新能源汽车核心技术详解:电池包和BMS、VCU、-MCU
纯电动汽车整车控制器(vcu)研究
车辆工程技术 2 车辆技术纯电动汽车整车控制器(VCU)研究宋述铨(天津优控智行科技有限公司,天津 300000)摘 要:电动汽车主要由电池管理系统(BMS),整车控制系统(VCS),以及电机控制器(MCU)等构成。
整车控制器(VCU)是电动汽车的重要控制结构,对汽车的各种信息进行检测、对车内通信网络和异常信息进行监控等,能够提高整车驾驶性能,进行制动能量回馈完善能源管理。
提升整车舒适性,使用户获得完美体验。
关键词:纯电动汽车;整车控制器;完美体验 随着社会的发展与科技的进步,各个城市的汽车使用户喷井式增加。
传统的内燃机汽车消耗石油,排出大量废气,使得城市的空气质量不断下降。
纯电动汽车由于不使用传统化石能源,对环境不造成污染,受到人们的青睐。
随着科技的进步,电动汽车的核心技术不断地革新与突破,逐渐完善的城市基础设施提供了有利的帮助,电动汽车已经成为潜力股,逐步取代传统汽车变为可能。
本文从汽车结构出发,结合整车信息传输过程,设计了整车控制器的软硬件结构。
1 整车电控系统组成 整车电控系统主要由整车控制器VCU为核心,通过硬线信号指挥各控制器使能,通过CAN总线信号控制储能系统、电机系统等关键总成执行相应的上下电动作以及扭矩指令。
最终完成整车的驾驶运行以及高压充电。
其中,低压部分完成车辆控制器供电和信号采集通讯。
高压部分通过高压线束将动力电池的电能传输到空调压缩机、电动机等高压供电设备,实现动力电能的传输。
其中电机、电池、电控系统被称为“三电”系统,主要包括:1.1 整车控制器 整车控制器系统为整车的运行大脑,具有高可靠性、高运行效率、逻辑缤密性。
整车控制系统上电后首先运行初始化程序并且自检,在自身没有问题后驱动端口使能储能系统、电机系统上电。
储能系统和电机系统完成上电后同样分别进行上电自检。
所有系统自检无故障且驾驶员有上高压指令时,整车控制系统通过总线驱动储能系统、电机系统完成上高压动作。
1.2 储能系统 储能系统包括动力电池组和BMS管理单元。
电动汽车VCU和BMS集成控制器硬件设计
一、概述
整车控制器是纯电动汽车控制系统的核心,它负责接收驾驶员的控制指令,根 据车辆的运行状态和电池的电量等信息,控制车辆的加速、减速、制动等动作, 同时还要监控电池的状态和充电情况,保证车辆的安全性和续航能力。
二、硬件设计
1、中央控制单元
中央控制单元是整车控制器的核心部件,它负责处理各种传感器和开关量信号, 根据车辆的运行状态和驾驶员的意图,控制车辆的加速、减速、制动等动作。 同时,中央控制单元还要与电池管理系统、充电控制系统等其他部件进行通信, 实现整车信息的实时监控和控制。
5、通信接口:BMS需要与VCU、充电桩等其他设备进行数据交换。因此,需要 配置相应的通信接口,如CAN、LIN等。考虑到电池管理系统的通信需求和数 据安全性,应选择具有高速、稳定、安全的通信接口。
6、故障诊断和处理单元:BMS应具备故障诊断和处理能力,能够对电池组进行 实时监测和故障预警。因此,需要配置相应的故障诊断和处理单元,包括故障 检测、故障处理、故障记录等功能。
电动汽车VCU和BMS集成控 制器硬件设计
目录
01 一、VCU硬件设计
03
三、VCU和BMS的集成 设计
02 二、BMS硬件设计 04 参考内容
随着环保意识的不断提高和电动汽车技术的不断发展,电动汽车在交通领域的 应用越来越广泛。作为电动汽车的关键部分,车辆控制单元(VCU)和电池管 理系统(BMS)的集成控制对于整车的性能和安全性具有至关重要的意义。本 次演示将探讨电动汽车VCU和BMS集成控制器的硬件设计。
(4)安全保护措施:采用防电击、防泄漏等安全保护措施确保人员的安全。
3、可维护性设计
可维护性是指控制系统出现故障时容易维修和恢复的程度。在硬件设计过程中, 应考虑以下几点:
新能源汽车关键技术简介_(纯电)
3、高压控制盒
高压控制盒主要用于 对动力电池中储存的电 能进行输出及分配,实 现对支路用电器件的切 断和保护。
高压控制盒共有5出 接线口,分别连接快充 、动力电池、电机控制 器和其它高压接插件。
13
