分式混合运算练习题(50题)

合集下载

分式混合运算练习题(30题)

分式混合运算练习题(30题)

一.解答题1 .计算:(1) 分式精华练习题(2) (﹣2m2n ﹣2 ) 2 • (3m ﹣1n3 ) ﹣315.计算:.16.化简:,并指出x 的取值范围.17. 17.已知 ab=1,试求分式:的值. 18.计算:﹣2.计算: 3.化简:.19 .计算:20.化简4.化简: 5.计算:.21 .计算:6.化简• (x2 ﹣ 9)7.计算:.22 .化简:8 .计算:(2) 11.计算:13 .计算:(1) + .9.计算: (1)10.12 .计算:(2);23.计算: (1)24 .化简:.25 .化简:﹣a﹣1.27 .计算:; (2) .. 26 化简:28.计算:( ) ÷ .29.化简. 30.计算:﹣ x ﹣ 2)114.计算: a ﹣ 2+.21.在下列方程中,关于 x 的分式方程的个数(a 为常数)有( )① 1 x 2 一 2 x + 4 = 0 ② . x = 4 ③ . a = 4; ④ .x 2 一 9 = 1; ⑤ 1= 6; 2 3 a x x + 3 x + 2x 一 1 x 一 12. 关于 x 的分式方程 = 1,下列说法正确的是( ) x 一 5A .方程的解是 x = m + 5B . m > 一5 时,方程的解是正数C . m一5 时,方程的解为负数 D .无法确定1 5 33.方程 + = 的根是( )1 一 x2 x + 1 1 一 x3A. x =1B. x =-1C. x =D. x =284 4 24.1 一 + = 0, 那么 的值是( ) A.2 B.1 C.-2 D.-1 x x 2 x5.下列分式方程去分母后所得结果正确的是( )A.1 = x + 2一 1 去分母得, x +1 = (x 一 1)(x + 2) 一 1; x 一 1 x +1x 56. .赵强同学借了一本书,共 280 页,要在两周借期内读完 .当他读了一半书时,发现平均每天要多 读 21 页才能在借期内读完 .他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读 x页,则下面所列方程中,正确的是 ( )140 140 280 280 140 140 10 10A. + =14B. + =14C. + =14D. + =1x x 一 21 x x + 21 x x + 21 x x + 217.若关于 x 的方程 一 = 0 ,有增根,则 m 的值是( )8.若方程 + = 那么 A 、B 的值为( )A.2, 1B.1, 2C.1, 1D.-1, - 19.如果x = 士 1, b 士 0, 那么= ( ) b a + b1 x 一 1 1 1A. 1-B. C . x 一 D. x 一x x + 1 x x + 110.使分式4x 2一4与+的值相等的 x 等于( )A.-4B.-3C.1D.10二、填空题(每小题 3 分,共 30 分)11. 满足方程 1 = 2 的 x 的值是___ 12. 当 x=____ 时, 分式1 + x的值等于1x 一 1 x 一 2 5 + x 2 .13.分式方程x 2 一 2xx 一2= 0 的增根是.14. 一汽车从甲地开往乙地,每小时行驶 v 1 千米, t 小时可到达,如果每小时多行驶 v 2 千米, 那么 可提前到达________小时.15. 农机厂职工到距工厂 15 千米的某地检修农机,一部分人骑自行车先走 40 分钟后,其余人乘汽 车出发,结果他们同时到达,已知汽车速度为自行车速度的 3 倍,若设自行车的速度为 x 千米/时, 则所列方程为 .16.已知= , 则 =.y 5 x 2一 y217. a =时, 关于 x 的方程=的解为零.x 一 2 a + 518.飞机从 A 飞到 B 的路程 S ’、速度是v 1, ,返回的速度是 v 2 ,往返一次的平均速度是 .19.当m =时,关于 x 的方程mx 2一9+=1x 一3有增根.20. 某市在旧城改造过程中, 需要整修一段全长 2400m 的道路. 为了尽量减少施工对城市交通所造 成的影响,实际工作效率比原计划提高了 20%,结果提前 8 小时完成任务.求原计划每小时修路 的长度.若设原计划每小时修路 x m ,则根据题意可得方程. 三、解答题(共 5 大题, 共 60 分) 21. .解下列方程 (1)1x 一3+ 2 = 4 一 x3一x(2)4x 2一4+ = (3) xx 一2一 1 = 1x 2一4.22. 有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期 3 天完成; 现在先由甲、乙两队合做 2 天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日 期多少天?24.小兰的妈妈在供销大厦用 12.50 元买了若干瓶酸奶, 但她在百货商场食品自选室内发现, 同样的 酸奶,这里要比供销大厦每瓶便宜 0.2 元钱,因此,当第二次买酸奶时,便到百货商场去买,结果 3用去 18.40 元钱,买的瓶数比第一次买的瓶数多 倍,问她第一次在供销大厦买了几瓶酸奶?5B. + = 1 ,去分母得, x + 5 = 2x 一 5; 2x 一 5 5 一 2xC. x 一 2 一 x + 2 = x,去分母得, (x 一 2)2 一 x + 2 = x(x + 2); x + 2 x 2 一 4 x 一 2 D. 2 = 1, 去分母得, 2 (x 一 1) = x + 3; x + 3 x 一 1m 一 1 xx 一 1 x 一 1 A.3 B.2 C.1 D.-1A B 2x +1x 一 3 x + 4 (x 一 3)(x + 4) , ⑥ + = 2 . A.2 个 B.3 个 C.4 个 D.5 个a amx 4 x 2 + y 2 a a 一 b x + 1 2a 一 3。

分式混合运算(习题及答案)

分式混合运算(习题及答案)

