2020年最新中考数学基础冲刺训练(二)(含答案)

合集下载

贵州省贵阳市2020年九年级数学中考基础冲刺训练(二)及答案

贵州省贵阳市2020年九年级数学中考基础冲刺训练(二)及答案

贵州省贵阳市2020年数学中考基础冲刺训练(二)一.选择题(每题3分,满分30分)1.已知x﹣2y=﹣2,则3+2x﹣4y的值是()A.0 B.﹣1 C.3 D.52.如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是()A.线段DE B.线段BE C.线段EF D.线段FG3.下面是几个一样的小正方体摆出的立体图形的三视图,由三视图可知小正方体的个数为()A.6个B.5个C.4个D.3个4.以下问题,适合用普查的是()A.调查某种灯泡的使用寿命B.调查中央电视台春节联欢会的收视率C.调查我国八年级学生的视力情况D.调查你们班学生早餐是否有喝牛奶的习惯5.如图,在菱形ABCD中,AB=2,∠B=60°,E、F分别是边BC、CD中点,则△AEF 周长等于()A.B.C.D.36.数轴上的点A表示的数是a,当点A在数轴上向右平移了6个单位长度后得到点B,若点A和点B表示的数恰好互为相反数,则数a是()A.6 B.﹣6 C.3 D.﹣37.如果方程x2﹣8x+15=0的两个根分别是Rt△ABC的两条边,△ABC最小的角为A,那么tan A的值为()A.B.C.D.或8.用蓝色和红色可以混合在一起调配出紫色,小明制作了如图所示的两个转盘,其中一个转盘两部分的圆心角分别是120°和240°,另一个转盘两部分被平分成两等份,分别转动两个转盘,转盘停止后,指针指向的两个区域颜色恰能配成紫色的概率是()A.B.C.D.9.在平面直角坐标系xOy中,若一次函数y=kx﹣1(k≠0)的图象经过点P,且y的值随x 值的增大而减少,则点P的坐标可以为()A.(2,1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,﹣1)10.如图,抛物线y=x2﹣7x+与x轴交于点A、B,把抛物线在x轴及其下方的部分记作C1,将C1向左平移得到C2,C2与x轴交于点B、D,若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A.﹣<m<﹣B.﹣<m<﹣C.﹣<m<﹣D.﹣<m<﹣二.填空题(每题4分,满分20分)11.一次数学测试后,某班40名学生的成绩被分为5组,第1﹣4组的频数分别为12、10、6、8,则第5组的频率是.12.如图,点P是反比例函数y=(k≠0)的图象上任意一点,过点P作PM⊥x轴,垂足为M.若△POM的面积等于2,则k的值等于.13.如图,正六边形ABCDEF的顶点B、C分别在正方形AGHI的边AG、GH上,如果AB=4,那么CH的长为.14.若不等式组的解集是﹣1<x≤1,则a=,b=.15.如图,在矩形ABCD中,AB<BC,点E为CD边的中点,连接AE并延长与BC的延长线交于点F,过点E作EM⊥AF交BC于点M,连接AM与BD交于点N,现有下列结论:①AM=MF;②ME2=MC•AM;③=(sin∠DAE)2;④点N是四边形ABME 的外接圆的圆心,其中正确结论的序号是.三.解答题16.(10分)体育老师为了解本校九年级女生1分钟“仰卧起坐”体育测试项目的达标情况,从该校九年级136名女生中,随机抽取了20名女生,进行了1分钟仰卧起坐测试,获得数据如下:收集数据:抽取20名女生的1分钟仰卧起坐测试成绩(个)如下:38 46 42 52 55 43 59 46 253835 45 51 48 57 49 47 53 5849(1)整理、描述数据:请你按如下分组整理、描述样本数据,把下列表格补充完整:范围25≤x≤2930≤x≤3435≤x≤3940≤x≤4445≤x≤4950≤x≤5455≤x≤59人数(说明:每分钟仰卧起坐个数达到49个及以上时在中考体育测试中可以得到满分)(2)分析数据:样本数据的平均数、中位数、满分率如下表所示:平均数中位数满分率46.8 47.5 45%得出结论:①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为;②该中心所在区县的九年级女生的1分钟“仰卧起坐”总体测试成绩如下:平均数中位数满分率45.3 49 51.2%请你结合该校样本测试成绩和该区县总体测试成绩,为该校九年级女生的1分钟“仰卧起坐”达标情况做一下评估,并提出相应建议.17.(8分)某商场销售进价为每件x元的上衣,先按进价的2倍作为定价,而实际销售时按定价打八折出售.(1)试用代数式表示:①每件上衣最初的定价为元;②每件上衣打八折后的销售价为元;③n件上衣打八折后的利润为元;(2)若该商场这次共购进每件120元的上衣100件,按以上办法售出80件后,其余按定价的六折销售全部卖完,问该商场在这批上衣买卖中,除支付销售费用1000元外,盈亏情况如何?18.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D是边AC的中点,CF⊥BD,垂足为点F,延长CF与边AB交于点E.求:(1)∠ACE的正切值;(2)线段AE的长.19.(10分)某水果店2400元购进一批葡萄,很快售完;又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)求第一批葡萄每件进价多少元?(2)若以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价至少打几折(利润=售价﹣进价)?20.(10分)如图,在等腰Rt△ABC中,∠BAC=90°,延长BA至点D,连结DC,过点B 作BE⊥DC于点E,F为BC上一点,FC=FE.连结AF,AE.(1)求证:FA=FE.(2)若∠D=60°,BC=10,求△AEF的周长.21.(10分)某种机器使用若干年后即被淘汰,该机器有一易损零件,为调查该易损零件的使用情况,随机抽取了100台已被淘汰的这种机器,经统计:每台机器在使用期内更换的该易损零件数均只有8,9,10,11这四种情况,并整理了这100台机器在使用期内更换的该易损零件数,绘制成如图所示不完整的条形统计图.(1)请补全该条形统计图;(2)某公司计划购买一台这种机器以及若干个该易损零件,用上述100台机器更换的该易损零件数的频率代替一台机器更换的该易损零件数发生的概率.①求这台机器在使用期内共更换了9个该易损零件的概率;②若在购买机器的同时购买该易损零件,则每个200元;若在使用过程中,因备用该易损零件不足,再购买,则每个500元.请你帮该公司用花在该易损零件上的费用的加权平均数进行决策:购买机器的同时应购买几个该易损零件,可使公司的花费最少?22.(10分)为满足市场需求,某超市在新年来临前夕,购进一款商品,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,如果每盒售价每提高1元,则每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?23.如图,AB为⊙O的直径,且AB=4,点C在半圆上,OC⊥AB,垂足为点O,P为半圆上任意一点(不与点C重合),过P点作PE⊥OC于点E,设△OPE的内心为M,连接OM、PM.(1)求∠OMP的度数;(2)当点P在半圆上从点B运动到点A时,求内心M所经过的路径长.24.我们知道:在小学已经学过“正方形的四条边都相等,正方形的四个内角都是直角”,试利用上述知识,并结合已学过的知识解答下列问题:如图1,在正方形ABCD中,G是射线DB上的一个动点(点G不与点D重合),以CG 为边向下作正方形CGEF.(1)当点G在线段BD上时,求证:∠DCG=∠BCF;(2)连接BF,试探索:BF,BG与AB的数量关系,并说明理由;(3)若AB=a(a是常数),如图2,过点F作FT∥BC,交射线DB于点T,问在点G 的运动过程中,GT的长度是否会随着G点的移动而变化?若不变,请求出GT的长度;若变化,请说明理由.25.如图,直线y=x+2与x轴交于点B,与双曲线C1:(x>0)交于点A,且A点的横坐标为2.(1)求双曲线C1的函数解析式;(2)若P为C1上的一动点,连接PO.①将PO绕O点顺时针旋转90°,得到点P′,问P′是否在某定曲线C1上运动,若是,试求C1的解析式,若不是,说明理由;②若△AOP的面积为,直接写出P点坐标为.参考答案一.选择题1.解:由x﹣2y=﹣2,得到原式=3+2(x﹣2y)=3﹣4=﹣1.故选:B.2.解:根据三角形中线的定义知线段BE是△ABC的中线,故选:B.3.解:综合三视图,这个立体图形的底层应该有3个,第二层应该有1个小正方体,因此构成这个立体图形的小正方体的个数是3+1=4个.故选:C.4.解:A、调查某种灯泡的使用寿命,不能使用普查,错误;B、调查中央电视台春节联欢会的收视率被调查的对象都较大,不能使用普查,错误;C、调查我国八年级学生的视力情况被调查的对象都较大,不能使用普查,错误;D、调查你们班学生早餐是否有喝牛奶的习惯被调查的对象较小,故D宜使用普查;故选:D.5.解:如图,连接AC,∵菱形ABCD,∠B=60°,∴△ABC是等边三角形,∵点E是BC的中点,∴AE=,∠EAC=30°,同理可得:AF=,∠FAC=30°,∴AE=AF,∠EAC=∠FAC,∴△AEF是等边三角形,∴△AEF的周长=3×=3.故选:B.6.解:由题意可得:B点对应的数是:a+6,∵点A和点B表示的数恰好互为相反数,∴a+a+6=0,解得:a=﹣3.故选:D.7.解:x2﹣8x+15=0,(x﹣3)(x﹣5)=0,则x﹣3=0,x﹣5=0,解得x=3或5,①当3和5为直角边时:tan A=.②当5为斜边时,另一直角边为4,tan A=.故选:D.8.解:列表如下:红红蓝红紫蓝紫紫共有6种情况,其中配成紫色的有3种,所以恰能配成紫色的概率==,故选:A.9.解:把(2,1)代入一次函数y=kx﹣1得:2k﹣1=1,k=1,因此不可以;把(﹣2,1)代入一次函数y=kx﹣1得:﹣2k﹣1=1,k=﹣1,因此可以;故选:B.10.解:∵抛物线y=x2﹣7x+与x轴交于点A、B∴B(5,0),A(9,0)∴抛物线向左平移4个单位长度∴平移后解析式y=(x﹣3)2﹣2当直线y=x+m过B点,有2个交点∴0=+mm=﹣当直线y=x+m与抛物线C2相切时,有2个交点∴x+m=(x﹣3)2﹣2x2﹣7x+5﹣2m=0∵相切∴△=49﹣20+8m=0∴m=﹣如图∵若直线y=x+m与C1、C2共有3个不同的交点,∴﹣<m<﹣故选:C.二.填空题11.解:根据题意得:40﹣(12+10+6+8)=40﹣36=4,则第5组的频率为4÷40=0.1,故答案为:0.1.12.解:∵△POM的面积等于2,∴|k|=2,而k<0,∴k=﹣4,故答案为:﹣4.13.解:正六边形的内角的度数==120°,则∠CBG=180°﹣120°=60°,∴∠BCG=30°,∴BG=BC=2,CG=BC=2,∴AG=AB+BG=6,∵四边形AGHI是正方形,∴GH=AG=6,∴CH=HG﹣CG=6﹣2,故答案为:6﹣2.14.解:∵解不等式①得:x>1+a,解不等式②得:x≤﹣∴不等式组的解集为:1+a<x≤﹣∵不等式组的解集是﹣1<x≤1,∴1+a=﹣1,﹣=1,解得:a=﹣2,b=﹣3故答案为:﹣2,﹣3.15.解:∵四边形ABC都是正方形,∴AD∥BF,∴∠DAE=∠F,∵∠AED=∠FEC,DE=EC,∴△ADE≌△FCE(AAS),∴AE=EF,∵ME⊥AF,∴MA=NF,故①正确,∵∠EMC=∠EMF,∠ECM=∠MEF,∴△MEC∽△MFE,∴ME:MF=MC:ME,∴ME2=MC•MF=MC•AM,故②正确,∵∠AEM=90°,∠ADE=∠ECM=90°,∴∠AED+∠MEC=90°,∠MEC+∠EMC=90°,∴∠AED=∠EMC,∴△ADE∽△ECM,∴=()2=()2=(tan∠DAE)2,故③错误,∵∠ABM=∠AEM=90°,∴A,B,M,E四点共圆,∴四边形的外接圆的圆心是线段AM的中点,显然点N不是AM的中点,故④错误.故答案为①②.三.解答题16.解:(1)补充表格如下:范围25≤x≤2930≤x≤3435≤x≤3940≤x≤4445≤x≤4950≤x≤5455≤x≤59人数 1 0 3 2 7 3 4 (2)①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为136×≈61,故答案为:61;②从平均数角度看,该校女生1分钟仰卧起坐的平均成绩高于区县水平,整体水平较好;从中位数角度看,该校成绩中等水平偏上的学生比例低于区县水平,该校测试成绩的满分率低于区县水平;建议:该校在保持学校整体水平的同时,多关注接近满分的学生,提高满分成绩的人数.17.解:(1)①每件上衣最初的定价为2x(元);②每件上衣打八折后的销售价为2x•0.8=1.6x(元);③n件上衣打八折后的利润为n•(1.6x﹣x)=0.6xn(元);(2)0.6×120×80+2×120×0.6×20﹣120×20﹣1000=5240(元),所以该商场在这批上衣买卖中盈利5240元.故答案为2x,1.6x,06xn.18.解:(1)∵∠ACB=90°,∴∠ACE+∠BCE=90°,又∵CF⊥BD,∴∠CFB=90°,∴∠BCE+∠CBD=90°,∴∠ACE=∠CBD,∵AC=4且D是AC的中点,∴CD=2,又∵BC=3,在Rt△BCD中,∠BCD=90°.∴tan∠BCD==,∴tan∠ACE=tan∠CBD=;(2)过点E作EH⊥AC,垂足为点H,在Rt△EHA中,∠EHA=90°,∴tan A=,∵BC=3,AC=4,在Rt△ABC中,∠ACB=90°,∴tan A==,∴=,设EH=3k,AH=4k,∵AE2=EH2+AH2,∴AE=5k,在Rt△CEH中,∠CHE=90°,∴tan∠ECA==,∴CH=k,∴AC=AH+CH=k=4,解得:k=,∴AE=.19.解:(1)设第一批葡萄每件进价x元,根据题意,得:×2=,解得x=120.经检验,x=120是原方程的解且符合题意.答:第一批葡萄每件进价为120元.(2)设剩余的葡萄每件售价打y折.根据题意,得:×150×80%+×150×(1﹣80%)×0.1y﹣5000≥640,解得:y≥7.答:剩余的葡萄每件售价最少打7折.20.(1)证明:∵BE⊥DC,∴∠EBC+∠ECB=∠CEF+∠BEF=90°,∵FC=FE,∴∠ECB=∠CEF,∴∠EBC=∠BEF,∴BF=FE=FC,在Rt△BAC中,AF是斜边BC上的中线,∴FA=FC,∴FA=FE;(2)解:∵∠D=60°,∠BAC=90°,∴∠ACD=30°,∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ECF=∠ACD+∠ACB=30°+45°=75°,由(1)得:FA=FE,AF是斜边BC上的中线,∴AF⊥BC,AF=BC=5,∵FC=FE,∴∠EFC=180°﹣2∠ECF=180°﹣2×75°=30°,∴∠AFE=90°﹣30°=60°,∴△AEF是等边三角形,∴△AEF的周长=3AF=3×5=15.21.解:(1)100﹣20﹣50﹣20=10,补全的条形统计图如图所示:(2)①这台机器在使用期内共更换了9个该易损零件的概率为:P==;②购买机器的同时购买8个该易损零件200×0.2+500×0.8=440元,购买机器的同时购买9个该易损零件200×0.5+500×0.5=350元,购买机器的同时购买10个该易损零件200×0.1+500×0.9=470元,购买机器的同时购买11个该易损零件200×0.2+500×0.8=440元,因此,购买机器的同时应购买9个该易损零件,可使公司的花费最少.22.解:(1)由题意得销售量y=700﹣20(x﹣45)=﹣20x+1600(x≥45);(2)P=(x﹣40)(﹣20x+1600)=﹣20x2+2400x﹣64000=﹣20(x﹣60)2+8000,∵x≥45,a=﹣20<0,=8000元∴当x=60时,P最大值即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元.23.解:(1)∵△OPE的内心为M,∴∠MOP=∠MOC,∠MPO=∠MPE,∴∠PMO=180°﹣∠MPO﹣∠MOP=180°﹣(∠EOP+∠OPE),∵PE⊥OC,即∠PEO=90°,∴∠PMO=180°﹣(∠EOP+∠OPE)=180°﹣(180°﹣90°)=135°,(2)如图,∵OP=OC,OM=OM,而∠MOP=∠MOC,∴△OPM≌△OCM,∴∠CMO=∠PMO=135°,所以点M在以OC为弦,并且所对的圆周角为135°的两段劣弧上(和);点M在扇形BOC内时,过C、M、O三点作⊙O′,连O′C,O′O,在优弧CO取点D,连DC,DO,∵∠CMO=135°,∴∠CDO=180°﹣135°=45°,∴∠CO′O=90°,而OA=2cm,∴O′O=OC=×2=,∴弧OMC的长==π(cm),同理:点M在扇形AOC内时,同①的方法得,弧ONC的长为πcm,所以内心M所经过的路径长为2×π=πcm.24.解:(1)∵四边形ABCD和四边形EFCG是正方形,∴CD=CB,CG=CF,∠BCD=∠FCG=90°,∵∠DCG=90°﹣∠BCG,∠BCF=90°﹣∠BCG,∴∠DCG=∠BCF;(2)BF+BG=AB,理由:在Rt△CDG和△CBF中,,∴△CDG≌CBF(SAS),∴DG=BF,在Rt△ABD中,AD=AB,∴BD=AB,∵BD=DG+BG=BF+BG,∴BF+BG=AB;(3)∵BD是正方形ABCD的对角线,∴∠CBD=∠CDB=45°,由(2)知,△CDG≌CBF(SAS),∴DG=BF,∠CDG=∠CBF=45°,∴∠DBF=∠CBD+∠CBF=90°,∴∠FBT=90°,∵FT∥CB,∴∠BTF=∠CBD=45°,∴∠BFT=45°=∠BTF,∴BF=BT,∴DG=BT,∴GT=BG+BT=BG+DG=BD=AB=a.25.解:(1)当x=2时,y=x+2=2+2=4,∴点A坐标为(2,4),则k=2×4=8,∴双曲线C1的函数解析式为y=;(2)①点P′在双曲线C2:y=﹣上运动,设P (m ,) (m >0),如图,过点P 作PC ⊥x 轴于点C ,过点P ′作P ′D ⊥y 轴于点D ,则∠PCO =∠P ′DO =∠POP ′=90°,∴∠POC =∠P ′OD ,又∵OP =OP ′,∴△OPC ≌△OP ′D (AAS ),∴OD =OC =m ,P ′D =PC =,∴P ′(m ,﹣),则点P ′在双曲线C 2:y =﹣上运动.②设P (n ,),如图2,过点A 作AE ⊥y 轴于点E ,作PF ⊥x 轴于点F ,延长EA 、FP 交于点M ,则四边形OEMF 是矩形,M (n ,4),∵A (2,4),∴AM =n ﹣2,PM =4﹣,∵S △AOP =S 矩形OEMP ﹣S △AOE ﹣S △POF ﹣S △AMP , ∴=4n ﹣4﹣4﹣(n ﹣2)(4﹣),整理,得:3n2﹣16n﹣12=0,解得n=6或n=﹣(舍),当n=6时,=,∴点P(6,).故答案为:(6,).。

2020中考数学冲刺模拟试题含答案

2020中考数学冲刺模拟试题含答案

2020年中考数学模拟试题(二)一、选一选,相信自己的判断!(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合题目要求的,不涂、错涂或涂的代号超过一个,一律得0分) 1.2-的相反数是A. 2B. -1C. 12D. 12-2.下列计算正确的是A .a 2·a 3=a 6B .(x 3)2=x 6C .3m +2n =5mnD .y 3·y 3=y3.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是4.已知⊙O 1的半径是4cm ,⊙O 2的半径是2cm ,O 1O 2=5cm ,则两圆的位置关系是A .外离B .外切C .相交D .内含 5.下列命题:①正多边形都是轴对称图形;②通过对足球迷健康状况的调查可以了解我国公民的健康状况;③把aa --21)2(根号外的因式移到根号内后,其结果是a --2;④如果一个角的两边与另一个角的两边分别平行,那么这两个角相等.其中真命题的个数有个 个 个 个6.如图,数轴上A 、B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为 A .―2― 3 B .―1―3C .―2+ 3D .1+37.如图,均匀地向此容器注水,直到把容器注满.在注水的过程中,下列图象能大致反映水面高度h随时间t变化规律的是AB8.在△ABC 中,∠C=90º,BC =4cm ,AC =3cm .把△ABC 绕点A 顺时针旋转90º后,得到△AB 1C 1(如图所示),则点B 所走过的路径长为A .52cmB . 5π4cmC . 5π 2cm D .5πcm9.如图,有一矩形纸片ABCD ,AB =6,AD =8,将纸片折叠使AB 落在AD 边上,折痕为AE ,再将△ABE 以BE 为折痕向右折叠,AE 与CD 交于点F ,则 CFCD的值是A .1B . 1 2C . 1 3D . 14A A AB B BCD CE D E CD10.若函数22(2)2x x y x ⎧+=⎨⎩ ≤ (x>2),则当函数值y =8时,自变量x 的值是AB .4 C或4 D .411.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是A . 1 2B . 1 3C . 1 6D . 1 812.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的 正方形图案,已知大正方形面积为49,小正方形面积为4,若用x ,y 表示直角三角形的两直角边(x y >),下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=. 其中说法正确的是A .①② B. ①②③ C. ①②④ D. ①②③④二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将yxAE BCDF H· ·· 结果直接填写在答题卡相应位置上)13.如图,数轴上表示的是一个不等式组的解集,这个不等式组的整.数解..是_______________。