高压控制盒—高压附件插件
A:DC/DC 电源正极 B:PTC 电源正极 C:压缩机电源正极 D:PTC-A 组负极 E:充电机电源正极 F:充电机电源负极 G:DC/DC 电源负极 H:压缩机电源负极 J:PTC-B 组负极 L:互锁信号线
11 动力电池故障指示灯
12 动力电池断开指示灯
13 系统故障灯
31
上汽荣威E50纯电动汽车基本组成
32
一、充电系统(动力电池系统)
由动力电池组件、车载充电器、高压配电单元、快充口 (直流)、慢充口(交流)、电池冷却系统等组成。
33
充电系统控制设计
34
高压配电单元
高压配电单元用于分 配电能。
整车控制器在下电前会存储行车过程中发生的故障信息。
29
3、电控系统故障诊断及处理 电控系统根据电机、电池、EPS、DC/DC等零部件故障、
整车CAN网络故障及VCU硬件故障进行综合判断,确定整车 的故障等级,并进行相应的控制处理。
等级 一级 二级 三级
四级
名称 致命故障 严重故障 一般故障
轻微故障
还有:电池管理控制器、电池高压电力分配单元、 电池检测模块、电池采集和均匀模块(大模块由2个采 集模块;小模块由1个采集模块)、高低压插件、水冷 却系统等
37
二、电驱系统
主要由电动机组件、电力电子箱组件、减速器组件、电驱 冷却系统组成;主要功能是驱动汽车行驶和制动能量回收。
38
vcu的相关项定义
vcu的相关项定义VCU(Vehicle Control Unit,车辆控制单元)是汽车电子控制系统中的一个重要部分,主要负责控制和协调汽车的各种功能模块,如发动机控制、transmission control、brake control等。
以下是VCU相关项的定义:1. ECU(Electronic Control Unit,电子控制单元):汽车电子控制系统中的核心部分,用于控制汽车的各种功能,如发动机、transmissio n、brake等。
每个ECU都有特定的功能和任务,如发动机控制模块(E CU)主要负责控制发动机的燃油喷射、点火、排放等。
2. MCU(Microcontroller Unit,微控制器单元):一种集成了CP U、存储器、输入/输出接口等功能的微型计算机,用于实现汽车电子控制系统的各种功能。
3. CPU(Central Processing Unit,中央处理器):是计算机系统的核心,负责执行程序指令,处理数据。
在VCU中,CPU用于处理各种传感器的信号,并根据预设的算法和控制策略来控制汽车的各项功能。
4. 传感器:用于检测汽车各项物理量(如速度、温度、压力等)的装置,将检测到的信号转换为电信号,发送给VCU进行处理。
5. 执行器:根据VCU的指令,实现对汽车各种功能的控制。
如发动机控制模块中的喷油嘴、点火线圈等。
6. 通信总线:用于连接VCU与其他电子控制模块(如ECU、MCU 等)的通信线路,实现各模块之间的数据交换和协同工作。
常见的通信总线有CAN总线、LIN总线等。
7. 诊断接口:用于对VCU及其相关模块进行故障诊断和编程的接口。
通过诊断接口,可以读取故障码、清除故障码、更新软件等。
8. 编程工具:用于对VCU进行编程和配置的软件工具。
通过编程工具,可以实现对VCU的参数设置、功能激活、软件升级等。
9. 地图数据:用于提供导航、路况等信息的数据。
VCU接收地图数据后,可以根据当前车辆位置和目的地,为驾驶员提供最优的行驶路线和驾驶建议。
电动汽车动力电池及BMS发展
电动汽车动力电池及BMS发展电动汽车动力电池及BMS(电池管理系统)是电动汽车的核心组件,直接影响着电动汽车的续航里程、性能、安全等方面。
随着电动汽车市场的快速发展,动力电池及BMS技术也在不断创新和进步。
本文将对电动汽车动力电池及BMS的发展进行一系列介绍。
其次,BMS是对动力电池进行管理和控制的关键技术。
BMS主要包括电池状态监测、电池均衡、温度管理、充放电控制等功能。
BMS通过精确监测每个电池的电压、电流、温度等参数,实时掌握电池的状态,并根据需要进行均衡、保护和控制。
BMS的性能对电动汽车的性能、安全和寿命都有重要影响。
随着电动汽车市场的快速发展,电动汽车动力电池及BMS技术也在持续创新和进步。