分式混合运算(习题及答案)混合运算(题)例1:混合运算:解:原式可以化简为:frac{4-x}{x-2} \div \frac{12}{x+2-x^2}$$frac{4-x}{x-2} \times \frac{x+2-x^2}{12}$$frac{-(x-4)}{(x-2)(x+4)}$$例2:先化简,然后在$-2\leq x\leq 2$的范围内选取一个合适的整数$x$代入求值.解:先化简原式:frac{x(x+1)}{(x-1)(1-x)} \div \frac{2x}{x+1}$$frac{x(x+1)}{(x-1)(x-1)} \times \frac{x+1}{2x}$$frac{1}{2}$$由于$-2\leq x\leq 2$,且$x$为整数,因此使原式有意义的$x$的值为$-2$,$-1$或$2$。

代入计算可得:当$x=2$时,原式为$-2$。

巩固练1.计算:1)$$\frac{x-y}{x+2y} \div \frac{1}{2x+4y}$$化简原式:frac{x-y}{x+2y} \times \frac{2x+4y}{1}$$frac{2(x-y)}{x+2y}$$2)$$\frac{\frac{a}{a-1}-1}{a^2-2a+1} \div \frac{1}{a+1}$$ 化简原式:frac{\frac{a}{a-1}-1}{(a-1)^2} \times (a+1)$$frac{a-2}{(a-1)^2}$$3)$$\frac{2a-2ab}{a^2-b^2} \div \frac{a+b}{a+b}$$化简原式:frac{2a-2ab}{a^2-b^2} \times \frac{a+b}{a+b}$$frac{2a-2ab}{(a-b)(a+b)} \times \frac{a+b}{1}$$frac{2(1-b)}{a-b}$$4)$$\frac{y-1-\frac{8}{y-1}}{y^2+y} \div\frac{1}{y(y+1)}$$化简原式:frac{y-1-\frac{8}{y-1}}{y(y+1)} \times \frac{y(y+1)}{1}$$ frac{(y-1)^2-8}{y(y+1)^2}$$5)$$\frac{a^2-2ab+b^2}{b}\div \frac{1}{a-b}-1$$化简原式:frac{(a-b)^2}{b} \times \frac{a-b}{1}-1$$frac{(a-b)^3}{b}-1$$6)$$\frac{x^2-4x+4}{x(x-1)} \div \frac{x+2}{x-1}$$化简原式:frac{(x-2)^2}{x(x-1)} \times \frac{x-1}{x+2}$$frac{(x-2)^2}{x(x+2)}$$7)$$\frac{2}{(x-1)^2} - \frac{1}{(x-1)^2(x+1)}$$化简原式:frac{2(x+1)-1}{(x-1)^2(x+1)}$$frac{2x+1}{(x-1)^2(x+1)}$$8)$$\frac{3-x}{2(x-2)} \div \frac{5}{x-2}-\frac{5}{x-3}$$ 化简原式:frac{3-x}{2(x-2)} \times \frac{x-2}{5} - \frac{5}{x-3}$$ frac{(x-3)(x-1)}{2(x-2)5} - \frac{5}{x-3}$$frac{x^2-4x+7}{10(x-2)(x-3)}$$9)$$\frac{x-1}{x+1} \div \frac{x-3}{x-2} - \frac{5}{x^2-3x}$$化简原式:frac{(x-1)(x-2)}{(x+1)(x-3)} - \frac{5}{x(x-3)}$$frac{x^2-3x-2}{x(x-3)(x+1)(x-3)} - \frac{5(x+1)}{x(x-3)(x+1)(x-3)}$$frac{x^2-3x-2-5x-5}{x(x-3)(x+1)(x-3)}$$frac{x^2-8x-7}{x(x-3)(x+1)^2}$$10)$$\frac{1}{(x-1)(x+1)}-\frac{1}{x(x-1)}$$化简原式:frac{x-(x-1)}{x(x-1)(x+1)}$$frac{1}{x(x+1)}$$11)$$\frac{2}{x+y} - \frac{1}{y-x} \times \frac{y^2-x^2}{11}$$化简原式:frac{2(y-x)}{(y-x)(x+y)} - \frac{y+x}{11(x+y)}$$frac{y-x-2}{11(x+y)}$$2.化简求值:1)先化简,再求值:$\frac{x^2+2x+1}{x+2x+2} \div \frac{1}{x+2}$,其中$x=3-1$。

分式混合运算练习题(50题)

分式混合运算练习题(50题)

分式混合运算练习题(50题) 分式混合运算练50题(5月25、26、27日完成)1.计算:$\frac{3}{4}+\frac{1}{6}-\frac{1}{8}$。

2.计算:$\frac{5}{6}-\frac{1}{4}+\frac{1}{3}$。

3.化简:$\frac{6x+2}{2x}$。

4.化简:$\frac{5x^2-15}{10}$。

5.计算:$\frac{2}{3}+\frac{1}{4}-\frac{1}{6}$。

6.化简:$\frac{3}{4}+\frac{2}{5}-\frac{1}{10}$。

7.计算:$\frac{2}{3}+\frac{3}{4}-\frac{5}{6}$。

8.计算:$\frac{3}{4}+\frac{1}{2}\div\frac{2}{5}$。

9.计算:$\frac{1}{2}+\frac{1}{3}\times\frac{3}{4}$。

10.化简:$\frac{3x^2-12}{6x}$。

11.计算:$\frac{1}{2}+\frac{2}{3}\times\frac{3}{4}-\frac{3}{5}$。

12.计算:$-\frac{1}{a+1}$。

13.计算:$\frac{2a-1}{a^2-1}$。

14.计算:$\frac{1}{a^2}+\frac{1}{a^3}$。

15.计算:$\frac{1}{2}+\frac{2}{3}\times\frac{3}{5}$。

16.化简:$\frac{x^2-2x+1}{x^2-1}$,$x\neq-1,1$。

17.已知$ab=1$,试求$\frac{a^2+b^2}{a^2-b^2}$的值。

18.计算:$-\frac{a}{a^2-1}$。

19.计算:$\frac{1}{a}+\frac{1}{b}-\frac{a+b}{ab}$。

20.化简:$\frac{2x^2-8}{4x}$。

21.计算:$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}$。

分式混合运算练习题50题(供参考)