2020年广东省深圳市九年级数学中考基础冲刺训练(二)(含答案)

2020年广东省深圳市九年级数学中考基础冲刺训练(二)(含答案)

2020年广东省深圳市数学中考基础冲刺训练(二)一.选择题1.与﹣3的和为0的有理数是()A.﹣3 B.3 C.﹣D.2.据统计响应“光盘行动”,全国每年可节约食物总量约50 000 000 000千克,这个数据用科学记数法表示为()A.0.5×1011千克B.50×109千克C.5×1010千克D.5×109千克3.图中立体图形的主视图是()A.B.C.D.4.观察下列图形,是中心对称图形的是()A.B.C.D.5.某公司销售部有营销人员15 名,销售部为了制定某种商品的月销售定额,统计了这15名人某月销售量(如统计图),销售部负责人为调动大部分营销人员工作积极性,确定每位销售员下个月的销售定额比较合适的依据应是月销售量的()A.平均数B.极差数C.最小值D.中位数和众数6.下列计算正确的是()A.+=B.7m﹣4m=3C.a5•a3=a8D.(a3)2=a97.如果一次函数y=2x﹣4的图象与另一个一次函数y1的图象关于y轴对称,那么函数y1的图象与x轴的交点坐标是()A.(2,0)B.(﹣2,0)C.(0,﹣4)D.(0,4)8.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30°B.40°C.50°D.60°9.10年前,小明妈妈的年龄是小明的6倍,10年后,小明妈妈的年龄是小明的2倍,小明和他妈妈现在的年龄分别是多少岁?若设小明和他妈妈现在分别是x岁和y岁,根据题意可列方程组为()A.B.C.D.10.如图,AB是⊙O的直径,点C为⊙O外一点,CA、CD是⊙O的切线,A、D为切点,连接BD、AD.若∠ACD=48°,则∠DBA的大小是()A.32°B.48°C.60°D.66°11.如图所示,抛物线y=ax2+bx+c的顶点为B(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,以下结论:①b2﹣4ac=0,②2a﹣b=0,③a+b+c<0;④c﹣a=3,其中正确的有()个.A.1 B.2 C.3 D.412.如图,已知反比例函数y=的图象过直角三角形OAB斜边OB的中点D,与直角边AB 相交于C,连结AD、OC,△OAB的周长为4+8.AD=4.下列结论:①k=﹣1;②AC:CB=1:3;③△OBC的面积等于3;④k=﹣2,其中正确的是()A.①②③B.②③④C.①②D.③④二.填空题13.若x2+2(3﹣m)x+25可以用完全平方式来分解因式,则m的值为.14.张老师上班途中要经过1个十字路口,十字路口红灯亮30秒、黄灯亮5秒、绿灯亮25秒,张老师希望上班经过路口是绿灯,但实际上这样的机会是.15.如图,在Rt△ABC中,∠C=90°,AC=5,以AB为一边向三角形外作正方形ABEF,正方形的中心为O,OC=4,则BC边的长为.16.如图.Rt△ABC中,∠BAC=90°,O是三角形内一点,连结OA,OB,OC,满足S△ABC=2S△BOC =4S△AOB,则的值为.三.解答题17.计算:()﹣2﹣+(﹣4)0﹣cos45°.18.先化简,再求值:(2﹣)÷,其中x=﹣3.19.十九的大召开引起了广大中学生的广泛关注,中学生主要通过看电视、上网査看、看报纸、听广播及其他形式学习和了解十九大精神.某校为了了解学生获取十九大知识的渠道,随机调查了若干名学生,根据调查结果绘制了两幅不完整的统计图表如下:了解方式频数频率看电视18 0.3上网a0.4听广播 6 m看报纸b0.15其他 3 n (1)本次调查的人数是;(2)a=,b=,m=,n=;(3)补全条形图;(4)若该校有2000名学生,请你估计该校通过看电视和上网获取十九大知识的共有多少人?20.已知,如图所示,在Rt△ABC中,∠C=90°,(1)作∠B的平分线BD交AC于点D;(要求:尺规作图,保留作图痕迹,不写作法.)(2)若CD=6,AD=10,求AB的长.21.某服装店用4000元购进一批某品牌的文化衫若干件,很快售完,该店又用6300元钱购进第二批这种文化衫,所进的件数比第一批多40%,每件文化衫的进价比第一批每件文化衫的进价多10元,请解答下列问题:(1)求购进的第一批文化衫的件数;(2)为了取信于顾客,在这两批文化衫的销售中,售价保持了一致.若售完这两批文化衫服装店的总利润不少于4100元钱,那么服装店销售该品牌文化衫每件的最低售价是多少元?22.如图,在平面直角坐标系中,A(0,4),B(3,4),P为线段OA上一动点,过O,P,B三点的圆交x轴正半轴于点C,连结AB,PC,BC,设OP=m.(1)求证:当P与A重合时,四边形POCB是矩形.(2)连结PB,求tan∠BPC的值.(3)记该圆的圆心为M,连结OM,BM,当四边形POMB中有一组对边平行时,求所有满足条件的m的值.(4)作点O关于PC的对称点O',在点P的整个运动过程中,当点O'落在△APB的内部(含边界)时,请写出m的取值范围.23.如图①,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A,B,C 三点,其中点A的坐标为(﹣3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.(1)填空:b=,c=;(2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由;(3)点M在抛物线上,且△AOM的面积与△AOC的面积相等,求出点M的坐标.参考答案一.选择题1.解:与﹣3的和为0的有理数是3,故选:B.2.解:50 000 000 000=5×1010,故选:C.3.解:从正面看,共有两层,下面三个小正方体,上面有两个小正方体,在右边两个.故选:B.4.解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选:D.5.解:这15名营销人员销售的平均数为=320(件),众数为210件,中位数为210件,极差为1800﹣120=1680件,若以平均数320件为每位销售员下个月的销售定额,有2位营销员能达标,不适合;若以极差数1680件为每位销售员下个月的销售定额,有1位营销员能达标,不适合;若以最小值120件为每位销售员下个月的销售定额,所有营销员都能达标,不适合;若以中位数和众数为每位销售员下个月的销售定额,有10位营销员能达标,较为适合;故选:D.6.解:A、+无法计算,故此选项错误;B、7m﹣4m=3m,故此选项错误;C、a5•a3=a8,正确;D、(a3)2=a6,故此选项错误;故选:C.7.解:∵一次函数y=kx+b的图象与直线y=2x﹣4关于y轴对称,∴k=﹣2,b=﹣4,∴一次函数的解析式为:y=﹣2x﹣4,∵当y=0时,x=﹣2,∴这个一次函数的图象与x轴交点的坐标为(﹣2,0).故选:B.8.解:如图,∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故选:C.9.解:设小明和他妈妈现在分别是x岁和y岁.由题意得,,故选:B.10.解:∵CA、CD是⊙O的切线,∴CA=CD,∵∠ACD=48°,∴∠CAD=∠CDA=66°,∵CA⊥AB,AB是直径,∴∠ADB=∠CAB=90°,∴∠DBA+∠DAB=90°,∠CAD+∠DAB=90°,∴∠DBA=∠CAD=66°,故选:D.11.解:抛物线与x轴有两个交点,∴△>0,∴b2﹣4ac>0,故①错误;由于对称轴为x=﹣1,∴x=﹣3与x=1关于x=﹣1对称,∵x=﹣3时,y<0,∴x=1时,y=a+b+c<0,故③正确;∵对称轴为x=﹣=﹣1,∴2a﹣b=0,故②正确;∵顶点为B(﹣1,3),∴y=a﹣b+c=3,∴y=a﹣2a+c=3,即c﹣a=3,故④正确;故选:C.12.解:在Rt△AOB中,AD=4,AD为斜边OB的中线,∴OB=2AD=8,由周长为4+8,得到AB+AO=4,设AB=x,则AO=4﹣x,根据勾股定理得:AB2+OA2=OB2,即x2+(4﹣x)2=82,整理得:x2﹣4x+8=0,解得:x1=2+2,x2=2﹣2,∴AB=2+2,OA=2﹣2,∴S△AOB=AB•OA=×(2+2)×(2﹣2)=4,过D作DE⊥x轴,交x轴于点E,可得E为AO中点,∴OE=OA=﹣(假设OA=2﹣2,若OA=2+2,求出结果相同),在Rt△DEO中,利用勾股定理得:DE==+,∴k=﹣DE•OE=﹣(+)×(﹣)=﹣2,∴S△COA =|k|=1,S△BCO=4﹣1=3,∵△BCO与△CAO同高,且面积之比为3:1,∴BC:AC=3:1,则其中正确的选项有②③④.故选:B.二.填空题13.解:∵x2+2(3﹣m)x+25可以用完全平方式来分解因式,∴2(3﹣m)=±10解得:m=﹣2或8.故答案为:﹣2或8.14.解:张老师上班经过路口是绿灯的机会是:==,故答案为:.15.解:作EQ⊥x轴,以C为坐标原点建立直角坐标系,CB为x轴,CA为y轴,则A(0,5).设B(x,0),由于O点为以AB一边向三角形外作正方形ABEF的中心,∴AB=BE,∠ABE=90°,∵∠ACB=90°,∴∠BAC+∠ABC=90°,∠ABC+∠EBQ=90°,∴∠BAC=∠EBQ,在△ABC和△BEQ中,,∴△ACB≌△BQE(AAS),∴AC=BQ=5,BC=EQ,设BC=EQ=x,∴O为AE中点,∴OM为梯形ACQE的中位线,∴OM=,又∵CM=CQ=,∴O点坐标为(,),根据题意得:OC=4=,解得:x=3,则BC=3.故答案为:3.16.解:过点O作OD⊥AB于D,OE⊥AC于E,∴∠ADO=∠AEO=90°,∵∠DAE=90°,∴四边形ADOE是矩形,∴OD=AE,OE=AD,∵S△ABC =2S△BOC=4S△AOB,∴S△AOB =S△AOC=S△ABC,设AB=c,AC=b,OD=m,OE=n∴cm=×bcbn=bc∴b=4m,c=4n∴BD=3n,CE=3m∴OB2=9n2+m2OC2=9m2+n2OA2=m2+n2则==10故答案为:10.三.解答17.解:原式=4﹣3+1﹣×=2﹣1=1.18.解:原式=×=,把x=﹣3代入得:原式===1﹣2.19.解:(1)本次调查的人数是18÷0.3=60人,故答案为:60;(2)a=60×0.4=24、b=60×0.15=9、m=6÷60=0.1、n=3÷60=0.05,故答案为:24、9、0.1、0.05;(3)补全图形如下:(4)估计该校通过看电视和上网获取十九大知识的共有2000×(0.3+0.4)=1400(人).20.解:(1)作图如下:(2)过点D作DE⊥AB于点E,∵DC⊥BC,BD平分∠ABC,∴DE=DC=6,BC=BE,∵AD=10,∴AE=8,∵BE=BC,设BC=x,则AB=x+8,∴在Rt△ABC中,由勾股定理得:x2+162=(x+8)2,解得:x=12,∴AB=12+8=20.21.解:(1)设第一批购进文化衫x件,根据题意得:+10=,解得:x=50,经检验,x=50是原方程的解,且符合题意.答:第一批购进文化衫50件.(2)第二批购进文化衫(1+40%)×50=70(件).设该服装店销售该品牌文化衫每件的售价为y元,根据题意得:(50+70)y﹣4000﹣6300≥4100,解得:y≥120.答:该服装店销售该品牌文化衫每件最低售价为120元.22.解:(1)∵∠COA=90°∴PC是直径,∴∠PBC=90°∵A(0,4)B(3,4)∴AB⊥y轴∴当A与P重合时,∠OPB=90°∴四边形POCB是矩形(2)连结OB,(如图1)∴∠BPC=∠BOC∵AB∥OC∴∠ABO=∠BOC∴∠BPC=∠BOC=∠ABO∴tan∠BPC=tan∠ABO=(3)∵PC为直径∴M为PC中点①如图2,当OP∥BM时,延长BM交x轴于点N ∵OP∥BM∴BN⊥OC于N∴ON=NC,四边形OABN是矩形∴NC=ON=AB=3,BN=OA=4设⊙M半径为r,则BM=CM=PM=r∴MN=BN﹣BM=4﹣r∵MN2+NC2=CM2∴(4﹣r)2+32=r2解得:r=∴MN=4﹣∵M、N分别为PC、OC中点∴m=OP=2MN=②如图3,当OM∥PB时,∠BOM=∠PBO∵∠PBO=∠PCO,∠PCO=∠MOC∴∠OBM=∠BOM=∠MOC=∠MCO在△BOM与△COM中∴△BOM≌△COM(AAS)∴OC=OB==5∵AP=4﹣m∴BP2=AP2+AB2=(4﹣m)2+32∵∠ABO=∠BOC=∠BPC,∠BAO=∠PBC=90°∴△ABO∽△BPC∴∴PC=∴PC2=BP2=[(4﹣m)2+32]又PC2=OP2+OC2=m2+52∴[(4﹣m)2+32]=m2+52解得:m=或m=10(舍去)综上所述,m=或m=(4)∵点O与点O'关于直线对称∴∠PO'C=∠POC=90°,即点O'在圆上当O'与O重合时,得m=0当O'落在AB上时,则m2=4+(4﹣m)2,得m=当O'与点B重合时,得m=∴0≤m≤或m=23.解:(1)设抛物线的解析式为y=a(x+3)(x﹣4).将a=﹣代入得:y=﹣x2+x+4,∴b=,c=4(2)在点P 、Q 运动过程中,△APQ 不可能是直角三角形.理由如下:连结QC .∵在点P 、Q 运动过程中,∠PAQ 、∠PQA 始终为锐角,∴当△APQ 是直角三角形时,则∠APQ =90°.将x =0代入抛物线的解析式得:y =4,∴C (0,4).∵AP =OQ =t ,∴PC =5﹣t ,∵在Rt △AOC 中,依据勾股定理得:AC =5在Rt △COQ 中,依据勾股定理可知:CQ 2=t 2+16在Rt △CPQ 中依据勾股定理可知:PQ 2=CQ 2﹣CP 2,在Rt △APQ 中,AQ 2﹣AP 2=PQ 2 ∴CQ 2﹣CP 2=AQ 2﹣AP 2,即(3+t )2﹣t 2=t 2+16﹣(5﹣t )2解得:t =4.5,∵由题意可知:0≤t ≤4∴t =4.5不合题意,即△APQ 不可能是直角三角形.(3 )∵AO 是△AOM 与△AOC 的公共边∴点M 到AO 的距离等于点C 到AO 的距离即点M 到AO 的距离等于CO所以M 的纵坐标为4或﹣4把y =4代入y =﹣x 2+x +4得 ﹣x 2+x +4=4解得x 1=0,x 2=1把y =﹣4代入y =﹣x 2+x +4得 ﹣x 2+x +4=﹣4解得x 1=,x 2=M (1,4)或M (,﹣4)或M (,﹣4)。

2020年九年级数学中考基础冲刺训练(含答案)

2020年九年级数学中考基础冲刺训练(含答案)

2020年数学中考基础冲刺训练一.选择题(每题3分,满分24分)1.﹣7的绝对值是()A.B.C.7 D.﹣72.据统计,今年“五一”小长假期间,我市约有26.8万人次游览了植物园和动物园,则数据26.8万用科学记数法表示正确的是()A.268×103B.26.8×104C.2.68×105D.0.268×1063.下列运算正确的是()A.(a2)3=a5B.a3+a3=2a6C.a3÷a3=0 D.3a2•5a3=15a54.若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为()A.B.1 C..4 D.35.在平面直角坐标系中,线段AB的端点分别为A(2,0),B(0,4),将线段AB平移到A1B1,且点A1的坐标为(8,4),则线段A1B1的中点的坐标为()A.(7,6)B.(6,7)C.(6,8)D.(8,6)6.下列几何体是由4个相同的小正方体搭成的,其中左视图与主视图相同的是()A.B.C.D.7.如图是一个圆柱形输水管横截面的示意图,阴影部分为有水部分,如果水面AB的宽为8cm,水面最深的地方高度为2cm,则该输水管的半径为()A.3cm B.5cm C.6cm D.8cm8.已知小明的家、体育场、文具店在同一直线上,图中的信息反映的过程是:小明从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示小明离家的距离.依据图中的信息,下列说法错误的是()A.体育场离小明家2.5kmB.体育场离文具店1kmC.小明从体育场出发到文具店的平均速度是50m/minD.小明从文具店回家的平均速度是60m/min二.填空题(满分24分,每小题3分)9.化简:(a>0)=.10.单项式﹣的系数是,次数分别是.11.因式分解:a3﹣9a=.12.下列数据:11,13,9,17,14,17,10的中位数是.13.如图,AB∥CD,∠B=120°,∠D=145°,则∠BED等于°.14.已知圆锥的底面半径为3,母线长为7,则圆锥的侧面积是.15.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1)、B(1,﹣2)两点.一次函数的值大于反比例函数的值时x的取值范围是.16.如图,四边形ABCD中,CD=BC=4,AB=1,E为BC中点,∠AED=120°,则AD 的最大值是.三.解答题17.(6分)化简求值:,其中x=.18.(6分)解不等式组:并将解集在数轴上表示.19.(6分)正方形ABCD中,点P是边CD上的任意一点,连接BP,O为BP的中点,作PE⊥BD于E,连接EO,AE.(1)若∠PBC=α,求∠POE的大小(用含α的式子表示);(2)用等式表示线段AE与BP之间的数量关系,并证明.20.(7分)某县为落实“精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成:若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲乙两队合作完成该工程需要多少天?21.(8分)我市去年成功举办2018郴州国际休闲旅游文化节,获评“全国森林旅游示范市”.我市有A,B,C,D,E五个景区很受游客喜爱.一旅行社对某小区居民在暑假期间去以上五个景区旅游(只选一个景区)的意向做了一次随机调查统计,并根据这个统计结果制作了如下两幅不完整的统计图:(1)该小区居民在这次随机调查中被调查到的人数是人,m=,并补全条形统计图;(2)若该小区有居民1200人,试估计去B地旅游的居民约有多少人?(3)小军同学已去过E地旅游,暑假期间计划与父母从A,B,C,D四个景区中,任选两个去旅游,求选到A,C两个景区的概率.(要求画树状图或列表求概率)参考答案一.选择1.解:∵﹣7<0,∴|﹣7|=7.故选:C.2.解:将26.8万用科学记数法表示为:2.68×105.故选:C.3.解:(A)原式=a6,故A错误;(B)原式=2a3,故B错误;(C)a有意义时,原式=1,故C错误;故选:D.4.解:由题意可知:a、b是方程x2﹣4x+1=0的两个不同的实数根,∴由根与系数的关系可知:ab=1,a+b=4,∴a2+1=4a,b2+1=4b,∴原式=+===1,故选:B.5.解:∵线段AB的端点分别为A(2,0),B(0,4),将线段AB平移到A1B1,且点A1的坐标为(8,4),∴B1的坐标为:(6,8),则线段A1B1的中点的坐标为:(7,6).故选:A.6.解:A、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;B、左视图为,主视图为,左视图与主视图相同,故此选项符合题意;C、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;D、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;故选:B.7.解:如图所示:过点O作OD⊥AB于点D,连接OA,∵OD⊥AB,∴AD=AB=4cm,设OA=r,则OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5cm.∴该输水管的半径为5cm;故选:B.8.解:由函数图象可知,体育场离小明家2.5km,故选项A不合题意;由函数图象可知,小明家离文具店1.5千米,离体育场2.5千米,所以体育场离文具店1千米,故选项B不合题意;小明从体育场出发到文具店的平均速度为:1000÷(45﹣30)=(m/min),故选项C符合题意;小明从文具店回家的平均速度是1500÷(90﹣65)=60(m/min),故选项D不合题意.故选:C.二.填空9.解:∵a>0,∴=3a,故答案为:3a.10.解:单项式﹣的系数是﹣,次数是3,故答案为:﹣;3.11.解:原式=a(a2﹣9)=a(a+3)(a﹣3),故答案为:a(a+3)(a﹣3).12.解:将这7个数从小到大排列得:9,10,11,13,14,17,17,处在第4位的数是13,因此中位数是13,故答案为:13.13.解:过点E作EF∥AB,则EF∥CD,如图所示.∵AB∥EF,∴∠BEF=180°﹣∠B=60°;∵CD∥EF,∴∠DEF=180°﹣∠D=35°.∴∠BED=∠BEF+∠DEF=95°.故答案为:95.14.解:圆锥的侧面积=×2π×3×7=21π.故答案为21π.15.解:∵A(﹣2,1),B(1,﹣2),由图象可知:一次函数的值大于反比例函数的值时x的取值范围是x<﹣2或0<x<1.故答案为x<﹣2或0<x<1.16.解:如图,作出点B关于AE的对称点M,点C关于DE的对称点N,连接AM、EM,MN、DN、EN.根据轴对称的性质可得AM=AB,BE=EM,CE=EN,DN=CD,∠AEB=AEM,∠DEC =∠DMN,∵∠AED=120°,∴∠AEB+∠DEC=180°﹣∠AED=180°﹣120°=60°,∴∠MEN=∠AED﹣(∠AEM+∠DEN)=120°﹣60°=60°,∵点M是四边形ABCD的边BC的中点,∴BE=CE,∴EM=EN,∴△ENM是等边三角形,∵AD≤AM+MN+DN,∴AD≤7,∴AD的最大值为7,故答案为7.三.解答17.解:原式=•==﹣x(x+1)=﹣x2﹣x当x=时,原式=﹣2﹣.18.解:,解①得x≥﹣4,解②得x<1,所以不等式组的解集为﹣4≤x<1,用数轴表示为.19.解:(1)在正方形ABCD中,BC=DC,∠C=90°,∴∠DBC=∠CDB=45°,∵∠PBC=α,∴∠DBP=45°﹣α,∵PE⊥BD,且O为BP的中点,∴EO=BO,∴∠EBO=∠BEO,∴∠EOP=∠EBO+∠BEO=90°﹣2 α;(2)连接OC,EC,在正方形ABCD中,AB=BC,∠ABD=∠CBD,BE=BE,∴△ABE≌△CBE,∴AE=CE,在Rt△BPC中,O为BP的中点,∴CO=BO=,∴∠OBC=∠OCB,∴∠COP=2 α,由(1)知∠EOP=90°﹣2α,∴∠EOC=∠COP+∠EOP=90°,又由(1)知BO=EO,∴EO=CO.∴△EOC是等腰直角三角形,∴EO2+OC2=EC2,∴EC=OC=,即BP=,∴BP=.20.解:(1)设这项工程的规定时间是x天,则甲队单独施工需要x天完工,乙队单独施工需要1.5x天完工,依题意,得:+=1,解得:x=30,经检验,x=30是原方程的解,且符合题意.答:这项工程的规定时间是30天.(2)由(1)可知:甲队单独施工需要30天完工,乙队单独施工需要45天完工,1÷(+)=18(天).答:甲乙两队合作完成该工程需要18天.21.解:(1)该小区居民在这次随机调查中被调查到的人数是20÷10%=200(人),则m%=×100%=35%,即m=35,C景区人数为200﹣(20+70+20+50)=40(人),补全条形图如下:故答案为:200,35;(2)估计去B地旅游的居民约有1200×35%=420(人);(3)画树状图如下:由树状图知,共有12种等可能结果,其中选到A,C两个景区的有2种结果,所以选到A,C两个景区的概率为=.。

