开始的射线,如图所示。
(1) 理想弹塑性材料的加载和卸载准则
理想弹塑性材料在应力空间中的屈服面位置和形状是不 变的,当应力点保持在屈服面上时称之为加载,这时塑性变 形可任意增长(后面将证明,各塑性应变分量之间的比例不 是任意的,需要满足一定的关系);当应力点从屈服面上改 变屈服面之内时称之为卸载。如果以F(σij)=0表示屈服面, 则可以把上述加载和卸载准则用数学形式表示如下:
岩石弹塑性本构关系
3.1 塑性位势理论流动法则
模型三要素
屈服条件 流动法则
硬化规律
判断何时 达到屈服
屈服后塑性应变 增量的方向,也 即各分量的比值
决定给定的应力 增量引起的塑性 应变增量大小
本节内容
3.1.1 加载与卸载准则
1 加载曲面(后继屈服面)
由单向拉伸试验知道,对理想塑性材料,一旦屈服以后,其 应力保持常值(屈服应力),卸载后再重新加载时其屈服应力的大 小也不改变(没有强化现象)。对于强化材料则不同,在开始屈服 之后,随着塑性变形的发展其应力值继续增加。卸载后再重新加 载至开始屈服的应力时材料并不屈服,要加到原来卸载开始时的 应力,材料才再次屈服,因此重新加载时的屈服应力要高于原始 加载时的屈服应力,这就是强化现象。
与简单应力状态相同,当材料在复杂应力状态下进入塑性后 卸载,然后再次加载时,屈服函数也会随着发生过的塑性变形历 史而有所改变。当应力分量满足某种关系时,材料将重新进入塑 性状态而产生新的塑性变形。这种现象称为强化。材料在初始屈 服后再次进入塑性状态时,应力分量间所必须满足的函数关系称 为后继屈服条件或加载条件。该条件在应力空间中的图形称为后 继屈服曲面或加载曲面。
2 简单加载和复杂加载
初始屈服曲面 x tx 0 ,y ty 0 ,z tz 0 ,x y tx 0 ,y z ty 0 ,z z x tz 0x
其中xo,y 0,z0,x0y,y 0z,z0x分别为某一定
σij0
dσij
值,t为由零开始的单调增函数。此时显 Σ' Σ 然Lode应力参数 保持不变,从而使应力
在应力循环中,外载所作的 功为:
W
d 0 i0j ij
ij
不论材料是不是稳定,上述 总功不可能是负的,不然, 我们可通过应力循环不断从 材料中吸取能量,这是不可 能的。要判断材料稳定必须 依据德鲁克公设,即附加应 力所作的塑性功不小零得出
W 0 ij
iji0 j dij 0
由于弹性应变εije在应力循
化时,称之为卸载过程,如果用φ (σij,Hα)=0表示后继屈服
条件,则:
卸载:ddH
0 0
ij
dij
0
d
n
0
中性变载:ddH
0 0
ij
dij

ij
dij
0
d
n
0
应力空间
(3) 加工软化材料的加载和卸载准则
软化材料,应力变化矢量指向屈服面内部,须在应变空 间中判断加卸载
加载条件 ( ij , H ) 0
卸载:F(ij )
0,dF
F
ij
dij
0dn0
加载:F(ij
)
0,dF
F
ij
dij
=0dn
0
弹性状态:F(ij) 0
(2) 加工硬化材料的加载和卸载准则
加工硬化材料的屈服面随着塑性变形的发展而不断地变 化,加工硬化材料的加载和卸载准则与理想弹塑性材料不同, 对加工硬化材料,当dσ指向屈服面之外时才算加载,而当dσ 正好沿着屈服面变化时,屈服面不会发生变化,这种变化过 程叫做中性变载。它对应于应力状态从一个塑性状态过渡到 另一个塑性状态,但不会引起新的塑性变形。对单向应力状 态或理想弹塑性材料没有这个过程,当dσ向着屈服面内部变
O
张量(应力偏张量)的主方向保持不变,
这种加载方式称为简单加载或比例加载。 后继屈服曲面
在简单加载过程中,一点的应力状态在
(加载曲面)
应力空间中将沿矢径 移动,如图所示。
在复杂加载时,一点的应力张量各
分量不按比例增加, 在改变,应力张量
和应力偏张量的主方向也随之改变。一
点应力状态在应力空间中的运动轨迹就
设材料单元体经历任意应力历史后, 在应力σij0下处于平衡,即开始应力σij0在加 载面内,然后在单元体上缓慢地施加一个附 加力,使σij0达到σij,刚好在屈服面上,再继
续应加 变d载ε到ijpσ,ij+最dσ后ij,应在力这又一卸阶回段到,σij将0。产若生整塑个性
应力循环过程中,附加应力dσij所作的塑性 功不小于零,即附加应力的塑性功不出现负 值,则这种材料就是稳定的,这就是德鲁克 公设。
当i0j ij时, dijdipj 0
屈服面的外凸性
塑性应变增量方向 与加载曲面正交
1 屈服曲面的外凸性
(iji0 ) jdip j |A 0 A |d | p|co 0 s
此式限制了屈服面的形状: 对于任意应力状态,应力增量方向
卸载:
ij
d ij
0




: ij
d

ij
0
加载:
ij
d ij
0
d d
d
应变空间
3.1.2 德鲁克塑性公设
• 稳定材料与非稳定材料 • 德鲁克塑性公设的表述 • 德鲁克公设的重要推论 • 德鲁克塑性公设的评述 • 依留申塑性公设的表述
(1) 稳定材料与非稳定材料
德鲁克公设和依留申公设是传统塑性力学的基础,它把塑性势函 数与屈服函数紧密联系在一起。德鲁克公设只适用于稳定材料, 而依留申既适用于稳定材料,又适用于不稳定材料。
稳定材料
非稳定材料
附加应力对附加应变做功 附加应力对附加应变负做 为非负,即有 0 功,即 0
(应变硬化和理想塑性材料)
(应变软化材料)
(2) 德鲁克塑性公设的表述
德鲁克公设可陈述为:对于处在某一状态下的稳定材 料的质点(试件),借助于一个外部作用在其原有应力状态 之上,缓慢地施加并卸除一组附加压力,在附加应力的施 加和卸除循环内,外部作用所作之功是非负的。
相关文档
最新文档