一方面,动力电池的能量密度和功率密度不断提高,可以提供更长的续航里程和更好的动力性能。
这主要得益于材料技术的改进,如新型电极材料、新型电解液和新型隔膜材料的应用。
另一方面,动力电池的寿命也在不断延长,主要通过优化电池的设计和控制算法,减少电池的损耗和衰减。
此外,BMS技术也在不断提高,实现了更精确的电池状态监测和控制,提升了电池的安全性和可靠性。
近年来,一些新型电池技术也在不断涌现,对电动汽车动力电池及BMS技术的发展带来了新的机遇和挑战。
比如,固态电池、钠离子电池和锌空气电池等新型电池技术有望提供更高的能量密度和更低的成本,但目前在商业化应用上还面临一些技术难题。
随着这些技术的不断进步和突破,电动汽车的续航里程和性能将迎来新的提升。
总之,电动汽车动力电池及BMS技术是电动汽车发展的关键。
随着电动汽车市场的快速发展,动力电池及BMS技术也在不断创新和进步,实现了更高的能量密度、更长的寿命和更高的安全性。
未来,随着新型电池技术的涌现和突破,电动汽车的续航里程和性能将进一步提升。
解读电池管理系统BMS的作用及特点
解读电池管理系统BMS的作用及特点随着新能源概念的普及推广,新能源汽车也逐步走入了千家万户,新能源汽车作为寻常百姓的新购车选择已经开始侵占着原本属于传统燃油汽车的市场,作为目前新能源汽车最大的市场,中国的企业依靠着新能源汽车首次与国外企业站在同一起跑线,不断涌现的新技术新工艺,让中国的新能源汽车行业有了更充足的底气去放眼世界,心系未来。
提到传统燃油汽车的核心关键自然离不开俗称的三大件:发动机、底盘以及变速箱,在这三大件上,中国技术落后以德日美为首的国外汽车厂商已是共识。
而在新能源电动汽车上也有俗称的三大件:电池、电机和电控,由于新能源电动汽车在全球范围内仍是较新的行业,各国企业的起步相差并不大,这也让我国企业在汽车这个1886年发明至今的多用途动力驱动工具上拥有了与国外企业一较高下的条件。
本文重点给大家介绍新能源电动汽车三大件里的电控(业内普遍称之为电池管理系统BMS)。
新能源电动汽车与传统燃油汽车最大的区别是用动力电池作为动力驱动,而作为衔接电池组、整车系统和电机的重要纽带,电池管理系统BMS的重要性不言而喻,国内外许多新能源车企都将电池管理系统作为企业最核心的技术来看待,最著名的例子就是大家耳熟能详的特斯拉,特斯拉的电动汽车三大件中,电池来自于松下,电机来自于台湾供应商,而只有电池管理系统是特斯拉自主研发的核心技术,2008年-2015年期间特斯拉所申请的核心知识产权大都与电池管理系统相关,由此可见电池管理系统对于新能源汽车的重要性。
而国内,电池管理系统BMS的研发生产主要集中在这三类企业:1、新能源汽车厂商,代表企业:比亚迪2、电池PACK厂商,代表企业:沃特玛、普莱德3、专业BMS厂商,代表企业:惠州亿能、深圳国新动力电池管理系统BMS到底有什么作用?电池管理系统BMS是一个本世纪才诞生的新产品,因为电化学反应的难以控制和材料在。
新能源电池包结构
新能源电池包结构
新能源电池包的结构主要由以下几个部分组成:
1.电池单体(Battery Cells):这是电池的基本组成单元,通常采用锂离子电池技
术。
它们是负责储存和释放电能的主要组件。
2.电池模块(Battery Modules):电池模块由多个电池单体组成,通过连接器和电
池管理系统(BMS)进行电气连接和控制。
电池模块可以根据需要进行组合和配置,以满足电池容量和电压要求。
3.电池包(Battery Pack):电池包是由多个电池模块组成的整体结构,通常位于车
辆底盘或车辆座椅下方。
它提供了电池的物理支撑和保护,同时还包含与车辆其他系统的连接和接口。
电池包内部还有热管理系统,用于维持电池的合适工作温度范围。
4.电池管理系统(Battery Management System,BMS):BMS是负责监测、控制和管
理电池的系统。
它可以监控电池的状态,如电压、电流、温度等,并控制电池的充放电过程,确保电池的安全和性能。
此外,电池包还可能包括高压断电系统(BDU),用于控制电流流向,给到不同的负载,实现能量分配。
同时,电池包还需要有低压线束,用于采集电池模组电芯信号,监控电芯状态,并将数据传输给BMS。