2020年中考数学冲刺卷 【2】含答案解析

2020年中考数学冲刺卷 【2】含答案解析

2020年中考数学冲刺卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)如图,直线a∥b,∠1=70°,那么∠2的度数是()A.50°B.60°C.70°D.80°2.(3分)实数√38的值在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间3.(3分)党的十八大以来,积极践行“绿水青山就是金山银山”的发展理念,大力开展植树造林,到2018年底,全国森林面积达到32.2亿亩,森林覆盖率达到22.35%,32.2亿用科学记数法表示为()A.32.2×108B.32.2×109C.3.22×108D.3.22×1094.(3分)如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,CE=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m5.(3分)用配方法解关于x的一元二次方程x2﹣2x﹣3=0,配方后的方程可以是()A.(x﹣1)2=4 B.(x+1)2=4 C.(x﹣1)2=16 D.(x+1)2=16 6.(3分)为了解某班学生双休户外活动情况,对部分学生参加户外活动的时间进行抽样调查,结果如下表:户外活动的时间(小时)1 2 3 6学生人数(人) 2 2 4 2则关于“户外活动时间”这组数据的众数、中位数、平均数分别是()A.3、3、3 B.6、2、3 C.3、3、2 D.3、2、37.(3分)如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()A.以点F为圆心,OE长为半径画弧B.以点F为圆心,EF长为半径画弧C.以点E为圆心,OE长为半径画弧D.以点E为圆心,EF长为半径画弧8.(3分)《九章算术》勾股章有一“引葭赴岸”问题:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问:水深,葭长各几何.”意思是:如示意图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度和芦苇的长度分别是多少?备注:1丈=10尺.设芦苇长x尺,则可列方程为()A.x2+102=(x+1)2B.(x﹣1)2+52=x2C.x2+52=(x﹣1)2D.x2+12=(x﹣1)29.(3分)如图,是一组按照某种规律摆放成的图案,则图6中三角形的个数是()A.18 B.19 C.20 D.2110.(3分)如图,矩形ABCD中,AB=4,AD=3,P是边CD上一点,将△ADP沿直线AP对折,得到△APQ.当射线BQ交线段CD于点F时,DF的最大值是()A.3 B.2 C.4−√7D.4−√5二、填空题(每题5分,满分30分,将答案填在答题纸上)11.(5分)计算:(√2+1)(√2−1)=.12.(5分)若点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,a为整数,则a的值为.13.(5分)如图,已知斜坡BQ的坡度i=1:2.4,坡长BQ=13米,在斜坡BQ上有一棵银杏树PQ,小李在A处测得树顶P的仰角为α,测得水平距离AB=8米.若tanα=0.75,点A,B,P,Q在同一平面上,PQ⊥AB于点C,则银杏树PQ的高度为米.14.(5分)如图是一个上下底密封纸盒的三视图(图中尺寸单位:cm),请你根据图中数据,计算这个密封纸盒的表面积为cm2.(结果可保留根号)15.(5分)若关于x的方程x2﹣2mx+9=0有两个相等实数根,则方程2x−m =3x的解为.16.(5分)已知:y关于x的函数y=k2x2﹣(2k+1)x+1的图象与坐标轴只有两个不同的交点A、B,P点坐标为(4,2),则△PAB的面积为.三、解答题:本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤. 17.若实数x,y满足√2018−x+|x+y−4037|=0,求代数式x2﹣2xy+y2的值.18.先化简,再求值:2a−1÷(2a−1−2a+1a−1),其中a=√116+(−2)−2+2sin60°−(π−3)°.19.如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.(1)求证:△AFE≌△CDE;(2)若AB=4,BC=8,求图中阴影部分的面积.20.“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.21.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值,例如,如下图中的函数,它的最大值是12,最小值是﹣1,它也是有界函数,其边界值是1.(1)分别判断函数y=1x(1≤x≤5)和y=x+1(x>0)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣2x﹣1(a≤x≤b,a<b)的边界值是3,且这个函数的最大值也是3,求a的值及b的取值范围.22.如图,已知Rt△EBC中,∠B=90°,A为BE边上一点,以边AC上的点O为圆心、OA 为半径的圆O与EC相切,D为切点,AD∥BC.(1)求证:∠E=∠ACB.(2)若AD=1,tan∠DAC=√22,求BC的长.23.某厂家欲将n件产品运往A,B,C三地销售,运费分别为30元/件,8元/件,25元/件,且要求运往C地的件数是运往A地件数的2倍,设安排x件产品运往A地.(1)当n=200时,①根据信息填表:A地B地C地产品件数(件)x2x运费(元)30x②若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有哪几种运输方案?(2)若总运费为5800元,求n的最小值.24.如图1,抛物线W:y=12x2−2的顶点为点A,与x轴的负半轴交于点D,直线AB交抛物线W于另一点C,点B的坐标为(1,0).(1)求直线AB的解析式;(2)求tan∠BDC的值;(3)将抛物线W向下平移m(m>0)个单位得到抛物线W1,如图2,记抛物线W1的顶点为A1,与x轴负半轴的交点为D1,与射线BC的交点为C1.问:在平移的过程中,tan∠D1C1B是否恒为定值?若是,请求出tan∠D1C1B的值;若不是,请说明理由.2020年中考数学冲刺卷参考答案一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.C ; 2.B ; 3.D ; 4.B ; 5.A ; 6.A ; 7.D ; 8.B ; 9.C ; 10.C ;二、填空题(每题5分,满分30分,将答案填在答题纸上) 11.1; 12.1; 13.10;14.12+2√3; 15.±9; 16.52或4;三、解答题:本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤. 17.1; 18.原式=2a +2=2√3+1;19.阴影部分的面积=S △ACF ﹣S △AEF =12×4×8−12×4×3=10; 20.50;30%; 21.1;﹣2<b ≤122.略;23.221;24.直线AB 的解析式为y =2x ﹣2; tan ∠BDC =1;tan ∠D 1C 1B。

西藏拉萨市2020年数学中考基础冲刺训练(二)(含答案)

西藏拉萨市2020年数学中考基础冲刺训练(二)(含答案)
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
西藏拉萨市 2020 年数学中考基础冲刺训练(二)
一.选择题(每题 3 分,满分 36 分) 1.下列图形中是轴对称图形的是( )
A.
B.
C.
D.
2.某校组织抽奖活动,共准备了 100 张奖券,设一等奖 10 个,二等奖 20 个,三等奖 30 个.已知每张奖券获奖的可能性相同,则抽一张奖券中二等奖的概率为( )
知识像烛光,能照亮一个人,也能照亮无数的人。--培根 (3)若抛物线上有一动点 Q,使△ABQ 的面积为 6,求 Q 点坐标.
5 / 13
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
参考答案
一.选择题 1.解:A、不是轴对称图形,本选项错误;
B、不是轴对称图形,本选项错误; C、是轴对称图形,本选项正确; D、不是轴对称图形,本选项错误. 故选:C. 2.解:抽一张奖券中二等奖的概率为 = ; 故选:C. 3.解:A、a3•a2=a5,故 A 错误; B、(ab)2=a2b2,故 B 正确; C、2(a﹣1)=2a﹣2,故 C 错误; D、(a+b)2=a2+2ab+b2,故 D 错误. 故选:B. 4.解:把 130000000kg 用科学记数法可表示为 1.3×108. 故选:C. 5.解:如图所示,过 E 作 EG∥AB,
断四边形 OACB 为菱形的是( )
A.∠DAC=∠DBC=30° C.AB 与 OC 互相垂直
B.OA∥BC,OB∥AC D.AB 与 OC 互相平分
12.如果方程组
的解同时满足 3x+y=﹣2,则 k 的值是( )
A.﹣4
B.﹣3
二.填空题(满分 18 分,每小题 3 分)

2020年数学中考基础冲刺训练(含答案) (2)

2020年数学中考基础冲刺训练(含答案) (2)

2020年数学中考基础冲刺训练一.选择题(每题3分,满分30分)1.﹣3的绝对值是()A.﹣3 B.3 C.D.2.为应对疫情,许多企业跨界抗疫,生产口罩.截至2月29日,全国口罩日产量达到116000000只.将116000000用科学记数法表示应为()A.116×106B.11.6×107C.1.16×107D.1.16×1083.如图,某江段江水流向经过B、C、D三点拐弯后与原来方向相同,若∠ABC=125°,∠BCD =75°,则∠CDE的度数为()A.20°B.25°C.35°D.50°4.下列各式正确的是()A.6a2﹣5a2=a2B.(2a)2=2a2C.﹣2(a﹣1)=﹣2a+1 D.(a+b)2=a2+b25.某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如表:投中次数 3 5 6 7 9人数 1 3 2 2 2 则这些队员投中次数的众数、中位数和平均数分别为()A.5,6,6.2 B.2,6,6 C.5,5,6 D.5,6,56.图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S俯=()A.x2+3x+2 B.x2+2 C.x2+2x+1 D.2x2+3x7.早上,小明从家里步行去学校,出发一段时间后,小明妈妈发现小明的作业本落在家里,便带上作业本骑车追赶,途中追上小明两人稍作停留,妈妈骑车返回,小明继续步行前往学校,两人同时到达.设小明在途的时间为x,两人之间的距离为y,则下列选项中的图象能大致反映y与x之间关系的是()A.B.C.D.8.四条直线y=﹣x﹣6,y=﹣x+6,y=x﹣6,y=x+6围成正方形ABCD.现掷一个均匀且各面上标有1,2,3,4,5,6的立方体,每个面朝上的机会是均等的.连掷两次,以面朝上的数为点P的坐标(第一次得到的数为横坐标,第二次得到的数为纵坐标),则点P落在正方形面上(含边界)的概率是()A.B.C.D.9.化简,小燕、小娟的解法如下:小燕:===;小娟:===.对于两位同学的解法,正确的判断是()A.小燕、小娟的解法都正确B.小燕的解法正确,小娟的解法不正确C.小燕、小娟的解法都不正确D.小娟的解法正确,小燕的解法不正确10.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C,与x轴交于A,B两点,其中点B 的坐标为B(4,0),抛物线的对称轴交x轴于点D,CE∥AB,并与抛物线的对称轴交于点E.现有下列结论:①a>0;②b>0;③4a+2b+c<0;④AD+CE=4.其中所有正确结论的序号是()A.①②B.①③C.②③D.②④二.填空题(满分18分,每小题3分)11.=.12.如图⊙O中,∠BAC=74°,则∠BOC=.13.如图,在3×3的幻方的九个空格中,填入9个数字,使得处于同一横行,同一竖行,同一斜对角线上的三个数的和都相等,按以上规则的幻方中,则同一竖行的三个数的和为.14.在平面直角坐标系中,把点P(﹣5,3)向右平移8个单位得到点P1,再将点P1绕原点旋转90°得到点P2,则点P2的坐标是.15.如图,点A在双曲线y=(k≠0)的第一象限的分支上,AB垂直x轴于点B,点C在x轴正半轴上,OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,连接CD,若△CDE的面积为1,则k的值为.16.如图,已知正方形ABCD的边长为3,E是边BC上一点,BE=1,将△ABE,△ADF 分别沿折痕AE,AF向内折叠,点B,D在点G处重合,过点E作EH⊥AE,交AF的延长线于H,则线段FH的长为.三.解答题17.(5分)解下列分式方程(1)=(2)=﹣218.(7分)已知关于x的方程3x2﹣mx+2=0(1)若方程有两相等实数根,求m的取值;(2)若方程其中一根为,求其另一根及m的值.19.(10分)为响应市政府关于“垃圾不落地•市区更美丽”的主题宣传活动,某校随机调查了部分学生对垃圾分类知识的掌握情况.调查选项分为“A:非常了解,B:比较了解,C:了解较少,D:不了解”四种,并将调查结果绘制成两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)把两幅统计图补充完整;(2)若该校学生有2000名,根据调查结果,估计该校“非常了解”与“比较了解”的学生共有名;(3)已知“非常了解”的同学有3名男生和1名女生,从中随机抽取2名进行垃圾分类的知识交流,请用画树状图或列表的方法,求恰好抽到一男一女的概率.20.(8分)如图,一艘船由A港沿北偏东65°方向航行30km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,求:(1)∠C的度数.(2)A,C两港之间的距离为多少km.参考答案一.选择1.解:|﹣3|=3.故﹣3的绝对值是3.故选:B.2.解:将116000000用科学记数法表示应为1.16×108.故选:D.3.解:由题意得,AB∥DE,如图,过点C作CF∥AB,则CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=180°﹣125°=55°,∴∠DCF=75°﹣55°=20°,∴∠CDE=∠DCF=20°.故选:A.4.解:A.6a2﹣5a2=a2,正确;B.(2a)2=4a2,错误;C.﹣2(a﹣1)=﹣2a+2,错误;D.(a+b)2=a2+2ab+b2,错误;故选:A.5.解:在这一组数据中5是出现次数最多的,故众数是5次;处于中间位置的两个数的平均数是(6+6)÷2=6,那么由中位数的定义可知,这组数据的中位数是6次.平均数是:(3+15+12+14+18)÷10=6.2(次),所以答案为:5、6、6.2,故选:A.6.解:∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2,故选:A.7.解:由题意可得,小明从家出发到妈妈发现小明的作业本落在家里这段时间,y随x的增大而增大,小明的妈妈开始给你小明送作业到追上小明这段时间,y随x的增大而减小,小明妈妈追上小明到各自继续行走这段时间,y随x的增大不变,小明和妈妈分别去学校、回家的这段时间,y随x的增大而增大,故选:B.8.解:连掷两次,以面朝上的数为点P的坐标(第一次得到的数为横坐标,第二次得到的数为纵坐标),共6×6=36种;符合题意的有:(1,1)(1,2)(1,3)(1,4)(1,5)(2,1)(2,2)(2,3)(2,4)(3,1)(3,2)(3,3)(4,1)(4,2)(5,1)共15个,概率是=.故选:D.9.解:小燕是先用商的二次根式法则计算,再有理化分母,小娟是用分数的性质把分母化成一个完全平方数,再运用商的二次根式法则计算的,两个计算都正确,故选:A.10.解:①观察图象开口向下,a<0,所以①错误;②对称轴在y轴右侧,b>0,所以②正确;③因为抛物线与x轴的一个交点B的坐标为(4,0),对称轴在y轴右侧,所以当x=2时,y>0,即4a+2b+c>0,所以>③错误;④∵抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,∴AD=BD,∵CE∥AB,∴四边形ODEC为矩形,∴CE=OD,∴AD+CE=BD+OD=OB=4,所以④正确.综上:②④正确.故选:D.二.填空11.解:原式=.故答案为:.12.解:∠BOC =2∠BAC =2×74°=148°. 故答案为148°. 13.解:由题意得,2x +x +1=4+x +x +1,解得x =5 将x =5代入4+x +x +1得4+5+5+1=15 故同一竖行的三个数的和为15 故答案为15.14.解:∵把点P (﹣5,3)向右平移8个单位得到点P 1, ∴点P 1的坐标为:(3,3),如图所示:将点P 1绕原点逆时针旋转90°得到点P 2,则其坐标为:(﹣3,3), 将点P 1绕原点顺时针旋转90°得到点P 3,则其坐标为:(3,﹣3), 故符合题意的点P 的坐标为:(3,﹣3)或(﹣3,3). 故答案为:(3,﹣3)或(﹣3,3).15.解:设A (a ,b ),∵OC =2AB ,点D 为OB 的中点, ∴C (2a ,0),D (0,b ), ∵AE =3EC ,△CDE 的面积为1, ∴S △ADC =4S △CDE =4,∵S 梯形ABOC =S △ABD +S △OCD +S △ADC ,∴(a+2a)•b=•a•b+•2a•b+4,∴ab=,∵点A在双曲线y=(k≠0)的图象上,∴k=.故答案为.16.解:∵四边形ABCD是正方形,∴∠B=∠C=∠D=∠BAD=90°,AB=BC=CD=AD=3,设DF=FG=x,在Rt△EFC中,∵EF=1+x,EC=3﹣1=2,FC=3﹣x,∴(x+1)2=22+(3﹣x)2,解得x=∴AF===,AE===,由翻折的性质可知,∠DAF=∠GAF,∠EAB=∠EAG,∴∠EAH=45°,∵EH⊥EA,∴∠AEH=90°,∴AE=EH=,AH=AE=2,∴FH=AH﹣AF=2﹣=,故答案为.三.解答17.解:(1)去分母得,2(x+1)﹣3(x﹣1)=x+3,移项合并同类项得,x=1,经检验:x=1是原方程的增根,原方程无解;(2)去分母得,2x=3﹣4x+4,移项合并同类项得,x=,经检验:x=是原方程的解.18.解:(1)依题意得:△=b2﹣4ac=(﹣m)2﹣4×3×2=m2﹣24=0,解得:m=±2.故m的取值为±2.(2)设方程的另一根为x2,由根与系数的关系得:,解得:.故另一根为1,m的值为5.19.解:(1)调查人数为:4÷8%=50(人),B组所占百分比为:21÷50=42%,C组人数为:50×30%=15(人),D组人数为:50﹣4﹣21﹣15=10(人),所占百分比为:10÷50=20%,补全统计图如图所示:(2)2000×(8%+42%)=1000(人),故答案为:1000;(3)用列表法表示所有可能出现的结果如下:共有12种可能出现的结果,其中“一男一女”的有6种,因此,抽到一男一女的概率为=.20.解:(1)由题意得:∠ACB=20°+40°=60°;(2)由题意得,∠CAB=65°﹣20°=45°,∠ACB=40°+20°=60°,AB=30,过B作BE⊥AC于E,如图所示:∴∠AEB=∠CEB=90°,在Rt△ABE中,∵∠ABE=45°,∴△ABE是等腰直角三角形,∵AB=30 ,∴AE=BE=AB=30,在Rt△CBE中,∵∠ACB=60°,tan∠ACB=,∴CE===10,∴AC=AE+CE=30+10 ,∴A,C两港之间的距离为(30+10 )km.。

安徽省合肥市2020年数学中考基础冲刺训练(二)(含答案)

安徽省合肥市2020年数学中考基础冲刺训练(二)(含答案)