分式混合运算练习题50题(供参考)

一.解答题1.计算:(1)(2)(﹣2m2n﹣2)2•(3m﹣1n3)﹣3 2.计算:3.化简:.4.(2007•双柏县)化简:5.(2006•襄阳)计算:.6.(2005•江西)化简•(x2﹣9)7.(2007•北京)计算:.8.(2005•宜昌)计算:+.9.(2001•吉林)计算:(1);(2).10.(2001•常州).11.计算:12.计算:﹣a﹣1.13.计算:(1)(2)14.计算:a﹣2+15.计算:.16.化简:,并指出x的取值范围.17.已知ab=1,试求分式:的值.18.计算:﹣19.(2010•新疆)计算:20.(2009•太原)化简:21.(2009•上海)计算:.22.(2009•眉山)化简:23.(2009•江苏)计算:(1);(2).24.(2009•东营)化简:25.(2008•白银)化简:.26.(2007•南昌)化简:27.(2007•巴中)计算:28.(2006•宜昌)计算:()÷.29.(2006•十堰)化简:.30.(2006•南充)计算:﹣x﹣2)31.(2015•眉山)计算: 1121222-+÷+--x x x x x x 32.(2015•宜昌)化简:1211222++-+-x x x x 33.(2015•厦门)计算:121++++x x x x 34.(2015•柳州)计算:aa a 11+- 35.(2015•佛山)计算:48222---x x 36.(2015•福州)化简:222222)(ba ab b a b a +-++ 37.(2015•宜宾)化简:1)1111(222--÷---a a a a a 38.(2015•青岛)化简:nn n n n 1)12(2-÷++ 39.(2015•重庆)化简:122)1112(2++-÷+-+-x x x x x x 40.(2015•泸州)化简:)111(1222+-÷++m m m m 41.(2015•扬州)化简:)1111(12---+÷-a a a a a 42.(2015•滨州)化简:)3131(96262+--÷+--m m m m m 43.(2015•广西)化简:21)12(22-÷-+a a a a 44.(2015•连云港)化简:mm m m +-÷++224)111( 45.(2015•成都)化简:21)412(2+-÷-++a a a a a 46.(2015•重庆)计算:yy y y y y ++-÷+--2296)181( 47.(2015•南京)计算:ba a ab a b a +÷---)12(22248.(2015•南充)计算:aa a a --•--+342)252( 49.(2015•巴中)化简:1221421222+--÷---+a a a a a a a 50.(2015•十堰)化简:)21()1(2aa a a -+÷-。

分式混合运算(习题及答案)

分式混合运算(习题及答案)

2x 1 2
,其中
x
3 1.
(2)先化简,再求值:
5x x2
3y y2
2x y2 x2
1 x2 y xy2
,其中
x 3 2,y 3 2.
4
(3)先化简
x x
1 1
1
x2 x2
x 2x 1
2 2x x2 1
,然后在
2

x

2
的范围内选取一个合适的整数 x 代入求值.
(4)已知
A
x2
4 1
2 x 1
x2
x2 2x 1

(8)
3 x 2x 4
x
2
x
5
2

(9)
x2 2x 6
5 x3
x
3

(10)
(x2
1)
1 x 1
x
1 1
1

3
(11)
x
2
y
x
1
y
x2 y2 x 2 3xy
1 x
1 y

2. 化简求值:
(1)先化简,再求值:1
x
1
2
x2
x
x
y
y
(2) a 1
(3)
1 a2
(4) y2 3y y3
(5) ab 2
(6) x 2
(7)
x x
1 1
(8) 1 2x 6
(9) 1 2x 4
(10) x2 3
(11)
x
y
y
2. (1)原式 1 ,当 x 3 1时,原式 3
x 1
3

分式混合运算专题练习

分式混合运算专题练习

分式的乘除乘方运算例1、下列分式a bc 1215,a b b a --2)(3,)(222b a b a ++,b a b a +-22中最简分式的个数是( ).A.1B.2C.3D.4 例2.计算:3234)1(xy y x • a a a a 2122)2(2+⋅-+ x y xy 2263)3(÷41441)4(222--÷+--a a a a a 例3、 若432z y x ==,求222z y x zx yz xy ++++的值.例4、计算(1)3322)(c b a - (2)43222)()()(x y x y y x -÷-⋅-(3)2332)3()2(c b a bc a -÷- (4)232222)()()(xy xy xy x y y x -⋅+÷-例5计算:1814121111842+-+-+-+--x x x x x练习:1.计算:8874432284211x a x x a x x a x x a x a --+-+-+--例6.计算:2018119171531421311⨯+⨯++⨯+⨯+⨯练习1、()()()()()()()()1011001431321211++++++++++++x x x x x x x x例7、已知21)2)(1(12++-=+-+x B x A x x x ,求A. B 的值。