总的来说,新能源电池包的结构复杂,但各个部分都起着至关重要的作用,共同确保电池的安全、性能和效率。
电动汽车整车控制器(VCU)技术及开发流程深度剖析
电动汽车整车控制器(VCU)技术及开发流程深度剖析整车控制器(VCU),电动汽车的大脑,相当于电脑的Windows,手机的Andrio。
作为电动汽车上全部电气的运行平台,它的性能优劣,直接影响其他电气性能的发挥,是整车性能好坏的决定性因素之一。
1. 组成1.1结构组成VCU,结构上,由金属壳体和一组PCB线路板组成。
1.2硬件组成功能上由主控芯片及其周边的时钟电路、复位电路、预留接口电路和电源模块组成最小系统。
在最小系统以外,一般还配备数字信号处理电路,模拟信号处理电路,频率信号处理电路,通讯接口电路(包括CAN通讯接口和RS232通讯接口)2. 各电气与VCU之间是怎样工作的一些用于监测车体自身状态的信号或者车载部件中比较重要的开关信号、模拟信号和频率信号,由传感器直接传递给VCU,而不通过CAN总线。
电动汽车上的其他具有独立系统的电气,一般通过共用CAN总线的方式进行信息传递。
2.1直接传递的信号们开关信号包括:钥匙信号,档位信号,充电开关,制动信号等;模拟信号一般有:加速踏板信号,制动踏板信号,电池电压信号等;频率信号,比如车速传感器的电磁信号。
输出的开关量,动力电池供电回路上的接触器和预充继电器,在一些车型上,由VCU负责控制。
2.2通过CAN交互的电气单元CAN总线上的通讯参与者地位不分主从,随时随地向总线发动信息。
信息之间的先后顺序由发出信息者的优先级确定。
优先级在通讯协议中已经做出规定,每条信息里都有发信者的地址编码;通讯中的信息编码,都有相应的通讯协议予以明确规定。
谁发出什么样的代码提供哪些类型的信息,主要依据是供需双方的约定。
比如下面表格中的电气单元地址编码,就是来自一份整车厂与VCU供应商的技术协议。
CAN故障记录,是维修调试人员最好的小帮手。
下图是通讯协议中对故障代码的规定,常见的故障类型都位列其中,只要对照协议表格,大家都可以读懂故障记录了。
比较例外的是充换电相关的系统,由于通用性的强烈需求,通讯协议需要统一,有国家标准予以统一编码(下文列举了相关国标)。
电池管理系统BMS架构及功能知识介绍
电池管理系统BMS架构及功能知识介绍新能源车与传统汽车最⼤的区别是⽤电池作为动⼒驱动,所以动⼒电池是新能源车的核⼼。
电动汽车的动⼒输出依靠电池,⽽电池管理系统BMS(BatteryManagementSystem)则是其中的核⼼,是对电池进⾏监控和管理的系统,通过对电压、电流、温度以及SOC等参数采集、计算,进⽽控制电池的充放电过程,实现对电池的保护,提升电池综合性能的管理系统,是连接车载动⼒电池和电动汽车的重要纽带。
国外公司BMS做的⽐较好的有联电、⼤陆、德尔福、AVL和FEV等等,现在基本上都是按照AUTOSAR架构以及ISO26262功能安全的要求来做,软件功能更多,可靠性和精度也较⾼。
国内很多主机⼚也都有⾃主开发的BMS产品并应⽤,前期在功能和性能上与国外⼀流公司相差甚远,但随着国内电池和BMS技术的快速发展差距正在逐步缩⼩,希望不久的将来能够实现成功追赶甚⾄超越。
BMS主要包括硬件、底层软件和应⽤层软件三部分。
硬件1、架构BMS 硬件的拓扑结构分为集中式和分布式两种类型:(1)集中式是将所有的电⽓部件集中到⼀块⼤的板⼦中,采样芯⽚通道利⽤最⾼且采样芯⽚与主芯⽚之间可以采⽤菊花链通讯,电路设计相对简单,产品成本⼤为降低,只是所有的采集线束都会连接到主板上,对BMS的安全性提出更⼤挑战,并且菊花链通讯稳定性⽅⾯也可能存在问题。
⽐较合适电池包容量⽐较⼩、模组及电池包型式⽐较固定的场合。
(2)分布式包括主板和从板,可能⼀个电池模组配备⼀个从板,这样的设计缺点是如果电池模组的单体数量少于12个会造成采样通道浪费(⼀般采样芯⽚有12个通道),或者2-3个从板采集所有电池模组,这种结构⼀块从板中具有多个采样芯⽚,优点是通道利⽤率较⾼,节省成本,系统配置的灵活性,适应不同容量、不同规格型式的模组和电池包。