安徽省合肥市2020年数学中考基础冲刺训练(二)一.选择题(每题4分,满分40分)1.﹣5的绝对值是()A.﹣5 B.5 C.D.﹣2.港珠澳大桥是连接香港、珠海、澳门的超大型跨海通道,全长约55000米,把55000用科学记数法表示为()A.55×103B.5.5×104C.5.5×105D.0.55×1053.若x﹣2y+1=0,则2x÷4y×8等于()A.1 B.4 C.8 D.﹣164.如图是由6个棱长均为1的正方体组成的几何体,从左面看到的该几何体的形状为()A.B.C.D.5.下列因式分解正确的是()A.x2﹣xy+x=x(x﹣y)B.a3+2a2b+ab2=a(a+b)2C.x2﹣2x+4=(x﹣1)2+3 D.ax2﹣9=a(x+3)(x﹣3)6.某企业今年1月份产值为x万元,2月份的产值比1月份减少了10%,则2月份的产值是()A.(1﹣10%)x万元B.(1﹣10%x)万元C.(x﹣10%)万元D.(1+10%)x万元7.关于x的一元二次方程x2+ax﹣1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根8.甲、乙两名同学分别进行6次射击训练,训练成绩(单位:环)如下表第一次第二次第三次第四次第五次第六次甲9 8 6 7 8 10乙8 7 9 7 8 8 对他们的训练成绩作如下分析,其中说法正确的是()A.他们训练成绩的平均数相同B.他们训练成绩的中位数不同C.他们训练成绩的众数不同D.他们训练成绩的方差不同9.如图,在▱ABCD中,点E、F分别在边AB和CD上,下列条件不能判定四边形DEBF一定是平行四边形的是()A.AE=CF B.DE=BF C.∠ADE=∠CBF D.∠AED=∠CFB10.如图,直线l1,l2都与直线l垂直,垂足分别为M,N,MN=1.正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处.将正方形ABCD沿l向右平移,直到点A与点N重合为止.记点C平移的距离为x,正方形ABCD的边位于l1,l2之间部分的长度和为y,则y关于x的函数图象大致为()A.B.C.D.二.填空题(满分20分,每小题5分)11.已知x=3是关于x的不等式3x﹣的解,则a的取值范围是.12.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,若AO=10,则⊙O的半径长为.13.如图,将直线y=x向下平移b个单位长度后得到直线l,l与反比例函数y=(x>0)的图象相交于点A,与x轴相交于点B,则OA2﹣OB2的值为.14.在矩形ABCD中,AB=5,BC=12.点P在矩形ABCD的内部,点E在边BC上,满足△PBE ∽△DBC,若△APD是等腰三角形,则PE的长为.三.解答题15.(8分)计算:(﹣2)2+20180﹣.16.(8分)为庆祝建国七十周年,南岗区准备对某道路工程进行改造,若请甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,若甲、乙两队合作2个月后,甲工程队到期撤离,则乙工程队再单独需几个月能完成?17.(8分)在下面16×8的正方形网格中,每个小正方形的边长为1个单位,△ABC是格点三角形(顶点在网格交点处),请你画出:(1)△ABC的中心对称图形,A点为对称中心;(2)△ABC关于点P的位似△A′B′C′,且位似比为1:2;(3)以A、B、C、D为顶点的所有格点平行四边形ABCD的顶点D.18.(8分)观察下列等式:第1个等式:a1==×(﹣);第2个等式:a2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣);…请解答下列问题:(1)按以上规律列出第5个等式:a5==;第n(n为正整数)个等式:a n==;(2)求a1+a2+a3+a4+…+a2019的值;(3)数学符号f(x)=f(1)+f(2)+f(3)+…+f(n),试求的值.19.(10分)如图,某中学数学活动小组在学习了“利用三角函数测高”后,选定测量小河对岸一幢建筑物BC的高度,他们先在斜坡上的D处,测得建筑物顶端B的仰角为30°.且D离地面的高度DE=5m.坡底EA=30m,然后在A处测得建筑物顶端B的仰角是60°,点E,A,C在同一水平线上,求建筑物BC的高.(结果用含有根号的式子表示)20.(10分)已知Rt△ABC,∠ACB=90°,分别按照下列要求尺规作图,并保留作图痕迹.(1)作△ABC的外心O;(2)在AB上作一点P,使得∠CPB=2∠ABC.六.解答题21.(12分)某中学为推进素质教育,在初一年级设立了六个课外兴趣小组,如图是六个兴趣小组的频数分布直方图和扇形统计图,请根据图中提供的信息回答下列问题:(1)初一年级共有多少人?(2)补全频数分布直方图.(3)求“从该年级中任选一名学生,是参加音乐、科技两个小组学生”的概率.22.(12分)为满足市场需求,某超市在新年来临前夕,购进一款商品,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,如果每盒售价每提高1元,则每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?八.解答题23.(14分)如图,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等边三角形,点D 在边AB上.(1)如图1,当点E在边BC上时,求证DE=EB;(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;(3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.参考答案一.选择题1.解:﹣5的绝对值是5,故选:B.2.解:55000用科学记数法可表示为:5.5×104,故选:B.3.解:原式=2x÷22y×23,=2x﹣2y+3,=22,=4.故选:B.4.解:从左面面看,看到的是两列,第一列是三层,第二列是一层,故选:D.5.解:A、x2﹣xy+x=x(x﹣y+1),故此选项错误;B、a3+2a2b+ab2=a(a+b)2,正确;C、x2﹣2x+4=(x﹣1)2+3,不是因式分解,故此选项错误;D、ax2﹣9,无法分解因式,故此选项错误;故选:B.6.解:∵1月份产值x亿元,2月份的产值比1月份减少了10%,∴2月份产值达到(1﹣10%)x亿元.故选:A.7.解:△=a2﹣4×1×(﹣1)=a2+4.∵a2≥0,∴a2+4>0,即△>0,∴方程x2+ax﹣1=0有两个不相等的实数根.8.解:∵甲6次射击的成绩从小到大排列为6、7、8、8、9、10,∴甲成绩的平均数为=8(环),中位数为=8(环)、众数为8环,方差为×[(6﹣8)2+(7﹣8)2+2×(8﹣8)2+(9﹣8)2+(10﹣8)2]=(环2),∵乙6次射击的成绩从小到大排列为:7、7、8、8、8、9,∴乙成绩的平均数为=,中位数为=8(环)、众数为8环,方差为×[2×(7﹣)2+3×(8﹣)2+(9﹣)2]=(环2),则甲、乙两人的平均成绩不相同、中位数和众数均相同,而方差不相同,故选:D.9.解:A、由AE=CF,可以推出DF=EB,DF∥EB,四边形DEBF是平行四边形;B、由DE=BF,不能推出四边形DEBF是平行四边形,有可能是等腰梯形;C、由∠ADE=∠CBF,可以推出△ADE≌△CBF,推出DF=EB,DF∥EB,四边形DEBF是平行四边形;D、由∠AED=∠CFB,可以推出△ADE≌△CBF,推出DF=EB,DF∥EB,四边形DEBF是平行四边形;故选:B.10.解:当0≤x≤1时,y=2x,当1<x≤2时,y=2,当2<x≤3时,y=﹣2x+6,∴函数图象是A,故选:A.二.填空题11.解:∵x=3是关于x的不等式3x﹣的解,∴9﹣>2,解得a<4.故a的取值范围是a<4.故答案为:a<4.12.解:如图作DH⊥AB于H,连接BD,延长AO交BD于E.∵菱形ABCD的边AB=20,面积为320,∴AB•DH=320,∴DH=16,在Rt△ADH中,AH==12,∴HB=AB﹣AH=8,在Rt△BDH中,BD==8,设⊙O与AB相切于F,连接OF.∵AD=AB,OA平分∠DAB,∴AE⊥BD,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH,∵∠AFO=∠DHB=90°,∴△AOF∽△DBH,∴=,∴=,∴OF=2,故答案为:2.13.解:∵平移后解析式是y=x﹣b,代入y=得:x﹣b=,即x2﹣bx=5,y=x﹣b与x轴交点B的坐标是(b,0),设A的坐标是(x,y),∴OA2﹣OB2=x2+y2﹣b2=x2+(x﹣b)2﹣b2=2x2﹣2xb=2(x2﹣xb)=2×5=10,故答案为:10.14.解:∵四边形ABCD为矩形,∴∠BAD=90°,∴BD==13,当PD=DA=12时,BP=BD﹣PD=1,∵△PBE∽△DBC,∴=,即=,解得,PE=,当P′D=P′A时,点P′为BD的中点,∴P′E′=CD=,故答案为:或.三.解答题15.解:原式=4+1﹣6=﹣1.16.解:设乙工程队再单独需x个月能完成,由题意,得2×++x=1.解得x=1.答:乙工程队再单独需1个月能完成.四.解答题17.解:(1)如图所示:△AED为所求作的三角形;(2)如图所示:△A ′B ′C ′为所求作的三角形;(3)如图所示:D 1,D 2,D 3为所求作的点.18.解:(1)按以上规律知第5个等式为a 5==×(﹣),第n 个等式a n ==×(﹣),故答案为:,×(﹣),,×(﹣).(2)a 1+a 2+a 3+a 4+…+a 2019 =+++…+=×(1﹣)+×(﹣)+×(﹣)+…+×(﹣)=×(1﹣+﹣+﹣+…+﹣)=×(1﹣)=×=;(3)==+++…+=3×(+++…+)=3×[×(1﹣)+×(﹣)+×(﹣)+…+×(﹣)]=1﹣+﹣+﹣+﹣+﹣+﹣+﹣+﹣+…+﹣+﹣+﹣+﹣=1++﹣﹣﹣=.五.解答题19.解:过点D作DH⊥BC于点H,如图所示:则四边形DHCE是矩形,DH=EC,DE=HC=5,设建筑物BC的高度为xm,则BH=(x﹣5)m,在Rt△DHB中,∠BDH=30°,∴DH=(x﹣5),AC=EC﹣EA=(x﹣5)﹣30,在Rt△ACB中,∠BAC=60°,tan∠BAC=,∴=解得:x=,答:建筑物BC的高为m.20.解:(1)如图,点O即为所求:(2)如图,点P即为所求:∵OC=OB,∴∠COP=2∠ABC,∵CO=CP,∴∠CPB=∠COP=2∠ABC.六.解答题21.解:(1)32÷10%=320,所以初一年级共有320人;(2)体育小组的人数=320﹣48﹣64﹣32﹣64﹣16=96(人),频数分布直方图为:(3)“从该年级中任选一名学生,是参加音乐、科技两个小组学生”的概率==.七.解答22.解:(1)由题意得销售量y=700﹣20(x﹣45)=﹣20x+1600(x≥45);(2)P=(x﹣40)(﹣20x+1600)=﹣20x2+2400x﹣64000=﹣20(x﹣60)2+8000,∵x≥45,a=﹣20<0,=8000元∴当x=60时,P最大值即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元.八.解答23.(1)证明:∵△CDE是等边三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=30°,∴∠EDB=∠B,∴DE=EB;(2)解:ED=EB,理由如下:取AB的中点O,连接CO、EO,∵∠ACB=90°,∠ABC=30°,∴∠A=60°,OC=OA,∴△ACO为等边三角形,∴CA=CO,∵△CDE是等边三角形,∴∠ACD=∠OCE,在△ACD和△OCE中,,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,在△COE和△BOE中,,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(3)取AB的中点O,连接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=3,∵GE∥AB,∴∠G=180°﹣∠A=120°,在△CEG和△DCO中,,∴△CEG≌△DCO,∴CG=OD,设CG=a,则AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+3+3,解得,a=2,即CG=2.。

山东省济南市2020年九年级数学中考基础冲刺训练(二)及答案

山东省济南市2020年九年级数学中考基础冲刺训练(二)及答案

山东省济南市2020年数学中考基础冲刺训练(二)一.选择题(每题3分,满分45分)1.下列实数:3,0,,,0.35,其中最小的实数是()A.3 B.0 C.D.0.352.如图是由6个棱长均为1的正方体组成的几何体,从左面看到的该几何体的形状为()A.B.C.D.3.我国珠港澳大桥闻名世界,它东起香港国际机场附近的香港口岸人工岛,向西横跨南海伶仃洋水域接珠海和澳门人工岛,止于珠海洪湾立交,工程项目总投资1269亿元.用科学记数法表示1269亿正确的是()A.1.269×103B.1.269×108C.1.269×1011D.1.269×10124.如图,直线a∥b,直线l与a,b分别交于点A,B,过点A作AC⊥b于点C,若∠1=50°,则∠2的度数为()A.130°B.50°C.40°D.25°5.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.6.计算(﹣)3的结果是()A.﹣B.﹣C.﹣D.7.设x1、x2是方程x2+4x﹣3=0的两个根,则+的值为()A.B.﹣C.3 D.48.甲,乙两人练习跑步,若乙先跑10米,则甲跑5秒就可以追上乙;若乙先跑2秒,则甲跑4秒就可追上乙.若设甲的速度为x米/秒,乙的速度为y米/秒,则下列方程组中正确的是()A.B.C.D.9.如图A是某公园的进口,B,C,D是三个不同的出口,小明从A处进入公园,那么从B,C,D三个出口中恰好在C出口出来的概率为()A.B.C.D.10.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=6,则△PCD的周长为()A.8 B.6 C.12 D.1011.在平面直角坐标系中,把直线y=2x﹣3沿y轴向上平移2个单位后,得到的直线的函数表达式为()A.y=2x+2 B.y=2x﹣5 C.y=2x+1 D.y=2x﹣112.如图,河坝横断面的迎水坡AB的坡比为3:4,BC=6m,则坡面AB的长为()A.6m B.8m C.10m D.12m13.如图,在Rt△ABC中,∠C=90°,AC=3,以AB为一边向三角形外作正方形ABEF,正方形的中心为O,且OC=4,那么BC的长等于()A.3B.5 C.2D.14.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b<0;③4a﹣2b+c<0;④a+b+2c>0,其中正确结论的个数为()A.4个B.3个C.2个D.1个15.如图,两个边长相等的正方形ABCD和EFGH,正方形EFGH的顶点E固定在正方形ABCD的对称中心位置,正方形EFGH绕点E顺时针方向旋转,设它们重叠部分的面积为S,旋转的角度为θ,S与θ的函数关系的大致图象是()A.B.C.D.二.填空题(每题3分,满分18分)16.分解因式:x2﹣16y2=.17.计算|﹣2|﹣(﹣1)+30的结果是.18.数据2、3、5、5、4的众数是.19.已知扇形的面积为4π,半径为6,则此扇形的圆心角为度.20.如图,点A在双曲线y=(k>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O 和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为.21.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q 的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M 的坐标为.三.解答题22.(6分)(1)先化简,再求值:(2a+b)2﹣a(4a+3b),其中a=1,b=.(2)解不等式组23.(4分)在矩形ABCD中,点E在BC上.DF⊥AE,垂足为F,DF=AB.(1)求证.AE=BC;(2)若∠FDC=30°,且AB=4,连结DE,求∠DEF的大小和AD.24.(4分)如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=30°.(1)求∠BAD的度数;(2)若AD=,求DB的长.25.(8分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km 的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.26.(8分)某校为了更好的开展“学校特色体育教育”,从全校八年级的各班分别随机抽取了5名男生和5名女生,组成了一个容量为60的样本,进行各项体育项目的测试,了解他们的身体素质情况.下表是整理样本数据,得到的关于每个个体的测试成绩的部分统计表、图:某校60名学生体育测试成绩频数分布表成绩划记频数百分比优秀正正正a30%良好正正正正正正30 b合格正9 15%不合格 3 5%合计60 60 100% (说明:40﹣﹣﹣55分为不合格,55﹣﹣﹣70分为合格,70﹣﹣﹣85分为良好,85﹣﹣﹣100分为优秀)请根据以上信息,解答下列问题:(1)表中的a=,b=;(2)请根据频数分布表,画出相应的频数分布直方图;(3)如果该校八年级共有150名学生,根据以上数据,估计该校八年级学生身体素质良好及以上的人数为.27.(9分)如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(﹣6,0),D(﹣7,3),点B、C在第二象限内.(1)点B的坐标;(2)将正方形ABCD以每秒1个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P、Q的坐标;若不存在,请说明理由.28.(9分)问题发现:如图1,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转60°得到AE,连接EC,则:(1)①∠ACE的度数是;②线段AC,CD,CE之间的数量关系是.拓展探究:(2)如图2,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请写出∠ACE的度数及线段AD,BD,CD之间的数量关系,并说明理由;解决问题:(3)如图3,在Rt△DBC中,DB=3,DC=5,∠BDC=90°,若点A满足AB=AC,∠BAC =90°,请直接写出线段AD的长度.29.如图①,二次函数的抛物线的顶点坐标C,与x轴的交于A(1,0)、B(﹣3,0)两点,与y轴交于点D(0,3).(1)求这个抛物线的解析式;(2)如图②,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为﹣2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G、H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H 的坐标;若不存在,请说明理由;(3)如图③,连接AC交y轴于M,在x轴上是否存在点P,使以P、C、M为顶点的三角形与△AOM相似?若存在,求出点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:根据实数比较大小的方法,可得﹣<0<0.35<<3,所以最小的实数是﹣.故选:C.2.解:从左面面看,看到的是两列,第一列是三层,第二列是一层,故选:D.3.解:1269亿=1.269×108=1.269×1011.故选:C.4.解:∵直线a∥b,∴∠ABC=∠1=50°,又∵AC⊥b,∴∠2=90°﹣50°=40°,故选:C.5.解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:A.6.解:原式=﹣,故选:A.7.解:因为x1、x2是方程x2+4x﹣3=0的两个根,所以x1+x2=﹣4,x1x2=﹣3.,故选:A.8.解:根据乙先跑10米,则甲跑5秒就可以追上乙,得方程5x=5y+10;根据乙先跑2秒,则甲跑4秒就可追上乙,得方程4x=4y+2y.可得方程组.故选:A.9.解:∵小明从A处进入公园,那么从B,C,D三个出口出来共有3种等可能结果,其中从C出口出来是其中一种结果,∴恰好在C出口出来的概率为,故选:B.10.解:∵PA、PB分别切⊙O于点A、B,CD切⊙O于点E,∴PA=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,即△PCD的周长为12,故选:C.11.解:由题意得:平移后的解析式为:y=2x﹣3+2,即y=2x﹣1.故选:D.12.解:∵河坝横断面的迎水坡AB的坡比为3:4,BC=6m,∴=,即=,解得:AC=8.故AB===10(m).故选:C.13.解:如图,作EQ⊥x轴,以C为坐标原点建立直角坐标系,CB为x轴,CA为y轴,则A(0,3).设B(x,0),由于O点为以AB一边向三角形外作正方形ABEF的中心,∴AB=BE,∠ABE=90°,∵∠ACB=90°,∴∠BAC+∠ABC=90°,∠ABC+∠EBQ=90°,∴∠BAC=∠EBQ,在△ABC和△BEQ中,∴△ACB≌△BQE(AAS),∴AC=BQ=3,BC=EQ,设BC=EQ=x,∴O为AE中点,∴OM为梯形ACQE的中位线,∴OM=,又∵CM=CQ=,∴O点坐标为(,),根据题意得:OC=4=,解得x=5,则BC=5.故选:B.14.解:∵抛物线开口向下,与y轴的交点在x轴上方,∴a<0,c>0,∵0<﹣<1,∴b>0,且b<﹣2a,∴abc<0,2a+b<0,故①不正确,②正确,∵当x=﹣2时,y<0,当x=1时,y>0,∴4a﹣2b+c<0,a+b+c>0,∴a+b+2c>0,故③④都正确,综上可知正确的有②③④,故选:B.15.解:如右图,过点E作EM⊥BC于点M,EN⊥AB于点N,∵点E是正方形的对称中心,∴EN=EM,由旋转的性质可得∠NEK=∠MEL,在Rt△ENK和Rt△EML中,,故可得△ENK≌△EML,即阴影部分的面积始终等于正方形面积的.故选:B.二.填空题16.解:x2﹣16y2=x2﹣(4y)2=(x+4y)(x﹣4y).故答案为:(x+4y)(x﹣4y).17.解:原式=2+1+1=4,故答案为:418.解:数据2、3、5、5、4中,5出现的次数最多,所以这组数据的众数为5,故答案为5.19.解:设该扇形的圆心角度数为n°,∵扇形的面积为4π,半径为6,∴4π=,解得:n=40.∴该扇形的圆心角度数为:40°.故答案为:40.20.解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF=,在Rt△OFC中,OK=,∴OA=,由△FOC∽△OBA,可得,∴,∴OB=,AB=,∴A,∴k=.故答案为:21.解:设M(x,y),由“实际距离”的定义可知:点M只能在ECFG区域内,﹣1<x<5,﹣5<y<1,又∵M到A,B,C距离相等,∴|x﹣3|+|y﹣1|=|x﹣5|+|y+3|=|x+1|+|y+5|,①∴|x﹣3|+1﹣y=5﹣x+|y+3|=x+1+y+5,②要将|x﹣3|与|y+3|中绝对值去掉,需要判断x在3的左侧和右侧,以及y在﹣3的上侧还是下侧,将矩形ECFG分割为4部分,若要使M到A,B,C的距离相等,由图可知M只能在矩形AENK中,故x<3,y>﹣3,则方程可变为:3﹣x+1﹣y=y+5+x+1=5﹣x+3+y,解得,x=1,y=﹣2,则M(1,﹣2)故答案为:(1,﹣2).三.解答题22.解:(1)原式=4a2+4ab+b2﹣4a2﹣3ab=ab+b2,当a=1,b=时,原式=+2;(2)∵解不等式①得:x<2,解不等式②得:x≥﹣1,∴不等式组的解集为﹣1≤x<2.23.(1)证明:∵四边形ABCD是矩形,∴DA∥BC,∠B=∠ADC,∴∠DAE=∠AEB,∴在△ABE与△DFA中,∴△ABE≌△DFA(AAS),∴AE=AD,∵AD=BC,∴AE=BC;(2)解:∵DF⊥AE,∠C=90°,∴∠DFE∥∠DCE,∵AB=DF,且AB=DC,∴DF=DC,∴在Rt△DEF与Rt△DCE中,∴Rt△DEF≌Rt△DCE(HL),∴∠FDE=∠CDE,∵∠FDC=30°,∴∠FDE=∠CDE=30°÷2=15°,∴∠DEF=180°﹣90°﹣15°=75°,∵△ABE≌△DFA,AB=4,∴DF=4,∵∠FDC=30°,∴∠ADF=90°﹣30°=60°,∴∠DAE=180°﹣90°﹣60°=30°,∵∠DF=4,∴AD=4×2=8,∴∠DEF=75°,AD=8.24.解:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵∠B=∠ACD=30°,∴∠BAD=90°﹣∠B=90°﹣30°=60°;(2)在Rt△ADB中,BD=AD=×=3.25.解:设客车由高速公路从甲地到乙地需x小时,则走普通公路需2x小时,根据题意得:,解得x=4经检验,x=4原方程的根,答:客车由高速公路从甲地到乙地需4时.26.解:(1)60×30%=18,30÷60×100%=50%,∴a=18,b=50%;(2)如图,(3)150×(30%+50%)=120.27.解:(1)过点D作DE⊥x轴于点E,过点B作BF⊥x轴于点F,如图1所示.∵四边形ABCD为正方形,∴AD=AB,∠BAD=90°,∵∠EAD+∠ADE=90°,∠EAD+∠BAF=90°,∴∠ADE=∠BAF.在△ADE和△BAF中,有,∴△ADE≌△BAF(AAS),∴DE=AF,AE=BF.∵点A(﹣6,0),D(﹣7,3),∴DE=3,AE=1,∴点B的坐标为(﹣6+3,0+1),即(﹣3,1).故答案为:(﹣3,1).(2)设反比例函数为y=,由题意得:点B′坐标为(﹣3+t,1),点D′坐标为(﹣7+t,3),∵点B′和D′在该比例函数图象上,∴,解得:t=9,k=6,∴反比例函数解析式为y=.(3)假设存在,设点P的坐标为(m,0),点Q的坐标为(n,).以P、Q、B′、D′四个点为顶点的四边形是平行四边形分两种情况:①当B′D′为对角线时,∵四边形B′PD′Q为平行四边形,∴,解得:,∴P(,0),Q(,4);②当B′D′为边时.∵四边形PQB′D′为平行四边形,∴,解得:,∴P(7,0),Q(3,2);∵四边形B′QPD′为平行四边形,∴,解得:.综上可知:存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形,符合题意的点P、Q的坐标为P(,0)、Q(,4)或P(7,0)、Q(3,2)或(﹣7,0)、(﹣3,﹣2).28.解:(1)∵在△ABC中,AB=AC,∠BAC=60°,∴∠BAC=∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∴∠ACE=∠B=60°,BD=CE,∴BC=BD+CD=EC+CD,∴AC=BC=EC+CD;故答案为:60°,AC=DC+EC;(2)BD2+CD2=2AD2,理由如下:由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B=45°,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)如图3,作AE⊥CD于E,连接AD,∵在Rt△DBC中,DB=3,DC=5,∠BDC=90°,∴BC==,∵∠BAC=90°,AB=AC,∴AB=AC=,∠ABC=∠ACB=45°,∵∠BDC=∠BAC=90°,∴点B,C,A,D四点共圆,∴∠ADE=45°,∴△ADE是等腰直角三角形,∴AE=DE,∴CE=5﹣DE,∵AE2+CE2=AC2,∴AE2+(5﹣AE)2=17,∴AE=1,AE=4,∴AD=或AD=4.29.解:(1)设所求抛物线的解析式为:y=ax2+bx+c,将A(1,0)、B(﹣3,0)、D (0,3)代入,得即所求抛物线的解析式为:y=﹣x2﹣2x+3.(2)如图④,在y轴的负半轴上取一点I,使得点F与点I关于x轴对称,在x轴上取一点H,连接HF、HI、HG、GD、GE,则HF=HI…①设过A、E两点的一次函数解析式为:y=kx+b(k≠0),∵点E在抛物线上且点E的横坐标为﹣2,将x=﹣2,代入抛物线y=﹣x2﹣2x+3,得y =﹣(﹣2)2﹣2×(﹣2)+3=3∴点E坐标为(﹣2,3)…(4分)又∵抛物线y=﹣x2﹣2x+3图象分别与x轴、y轴交于点A(1,0)、B(﹣3,0)、D(0,3),所以顶点C(﹣1,4)∴抛物线的对称轴直线PQ为:直线x=﹣1,∴点D与点E关于PQ对称,GD=GE…②分别将点A(1,0)、点E(﹣2,3)代入y=kx+b,得:解得:过A、E两点的一次函数解析式为:y=﹣x+1∴当x=0时,y=1∴点F坐标为(0,1)…(5分)∴|DF|=2…③又∵点F与点I关于x轴对称,∴点I坐标为(0,﹣1)∴…④又∵要使四边形DFHG的周长最小,由于DF是一个定值,∴只要使DG+GH+HI最小即可…(6分)由图形的对称性和①、②、③,可知,DG+GH+HF=EG+GH+HI只有当EI为一条直线时,EG+GH+HI最小设过E(﹣2,3)、I(0,﹣1)两点的函数解析式为:y=k1x+b1(k1≠0),分别将点E(﹣2,3)、点I(0,﹣1)代入y=k1x+b1,得:解得:过I、E两点的一次函数解析式为:y=﹣2x﹣1∴当x=﹣1时,y=1;当y=0时,x=﹣;∴点G坐标为(﹣1,1),点H坐标为(﹣,0)∴四边形DFHG的周长最小为:DF+DG+GH+HF=DF+EI由③和④,可知:DF+EI=∴四边形DFHG的周长最小为.…(7分)(3)如图⑤,由(2)可知,点A(1,0),点C(﹣1,4),设过A(1,0),点C(﹣1,4)两点的函数解析式为:y=k2x+b2,得:解得:,过A、C两点的一次函数解析式为:y=﹣2x+2,当x=0时,y=2,即M的坐标为(0,2);由图可知,△AOM为直角三角形,且,要使,△AOM与△PCM相似,只要使△PCM为直角三角形,且两直角边之比为1:2即可,设P(a,0),CM=,且∠CPM不可能为90°时,因此可分两种情况讨论;①当∠CMP=90°时,CM=,若,则,可求的P(﹣4,0),则CP=5,CP2=CM2+PM2,即P(﹣4,0)成立,若,由图可判断不成立;…(10分)②当∠PCM=90°时,CM=,若,则,可求出P(﹣3,0),则PM=,显然不成立,若,则,更不可能成立.综上所述,存在以P、C、M为顶点的三角形与△AOM相似,点P的坐标为(﹣4,0).。