计算下列各题:(1)2222223223x y y x y x y x y x y x ----+--+ (2)1111322+-+--+a a a a .(3)29631a a --+ (4) 21x x --x -1 (5)3a a --263a a a +-+3a ,(6)xy y y x x y x xy --++-222 ⑺b a b b a ++-22 ⑻293261623x x x -+--+⑼xy y x y x y x 2211-⋅⎪⎪⎭⎫ ⎝⎛+-- ⑽ 222x x x +--2144x x x --+(11)a a a a a a 4)22(2-⋅+--.2.已知x 为整数,且918232322-++-++x x x x 为整数,求所有的符合条件的x 的值的和.3、混合运算:⑴2239(1)x x x x ---÷ ⑵232224x x x x x x ⎛⎫-÷ ⎪+--⎝⎭ ⑶ a a a a a a 112112÷+---+⑷ 444)1225(222++-÷+++-a a a a a a ⑸ )1x 3x 1(1x 1x 2x 22+-+÷-+-⑹ )252(23--+÷--x x x x ⑺ 221111121x x x x x +-÷+--+⑻2224421142x x x x x x x -+-÷-+-+ ⑼2211xyx y x y x y ⎛⎫÷- ⎪--+⎝⎭⑽ (abb a 22++2)÷ba b a --22 ⑾22321113x x x x x x x +++-⨯--+⑿ x x x x x x x x x 416)44122(2222+-÷+----+ (13)、22234()()()x y y y x x-⋅-÷-(14)、)252(423--+÷--m m m m (15)、x x x x x x x --+⋅+÷+--36)3(446222(16)、 ()3212221221------⎪⎭⎫ ⎝⎛ba cb b a (17)、⎪⎭⎫ ⎝⎛---÷⎪⎪⎭⎫ ⎝⎛+--x x x x x 23441823224.计算:x x x x x x x x -÷+----+4)44122(22,并求当3-=x 时原式的值.5、先化简,x x x x x x 11132-⋅⎪⎭⎫ ⎝⎛+--再取一个你喜欢的数代入求值:6、有这样一道题:“计算22211x x x -+-÷21x x x-+-x 的值,其中x=2 004”甲同学把“x=2 004”错抄成“x=2 040”,但他的计算结果也正确,你说这是怎么回事?7、计算、)1(1+a a +)2)(1(1++a a +)3)(2(1++a a +…+)2006)(2005(1++a a 。

分式混合运算专题练习(经典集合)

分式混合运算专题练习(经典集合)

分式的运算一、典型例题例1、下列分式a bc 1215,a b b a --2)(3,)(222b a b a ++,b a b a +-22中最简分式的个数是( ).A.1B.2C.3D.4例2.计算:3234)1(x y y x ∙ a a a a 2122)2(2+⋅-+ x y xy 2263)3(÷41441)4(222--÷+--a a a a a 例3、 若432z y x ==,求222zy x zxyz xy ++++的值.例4、计算(1)3322)(c b a - (2)43222)()()(xy x y y x -÷-⋅-(3)2332)3()2(c b a bc a -÷- (4)232222)()()(xy xy xy x y y x -⋅+÷-例5计算:1814121111842+-+-+-+--x x x x x练习:1.计算:8874432284211x a x x a x x a x x a x a --+-+-+--例6.计算:2018119171531421311⨯+⨯++⨯+⨯+⨯练习1、()()()()()()()()1011001431321211++++++++++++x x x x x x x x例7、已知21)2)(1(12++-=+-+x Bx A x x x ,求A. B 的值。

针对性练习:1.计算下列各题:(1)2222223223xy yx y x y x y x y x ----+--+ (2)1111322+-+--+a a a a .(3)29631a a --+ (4) 21x x --x -1 (5)3a a --263a a a +-+3a ,(6)xy yy x x y x xy --++-222 ⑺b a b b a ++-22 ⑻293261623x x x -+--+⑼xy y x y x y x 2211-⋅⎪⎪⎭⎫ ⎝⎛+-- ⑽ 222x x x +--2144x x x --+(11)a a a a a a 4)22(2-⋅+--.2.已知x 为整数,且918232322-++-++x x x x 为整数,求所有的符合条件的x 的值的和.3、混合运算:⑴2239(1)x x x x ---÷ ⑵232224xx x x x x ⎛⎫-÷ ⎪+--⎝⎭⑶ a a a a a a 112112÷+---+⑷ 444)1225(222++-÷+++-a a a a a a ⑸ )1x 3x 1(1x 1x 2x 22+-+÷-+-⑹ )252(23--+÷--x x x x ⑺ 221111121x x x x x +-÷+--+⑻2224421142x x x x x x x -+-÷-+-+ ⑼2211xy x y x y x y ⎛⎫÷- ⎪--+⎝⎭⑽ (ab b a 22++2)÷ba b a --22 ⑾22321113x x x x x x x +++-⨯--+⑿ x x x x x x x x x 416)44122(2222+-÷+----+ (13)、22234()()()x y y y x x-⋅-÷-(14)、)252(423--+÷--m m m m (15)、x x x x xx x --+⋅+÷+--36)3(446222(16)、 ()3212221221------⎪⎭⎫ ⎝⎛ba cb b a (17)、⎪⎭⎫ ⎝⎛---÷⎪⎪⎭⎫ ⎝⎛+--x x x x x 23441823224.计算:x xx x x x x x -÷+----+4)44122(22,并求当3-=x 时原式的值.5、先化简,x x x x x x11132-⋅⎪⎭⎫ ⎝⎛+--再取一个你喜欢的数代入求值:6、有这样一道题:“计算22211x x x -+-÷21x x x -+-x 的值,其中x=2 004”甲同学把“x=2 004”错抄成“x=2 040”,但他的计算结果也正确,你说这是怎么回事?7、计算、)1(1+a a +)2)(1(1++a a +)3)(2(1++a a +…+)2006)(2005(1++a a 。