2、功能硬件的设计和具体选型要结合整车及电池系统的功能需求,通⽤的功能主要包括采集功能(如电压、电流、温度采集)、充电⼝检测(CC和CC2)和充电唤醒(CP和A+)、继电器控制及状态诊断、绝缘检测、⾼压互锁、碰撞检测、CAN通讯及数据存储等要求。
一文带你看懂新能源汽车电池管理系统
一文带你看懂新能源汽车电池管理系统2012年6月,特斯拉电动汽车ModelS正式上市,续驶里程为483km。
这是世界第一款真正实用的长续驶里程纯电动汽车,给人们带来了对纯电动汽车的巨大信心,鼓励更多的高性能电动汽车不断推出。
Model S实现长续驶里程的最核心技术,应是特斯拉创新设计的电池管理系统(Battery Management System, BMS)。
一辆电动汽车的动力蓄电池由成百上千块电芯(也称单体电池)组成,比如特斯拉Model S的电池组就由7000多块电芯组成。
尽管电池制造工艺已经让各个电芯之间的差异化缩小,但是电芯之间仍然存在内阻、容量、电压等差异,使用中容易出现散热不均或过度充放电等现象。
时间一长,就很可能导致电池损坏甚至爆炸的危险。
因此,必须为动力蓄电池配备一套具有针对性的电池管理系统,像管家那样照料电池,保证电池处于正常工作状态。
一、蓄电池管理系统的组成蓄电池管理系统在硬件上可以分为主控模块和从控模块两大部分。
蓄电池管理系统主要由数据采集单元(采集模块)、中央处理单元(主控模块)、显示单元、均衡单元检测模块(电流传感器、电压传感器、温度传感器、漏电检测)、控制部件(熔断器、继电器)等组成。
中央处理单元由高压控制电路、主控板等组成;数据采集单元由温度采集模块、电压采集模块等组成,它们一般采用CAN总线技术实现相互间的信息通信。
1.主控模块主控盒。
主控盒是动力蓄电池管理系统的控制中心,用来控制总正继电器、加热继电器以及预充继电器,还通过CAN总线与VCU进行通信。
下图为特斯拉model 3主控盒电路板。
2.从控模块从控盒。
从控盒用来分别采集左右动力蓄电池组的蓄电池单体电压和动力蓄电池模组温度,然后通过CAN总线将信息输送给主控盒。
下图为特斯拉model 3从控盒电路板。
二、蓄电池管理系统的分类随着对于磷酸铁锂动力蓄电池一致性较差、三元锂热失控风险更大的问题暂时还不能完全解决,动力电池厂商的工程师们,除了在动力电池包结构上改进,工艺和散热要求提高之外,对BMS 的功能也提出了新的要求。
新能源汽车之心——电驱动系统的三大件介绍
新能源汽车之心——电驱动系统的三大件介绍电驱动系统是新能源汽车核心系统之一,其性能决定了爬坡能力、加速能力以及最高车速等汽车行驶的主要性能指标。
无论是BEV(纯电动汽车)、HEV/PHEV(串并联结构)和燃料电池汽车均需要电驱动系统驱动车辆。
目前纯电动汽车行业电驱动系统主流模式是将电机、电机控制器和减速器集成,构成三合一电驱动系统电驱动系统的三大件—电机、电控和减速器:驱动电机是利用电磁感应原理实现电能向机械能的转换,驱动车辆行驶。
当车辆减速时,车轮带动电机运转为电池组充电,实现机械能向电能转换。
驱动电机主要由定子、转子、机壳、连接器、旋转变压器等零部件组成。
电机控制器基于功率半导体的硬件及软件设计,对驱动电机的工作状态进行实时控制,并持续丰富其他控制功能。
电机控制器主要由控制软件、IGBT 模块、车用膜电容器、印刷线路板(PCB)及微控制单元(MCU)等器件组成。
减速器则通过齿轮组降低输出转速提高输出扭矩,以保证电驱动系统持续运行在高效区间。
减速器由输入轴、中间轴、差速器及轴承等零部件组成。
电驱动系统的集成化趋势:电驱动系统设计经历了独立式、二合一、三合一和多合一的发展阶段。
独立式指电机、电控、减速器及其他附件独立存在,这种模式主要存在于早期电动车产品,优点是技术简单,缺点是占据空间大。
二合一方案则是将电机与减速器集成设计,三合一则是将电控、电机和减速器集成设计,三合一是目前电驱动系统的主流方案。
电驱系统集成更多功能是大势所趋,如华为即将推出的电驱动系统 DriveONE 系统,该系统集成了 MCU(微控制单元)、电机、减速器、DCDC(直流变换器)、OBC(车载充电机)、PDU (电源分配单元)、BCU(电池控制单元)七大部件,实现了机械部件和功率部件的深度融合。