青海省西宁市2020年数学中考基础冲刺训练(二)(含答案)

青海省西宁市2020年数学中考基础冲刺训练(二)(含答案)
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
青海省西宁市 2020 年数学中考基础冲刺训练(二)
一.选择题(每题 3 分,满分 30 分)
1.若等式﹣2□(﹣2)=4 成立,则“□”内的运算符号是(
A.+
B.﹣
C.×
2.下列四个图形中,不是轴对称图形的是( )
) D.÷
A.
B.
C.
D.
3.下列各数,﹣3,π,﹣ ,0, ,0.010010001…(每相邻两个 1 之间 0 的个数依次
5 / 23
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
(1)收集数据:学生会计划调查学生喜欢的活动主题情况,下面抽样调查的对象选择合
理的是
.(填序号)
①选择七年级 3 班、4 班、5 班学生作为调查对象
②选择学校旅游摄影社团的学生作为调查对象
③选择各班学号为 6 的倍数的学生作为调查对象
8.解:连接 AC、BD、OF,AC 与 EF 交于 P 点,则它们的交点为 O 点,如图, ∵正方形 ABCD 和等边△AEF 都内接于圆 O, ∴∠COF=60°,AC⊥BD,∠BCA=45°, ∵EF∥BD, ∴AC⊥EF, ∴PE=PF= EF=3, 在 Rt△OPF 中,OP= OF= OC, ∵OP= PF= , ∴PC=OP= , ∵△PCG 为等腰直角三角形, ∴PG=PC= , ∴EG=PE﹣PG=3﹣ . 故选:B.
分面积等于
15.平行四边形 ABCD 的周长为 32,两邻边 a,b 恰好是一元二次方程 x2+8kx+63=0 的两个
根,那么 k=

16.如图,在△ABC 中,D、E 分别是 AB、AC 的中点,点 F 在 BC 上,ED 是∠AEF 的平分线,

九年级数学中考基础冲刺训练(二)(含答案) (2)

九年级数学中考基础冲刺训练(二)(含答案) (2)

2020年数学中考基础冲刺训练(二)一.选择题1.下列算式正确的是()A.B.C.D.2.若关于x的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A.﹣1 B.1 C.﹣2或2 D.﹣3或13.下列抛物线的图象,开口最大的是()A.y=x2B.y=4x2C.y=﹣2x2D.无法确定4.为了解居民用水情况,在某小区随机抽查了15户家庭的月用水量,结果如下表:月用水量(吨) 4 5 6 8 9户数 2 5 4 3 1则这15户家庭的月用水量的众数与中位数分别为()A.9、6 B.6、6 C.5、6 D.5、55.已知▱ABCD,对角线AC,BD相交于点O,要使▱ABCD为矩形,需添加下列的一个条件是()A.OA=OB B.∠BAC=∠DAC C.AC⊥BD D.AB=BC6.如图,已知∠POQ=30°,点A、B在射线OQ上(点A在点O、B之间),半径长为2的⊙A与直线OP相切,半径长为3的⊙B与⊙A相交,那么OB的取值范围是()A.5<OB<9 B.4<OB<9 C.3<OB<7 D.2<OB<7二.填空题7.﹣的立方根为.8.若x+y=1,x﹣y=5,则xy=.9.已知方程组有两组不相等的实数解,则k的取值范围.10.买一个篮球需要x元,买一个排球需要y元,买一个足球需要z元,买3个篮球、5个排球、2个足球一共需要元.11.已知反比例函数y=图象位于一、三象限,则m的取值范围是.12.空气质量指数,简称AQI,如果AQI在0~50空气质量类别为优,在51~100空气质量类别为良,在101~150空气质量类别为轻度污染,按照某市最近一段时间的AQI画出的频数分布直方图如图所示.已知每天的AQI都是整数,那么空气质量类别为优和良的天数占总天数的百分比为%.13.从﹣1、0、、π、5.1、7这6个数中随机抽取一个数,抽到无理数的概率是.14.已知关于x的一次函数y=mx+2m﹣1的图象经过原点,则m=.15.如图,在平行四边形ABCD中,点E是边CD的中点,联结AE、BD交于点F,若=,=,用、表示=.16.以下四个结论:①一个多边形的内角和为900°,则从这个多边形同一个顶点可画的对角线有4条;②三角形的一个外角等于两个内角的和;③任意一个三角形的三条高所在直线的交点一定在三角形的内部;④△ABC中,若∠A+∠B=∠C,则△ABC为直角三角形.其中正确的是.(填序号)17.如图,正方形ABCD的面积为2,M是AB的中点,则图中阴影部分的面积是.18.如图,矩形ABCD中,AB=8,BC=6.点E在边AB上,点F在边CD上,点G、H 在对角线AC上,若四边形EGFH是菱形,则AE的长是.三.解答题19.解不等式组,并把解集表示在数轴上.20.先化简,再求值:(x﹣2+)÷,其中x=﹣.21.如图,在△ABD中,∠ABD=∠ADB,分别以点B,D为圆心,AB长为半径在BD的右侧作弧,两弧交于点C,分别连接BC,DC,AC,记AC与BD的交点为O.(1)补全图形,求∠AOB的度数并说明理由;(2)若AB=5,cos∠ABD=,求BD的长.22.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线OBCDA表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:(1)当轿车刚到乙地时,此时货车距离乙地千米;(2)当轿车与货车相遇时,求此时x的值;(3)在两车行驶过程中,当轿车与货车相距20千米时,求x的值.23.已知:如图,在正方形ABCD中,点E是边AD的中点,联结BE,过点A作AF⊥BE,分别交BE、CD于点H、F,联结BF.(1)求证:BE=BF;(2)联结BD,交AF于点O,联结OE.求证:∠AEB=∠DEO.24.如图①抛物线y=ax2+bx+3(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(3,0),点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.25.已知:△ABC内接于⊙O,连接CO并延长交AB于点E,交⊙O于点D,满足∠BEC =3∠ACD.(1)如图1,求证:AB=AC;(2)如图2,连接BD,点F为弧BD上一点,连接CF,弧CF=弧BD,过点A作AG⊥CD,垂足为点G,求证:CF+DG=CG;(3)如图3,在(2)的条件下,点H为AC上一点,分别连接DH,OH,OH⊥DH,过点C作CP⊥AC,交⊙O于点P,OH:CP=1:,CF=12,连接PF,求PF的长.参考答案一.选择1.解:A.、不是同类二次根式,不能合并;B.3﹣2=,此选项错误;C.3+3=6,此选项正确;D.==,此选项错误;故选:C.2.解:原方程可变形为x2+(a+1)x=0.∵该方程有两个相等的实数根,∴△=(a+1)2﹣4×1×0=0,解得:a=﹣1.故选:A.3.解:∵二次函数中|a|的值越小,函数图象的开口越大,又∵||<|﹣2|<|4|,∴抛物线y=x2的图象开口最大,故选:A.4.解:数据5出现的次数最多,为众数;数据6处在第8位,中间位置,所以本题这组数据的中位数是6.故选:C.5.解:若使▱ABCD变为矩形,可添加的条件是:OA=OB,(对角线相等的平行四边形是矩形)故选:A.6.解:设⊙A与直线OP相切时切点为D,连接AD,∴AD⊥OP,∵∠O=30°,AD=2,∴OA=4,当⊙B与⊙A相内切时,设切点为C,如图1,∵BC=3,∴OB=OA+AB=4+3﹣2=5;当⊙A与⊙B相外切时,设切点为E,如图2,∴OB=OA+AB=4+2+3=9,∴半径长为3的⊙B与⊙A相交,那么OB的取值范围是:5<OB<9,故选:A.二.填空7.解:﹣的立方根为﹣.故答案为:﹣.8.解:∵x+y=1,x﹣y=5,∴xy=[(x+y)2﹣(x﹣y)2]=﹣6,故答案为:﹣69.解:,把②代入①得:(kx+2)2﹣4x﹣2(kx+2)+1=0,整理得:k2x2+(2k﹣4)x+1=0,∵方程组有两组不相等的实数解,∴△=(2k﹣4)2﹣4k2×1=﹣16k+16>0且k2≠0,解得:k<1且k≠0,故答案为:k<1且k≠0.10.解:∵买一个篮球需要x元,买一个排球需要y元,买一个足球需要z元,∴买3个篮球、5个排球、2个足球一共需要3x+5y+2z(元),故答案为:3x+5y+2z.11.解:∵反比例函数y=图象位于一、三象限,∴﹣(m﹣6)>0,解得m<6.故答案是:m<6.12.解:空气质量类别为优和良的天数占总天数的百分比为×100%=80%,故答案为:80.13.解:∵在﹣1、0、、π、5.1、7这6个数中无理数有、π这2个,∴抽到无理数的概率是=,故答案为:.14.解:∵关于x的一次函数y=mx+2m﹣1的图象经过原点,∴点(0,0)满足一次函数的解析式y=mx+2m﹣1,∴0=0×m+2m﹣1,解得,m=.故答案为:.15.解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴==,==,∵DE=DC,∴=﹣=﹣,∴=+=﹣,∵DE∥AB,∴EF:AF=DE:AB=1:2,∴EF =AE , ∴=﹣=﹣+ ∴=+=﹣﹣+=﹣﹣故答案为﹣﹣.16.解:①一个多边形的内角和为900°,这个多边形是七边形,则从这个多边形同一个顶点可画的对角线有4条,故①符合题意;②三角形的一个外角等于与它不相邻的两个内角的和,故②不符合题意;③任意一个锐角三角形的三条高所在直线的交点一定在三角形的内部,故③不符合题意; ④△ABC 中,若∠A +∠B =∠C ,则△ABC 为直角三角形,故④符合题意; 故答案为:①④. 17.解:∵M 是AB 的中点∴S △ABM =S △ACM =S 正方形ABCD =×2= ∵BC ∥AD ,即BC ∥AM ∴△AGM ∽△CGB ∴===2∴==∴S △AGB =S △MGC =S △ABM =×= ∴图中阴影部分的面积是×2= 故答案为:.18.解:连接FE ,交AC 于点O . ∵四边形ABCD 是矩形, ∴∠FCH =∠EAG . ∵四边形EGFH 是菱形,∴FH=GE,∠FHG=∠EGH.∴∠FHC=∠EGA.∴△FCH≌△EAG(AAS).∴CH=AG.∵四边形EGFH是菱形,∴FE⊥GH,且O为GH中点.∴O为AC中点.在Rt△ABC中,利用勾股定理可得AC=10.∴AO=5.则cos∠OAE=cos∠CAB,∴,即,解得AE=.故答案为.三.解答19.解:,由①得x≥3,由②得x<5,故此不等式组的解集为3≤x<5,把解集表示在数轴为20.解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.21.解:(1)补全的图形,如图所示,可得出∠AOB=90°,理由如下:证明:由题意可知BC=AB,DC=AB,∵在△ABD中,∠ABD=∠ADB,∴AB=AD,∴BC=DC=AD=AB,∴四边形ABCD为菱形,∴AC⊥BD,∴∠AOB=90°;(2)∵四边形ABCD为菱形,∴OB=OD.在Rt△ABO中,∠AOB=90°,AB=5,cos∠ABD=,∴OB=AB•cos∠ABD=3,∴BD=2OB=6.22.解:(1)根据图象信息:货车的速度V=,货∵轿车到达乙地的时间为货车出发后4.5小时,∴轿车到达乙地时,货车行驶的路程为:4.5×60=270(千米),此时,货车距乙地的路程为:300﹣270=30(千米).所以轿车到达乙地后,货车距乙地30千米.故答案为:30;(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其图象上,,解得,∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5);易得OA:y=60x,,解得,∴当x=3.9时,轿车与货车相遇;(3)当x=2.5时,y=150,两车相距=150﹣80=70>20,货由题意60x﹣(110x﹣195)=20或110x﹣195﹣60x=20,解得x=3.5或4.3小时.答:在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时.23.证明:(1)∵四边形ABCD是正方形,∴AB=DA=BC=CD,∠BAD=∠ADF=∠BCF=90°,∴∠BAH+∠HAE=90°,∵AF⊥BE,∴∠AHB=90°,即∠BAH+∠ABH=90°,∴∠ABH=∠HAE,又∵∠BAE=∠ADF,∴△ABE∽△DAF,∴=,∴AE=DF,∵点E是边AD的中点,∴点F是边DC的中点,∴CF=AE,在Rt△ABE与Rt△CBF中,∴Rt△ABE≌Rt△CBF(SAS),∴BE=BF.(2)∵四边形ABCD是正方形,∴DB平分∠ADC,∴∠ADB=∠CDB,在△DEO与△DFO中,∴△DEO≌△DFO(SAS),∴∠DEO=∠DFO,∵△ABE∽△DAF,∴∠AEB=∠DFA,∴∠AEB=∠DEO.24.解:如图:(1)∵抛物线y=ax2+bx+3(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(3,0),点C三点.∴解得∴抛物线的解析式为y=﹣x2+2x+3.(2)存在.理由如下:y=﹣x2+2x+3=﹣(x﹣1)2+4.∵点D(2,m)在第一象限的抛物线上,∴m=3,∴D(2,3),∵C(0,3)∵OC=OB,∴∠OBC=∠OCB=45°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=45°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=2,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(3,0)代入,得k=﹣,b=1,∴BP解析式为y BP=﹣x+1.y BP=﹣x+1,y=﹣x2+2x+3当y=y BP时,﹣x+1=﹣x2+2x+3,解得x1=﹣,x2=3(舍去),∴y=,∴P(﹣,).(3)M1(﹣2,﹣5),M2(4,﹣5),M3(2,3).设点N(1,n),当BC、MN为平行四边形对角线时,由BC、MN互相平分,M(2,3﹣n),代入y=﹣x2+2x+3,3﹣n=﹣4+4+3,解得n=0,∴M(2,3);当BM、NC为平行四边形对角线时,由BM、NC互相平分,M(﹣2,3+n),代入y=﹣x2+2x+3,3+n=﹣4﹣4+3,解得n=﹣8,∴M(﹣2,﹣5);当MC、BN为平行四边形对角线时,由MC、BN互相平分,M(4,n﹣3),代入y=﹣x2+2x+3,n﹣3=﹣16+8+3,解得n=﹣2,∴M(4,﹣5).综上所述,点M的坐标为:M1(﹣2,﹣5),M2(4,﹣5),M3(2,3).25.(1)证明:如图1中,连接AD.设∠BEC=3α,∠ACD=α.∵∠BEC=∠BAC+∠ACD,∴∠BAC=2α,∵CD是直径,∴∠DAC=90°,∴∠D=90°﹣α,∴∠B=∠D=90°﹣α,∵∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣2α﹣(90°﹣α)=90°﹣α.∴∠ABC=∠ACB,∴AB=AC.(2)证明:如图2中,连接AD,在CD上取一点Z,使得CZ=BD.∵=,∴DB=CF,∵∠DBA=∠DCA,CZ=BD,AB=AC,∴△ADB≌△AZC(SAS),∴AD=AZ,∵AG⊥DZ,∴DG=GZ,∴CG=CZ+GZ=BD+DG=CF+DG.(3)解:连接AD,PA,作OK⊥AC于K,OR⊥PC于R,CT⊥FP交FP的延长线于T.∵CP⊥AC,∴∠ACP=90°,∴PA是直径,∵OR⊥PC,OK⊥AC,∴PR=RC,∠ORC=∠OKC=∠ACP=90°,∴四边形OKCR是矩形,∴RC=OK,∵OH:PC=1:,∴可以假设OH=a,PC=2a,∴PR=RC=a,∴RC=OK=a,sin∠OHK==,∴∠OHK=45°,∵OH⊥DH,∴∠DHO=90°,∴∠DHA=180°﹣90°﹣45°=45°,∵CD是直径,∴∠DAC=90°,∴∠ADH=90°﹣45°=45°,∴∠DHA=∠ADH,∴AD=AH,∵∠COP=∠AOD,∴AD=PC,∴AH=AD=PC=2a,∴AK=AH+HK=2a+a=3a,在Rt△AOK中,tan∠OAK==,OA===a,∴sin∠OAK==,∵∠ADG+∠DAG=90°,∠ACD+∠ADG=90°,∴∠DAG=∠ACD,∵AO=CO,∴∠OAK=∠ACO,∴∠DAG=∠ACO=∠OAK,∴tan∠ACD=tan∠DAG=tan∠OAK=,∴AG=3DG,CG=3AG,∴CG=9DG,由(2)可知,CG=DG+CF,∴DG+12=9DG,∴DG=,AG=3DG=3×=,∴AD===,∴PC=AD=,∵sin∠F=sin∠OAK,∴sin∠F==,∴CT=×FC=×12=,FT===,PT===,∴PF=FT﹣PT=﹣=.。