分式混合运算练习题(30题)

分式混合运算练习题(30题)

分式精华练习题一.解答题1.计算:(1)(2)(﹣2m2n﹣2)2•(3m﹣1n3)﹣3 2.计算:3.化简:.4.化简:5.计算:.6.化简•(x2﹣9)7.计算:.8.计算:+.9.计算:(1);(2).10..11.计算:12.计算:﹣a﹣1.13.计算:(1)(2)14.计算:a﹣2+15.计算:.16.化简:,并指出x的取值范围.17.17.已知ab=1,试求分式:的值.18.计算:﹣19.计算:20.化简21.计算:22.化简:23.计算:(1);(2).24.化简:25.化简:.26化简:27.计算:28.计算:()÷.29.化简.30.计算:﹣x﹣2)1.在下列方程中,关于x 的分式方程的个数(a 为常数)有( )①0432212=+-x x ②.4=a x ③.;4=x a ④.;1392=+-x x ⑤;621=+x ⑥211=-+-ax a x . A.2个 B.3个 C.4个 D.5个 2. 关于x 的分式方程15mx =-,下列说法正确的是( )A .方程的解是5x m =+B .5m >-时,方程的解是正数C .5m <-时,方程的解为负数D .无法确定3.方程x x x-=++-1315112的根是( ) A.x =1 B.x =-1 C.x =83D.x =24.,04412=+-x x 那么x2的值是( ) A.2 B.1 C.-2 D.-15.下列分式方程去分母后所得结果正确的是( )A.11211-++=-x x x 去分母得,1)2)(1(1-+-=+x x x ; B.125552=-+-x x x ,去分母得,525-=+x x ; C.242222-=-+-+-x x x x x x ,去分母得,)2(2)2(2+=+--x x x x ; D.,1132-=+x x 去分母得,23)1(+=-x x ; 6. .赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半书时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( )A.21140140-+x x =14 B.21280280++x x =14 C.21140140++x x =14 D.211010++x x =1 7.若关于x 的方程0111=----x xx m ,有增根,则m 的值是( ) A.3 B.2 C.1 D.-18.若方程,)4)(3(1243+-+=++-x x x x B x A 那么A 、B 的值为( ) A.2,1 B.1,2 C.1,1 D.-1,-1 9.如果,0,1≠≠=b b a x 那么=+-ba b a ( ) A.1-x 1 B.11+-x x C.x x 1- D.11+-x x 10.使分式442-x 与6526322+++-+x x x x 的值相等的x 等于( ) A.-4 B.-3 C.1 D.10 二、填空题(每小题3分,共30分) 11. 满足方程2211-=-x x 的x 的值是___ 12. 当x =____时,分式x x ++51的值等于21. 13.分式方程0222=--x xx 的增根是 . 14. 一汽车从甲地开往乙地,每小时行驶v 1千米,t 小时可到达,如果每小时多行驶v 2千米,那么可提前到达________小时.15. 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走40分钟后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x 千米/时,则所列方程为 .16.已知,54=y x 则=-+2222yx y x . 17.=a 时,关于x 的方程53221+-=-+a a x x 的解为零. 18.飞机从A 飞到B 的路程S ’、速度是,1v ,返回的速度是2v ,往返一次的平均速度是 . 19.当=m 时,关于x 的方程313292-=++-x x x m 有增根. 20. 某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路x m ,则根据题意可得方程 . 三、解答题(共5大题,共60分) 21. .解下列方程 (1)x x x --=+-34231 (2) 2123442+-=-++-x x x x x (3)21124x x x -=--.22. 有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?24.小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室内发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元钱,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多53倍,问她第一次在供销大厦买了几瓶酸奶?。

(完整版)分式混合运算练习题(30题)

(完整版)分式混合运算练习题(30题)

分式精华练习题一.解答题1.计算:(1)(2)(﹣2m2n﹣2)2•(3m﹣1n3)﹣3 2.计算:3.化简:.4.化简:5.计算:.6.化简•(x2﹣9)7.计算:.8.计算:+.9.计算:(1);(2).10..11.计算:12.计算:﹣a﹣1.13.计算:(1)(2)14.计算:a﹣2+15.计算:.16.化简:,并指出x的取值范围.17.17.已知ab=1,试求分式:的值.18.计算:﹣19.计算:20.化简21.计算:22.化简:23.计算:(1);(2).24.化简:25.化简:.26化简:27.计算:28.计算:()÷.29.化简.30.计算:﹣x﹣2)1.在下列方程中,关于x 的分式方程的个数(a 为常数)有( )①0432212=+-x x ②.4=a x ③.;4=x a ④.;1392=+-x x ⑤;621=+x ⑥211=-+-ax a x . A.2个 B.3个 C.4个 D.5个 2. 关于x 的分式方程15mx =-,下列说法正确的是( )A .方程的解是5x m =+B .5m >-时,方程的解是正数C .5m <-时,方程的解为负数D .无法确定3.方程x x x-=++-1315112的根是( ) A.x =1 B.x =-1 C.x =83D.x =24.,04412=+-x x 那么x2的值是( ) A.2 B.1 C.-2 D.-15.下列分式方程去分母后所得结果正确的是( )A.11211-++=-x x x 去分母得,1)2)(1(1-+-=+x x x ; B.125552=-+-x x x ,去分母得,525-=+x x ; C.242222-=-+-+-x x x x x x ,去分母得,)2(2)2(2+=+--x x x x ; D.,1132-=+x x 去分母得,23)1(+=-x x ; 6. .赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半书时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( )A.21140140-+x x =14 B.21280280++x x =14 C.21140140++x x =14 D.211010++x x =1 7.若关于x 的方程0111=----x xx m ,有增根,则m 的值是( ) A.3 B.2 C.1 D.-18.若方程,)4)(3(1243+-+=++-x x x x B x A 那么A 、B 的值为( ) A.2,1 B.1,2 C.1,1 D.-1,-1 9.如果,0,1≠≠=b b a x 那么=+-ba b a ( ) A.1-x 1 B.11+-x x C.x x 1- D.11+-x x 10.使分式442-x 与6526322+++-+x x x x 的值相等的x 等于( ) A.-4 B.-3 C.1 D.10 二、填空题(每小题3分,共30分) 11. 满足方程2211-=-x x 的x 的值是___ 12. 当x =____时,分式x x ++51的值等于21. 13.分式方程0222=--x xx 的增根是 . 14. 一汽车从甲地开往乙地,每小时行驶v 1千米,t 小时可到达,如果每小时多行驶v 2千米,那么可提前到达________小时.15. 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走40分钟后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x 千米/时,则所列方程为 .16.已知,54=y x 则=-+2222yx y x . 17.=a 时,关于x 的方程53221+-=-+a a x x 的解为零. 18.飞机从A 飞到B 的路程S ’、速度是,1v ,返回的速度是2v ,往返一次的平均速度是 . 19.当=m 时,关于x 的方程313292-=++-x x x m 有增根. 20. 某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路x m ,则根据题意可得方程 . 三、解答题(共5大题,共60分) 21. .解下列方程 (1)x x x --=+-34231 (2) 2123442+-=-++-x x x x x (3)21124x x x -=--.22. 有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?24.小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室内发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元钱,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多53倍,问她第一次在供销大厦买了几瓶酸奶?。