电驱动效率由驱动电机、控制器、减速器的运行效率共同决定,是衡量电驱动系统性能的重要指标。
电驱动系统较高的峰值效率、高效区间占比可以使同等条件下新能源汽车行驶相同里程耗电量更少,有利于车辆续航里程的增加,是新能源汽车整车厂商和用户最为关注的技术指标。
纯电动汽车整车控制器(VCU)详细介绍
纯电动汽车整车控制器(VCU)详细介绍嘿,伙计们!今天我要给大家讲讲一个非常酷的东西——纯电动汽车整车控制器(VCU)。
别看它是个小小的东西,但它可是电动汽车的大脑,负责控制着整个车辆的运行呢!让我们一起来揭开它神秘的面纱吧!咱们来了解一下什么是VCU。
VCU是英文“Vehicle Control Unit”的缩写,翻译成中文就是“车辆控制单元”。
它是一种专门用于控制电动汽车的电子设备,可以实现对电池管理系统、电机控制系统、辅助系统等多种功能的综合控制。
有了VCU,电动汽车就可以像传统汽车一样行驶了!那么,VCU到底是怎么工作的呢?其实很简单,它就像是一个指挥家,指挥着电动汽车的各个部件协同工作。
当驾驶员踩下油门时,VCU会接收到这个信号,然后通过电池管理系统向电机控制系统发送指令,让电机产生动力;VCU还会根据车辆的速度、加速度等参数,调整能量回收系统的工作状态,确保电池的能量得到最大限度的利用。
接下来,我们再来聊聊VCU的一些重要功能。
首先就是电池管理系统。
这个系统负责监控和管理电动汽车的电池,确保电池在良好的状态下运行。
它可以实时监测电池的剩余电量、充电状态、温度等参数,并根据这些信息制定相应的充放电策略。
这样一来,不仅可以延长电池的使用寿命,还能提高电动汽车的续航里程。
其次就是电机控制系统。
这个系统负责控制电动机的转速和扭矩,从而实现对车辆的驱动。
VCU会根据驾驶员的需求和车辆的状态,向电机控制系统发送指令,让电动机产生合适的动力输出。
VCU还会对电机的工作状态进行监控和保护,防止因为过载或故障导致的损坏。
最后就是辅助系统。
这个系统包括了很多辅助功能,比如空调、音响、照明等。
VCU会根据驾驶员的需求和车辆的状态,向这些系统发送指令,实现各种功能的切换和调节。
这样一来,即使在没有发动机的情况下,电动汽车也可以享受到舒适便捷的驾驶体验。
VCU是电动汽车的核心部件之一,它的存在使得电动汽车变得更加智能、高效和环保。
新能源汽车的核心技术有哪些
新能源汽车的核心技术有哪些随着全球环境保护呼声的日益高涨,新能源汽车正成为汽车行业的热门话题。
与传统汽车相比,新能源汽车采用了一系列新兴的技术,以实现更高的能源利用效率和更低的碳排放。
本文将介绍新能源汽车的核心技术,并分析其对环保的积极意义。
一、电池技术电池技术是新能源汽车的核心之一。
电池是驱动电动汽车的重要能源储存装置,其性能直接决定了新能源汽车的续航里程和使用寿命。
目前,锂离子电池是最常用的电池技术,具有高能量密度、长循环寿命和较低的自放电率。
然而,锂离子电池还存在续航里程有限、充电时间长和成本高等问题。
因此,新型电池技术如固态电池和燃料电池的研发也备受关注,有望在解决上述问题的同时,提高新能源汽车的性能。
二、电动驱动技术电动驱动技术是新能源汽车的核心之二。
相比传统内燃机,电机驱动具有高效率、低噪音和零排放的特点。
电动驱动系统由电机、控制器和传动装置组成。
电机是电动汽车的动力源,根据不同的车型和功率需求,可采用直流电机或交流电机。
控制器负责调整电机的转速和扭矩输出,以满足驾驶员的需求。
传动装置根据车辆的不同需求,有单速传动、多速传动和无级变速等不同的设计。
通过不断提升电动驱动技术,新能源汽车在性能和驾驶体验上正逐渐接近传统汽车。
三、智能控制技术智能控制技术是新能源汽车的核心之三。
智能控制系统能够通过感知、决策和执行等环节,实现对车辆能量管理、动力分配和系统优化的精确控制。
其中感知系统包括传感器和摄像头等装置,用于收集车辆和环境信息。
决策系统则通过算法和模型,根据收集到的信息做出智能决策。
最后,执行系统将决策结果转化为动作,控制车辆运行。
智能控制技术的应用可以提高新能源汽车的行驶安全性、能源效率和用户体验。
四、充电技术充电技术是新能源汽车的核心之四。
电动汽车的续航里程直接与充电设施的覆盖范围和充电速度相关。