宁夏银川市2020年数学中考基础冲刺训练(二)(含答案)

宁夏银川市2020年数学中考基础冲刺训练(二)(含答案)

宁夏银川市2020年数学中考基础冲刺训练(二)一.选择题(每题3分,满分24分)1.下列计算正确的是()A.a3+a3=2a6B.a2•a4=a8C.a6÷a2=a4D.(2ab)2=4ab22.已知点A(a+b,4)与点B(﹣2,a﹣b)关于原点对称,则a2﹣b2等于()A.8 B.﹣8 C.5 D.﹣53.抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是()A.20,20 B.30,20 C.30,30 D.20,304.如图是某手机销售店今年1~5月份音乐手机销售额折线统计图,根据图中信息,可以判断相邻两个月音乐手机销售额变化最大的是()A.1月至2月B.2月至3月C.3月至4月D.4月至5月5.关于x的一元二次方程x2+2x+a=0有两个不相等的实数根,则实数a的取值范围是()A.a>1 B.a=1 C.a<1 D.a≤16.如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在整个行驶过程中的平均速度为30千米/时;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有()A.1个B.2个C.3个D.4个7.从边长为a的正方形内去掉一个边长为b的小正方形(如图1),然后将剩余部分剪拼成一个矩形(如图2),上述操作所能验证的等式是()A.(a﹣b)2=a2﹣2ab+b2B.a2﹣b2=(a+b)(a﹣b)C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)8.如图所示,在边长为(+1)的正方形铁皮上剪下一个扇形和一个圆,使之恰好围成一个圆锥,则圆锥的高为()A.B.C.D.二.填空题(每题3分,满分24分)9.因式分解:a3﹣9a=.10.如图,点A在数轴上所表示的数是.11.将一个小球在如图所示的地砖上自由滚动,最终停在黑色方砖上的概率为.12.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/小时,水速为2千米/时,则A港和B港相距千米.13.如图,在平行四边形ABCD中,∠B=30°,且BC=CA,将△ABC沿AC翻折至△AB′C,AB′交CD于点E,连接B′D.若AB=3,则B′D的长度为.14.如图,在△ABC中,BF平分∠ABC,AG⊥BF,垂足为点D,交BC于点G,E为AC的中点,连结DE,DE=2.5cm,AB=4cm,则BC的长为cm.15.如图,点A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为.16.有一个棱长为5的正方体木块,从它的每一个面看都有一个穿透的完全相同的孔(如图中的阴影部分),则这个立体图形的内、外表面的总面积是.三.解答题17.(6分)解不等式组18.(6分)解方程:+=119.(6分)某校为了更好地服务学生,了解学生对学校管理的意见和建议,该校团委发起了“我给学校提意见”的活动,某班团支部对该班全体团员在一个月内所提意见的条数的情况进行了统计,并制成了如图两幅不完整的统计图:(1)该班的团员有名,在扇形统计图中“2条”所对应的圆心角的度数为;(2)求该班团员在这一个月内所提意见的平均条数是多少?并将该条形统计图补充完整;(3)统计显示提3条意见的同学中有两位女同学,提4条意见的同学中也有两位女同学.现要从提了3条意见和提了4条意见的同学中分别选出一位参加该校团委组织的活动总结会,请你用列表或画树状图的方法,求出所选两位同学恰好是一位男同学和一位女同学的概率.20.(6分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣5,1),B(﹣2,2),C(﹣1,4),请按下列要求画图:(1)将△ABC先向右平移4个单位长度、再向下平移1个单位长度,得到△A1B1C1,画出△A1B1C1;(2)画出与△ABC关于原点O成中心对称的△A2B2C2,并直接写出点A2的坐标.21.(6分)如图,已知四边形纸片ABCD中,AD∥BC,点E是BC边上的一点,将纸片沿AE 折叠,点B恰好落在AD边上的点F处,连接EF.求证:四边形ABEF是菱形.22.(6分)在绿化某县城与高速公路的连接路段时,需计划购买罗汉松、雪松两种树苗共400株,罗汉松树苗每株60元,雪松树苗每株70元.相关资料表明:罗汉松、雪松树苗的成活率分别为70%、90%.(1)若购买这两种树苗共用去26500元,则罗汉松、雪松树苗各购买多少株?(2)绿化工程在来年一般都要将死树补上新树苗,现要使这两种树苗在来年共补苗不多于80株,则罗汉松树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?请求出最低费用.四.解答题23.(8分)如图,在⊙O内,弦AB∥CD,QO⊥AB交AC延长线于Q,交BC于P,垂足为M.(1)证明:∠BOP=∠QCP.(2)证明:OP•OQ=OA2.24.(8分)如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(﹣6,0),D (﹣7,3),点B、C在第二象限内.(1)点B的坐标;(2)将正方形ABCD以每秒1个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P、Q的坐标;若不存在,请说明理由.25.(10分)某市A,B两个蔬菜基地得知四川C,D两个灾民安置点分别急需蔬菜240t和260t的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,现将这些蔬菜全部调运C,D两个灾区安置点从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值:C D总计/tA200B x300总计/t240 260 500 (2)设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调动方案.26.(10分)已知:如图,点C是线段AB上的任意一点(点C与A、B点不重合),分别以AC、BC为边在直线AB的同侧作等边△ACD和等边△BCE,AE与CD相交于点M,BD和CE相交于点N.(1)求证:△ACE≌△DCB;(2)如果AB的长为10cm,MN=ycm,AC=xcm.①请写出y与x之间的函数关系式,并指出自变量的取值范围.②当点C在何处时MN的长度最长?并求MN的最大长度.参考答案一.选择题1.解:A.a3+a3=2a3,故本选项不合题意;B.a2•a4=a6,故本选项不合题意;C.a6÷a2=a4,正确,故本选项符合题意;D.(2ab)2=4a2b2,故本选项不合题意.故选:C.2.解:∵点A(a+b,4)与点B(﹣2,a﹣b)关于原点对称,∴,∴a2﹣b2=(a+b)(a﹣b)=2×(﹣4)=﹣8.故选:B.3.解:捐款30元的人数为20人,最多,则众数为30,中间两个数分别为30和30,则中位数是30,故选:C.4.解:1月至2月,25﹣18=7万元,2月至3月,25﹣20=5万元,3月至4月,20﹣10=10万元,4月至5月,14﹣10=4万元,所以,相邻两个月中,音乐手机销售额变化最大的是3月至4月.故选:C.5.解:∵方程x2+2x+a=0有两个不相等的实数根,∴△>0,即4﹣4a>0,解得a<1,故选:C.6.解:汽车从出发地到目的地走了140千米,又回到出发地因而共行驶了280千米,故①错误;汽车在行驶途中停留了4﹣3=1小时,故②正确;汽车在整个行驶过程中的平均速度为:280÷9=(千米/时),故③错误;汽车出发后6小时至9小时之间行驶的速度不变,故④错误.综上所述,正确的只有②.故选:A.7.解:∵从边长为a的正方形内去掉一个边长为b的小正方形,剩余部分的面积是:a2﹣b2,拼成的矩形的面积是:(a+b)(a﹣b),∴根据剩余部分的面积相等得:a2﹣b2=(a+b)(a﹣b),故选:B.8.解:如图1,过⊙F圆心F作FE⊥AD于E,FG⊥CD于G.则四边形EFGD为正方形,设小圆半径为r,扇形半径为R,则FD=r,小圆周长2πr,扇形弧长,∵恰好围成一个圆锥,∴=2πr,解得R=4r,即BH=4r,∴BD=BH+HF+FD=4r+r+r=(5+)r,∵正方形铁皮边长为+1,∴BD=×(+1)=5+,∴(5+)r=5+,∴r=1.在图2中,EF=1,BE=4,由勾股定理得,圆锥的高BF==.故选:B.二.填空题9.解:原式=a(a2﹣9)=a(a+3)(a﹣3),故答案为:a(a+3)(a﹣3).10.解:根据题意得:OA=OB==,则点A在数轴上所表示的数是﹣,故答案为:﹣11.解:观察这个图可知:白色区域与黑色区域面积相等,各占,故其概率等于.故答案为:12.解:设A港和B港相距x千米.根据题意,得,解之得x=504.故填504.13.解:作CM⊥AB于M,如图所示:由折叠的性质得:B'C=BC=AC,∠AB'C=∠B=∠CAB'=30°,AB'=AB=CD,∵四边形ABCD是平行四边形,∴AD=CB,AB=CD,∠ADC=∠B=30°,∠BAD=∠BCD=180°﹣∠B=150°,∴∠B'AD=150°﹣30°﹣30°=90°,∵BC=AC,∴AM=BM=AB=,∠BAC=∠B=30°,∴CM=,∴AD=BC=2CM=3,在Rt△AB'D中,由勾股定理得:B'D===6;故答案为:6.14.解:∵BF平分∠ABC,AG⊥BF,∴△ABG是等腰三角形,∴AB=GB=4cm,∵BF平分∠ABC,∴AD=DG,∵E为AC的中点,∴DE是△AGB的中位线,∴DE=CG,∴CG=2DE=5cm,∴BC=BG+CG=4+5=9cm,故答案为:915.解:如图,分别作AB、BC的中垂线,两直线的交点为O,以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,由图可知,⊙O还经过点D、E、F、G、H这5个格点,故答案为:5.16.解:根据图示可得:八个棱长为2的正方体分别在8个顶角,12个棱长为1的正方体分别在12条棱的中间,所以总面积=(2×2×6)×8+(1×1×6)×12﹣4×12=216.故答案为:216三.解答17.解:解不等式2x+1≥﹣1,得:x≥﹣1,解不等式x+1>4(x﹣2),得:x<3,则不等式组的解集为﹣1≤x<3.18.解:方程两边乘(x﹣3)(x+3),得x(x+3)+6 (x﹣3)=x2﹣9,解得:x=1,检验:当x=1 时,(x﹣3)(x+3)≠0,所以,原分式方程的解为x=1.19.解:(1)该班团员有3÷25%=12人,在扇形统计图中“2条”所对应的圆心角的度数为360°×=60°,故答案为:12、60°;(2)∵提4条意见的有12﹣(2+2+3+1)=4人,∴所提意见的平均条数为=3(条),补全图形如下:(3)画树状图如下:由树状图可知共有12种等可能结果,其中所选两位同学恰好是一位男同学和一位女同学的结果数为6种,所以所选两位同学恰好是一位男同学和一位女同学的概率为=.20.解:(1)如图所示,△A 1B 1C 1即为所求.(2)如图所示,△A 2B 2C 2即为所求,点A 2的坐标为(5,﹣1). 21.证明:根据折叠的性质,可得:AF =AB ,∠BAE =∠FAE ,BE =EF , ∵AD ∥BC , ∴∠FAE =∠AEB , ∴∠BAE =∠AEB , ∴AB =BE , ∴AB =BE =FE =AF , ∴四边形ABEF 为菱形.22.解:(1)设购买罗汉松树苗x 株,雪松树苗y 株, 则据题意可得,解得,答:购买罗汉松树苗150株,雪松树苗250株;(2)设购买罗汉松树苗x株,则购买雪松树苗(400﹣x)株,由题意得,70%x+90%(400﹣x)≥(400﹣80),解得x≤200,答:罗汉松树苗至多购买200株;(3)设罗汉松树苗购买x株,购买树苗的费用为W元,则有W=60x+70(400﹣x)=﹣10x+28000,显然W是关于x的一次函数,∵﹣10<0,∴W随x的增大而减小,故当x取最大值时,W最小,∵0<x≤200,∴当x=200时,W取得最小值,且W=﹣10×200+28000=26000.最小答:当选购罗汉松树苗200株,雪松树苗200株时,总费用最低,为26000元.四.解答23.证明:(1)∵QO⊥AB,∴AM=BM,且OA=OB,∴∠AOB=2∠BOM=2∠AOM,且∠AOB=2∠ACB,∴∠BOM=∠ACB,∴∠BOP=∠QCP,(2)∵MQ⊥AB,AM=BM,∴AO=BO,AP=BP,且OP=OP,∴△AOP≌△BOP(SSS)∴∠PAO=∠PBO,∵∠BPO=∠CPQ,∠BOP=∠QCP∴∠PBO=∠Q∴∠Q=∠PAO,且∠AOP=∠AOQ,∴△AOP∽△QOA∴∴OP•OQ=OA2.24.解:(1)过点D作DE⊥x轴于点E,过点B作BF⊥x轴于点F,如图1所示.∵四边形ABCD为正方形,∴AD=AB,∠BAD=90°,∵∠EAD+∠ADE=90°,∠EAD+∠BAF=90°,∴∠ADE=∠BAF.在△ADE和△BAF中,有,∴△ADE≌△BAF(AAS),∴DE=AF,AE=BF.∵点A(﹣6,0),D(﹣7,3),∴DE=3,AE=1,∴点B的坐标为(﹣6+3,0+1),即(﹣3,1).故答案为:(﹣3,1).(2)设反比例函数为y=,由题意得:点B′坐标为(﹣3+t,1),点D′坐标为(﹣7+t,3),∵点B′和D′在该比例函数图象上,∴,解得:t=9,k=6,∴反比例函数解析式为y=.(3)假设存在,设点P的坐标为(m,0),点Q的坐标为(n,).以P、Q、B′、D′四个点为顶点的四边形是平行四边形分两种情况:①当B′D′为对角线时,∵四边形B′PD′Q为平行四边形,∴,解得:,∴P(,0),Q(,4);②当B′D′为边时.∵四边形PQB′D′为平行四边形,∴,解得:,∴P(7,0),Q(3,2);∵四边形B′QPD′为平行四边形,∴,解得:.综上可知:存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形,符合题意的点P、Q的坐标为P(,0)、Q(,4)或P(7,0)、Q(3,2)或(﹣7,0)、(﹣3,﹣2).25.解:(1)填表如下:C D总计/tA(240﹣x)(x﹣40)200B x(300﹣x)300总计/t240 260 500 依题意得:20(240﹣x)+25(x﹣40)=15x+18(300﹣x)解得:x=200两个蔬菜基地调运蔬菜的运费相等时x的值为200.(2)w与x之间的函数关系为:w=20(240﹣x)+25(x﹣40)+15x+18(300﹣x)=2x+9200 由题意得:∴40≤x≤240∵在w=2x+9200中,2>0∴w随x的增大而增大∴当x=40时,总运费最小此时调运方案为:(3)由题意得w=(2﹣m)x+9200∴0<m<2,(2)中调运方案总费用最小;m=2时,在40≤x≤240的前提下调运方案的总费用不变;2<m<15时,x=240总费用最小,其调运方案如下:26.(1)证明:∵△ACD和△BCE是等边三角形,∴AC=CD,BC=CE,∠ACD=∠BCE=60°,∴∠ACD+∠DCE=∠BCE+∠DCE,∠DCB=∠ACE,在△ACE与△DCB中,∵,∴△ACE≌△DCB;(2)①∵△ACE≌△DCB,∴∠CAE=∠BDC,∴△ACM≌△DCN,∴CM=CN,又∵∠MCN=180°﹣60°﹣60°=60°,∴△MCN是等边三角形,∴∠MNC=∠NCB=60°,∴MN∥AB.∴=,∵AB的长为10cm,MN=ycm,AC=xcm.∴=,即y=﹣x2+x(0<x<10);②∵由①可知,y=﹣x2+x(0<x<10),即y=﹣(x﹣5)2+2.5;∴当x=5时,MN的值最大,MN的最大长度为2.5cm,即当C点是AB中点时,线段MN 的最大长度是2.5cm.。

2020年海南省海口市数学中考基础冲刺训练(二)(解析版)

2020年海南省海口市数学中考基础冲刺训练(二)(解析版)