分式混合运算专项练习158题(有答案)ok

分式混合运算专项练习158题(有答案)ok

分式混合运算专项练习158题(有答案)ok分式混合运算专项练习158题(有答案)(1)(2) +﹣(3)(4)(5) (﹣)•÷(+)(6) 3.(7) (8)(9)(10) .(11) ;(12) .(13) •÷;(14) (﹣)÷.(15)(16)(17)(1+)÷(18)(19)(20) ()2•+÷(21) ;(22)(23)(24)(25)(26)(27) ;(28) .(29) ;(30) .(31) ;(32) ÷•.(33) ()÷.(34)(35) (36) ;(37) ;(38) ;(39)(40) .(41)(42)(43)(44) (﹣)÷(45)(46)(47) +(48) ;(49) .(50) .(51)(52).(53);(54).(55)÷•;(56)1﹣÷.(57)(58)(59)÷(60);(61).(62);(63).(64)(+1)÷(1﹣)(65)(66)•﹣÷(67);(68).(69)(70)[﹣(﹣x﹣y)]÷(71)﹣÷x.(72);(73);(74)÷(x+3)•;(75)(a ﹣)÷•(76)()÷•(2﹣x)2;(77)•(﹣)2(78)(79);(80)(81);(82);(83);(84)(85)(86)(87)(88).(89)(90).(91);(92).(93)[+÷(+)2]•(94)(95);(96)(97);(98)(99)x ﹣(100)(101)(102).(103).(104);(105).(106)(x2﹣y2)•÷;(107)+﹣(108).(109)÷﹣.(110)(111).(112).(113)(114).(115).(116)(117)(118)(119)(120)(x2y﹣1)﹣3•(﹣x﹣2)﹣3÷(xy)﹣1.(121);(122)(﹣)•.(123)(124).(125).(126).(127).(128).(129)﹣(130)(131)1﹣÷.(132)(﹣)3÷•(﹣)2;(133).(134)(135).(136).(137)(138).(139)(140).(141).(142);(143).(144).(145).(146).(147)(148);(149).(150)(151)(152)(153).(154)(155)(156).(157);(158).参考答案:(1)=﹣=;(2)+﹣=++==;(3)=﹣=2x+6﹣x+3=x+9;(4)=÷(﹣)=•(﹣)=﹣.(5)原式===.(6)原式===(7)原式==x+y(8)原式==a﹣1(9)原式==y﹣3(10)==3(x+2)﹣(x﹣2)=3x+6﹣x+2=2x+8.(11)原式==;(12)原式==(﹣1)==(13)解:原式==;(14)解:原式==(15)原式=÷•=••=.(16)原式=•=﹣=﹣=.(17)原式= = =.(18)===﹣y.(19)原式==1﹣==(20)原式===.(21)原式=××=.(22)原式==(23)原式==﹣1(24)原式===(25)=+﹣=,===;(26)=﹣••=﹣;(27)=﹣•, =﹣==﹣;(28),=(﹣)•,=﹣,=,=,=﹣.(29)原式==(a+1)﹣(a﹣1)=2;(30)原式=(31)原式==;(32)原式==.(33)()÷=•=(34)原式===.(35)原式=•(a﹣1)2=a﹣1.(36)原式=×=;(37)原式=×=;(38)原式=×==;(39)原式==a4b;(40)原式==(41)=×=2(m﹣3)﹣(m+3)=m﹣9.(42)原式==﹣.(43)原式=﹣+=1﹣x+x2=x2﹣x+1.(44)原式=(﹣)×=×=.(45)原式===3(1+x);(46)原式==.(47)原式=×+=+=.(48)原式=﹣==;(49)原式=••=.(50)原式=====.(51)原式=====;(52)原式===.(53)原式==;(54)原式=×=(55)原式=•=;(56)原式=1﹣=1﹣==.(57)原式=﹣÷(58)原式=×=.(59)原式=÷(﹣)=÷=×=.(60)原式=﹣===﹣;(61)原式=﹣•=﹣==.(62)原式=;(63)原式=××(m+n)(m﹣n)=(m+n)2.(64)原式=÷=×=.(65)原式=﹣×=﹣=.(66)原式=×﹣×=﹣==.(67)原式==0;(68)原式=+=(69)原式=(×=.(70)=.(71)===.(72)原式===;(73)原式=﹣+====;(74)原式=××=;(75)原式=××=;(76)原式=[﹣]ו(2﹣x)2=ו(2﹣x)2=;(77)原式=××=(78)原式===.(79)=﹣+,==;(80),=÷=•=﹣(81)原式==;(82)原式==;(83)原式=×=(84)原式=+﹣==.(85)原式=(x+1)(x﹣1)(﹣﹣),=x+1﹣x+1﹣(x+1)(x﹣1)=﹣x2+3.(86)原式=﹣×=﹣=0.(87)原式=÷(﹣)=.(88)原式=(﹣)÷=×=.(89)原式=﹣×(m ﹣1)=﹣=﹣2m. (90)===(91)原式=;(92)原式=.(93)原式=[+×]×=[+]×=(94) 原式==.(95)原式=(x+y )•﹣==x+y ;(96)原式==;(97)原式=••=;(98)原式=•+•=+==;(99)原式==(100)原式===.(101)原式=﹣===;(102)原式=•=•=.(103)原式=1﹣×=1﹣=﹣.(104)=×=;(105)=××=x.(106)原式=(x+y)(x﹣y)××=y;(107)原式=﹣﹣=﹣﹣==(108)=••==.(109)原式=•﹣=﹣==(110)=+=+﹣==;(111)=﹣+=﹣+1=1.(112)原式=+•=+==1.(113)原式=﹣==;(114)原式=•=•=•=y+9 (115)原式=1﹣•=1﹣===﹣(116)原式==x﹣y.(117)原式==;(118)原式===;(119)原式====﹣;(120)原式=x﹣6y3•(﹣x6)÷x﹣1y﹣1=﹣y3÷x﹣1y﹣1=﹣xy4(121)原式=++==﹣;(122)原式=(﹣)•=3(x+2)﹣(x﹣2)=3x+6﹣x+2=2x+8(123)原式=•=•=x﹣2;(124)原式=1﹣÷[﹣]=1﹣÷=1﹣•=1﹣==﹣.(125)原式=﹣×=﹣==.(126)原式=[﹣]÷=[﹣]×x=×x=﹣.(127)原式=[]÷=[﹣]÷=×=(128)原式=[]•=•=y+9.(129)原式==;(130)原式==0;(131)原式=1﹣=.(132)原式=﹣••=﹣;(133)原式=•﹣=﹣=(134)原式=••=(135)原式=[﹣]•=[﹣]•=•=(136)原式==﹣=(137)=;(138)=,==.(139)=•=(x+y)(x﹣y)=x2﹣y2;(140)=++===(141)原式=====(142)原式====2;(143)原式=÷=•=.(144)原式=÷=•=.(145)原式=4a﹣1﹣+=﹣==(146)原式=×+=+==1.(147)==﹣(148)原式=+•=+=﹣=﹣;(149)原式===0(150)原式=•=;(151)原式=•=;(152)原式=﹣===﹣;(153)原式=[﹣]•=•=•=(154)原式===;(155)原式=•=;(156)原式=﹣a2b6••=﹣b5(157)原式===﹣(x+y)=﹣x﹣y;(158)原式=÷=•=.。