目前,有慢充和快充两种充电方式,慢充适用于长时间停放的场景,而快充则能迅速补充电力。
为提高充电效率和用户体验,快充充电桩的覆盖面积正逐渐扩大,同时充电设备的智能化和远程监控技术也得到了广泛应用。
新能源汽车动力电池包的组成
新能源汽车动力电池包的组成
新能源汽车动力电池包一般由以下几个主要组成部分构成:
1. 电池单体:电池单体是动力电池包的基本组成单元,是多个电池模块串联组成电池包的基础。
电池单体一般由正负极材料、电解质和隔膜等组成。
2. 电池管理系统(BMS):电池管理系统是电池包的主控制
系统,负责监控电池单体的电压、温度、电流等状态,并进行数据采集、处理和控制。
BMS还能对电池包进行故障检测和
故障管理,从而确保电池包的安全性和性能。
3. 散热系统:新能源汽车动力电池包工作过程中会产生大量的热量,如果不能及时散热,会影响电池的寿命和性能。
因此,电池包通常还配备有散热系统,包括散热片、散热管路、冷却液等,以保持电池温度的稳定。
4. 结构支持和保护:电池包需要具备一定的结构强度和稳定性,以保护电池单体免受外界环境的影响和机械振动的冲击。
常见的结构支持和保护装置包括外壳、挡板、防护板等。
5. 充电和放电接口:电池包需要通过充电接口与外部电源相连接,以进行电池充电。
同时,电池包内部还需要提供放电接口,连接到动力系统,以将电能输出给电动机供动力使用。
总而言之,新能源汽车动力电池包的组成包括电池单体、电池管理系统、散热系统、结构支持和保护以及充放电接口等多个
组成部分。
这些部分相互配合,形成一个功能完整的电池系统,为电动汽车提供动力供应。
纯电动汽vcu的概念
纯电动汽vcu的概念纯电动汽车(EV)的VCU概念,也称为车辆控制单元,是指纯电动汽车中的一个重要组成部分,负责控制和管理电动汽车的各种功能和系统。
VCU通过接收和处理来自电池管理系统(BMS)、电动机控制器(MCU)、车辆动力总成、充电系统等的信号和数据,实现电动汽车的有效控制和运行。
VCU既是电动汽车的“大脑”,又是“神经中枢”,它起到了调度和协调电动汽车各部分之间的通讯和数据传输功能。
它能够控制电动汽车的加速、刹车、充电、能量管理、车辆稳定性等重要功能,并能实时监测电池状态、电机控制、车速、里程、能量消耗等参数,以确保电动汽车的安全、高效运行。
VCU主要包含以下几个模块:1. 电池管理系统(BMS):BMS是电动汽车中用于监控和管理电池组的一个重要系统。
VCU通过与BMS的协作,可以实时监测电池的状态、电量、温度等参数,并根据这些信息进行电池的保护控制和能量管理。
2. 电动机控制器(MCU):MCU是用于控制电动机工作的关键部件,VCU通过与MCU的通讯和协调,实现电动汽车的加速、刹车和能量回收等功能。
3. 能量管理系统:能量管理系统是VCU中的一个重要模块,负责管理电动汽车的能量流动和分配。
通过监测和控制电池的电量、电机的输出功率等参数,能量管理系统可以有效地调度电动汽车的能量使用,提高能源利用效率。
4. 车速和动力系统:VCU通过控制电动汽车的动力系统,使得车辆在驾驶过程中能够具有合理的动力输出和车速控制。
通过控制加速踏板的输入和电机的输出功率,VCU可以实现电动汽车的平稳加速和减速。
5. 充电系统:VCU与充电系统的通讯和协作,可以实现电动汽车的充电和停止充电的控制。
通过监测电池的电量和充电状态,VCU可以控制充电系统的工作,使得电动汽车在充电过程中能够达到最佳充电效果和安全性。
总之,VCU作为电动汽车的核心控制单元,具有关键的功能和作用。
它能够协调车载系统各个模块之间的工作,实现电动汽车的高效运行。
新能源汽车的核心:三电系统详解
新能源汽车的核心:三电系统详解新能源汽车区别于传统车最核心的技术是“三电”,包括电驱动,电池,电控。
下面详细讲解一下三电基础知识:一、电池电池是与化学、机械工业、电子控制等相关的一个行业。
电池的关键在电芯,电芯最重要的材料便是正负极、隔膜、电解液。
正极材料广为熟知的有磷酸铁锂、钴酸锂、锰酸锂、三元、高镍三元。
动力电池是非常“年轻”的产品,1996年通用推出EV-1采用的是铅酸电池,它是现代电动汽车架构雏形,从铅酸电池到日系混动的镍氢电池,再到现在流行的锂电池,也才20多年。