海南省海口市2020年数学中考基础冲刺训练(二)一.选择题(每题3分,满分42分) 1.﹣5的相反数是( ) A .B .±5C .5D .﹣2.计算:m 6•m 2的结果为( ) A .m 12B .m 8C .m 4D .m 33.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是( ) A .9.2×108B .92×107C .0.92×109D .9.2×1074.一组数据8,7,6,7,6,5,4,5,8,6的众数是( ) A .8B .7C .6D .55.下列几何体中,从正面看(主视图)是长方形的是( )A .B .C .D .6.如图所示,在平面直角坐标系中,点A 、B 、C 的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC 沿一确定方向平移得到△A 1B 1C 1,点B 的对应点B 1的坐标是(1,2),则点A 1,C 1的坐标分别是 ( )A.A1(4,4),C1(3,2)B.A1(3,3),C1(2,1)C.A1(4,3),C1(2,3)D.A1(3,4),C1(2,2)7.如图,已知AB∥CD,∠2=100°,则下列正确的是()A.∠1=100°B.∠3=80°C.∠4=80°D.∠4=100°8.不等式组的解集在数轴上表示正确的是()A.B.C.D.9.已知:关于x方程+=有且仅有一个实数根,则k的值为()A.B.或1 C.或5或1 D.或5或﹣2 10.一个不透明的布袋里装有3个红球,2个黑球,若干个白球;从布袋中随机摸出一个球,摸出的球是红球的概率是,袋中白球共有()A.1个B.2个C.3个D.4个11.在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y 3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y212.如图,A、B、C是正方形网格中的格点,将△ABC绕A点逆时针旋转45°得到△ADE,则tan D的值为()A.B.C.D.13.如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.若∠ABC =50°,∠BAC=80°,则∠1的度数为()A.60°B.50°C.40°D.25°14.如图,将等腰三角形纸片沿图中虚线剪成四块图形,用这四块图形进行拼接,恰能拼成一个没有缝隙的正方形,则正方形的边长与等腰三角形的底边长的比为()A.B.C.D.二.填空题(满分16分,每小题4分)15.比较大小:3 ,76,﹣﹣3,()3.16.一个多边形的内角和是1800°,这个多边形是边形.17.已知a是整数,一次函数y=10x+a的图象与两坐标轴所围成的三角形的面积数为质数,则这个质数等于.18.如图,已知⊙O的半径为5,P是直径AB的延长线上一点,BP=1,CD是⊙O的一条弦,CD=6,以PC,PD为相邻两边作▱PCED,当C,D点在圆周上运动时,线段PE长的最大值与最小值的差等于.三.解答题19.(10分)计算与化简:(1)|﹣4|﹣20180+()﹣1﹣()2(2)(x+1)2﹣2(x﹣2)20.(8分)A、B两种型号的机器生产同一种产品,已知7台A型机器一天生产的产品装满8箱后还剩2个,5台B型机器一天生产的产品装满6箱后还剩8个.每台A型机器比每台B型机器一天少生产2个产品,求每箱装多少个产品?21.(8分)“分组合作学习”已成为推动课堂教学改革,打造自主高效课堂的重要措施.某中学从全校学生中随机抽取部分学生对“分组合作学习”实施后的学习兴趣情况进行调查分析,统计图如下:请结合图中信息解答下列问题:(1)求出随机抽取调查的学生人数;(2)补全分组后学生学习兴趣的条形统计图;(3)分组后学生学习兴趣为“中”的所占的百分比和对应扇形的圆心角.22.(8分)4月18日,一年一度的“风筝节”活动在市政广场举行,如图,广场上有一风筝A,小江抓着风筝线的一端站在D处,他从牵引端E测得风筝A的仰角为67°,同一时刻小芸在附近一座距地面30米高(BC=30米)的居民楼顶B处测得风筝A的仰角是45°,已知小江与居民楼的距离CD=40米,牵引端距地面高度DE=1.5米,根据以上条件计算风筝距地面的高度(结果精确到0.1米,参考数据:sin67°≈,cos67°≈,tan67°≈,≈1.414).23.如图1,在矩形ABCD中,点P是BC边上一点,连接AP交对角线BD于点E,BP=BE.作线段AP的中垂线MN分别交线段DC,DB,AP,AB于点M,G,F,N.(1)求证:∠BAP=∠BGN;(2)若AB=6,BC=8,求;(3)如图2,在(2)的条件下,连接CF,求tan∠CFM的值.24.如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点B,与y轴交点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴交于另一点A.如图1,点P为抛物线上任意一点.过点P作PM⊥x轴交BC于M.(1)求抛物线的解析式;(2)当△PCM是直角三角形时,求P点坐标;(3)如图2,作P点关于直线BC的对称点P′,作直线P′M与抛物线交于EF,设抛物线对称轴与x轴交点为Q,当直线P′M经过点Q时,请你直接写出EF的长.参考答案一.选择题1.解:﹣5的相反数是:5.故选:C.2.解:m6•m2=m6+2=m8,故选:B.3.解:9.2亿=9.2×108.故选:A.4.解:在这组数据中6出现3次,次数最多,所以众数为6,故选:C.5.解:圆锥的主视图是等腰三角形,圆柱的主视图是长方形,圆台的主视图是梯形,球的主视图是圆形,故选:B.6.解:由点B(﹣4,1)的对应点B1的坐标是(1,2)知,需将△ABC向右移5个单位、上移1个单位,则点A(﹣1,3)的对应点A1的坐标为(4,4)、点C(﹣2,1)的对应点C1的坐标为(3,2),故选:A.7.解:∵AB∥CD、∠2=100°,∴∠1+∠2=180°,∠3=∠2=100°,∠4=∠2=100°,则∠1=180°﹣∠2=80°,故选:D.8.解:不等式组的解集在数轴上表示如下:故选:C.9.解:分式方程去分母得:x 2+x 2+2x +1=4x +k , 即2x 2﹣2x +1﹣k =0,由分式方程有且仅有一个实数根,可得整式方程中△=4﹣8(1﹣k )=0, 解得:k =;若整式方程中△>0,则当增根为x =0时,代入整式方程可得:1﹣k =0, 即k =1,此时,方程2x 2﹣2x =0的解为x 1=1,x 2=0(不合题意); 当增根为x =﹣1时,代入整式方程可得:5﹣k =0, 即k =5,此时,方程2x 2﹣2x ﹣4=0的解为x 1=2,x 2=﹣1(不合题意); 综上所述,k 的值为或5或1, 故选:C .10.解:设白球有x 个, 根据题意,得:=,解得:x =2, 即袋中白球有2个, 故选:B .11.解:∵﹣k 2﹣2<0, ∴函数图象位于二、四象限,∵(﹣2,y 1),(﹣1,y 2)位于第二象限,﹣2<﹣1, ∴y 2>y 1>0;又∵(,y 3)位于第四象限, ∴y 3<0, ∴y 2>y 1>y 3. 故选:B .12.解:根据旋转的性质可知∠D =∠B , ∵tan B ==,∴tan D=.故选:D.13.解:∵∠ABC=50°,∠BAC=80°,∴∠BCA=180°﹣50°﹣80°=50°,∵对角线AC与BD相交于点O,E是边CD的中点,∴EO是△DBC的中位线,∴EO∥BC,∴∠1=∠ACB=50°.故选:B.14.解:如图,等腰三角形纸片沿图中虚线剪成四块图形,能拼成一个没有缝隙的正方形和矩形,设a=1,根据题意,得(a+b)2=b(b+a+b),∵a=1,∴b2﹣b﹣1=0,解得b(负值舍去),∴b=,∴正方形的边长与等腰三角形的底边长的比为:(a+b):2b=(1+):(2×)=.故选:B.二.填空15.解:∵3=∴3;∵(7)2=296,(6)2=252<296∴7;∵∴﹣>﹣3根据立方根的性质可得:=()3=a.故答案是:<,>,>,=.16.解:设这个多边形是n边形,根据题意得:(n﹣2)×180=1800,解得:n=12.∴这个多边形是12边形.故答案为:12.17.解:∵一次函数的解析式为y=10x+a;∴图象与两坐标轴的交点为(0,a);(,0).∴图象与两坐标轴所围成的三角形的面积可表示为:S=×|a|×||=;∵一次函数y=10x+a的图象与两坐标轴所围成的三角形的面积数为质数;∴a=10;∴一次函数y=10x+a的图象与两坐标轴所围成的三角形的面积数为5.故填5.18.解:连接OC,设CD交PE于点K,连接OK,∵四边形PCED是平行四边形,∴EK=PK,CK=DK,∴OK⊥CD,在Rt△COK中,OC=5,CK=3,∴OK==4,∵OP=OB+PB=6,∴6﹣4≤PK≤6+4,∴2≤PK≤10,∴PK的最小值为2,最大值为10,∵PE=2PK,∴PE的最小值为4,最大值为20,∴线段PE长的最大值与最小值的差=20﹣4=16,故答案为:16.三.解答19.解:(1)原式=4﹣1+2﹣3=2;(2)原式=x2+2x+1﹣2x+4=x2+5.20.解:设每箱装x个产品,根据题意得:+2=,解得:x=12.答:每箱装12个产品.21.解:(1)随机抽取调查的学生人数为50÷25%=200人;(2)“高”的人数为200﹣(50+60+20)=70人,补全条形图如下:(3)分组后学生学习兴趣为“中”的所占的百分比为×100%=30%;对应扇形的圆心角为360°×30%=108°.22.解:如图,作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.∵∠ABF=45°,∠AFB=90°,∴AF=BF,设AF=BF=x,则CM=BF=x,DM=HE=40﹣x,AH=x+30﹣1.5=x+28.5,在Rt△AHE中,tan67°=,∴=,解得x=19.9m.∴AM=19.9+30=49.9m.∴风筝距地面的高度49.9m.23.(1)证明:如图1中,∵四边形ABCD是矩形,∴∠ABC=90°,∴∠BAP=∠APB=90°∵BP=BE,∴∠APB∠BEP=∠GEF,∵MN垂直平分线段AP,∴∠GFE=90°,∴∠BGN+∠GEF=90°,∴∠BAP=∠BGN.(2)解:∵四边形ABCD是矩形,∴∠BAD=∠ABP=90°,AD∥BC,AD=BC=8,∴BD===10,∵AD∥BC,∴∠DAE=∠APB,∵∠APB=∠BEP=∠DEA,∴∠DAE=∠DEA,∴DA=DE=8,∴BE=BP=BD﹣DE=10﹣8=2,∴PA===2,∵MN垂直平分线段AP,∴AF=PF=,∵PB∥AD,∴===,∴PE=PA=,∴EF=PF﹣PE=﹣=,∴==.(3)解:如图3中,连接AM,MP.设CM=x.∵四边形ABCD是矩形,∴∠ADM=∠MCP=90°,AB=CD=6,AD=BC=8,∵MN垂直平分线段AP,∴MA=MP,∴AD2+DM2=PC2+CM2,∴82+(6﹣x)2=62+x2,∴x=,∵∠PFM=∠PCM=90°,∴P,F,M,C四点共圆,∴∠CFM=∠CPM,∴tan∠CFM=tan∠CPM===.24.解:(1)∵直线y=﹣x+2与x轴交于点B,与y轴交点C,∴B(4,0),C(0,2),∴把B(4,0),C(0,2)代入y=﹣x2+bx+c得,,解得,,∴抛物线的解析式为:y=﹣+2;(2)∵PM⊥x轴交BC于M.BC不平行x轴,∴∠PMC≠90°,当∠CPM=90°时,PC∥x轴,则P点的纵坐标为2,∵y=﹣+2的对称轴为x=1,∴P点的横坐标为:2,此时P(2,2);当∠PCM=90°时,设P(m,),则M(m,﹣m+2),由PC2+CM2=PM2得,=,解得,m=0(与C的横坐标相同,舍去),或m=﹣6,此时P(﹣6,﹣10);综上,P点的坐标为(2,2)或(﹣6,﹣10);(3)作Q点关于直线BC的对称点K,QK与BC相交于点N,再过K作KL⊥x轴于点L,如图所示,则根据题意可知,KL与BC的交点为M,P点在KM上,P'在QM上,∵y=﹣+2,∴抛物线的对称轴为x=1,∴Q(1,0),∴BQ=4﹣1=3,∵∠QBN=∠CBO,∠QNB=∠COB=90°,∴△BQN∽△BCO,∴,即,∴QN=,∴QK=2QN=,∠BQN=∠KQL,∠BNQ=∠KLQ=90°,∴△BQN∽△KQL,∴,即,∴QL=,∴OL=1+,∴M(,),设QM的解析式为:y=kx+b(k≠0),则,∴,∴直线QM的解析式为:y=,联立方程组,解得,,或,∴E(,),F(,),∴EF=.。

广西南宁市2020年九年级数学中考基础冲刺训练(二)(包含答案)

广西南宁市2020年九年级数学中考基础冲刺训练(二)(包含答案)

广西南宁市2020年数学中考基础冲刺训练(二)一.选择题(每题3分,满分36分)1.﹣2020的倒数是()A.2020 B.±C.﹣D.2.下列图形中,是中心对称图形的是()A.B.C.D.3.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长到80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10134.去年某市7月1日至7日的最高气温变化如折线图所示,则关于这组数据的描述不正确的是()A.最高温度是35°C B.众数是33°CC.中位数是34°C D.平均数是33°C5.下列运算正确的是()A.a2+a2=a4B.2a(a﹣1)=2a﹣1C.(2a)2=2a2D.a6÷a2=a46.如图,把一副三角板的两个直角三角形叠放在一起,则α的度数()A.75°B.135°C.120°D.105°7.已知实数a,b满足a+1>b+1,则下列选项错误的是()A.a>b B.﹣a>﹣b C.a+2>b+2 D.2a>2b8.用2、3、4三个数字排成一个三位数,则排出的数是偶数的概率为()A.B.C.D.9.若将函数y=2x2的图象向右平行移动1个单位,再向上平移3个单位,得到的抛物线是()A.y=2(x+5)2﹣1 B.y=2(x+5)2+1C.y=2(x﹣1)2+3 D.y=2(x+1)2﹣310.如图,分别以正△ABC三个顶点为圆心,以边长为半径画弧,得到的封闭图形叫做莱洛三角形.若AB=1,则莱洛三角形的面积为()A.π+B.C.π﹣D.11.一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x,则x满足等式()A.16(1+2x)=25 B.25(1﹣2x)=16C.25(1﹣x)2=16 D.16(1+x)2=2512.如图,点E是矩形ABCD中CD边上一点,△BCE沿BE折叠为△BFE,点F落在AD上.若sin∠DFE=,则tan∠EBC的值为()A .B .C .D .二.填空题(满分18分,每小题3分) 13.已知是二次根式,则x 的取值范围是 .14.因式分解:a 3﹣9a = .15.某组数据按从小到大的顺序如下:2、4、8、x 、10、14,已知这组数据的中位数是9,则这组数据的众数是 .16.如图,一辆小汽车在公路l 上由东向西行驶,已知测速探头M 到公路l 的距离MN 为9米,测得此车从点A 行驶到点B 所用的时间为0.6秒,并测得点A 的俯角为30o ,点B 的俯角为60o .那么此车从A 到B 的平均速度为 米/秒.(结果保留三个有效数字,参考数据:≈1.732,≈1.414)17.观察下列算式:①31=3,②32=9,③33=27,④34=81,⑤35=243,⑥36=729,⑦37=2187,⑧38=6561,…那么32018的个位数字是 .18.如图,矩形ABCD 的顶点A ,B 在x 轴上,且关于y 轴对称,反比例函数(x >0)的图象经过点C ,反比例函数(x <0)的图象分别与AD ,CD 交于点E ,F ,若S △BEF=5,k 1+2k 2=0,则k 1等于 .三.解答题19.(6分)计算:(﹣)﹣1﹣+4cos30°﹣||20.(6分)解方程:+=﹣1.21.(8分)在如图的方格中,每个小正方形的边长都为1,△ABC的顶点均在格点上.在建立平面直角坐标系后,点B的坐标为(﹣1,2).(1)把△ABC向下平移8个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出A1坐标是.(2)以原点O为对称中心,画出与△ABC关于原点O对称的△A2B2C2,并写出B2坐标是.22.(8分)某校九年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行问卷调查,问卷设置了“小说”、“戏剧“、“散文“、“其他”四个类别,每位同学都选了其中的一项,根据调查结果绘制成不完整的频数分布表和扇形统计图.类别频数(人数)频率小说0.5戏剧 4散文10 0.25其他 6合计m 1根据图表提供的信息,回答下列问题:(1)计算m=.(2)在扇形统计图中,“其他”类部分所在圆心角的度数是.(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧“类,现从中在总选取2名同学加入学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.23.(8分)如图,在▱ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,且AE=AF.(1)求证:▱ABCD是菱形;(2)若∠EAF=60°,CF=2,求菱形ABCD的面积.24.(10分)某服装公司招工广告承诺:熟练工人每月工资至少4000元.每天工作8小时,一个月工作25天.月工资底薪1000元,另加计件工资.加工1件A型服装计酬20元,加工1件B型服装计酬15元.在工作中发现一名熟练工加工2件A型服装和3件B型服装需7小时,加工1件A型服装和2件B型服装需4小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A 型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?25.(10分)如图,在平面直角坐标系中,A(0,4),B(3,4),P为线段OA上一动点,过O,P,B三点的圆交x轴正半轴于点C,连结AB,PC,BC,设OP=m.(1)求证:当P与A重合时,四边形POCB是矩形.(2)连结PB,求tan∠BPC的值.(3)记该圆的圆心为M,连结OM,BM,当四边形POMB中有一组对边平行时,求所有满足条件的m的值.(4)作点O关于PC的对称点O',在点P的整个运动过程中,当点O'落在△APB的内部(含边界)时,请写出m的取值范围.26.在平面直角坐标系中.抛物线y=﹣x2+4x+3与y轴交于点A,抛物线的对称轴与x轴交于点B,连接AB,将△OAB绕着点B顺时针旋转得到△O'A'B.(1)用配方法求抛物线的对称轴并直接写出A,B两点的坐标;(2)如图1,当点A'第一次落在抛物线上时,∠O'BO=n∠OAB,请直接写出n的值;(3)如图2,当△OAB绕着点B顺时针旋转60°,直线A'O'交x轴于点M,求△A'MB的面积;(4)在旋转过程中,连接OO',当∠O'OB=∠OAB时.直线A'O'的函数表达式是.参考答案一.选择题1.解:﹣2020的倒数是.故选:C.2.解:A、是中心对称图形,符合题意;B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选:A.3.解:80万亿用科学记数法表示为8×1013.故选:B.4.解:由图知这7个数据从小到大排列为:31、32、33、33、33、34、35,所以最高温度是35℃,故A选项正确;众数是33℃,故B选项正确;中位数是33℃,故C选项错误;平均数为=33℃,故D选项正确;故选:C.5.解:A、原式=2a2,故本选项错误;B、原式=2a2﹣2a,故本选项错误;C、原式=4a2,故本选项错误;D、原式=a4,故本选项正确.故选:D.6.解:∵图中是一副直角三角板,∴∠1=45°,∠2=30°,∴∠α=180°﹣45°﹣30°=105°.故选:D.7.解:由不等式的性质得a>b,a+2>b+2,﹣a<﹣b,2a>2b.故选:B.8.解:∵用2,3,4三个数字排成一个三位数,等可能的结果有:234,243,324,342,423,432;∵排出的数是偶数的有:234、324、342、432;∴排出的数是偶数的概率为:=9.解:函数y=2x2的图象向右平行移动1个单位,再向上平移3个单位,得到y=2(x﹣1)2+3.故选:C.10.解:过A作AD⊥BC于D,∵AB=AC=BC=1,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=,AD=BD=,∴△ABC的面积为BC•AD=,S==π,扇形BAC∴莱洛三角形的面积S=3×π﹣2×=﹣,故选:D.11.解:第一次降价后的价格为:25×(1﹣x);第二次降价后的价格为:25×(1﹣x)2;∵两次降价后的价格为16元,∴25(1﹣x)2=16.故选:C.12.解:∵四边形ABCD是矩形,∴∠A=∠D=∠C=90°,∵△BCE沿BE折叠为△BFE,∴∠BFE=∠C=90°,∴∠AFB+∠DFE=180°﹣∠BFE=90°,又∵∠AFB+∠ABF=90°,∴∠ABF=∠DFE,∴△ABF∽△DFE,在Rt△DEF中,sin∠DFE==,∴设DE=a,EF=3a,DF==2a,∵△BCE沿BE折叠为△BFE,∴CE=EF=3a,CD=DE+CE=4a,AB=4a,∠EBC=∠EBF,∵△ABF∽△DFE,∴=,∴tan∠EBF==,tan∠EBC=tan∠EBF=.故选:A.二.填空13.解:依题意得:x﹣3≥0,解得x≥3.故答案是:x≥3.14.解:原式=a(a2﹣9)=a(a+3)(a﹣3),故答案为:a(a+3)(a﹣3).15.解:由题意得,(8+x)÷2=9,解得:x=10,则这组数据中出现次数最多的是10,故众数为10.故答案为:10.16.解:在Rt△AMN中,AN=MN×tan∠AMN=MN×tan60°=9×=9.在Rt△BMN中,BN=MN×tan∠BMN=MN×tan30°=9×=3.∴AB=AN﹣BN=9﹣3=6.则A到B的平均速度为:==10≈17.3(米/秒).故答案为:17.3.17.解:已知31=3,末位数字为3,32=9,末位数字为9,33=27,末位数字为7,34=81,末位数字为1,35=243,末位数字为3,36=729,末位数字为9,37=2187,末位数字为7,38=6561,末位数字为1,…由此得到:3的1,2,3,4,5,6,7,8,…次幂的末位数字以3、9、7、1四个数字为一循环,又2018÷4=504…2,所以32018的末位数字与32的末位数字相同是9.故答案为9.18.解:设B(m,0),则点A(﹣m,0),由矩形ABCD、点C在y=上,点E、F在y=上可得,∵k1+2k2=0,∴k2=﹣k1,∴反比例函数y==﹣,点C(m,),E(﹣m,),F(﹣m,),过点F作FM⊥x轴,垂足为M,∴S△BEF =5,即,S梯形AEFM+S△BFM﹣S△ABE=5,∴(+)×(m﹣m)+(m+m)×﹣×2m×=5,解得,k1=8,故答案为:8.三.解答19.解:原式=﹣2﹣2+4×﹣(2﹣)=﹣2﹣2+2﹣2+=﹣4+.20.解:两边都乘以(x+1)(x﹣1),得:4﹣(x+2)(x+1)=﹣(x+1)(x﹣1),解得:x=,检验:当x=时,(x+1)(x﹣1)≠0,所以原分式方程的解为x=.21.解:(1)△A1B1C1如图所示,A1(﹣5,﹣6);(2)△A2B2C2如图所示,B2(1,﹣2).故答案为:(﹣5,﹣6);(1,﹣2).22.解:(1)10÷25%=40人,故答案为:40;(2)360°×=54°,故答案为:54°;(3)用列表法得出所有可能出现的情况如下:共有12种等可能的情况,其中两人是乙丙的有2种,∴P(两人是乙丙)==.23.证明:(1)∵四边形ABCD是平行四边形,∴∠B=∠D.∵AE⊥BC,AF⊥DC,∴∠AEB=∠AFD=90°,又∵AE=AF,∴Rt△AEB≌Rt△AFD(AAS).∴AB=AD,∴四边形ABCD是菱形.(2)连接AC,如图.∵AE⊥BC,AF⊥DC,∠EAF=60°,∴∠ECF=120°,∵四边形ABCD是菱形,∴∠ACF=60°,在Rt△CFA中,AF=CF•tan∠ACF=2.∴菱形ABCD的面积=.24.解:(1)设加工1件A型服装需要x小时,1件B型服装需要y小时,依题意得,解得.故加工1件A型服装需要2小时,1件B型服装需要1小时(2)当一名熟练工一个月加工A型服装a件时,则还可以加工B型服装(25×8﹣2a)件.∴W=20a+15(25×8﹣2a)+1000,∴W=﹣10a+4000又∵a≥(200﹣2a),解得:a≥50∵﹣10<0,∴W随着a的增大则减小,∴当a=50时,W有最大值3500∵3500<4000,∴该服装公司执行规定后违背了广告承诺.25.解:(1)∵∠COA=90°∴PC是直径,∴∠PBC=90°∵A(0,4)B(3,4)∴AB⊥y轴∴当A与P重合时,∠OPB=90°∴四边形POCB是矩形(2)连结OB,(如图1)∴∠BPC=∠BOC∵AB∥OC∴∠ABO=∠BOC∴∠BPC=∠BOC=∠ABO∴tan∠BPC=tan∠ABO=(3)∵PC为直径∴M为PC中点①如图2,当OP∥BM时,延长BM交x轴于点N ∵OP∥BM∴BN⊥OC于N∴ON=NC,四边形OABN是矩形∴NC=ON=AB=3,BN=OA=4设⊙M半径为r,则BM=CM=PM=r∴MN=BN﹣BM=4﹣r∵MN2+NC2=CM2∴(4﹣r)2+32=r2解得:r=∴MN=4﹣∵M、N分别为PC、OC中点∴m=OP=2MN=②如图3,当OM∥PB时,∠BOM=∠PBO∵∠PBO=∠PCO,∠PCO=∠MOC∴∠OBM=∠BOM=∠MOC=∠MCO在△BOM与△COM中∴△BOM≌△COM(AAS)∴OC=OB==5∵AP=4﹣m∴BP2=AP2+AB2=(4﹣m)2+32∵∠ABO=∠BOC=∠BPC,∠BAO=∠PBC=90°∴△ABO∽△BPC∴∴PC=∴PC2=BP2=[(4﹣m)2+32]又PC2=OP2+OC2=m2+52∴[(4﹣m)2+32]=m2+52解得:m=或m=10(舍去)综上所述,m=或m=(4)∵点O与点O'关于直线对称∴∠PO'C=∠POC=90°,即点O'在圆上当O'与O重合时,得m=0当O'落在AB上时,则m2=4+(4﹣m)2,得m=当O'与点B重合时,得m=∴0≤m≤或m=26.解:(1)y=﹣x2+4x+3=﹣(x﹣2)2+7所以对称轴为x=2,所以B(2,0)当x=0时,y=3,所以A(0,3);(2)作A'F⊥x轴于F,由于二次函数的对称性,OB=FB,AO=A′F∠AOB=∠A'FB=90°,△BFA′≌△BOA,设,,所以n=2 (3)延长A'O'与x轴交于M,所以=(4)连接OO'与AB交于C,作O'E⊥x轴于E,所以△AOB∽△OEO′~△OCB,所以,,所以,所以,所以=。