分式的混合运算练习题(打印版)

分式的混合运算练习题(打印版)

分式的混合运算练习题(打印版)### 分式的混合运算练习题题目一:解下列分式方程:\[\frac{1}{x+2} + \frac{2}{x-1} = \frac{3x-3}{x^2-x-2} \]题目二:计算:\[\frac{3x^2-6x+2}{x^2-4} \div \frac{x^2-9}{4x}\]题目三:化简:\[\frac{2x^2-2x}{x^2-9} \cdot \frac{x^2-4}{x}\]题目四:解下列方程:\[\frac{1}{x} - \frac{1}{x+1} = \frac{1}{x+1} - \frac{1}{x+2} \]题目五:求值:\[\frac{1}{\frac{1}{x} + \frac{1}{y}} \cdot \left( \frac{x}{y} + \frac{y}{x} \right)\]题目六:计算:\[\frac{(x+1)^2}{x^2-4} - \frac{2x-1}{x^2-4} + \frac{1}{x-2} \]题目七:化简:\[\frac{(x-1)(x+2)}{x^2-4} \div \left( \frac{x}{x-2} +\frac{1}{x+2} \right)题目八:解下列方程:\[\frac{2}{x-1} + \frac{1}{x+1} = \frac{3}{x^2-1}\]题目九:求值:\[\frac{(x-1)^2}{x^2-4} \cdot \frac{x^2-4}{x-1}\]题目十:计算:\[\frac{(x+2)(x-3)}{x^2-4} \cdot \frac{x^2-4}{x-2} \div \frac{x+3}{x+2}\]解答提示:1. 首先确定分母,将分式方程转化为整式方程。

2. 对于分式的加减运算,先找到公共分母,然后进行合并。

3. 对于分式的乘除运算,将分子乘以分子,分母乘以分母。

4. 注意分式中的约分,简化表达式。

分式混合运算练习题(30题)

分式混合运算练习题(30题)

分式练习题一.解答题1.计算:(1)(2)(﹣2m2n﹣2)2•(3m﹣1n3)﹣3 2.计算:3.化简:4.化简•(x2﹣9)5.计算:.6.计算:+.7.计算:8..9.计算:﹣a﹣1.10.计算:a﹣2+11.计算:.16. 已知ab=1,试求分式:的值.17.计算:.18 化简19. 计算:20. 化简:21.计算:(1); (2).22.化简:23.化简:. 24 化简:25.计算:26.计算:()÷.27.化简. 28.计算:﹣x ﹣2)1.在下列方程中,关于x 的分式方程的个数(a 为常数)有( ) ①0432212=+-x x ②.4=a x ③.;4=x a ④.;1392=+-x x ⑤;621=+x ⑥211=-+-ax a x . A.2个 B.3个 C.4个 D.5个2. 关于x 的分式方程15m x =-,下列说法正确的是( ) A .方程的解是5x m =+ B .5m >-时,方程的解是正数C .5m <-时,方程的解为负数D .无法确定3.方程xx x -=++-1315112的根是( ) A.x =1 B.x =-1 C.x =83 D.x =2 4.,04412=+-x x 那么x 2的值是( ) A.2 B.1 C.-2 D.-1 5.下列分式方程去分母后所得结果正确的是( ) A.11211-++=-x x x 去分母得,1)2)(1(1-+-=+x x x ; B.125552=-+-xx x ,去分母得,525-=+x x ; C.242222-=-+-+-x x x x x x ,去分母得,)2(2)2(2+=+--x x x x ; D.,1132-=+x x 去分母得,23)1(+=-x x ; 6. .赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半书时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( ) A.21140140-+x x =14 B.21280280++x x =14 C.21140140++x x =14 D.211010++x x =1 7.若关于x 的方程0111=----x x x m ,有增根,则m 的值是( ) A.3 B.2 C.1 D.-18.若方程,)4)(3(1243+-+=++-x x x x B x A 那么A 、B 的值为( ) A.2,1 B.1,2 C.1,1 D.-1,-110.使分式442-x 与6526322+++-+x x x x 的值相等的x 等于( ) A.-4 B.-3 C.1 D.10 二、填空:11. 满足方程2211-=-x x 的x 的值是___ 12. 当x =____时,分式x x ++51的值等于21. 13.分式方程0222=--x x x 的增根是 . 14.已知,54=y x 则=-+2222yx y x . 15. 一汽车从甲地开往乙地,每小时行驶v 1千米,t 小时可到达,如果每小时多行驶v 2千米,那么可提前到达________小时.16. 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走40分钟后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x 千米/时,则所列方程为 .17.=a 时,关于x 的方程53221+-=-+a a x x 的解为零. 18.飞机从A 飞到B 的路程S ’、速度是,1v ,返回的速度是2v ,往返一次的平均速度是 .19.当=m 时,关于x 的方程313292-=++-x x x m 有增根. 20. 某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路x m ,则根据题意可得方程 .三、解答题(共5大题,共60分)21. .解下列方程 (1)x x x --=+-34231 (2) 2123442+-=-++-x x x x x (3)21124x x x -=--.22. 有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?24.小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室内发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元钱,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多53倍,问她第一次在供销大厦买了几瓶酸奶?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.解答题
1.计算:
(1)(2)(﹣2m2n﹣2)2•(3m﹣1n3)﹣3 2.计算:
3.化简:.
4.(2007•双柏县)化简:
5.(2006•襄阳)计算:.
6.(2005•江西)化简•(x2﹣9)
7.(2007•北京)计算:.
8.(2005•宜昌)计算:+.
9.(2001•吉林)计算:(1);(2).10.(2001•常州).
11.计算:
12.计算:﹣a﹣1.
13.计算:
(1)(2)
14.计算:a﹣2+
15.计算:.
16.化简:,并指出x的取值范围.
17.已知ab=1,试求分式:的值.
18.计算:﹣
19.(2010•新疆)计算:
20.(2009•太原)化简:
21.(2009•上海)计算:.
22.(2009•眉山)化简:
23.(2009•江苏)计算:(1);(2).
24.(2009•东营)化简:
25.(2008•白银)化简:.
26.(2007•南昌)化简:
27.(2007•巴中)计算:
28.(2006•宜昌)计算:()÷

29.(2006•十堰)化简:.
30.(2006•南充)计算:﹣x ﹣2)
31.(2015•眉山)计算: 1
121222-+÷+--x x
x x x x
32.(2015•宜昌)化简:12
1
122
2++-+-x x x x
33.(2015•厦门)计算:12
1++++x x x x
34.(2015•柳州)计算:a a a 1
1+-
35.(2015•佛山)计算:4
8
222---x x
36.(2015•福州)化简:2
22222)(b
a ab
b a b a +-++
37.(2015•宜宾)化简:1
)1111(222--÷---a a
a a a
38.(2015•青岛)化简:n
n n n n 1
)12(2-÷++
39.(2015•重庆)化简:1
22
)1112(2
++-÷+-+-x x x x x x
40.(2015•泸州)化简:)11
1(1
22
2+-÷++m m m m
41.(2015•扬州)化简:)11
11(12---+÷-a a a a a
42.(2015•滨州)化简:)3
1
31(96262
+--÷+--m m m m m
43.(2015•广西)化简:2
1
)12(22-÷-+a a a a
44.(2015•连云港)化简:m
m m m +-÷++224
)111(
45.(2015•成都)化简:2
1
)412(2+-÷
-++a a a a a
46.(2015•重庆)计算:y
y y y y y ++-÷+--2
29
6)181(
47.(2015•南京)计算:b
a a a
b a b a +÷---)12(222
48.(2015•南充)计算:a
a a a --•
--+34
2)252(
49.(2015•巴中)化简:1
22
142122
2+--÷---+a a a a a a a
50.(2015•十堰)化简:)2
1()1(2a
a a a -+
÷-。

相关文档
最新文档