九年级数学中考基础冲刺训练(二)(含答案)

九年级数学中考基础冲刺训练(二)(含答案)

福建省福州市2020年数学中考基础冲刺训练(二)一.选择题1.﹣9的相反数是()A.9 B.﹣9 C.D.﹣2.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.3.截止到3月26日0时,全球感染新型冠状病毒肺炎的人数已经突破380000人,“山川异域,风月同天”,携手抗“疫”,刻不容缓.将380000用科学记数法表示为()A.0.38×106B.3.8×105C.38×104D.3.8×1064.计算(﹣1.5)2018×()2019的结果是()A.﹣B.C.﹣D.5.下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x2>0,那么x>0.A.1个B.2个C.3个D.4个6.若不等式组的解集是x>3,则m的取值范围是()A.m>3 B.m≥3C.m≤3D.m<37.在学校的体育训练中,小杰投实心球的7次成绩就如统计图所示,则这7次成绩的中位数和众数分别是()A.9.7m,9.8m B.9.7m,9.7m C.9.8m,9.9m D.9.8m,9.8m8.如图,AB是⊙O的直径,点C在⊙O上,CD平分∠ACB交⊙O于点D,若∠ABC=30°,则∠CAD的度数为()A.l00°B.105°C.110°D.120°9.一次函数y=kx+b的图象经过点(m2+1,1)和(﹣1,m2+1)(m≠0),则k、b应满足的条件是()A.k>0,b>0 B.k>0,b<0 C.k<0,b<0 D.k<0,b>010.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是()A.60°B.65°C.70°D.75°二.填空题11.计算|﹣2|﹣(﹣1)+30的结果是.12.如图,在四边形ABDC中,E、F、G、H分别为AB、BC、CD、DA的中点,并且E、F、G、H四点不共线.当AC=6,BD=8时,四边形EFGH的周长是.13.某班共有6名学生干部,其中4名是男生,2名是女生,任意抽一名学生干部去参加一项活动,其中是女生的概率为.14.如图,在数轴上,点A、B分别表示数1、﹣2x+3,则数轴上表示数﹣x+2的点应落在.(填“点A的左边”、“线段AB上”或“点B的右边”)15.一个多边形的内角和是720°,这个多边形的边数是.16.如图,△AOB和△ACD均为正三角形,顶点B、D在双曲线y=(x>0)上,则S=.△OBP三.解答题17.(8分)先化简,再求值:,其中x=3.18.(8分)如图,四边形ABCD中,AD∥BC,DE=EC,连结AE并延长交BC的延长线于F,连结BE.(1)求证:AD=CF;(2)若AB=BC+AD,求证:BE⊥AF.19.(8分)如图,点C是线段AB外一点.按下列语句画图:(1)画射线CB;(2)反向延长线段AB;(3)连接AC;(4)延长AC至点D,使CD=AC.20.(8分)机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?21.(8分)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P在CA的延长线上,∠CAD=45°.(1)若AB=4,求弧CD的长;(2)若弧BC=弧AD,AD=AP,求证:PD是⊙O的切线.22.(10分)已知α+β=90°,且sinα+cosβ=,求锐角α.23.(10分)老王的鱼塘里年初养了某种鱼2000条,到年底捕捞出售,为了估计鱼的总产量,从鱼塘里捕捞了三次,得到如下表的数据:鱼的条数平均每条鱼的质量第一次捕捞10 1.7千克第二次捕捞25 1.8千克第三次捕捞15 2.0千克若老王放养这种鱼的成活率是95%,则:(1)鱼塘里这种鱼平均每条重约多少千克;(2)鱼塘里这种鱼的总产量多少千克?24.(12分)如图,在矩形ABCD中,AB=3,BC=4,将对角线AC绕对角线交点O旋转,分别交边AD、BC于点E、F,点P是边DC上的一个动点,且保持DP=AE,连接PE、PF,设AE=x(0<x<3).(1)填空:PC=,FC=;(用含x的代数式表示)(2)求△PEF面积的最小值;(3)在运动过程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,请说明理由.25.如图,在平面直角坐标系中,抛物线y=与x轴交于点A,点B(点A在点B的左侧),与y轴交于点C,抛物线的对称轴与x轴交于点E.(1)点D是线段AC上方抛物线上一动点,连接AC、DC、DA,过点B作AC的平行线,交DA延长线于点F,连接CF,当△DCF的面积最大时,在抛物线的对称轴上找一点Q,使得DQ+QE的值最小,求出此时Q点的坐标.(2)将△OBC绕点O逆时针旋转至△OB1C1,点B、C的对应点分别是B1,C1,且点B1落在线段BC上,再将△OB1C1沿y轴平移得△O1B2C2,其中直线O1C2与x轴交于点K,点T为抛物线对称轴上的动点,连接KT、TO1,△O1KT能否成为以O1K为直角边的等腰直角三角形?若能,请求出所有符合条件的T点的坐标;若不能,请说明理由.参考答案一.选择题1.解:根据相反数的定义,得﹣9的相反数是9.故选:A.2.解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.3.解:380000=3.8×105,故选:B.4.解:(﹣1.5)2018×()2019=(1.5)2018×()2018×====.故选:D.5.解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;三角形的一个外角大于任何一个不相邻的一个内角,所以③错误;如果x2>0,那么x≠0,所以④错误.故选:A.6.解:①x+8<4x﹣1﹣3x<﹣9x>3②x>m∵不等式组的解集为x>3∴m≤3故选:C.7.解:把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,9.7m出现了2次,最多,所以众数为9.7m,故选:B.8.解:∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC=90°﹣∠ABC=90°﹣30°=60°,∵CD平分∠ACB,∴∠BCD=45°,∵∠BAD=∠BCD=45°,∴∠CAD=∠BAC+∠BAD=60°+45°=105°.故选:B.9.解:∵m2+1>1,而m2+1>﹣1,∴y值随x的增大而减小,∴k<0,∵x=m2+1和﹣1的函数值都是正数,∴b>0,∴k<0,b>0.故选:D.10.解:由题意知△ABC≌△DEC,则∠ACB=∠DCE=30°,AC=DC,∴∠DAC===75°,故选:D.二.填空题11.解:原式=2+1+1=4,故答案为:412.解:∵F,G分别为BC,CD的中点,∴FG=BD=4,FG∥BD,∵E,H分别为AB,DA的中点,∴EH=BD=4,EH∥BD,∴FG∥EH,FG=EH,∴四边形EFGH为平行四边形,∴EF=GH=AC=3,∴四边形EFGH的周长=3+3+4+4=14,故答案为:1413.解:∵共有6名学生干部,其中女生有2人,∴任意抽一名学生干部去参加一项活动,其中是女生的概率为=,故答案为:.14.解:由数轴上的点表示的数右边的总比左边的大,得:﹣2x+3>1,解得x<1;﹣x>﹣1.﹣x+2>﹣1+2,解得﹣x+2>1.所以数轴上表示数﹣x+2的点在A点的右边;作差,得:﹣2x+3﹣(﹣x+2)=﹣x+1,由x<1,得:﹣x>﹣1,﹣x+1>0,﹣2x+3﹣(﹣x+2)>0,∴﹣2x+3>﹣x+2,所以数轴上表示数﹣x+2的点在B点的左边.故数轴上表示数﹣x+2的点应落在线段AB上.故答案为:线段AB上.15.解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故答案为:6.16.解:过A作AF⊥OB,作P作PG⊥OB,∵△OAB 与△ADC 都为等边三角形,∴∠BOA =∠DAC =60°,∴AD ∥OB ,∴AF =PG (平行线间的距离处处相等),∵OB 为△OBA 和△OBP 的底, ∴OB •AF =OB •PG ,即S △OBP =S △OAB (同底等高的三角形面积相等), 过B 作BE ⊥x 轴,交x 轴于点E ,可得S △OBE =S △ABE =S △OBA ,∵顶点B 在双曲线y =(x >0)上,即k =4,∴S △OBE ===2,则S △OBP =S △OBA =2S △OBE =4,故答案为:4三.解答题17.解:原式=÷=•=﹣, 当x =3时,原式=﹣.18.解:(1)证明:∵AD ∥BC ,∴∠DAE =∠F ,∠ADE =∠FCE .∵点E 是DC 的中点,∴DE =CE .在△ADE 和△FCE 中,∴△ADE ≌△FCE (AAS ),∴CF =AD .(2)∵CF =AD ,AB =BC +AD ,∴AB =BF ,∵△ADE≌△FCE,∴AE=EF,∴BE⊥AF.19.解:如图所示.20.解:设需安排x名工人加工大齿轮,安排y名工人加工小齿轮,,解得:.答:需安排25名工人加工大齿轮,安排60名工人加工小齿轮.21.解:(1)连接OC,OD,∵∠COD=2∠CAD,∠CAD=45°,∴∠COD=90°,∵AB=4,∴OC=AB=2,∴的长=×π×2=π;(2)∵=,∴∠BOC=∠AOD,∵∠COD=90°,∴∠AOD=45°,∵OA=OD,∴∠ODA=∠OAD,∵∠AOD+∠ODA+∠OAD=180°,∴∠ODA=67.5°,∵AD=AP,∴∠ADP=∠APD,∵∠CAD=∠ADP+∠APD,∠CAD=45°,∴∠ADP=∠CAD=22.5°,∴∠ODP=∠ODA+∠ADP=90°,∴PD是⊙O的切线.22.解:由α+β=90°,得sinα=cosβ.sinα+cosβ=2sinα=,sinα=,α=60°.23.解:(1)鱼的平均重量为:=1.84千克.答:鱼塘里这种鱼平均每条的质量约1.84千克;(2)鱼的总重量为2000×95%×1.84=3496千克.答:鱼塘里这种鱼的总质量估计是3496千克.24.解:(1)∵四边形ABCD是矩形∴AD∥BC,DC=AB=3,AO=CO∴∠DAC=∠ACB,且AO=CO,∠AOE=∠COF∴△AEO≌△CFO(ASA)∴AE=CF∵AE=x,且DP=AE∴DP=x,CF=x,DE=4﹣x,∴PC=CD﹣DP=3﹣x故答案为:3﹣x,x(2)∵S△EFP =S梯形EDCF﹣S△DEP﹣S△CFP,∴S△EFP=﹣﹣×x×(3﹣x)=x2﹣x+6=(x﹣)2+∴当x=时,△PEF面积的最小值为(3)不成立理由如下:若PE⊥PF,则∠EPD+∠FPC=90°又∵∠EPD +∠DEP =90°∴∠DEP =∠FPC ,且CF =DP =AE ,∠EDP =∠PCF =90°∴△DPE ≌△CFP (AAS )∴DE =CP∴3﹣x =4﹣x则方程无解,∴不存在x 的值使PE ⊥PF ,即PE ⊥PF 不成立.25.解:(1)在抛物线y =中,令x =0,得:y =2,令y =0,得:x 1=﹣4,x 2=1 ∴A (﹣4,0),B (1,0),C (0,2),∵y ==﹣,∴E (﹣,0),∴OA =4,OC =2,AC =2,AB =5,设直线AC 的解析式为:y =kx +b ,将A (﹣4,0),C (0,2)代入得:,解得: ∴直线AC 的解析式为:y =x +2,∵BF ∥AC ,过B 作BG ⊥AC 于G ,则AB •OC =AC •BG∴BG = ∴=×2×=5过点D 作DL ⊥x 轴于L 交AC 于H ,设D (m ,),则H (m ,) ∴DH =﹣2m ∴=×4(﹣2m )=,∴S △DCF =S △ACD +S △ACF =,∴当m =﹣2时,S △DCF 的最大值=9;此时,D (﹣2,3),设Q (﹣,t ),则EQ =t ,过点E 作∠QER =30°,过Q 作QR ⊥ER在Rt △EQR 中,QR =QE •sin ∠QER =QE sin30°=QE∴要使得DQ +QE 的值最小,必须D 、Q 、R 三点共线,过D 作DT ⊥EQ 于T ,∴∠DQT=∠EQR=60°,DT=∴TQ===∴Q(﹣,);(2)如图2,作OM⊥BC于M,由勾股定理得:BC==3∵△OBM∽△CBO∴=,即:=,OM=,易证:△OBM≌△OB1M∴OB1=1,可得B1(,)由旋转性质和相似三角形性质可求得C1(,),易得直线B1C1解析式为:y=x+将△OB1C1沿y轴平移得△O1B2C2,∴O1C2∥OC1,①当△OB1C1沿y轴向上平移得△O1B2C2,且O1T⊥O1K时,过O1作O1N⊥对称轴于N,则O1N=,∵∠TO1K =∠OO1N=∠O1NT=∠O1OK=90°∴∠TO1N=∠OO1K∵O1T=O1K∴△O1NT≌△O1OK(AAS)∴O1O=O1N=∵△OO1K∽△EC1O∴==,∴OK=NT=,∴T1(,)②当△OB1C1沿y轴向上平移得△O1B2C2,且TK⊥O1K,TK=O1K时,如图3,∵∠TKE+∠OKO1=∠OO1K+∠OKO1=90°,∴∠TKE=∠OO1K∵∠TEK=∠O1OK=90°,TK=O1K∴△O1OK≌△KET(AAS)∴ET=OK,EK=O1O,∵O1C2∥OC1∴==,即:OK=O1O,∴O1O=OK,EK=ET∴ET+=ET,解得:ET=∴T2(,)③当△OB1C1沿y轴向下平移得△O1B2C2,且TO1⊥O1K,TO1=O1K时,如图4,作TM⊥y轴于M,∵∠O1OK=∠O1MT=∠TO1K=90°,∴∠TO1M+∠OO1K=∠OO1K+∠OKO1=90°,∴∠TO1M=∠OKO1,∴△TO1M≌△KO1O(AAS)∴O1O=TM=,O1M=OK由①知:=,∴O1M=OK=,∴ET=∴④当△OB1C1沿y轴向下平移得△O1B2C2,且TK⊥O1K,TK=O1K时,如图5,易证:△TKE≌△KO1O(AAS)∴ET=OK,EK=O1O,OE=OK+EK=∵==,解得:ET=OK=,∴T4(,)综上所述,符合条件的T点的坐标为:T1(,)、T2(,)、、T4(,).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年数学中考基础冲刺训练(二)
一.选择题(每题3分,满分36分)
1.下列各数中,相反数是的是()
A.﹣B.C.﹣2 D.2
2.港珠澳大桥是连接香港、珠海、澳门的超大型跨海通道,全长约55000米,把55000用科学记数法表示为()
A.55×103B.5.5×104C.5.5×105D.0.55×105
3.下列计算正确的是()
A.B.a+2a=3a C.(2a)3=2a3D.a6÷a3=a2
4.下列各组线段中,能组成三角形的是()
A.2,4,6 B.2,3,6 C.2,5,6 D.2,2,6
5.如图,下列四种标志中,既是轴对称图形又是中心对称图形的为()A.中国移动B.中国联通
C.中国网通D.中国电信
6.把不等式组的解集表示在数轴上,正确的是()
A.
B.
C.
D.
7.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是()
A.B.C.D.
8.下列说法正确的是()
A.概率很小的事件不可能发生
B.随机事件发生的概率为1
C.不可能事件发生的概率为0
D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次
9.设的小数部分为b,那么(4+b)b的值是()
A.1 B.是一个有理数
C.3 D.无法确定
10.如图,折线ABCDE描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系.根据图中提供的信息,给出下列说法,其中正确的说法是()
A.汽车共行驶了120千米
B.汽车自出发后前3小时的平均行驶速度为40千米/时
C.汽车在整个行驶过程中的平均速度为40千米/时
D.汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少
11.在我国古代数学著作《九章算术》的第九章《勾股》中记载了这样的一个问题:“今天有开门去阔一尺,不合二寸,问门广几何?”意思是:如图,推开两扇门(AD和BC),门边缘D,C两点到门槛AB的距离是1尺,两扇门的间隙CD为2寸,则门宽AB长是()
寸.(1尺=10寸)
A.101 B.100 C.52 D.96
12.若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x
0﹣3,x
2﹣16),则符
合条件的点P()
A.有且只有1个B.有且只有2个
C.至少有3个D.有无穷多个
二.填空题(满分18分,每小题3分)
13.计算的结果是.
14.如图,整个圆表示某班参加课外活动的总人数,跳绳的人数占30%,表示踢毯的扇形圆心角是60°,踢毯和打篮球的人数比是1:2,如果参加课外活动的总人数为60人,那么参加“其他”活动的人数是人.
15.在平面直角坐标系中,点P(﹣1,2)向右平移3个单位长度再向上平移1个单位得到的点的坐标是.
16.在一个有15万人的小镇,随机调查了1000人,其中200人会在日常生活中进行垃圾分类,那么在该镇随机挑一个人,会在日常生活中进行垃圾分类的概率是.17.已知关于x的方程5x2+kx﹣6=0的一个根2,则k=,另一个根为.18.如图,AB是⊙O的直径,点C在⊙O上,过点C的切线与BA的延长线交于点D,点E 在上(不与点B,C重合),连接BE,CE.若∠D=40°,则∠BEC=度.
三.解答题
19.(6分)计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣|
20.(6分)先化简,再求值:(x﹣1)2﹣x(x﹣3)+(x+2)(x﹣2),其中x=﹣2.21.(8分)某学校学生会想知道学生们每天上学的路上花费多少时间,于是在九年级随机抽取一部分学生,调查他们每天上学的路上花费的时间,并将他们每天上学的路上花费时间的统计结果绘制成如下条形统计图:
(1)请问学校学生会随机抽取了多少人?
(2)求随机抽取的这些学生上学所花费时间的平均数(保留到整数)、中位数、众数;
(3)若全年级有360人,请你估计上学所花费时间不超过20分钟的人数.
22.(8分)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁,可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4)
23.(9分)某校组织学生开展课外社会实践活动,现有甲、乙两种大客车可租,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.
(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?
(2)学校计划租用甲、乙两种客车共8辆,甲种客车每辆载客量45人,乙种客车每辆载客量30人,共有师生330人,求最节省的租车费用是多少元?
24.如图①,△ABC内接于⊙O,点P是△ABC的内切圆的圆心,AP交边BC于点D,交⊙O 于点E,经过点E作⊙O的切线分别交AB、AC延长线于点F、G.
(1)求证:BC∥FG;
(2)探究:PE与DE和AE之间的关系;
(3)当图①中的FE=AB时,如图②,若FB=3,CG=2,求AG的长.
25.(10分)如图,一次函数y=﹣x+5的图象与坐标轴交于A,B两点,与反比例函数y =的图象交于M,N两点,过点M作MC⊥y轴于点C,且CM=1,过点N作ND⊥x轴于点D,且DN=1.已知点P是x轴(除原点O外)上一点.
(1)直接写出M、N的坐标及k的值;
(2)将线段CP绕点P按顺时针或逆时针旋转90°得到线段PQ,当点P滑动时,点Q能否在反比例函数的图象上?如果能,求出所有的点Q的坐标;如果不能,请说明理由;
(3)当点P滑动时,是否存在反比例函数图象(第一象限的一支)上的点S,使得以P、S、M、N四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点S的坐标;若不存在,请说明理由.
26.如图1,抛物线y=﹣x2+bx+c与x轴交于点A、点B,与y轴交于点C(0,3),对称轴为直线x=1,交x轴于点D,顶点为点E.
(1)求该抛物线的解析式;
(2)连接AC,CE,AE,求△ACE的面积;
(3)如图2,点F在y轴上,且OF=,点N是抛物线在第一象限内一动点,且在抛物线对称轴右侧,连接ON交对称轴于点G,连接GF,若GF平分∠OGE,求点N的坐标.。

相关文档
最新文档