从第四批《新能源汽车推广应用推荐车型目录》新能源乘用车配置电池来看,32款车型采用了17家企业的电池,其中16家是电池厂商,另外一家是长安新能源的,这说明其它乘用车的动力电池直接外购,包括电芯、电池组与电池管理系统等。
大部分自主品牌主机厂都没有自己的电芯与电池组设计能力跨国车企,虽然没有自己的电芯,但是它们却坚持自己设计生产电池组件与管理系统,这是为了加强动力电池的核心竞争力。
与大多自主品牌的差别是,即使不采用这家的电芯,它们可以换个电芯品牌照样能够设计电池组,核心技术还是掌握在自己手里。
但是我们更关心的是动力电池,也是就新能源汽车中的能量来源目前动力电池中,镍氢电池面临淘汰,铅酸电池全凭保有量在支撑,故目前以锂电池最为主要。
(如下图)先介绍几个重要概念能量密度方面电池肯定不如汽油,但是究竟差别多大呢?一箱50L的汽油可以大概跑600km续航同样里程的电动车需要多少电池呢?(如下图)下表列出了四类锂电池的主要性能指标差别从表中可以看出,四类电池各有优劣。
那各汽车厂商究竟是凭什么选择其中某种电池呢?哪种电池又将是未来的主流呢?数码电子产品对锂电池安全性要求不高,钴酸锂电池最合适3C领域,特斯拉敢于使用此类电池也是未来得到超强的续航能力,但是同时其安全性能要打些折扣。
锰酸锂电池因其不偏不倚的特征赢得动力电池最大的市场占有率,虽然其能量密度不如钴酸锂和三元锂,但其他综合性能相当出色。
新能源汽车整车电控系统详解
新能源汽车整车电控系统详解新能源汽车电控系统,狭义上指的是整车控制器,广义上讲,则包括整车控制器、电池管理系统、驱动电机控制器等。
新能源汽车电控系统组成简图汽车上的这些控制器通过CAN网络来通信。
CAN,全称为“Controller Area Network”,即控制器局域网,是国际上应用最广泛的现场总线之一。
最初,CAN被设计作为汽车环境中的微控制器通讯,在车载各电子控制装置ECU之间交换信息,形成汽车电子控制网络。
比如:发动机管理系统、变速箱控制器、仪表装备、电子主干系统中,均嵌入CAN控制装置。
整车控制VCU车辆行驶过程中,需要一个与驾驶员进行指令互动的窗口,这个窗口就是整车控制器VCU(Vehicle control unit),VCU负责接收来自驾驶员的各种驾驶操作指令和配置功能操作的需求,如上电、加速、制动踏板等各种信号,并结合车辆其它系统发出的操作指令或协控信息,以及各部件传感器反馈的各种车况信号,实现对整车和各部件工况的分析,形成可以确保车辆安全行驶的指令,以达到各个控制系统器执行动作的目的。
VCU协调控制的高低压部件新能源汽车电动化的动力总成增加了很多高低压电气部件。
VCU 是新能源汽车驱动系统控制的“大脑”,成熟的系统软件在提高运行效率、降低能耗排放、提高故障后处理的鲁棒性等方面都发挥着重要作用。
是电动化动力总成系统解决方案真正落地的核心能力之一。
作为车辆驱动协调控制系统的核心控制器,VCU需要负责整车状态协调、驾驶员驾驶需求实现等最基本也是最重要的功能。
因此VCU 软件的完善度直接影响了车辆运行的稳定性和行驶安全性。
随着“域融合”的概念推广,越来越多的新功能也逐渐被融合到VCU控制器中,例如:跟充电相关的AC/DC车辆端充电主控功能,以及跟底盘相关的电动四驱控制功能。
从系统功能划分角度考虑,可以把VCU的功能划分为:车辆系统、传动系统、电力系统、热管理系统,以及OBD诊断、通讯、安全监控等系统功能。
汽车中VCU HCU ECU的区别与含义
汽车中VCU HCU ECU的区别与含义电控是电动汽车三大核心零部件之一,包括整车控制器(VCU)、电机控制器(MCU)和电池管理系统(BMS)。
1. VCU(Vehicle Control Unit)电动汽车整车控制器电动汽车整车控制器(VCU,Vehicle Control Unit)是电动汽车(混合动力汽车、纯电动汽车)动力系统的总成控制器,负责协调发动机、驱动电机、变速箱、动力电池等各部件的工作,具有提高车辆的动力性能、安全性能和经济性等作用。
电动汽车整车控制器VCU(Vehicle Control Unit)是电动汽车整车控制系统的核心部件,是用来控制电动车电机的启动、运行、进退、速度、停止以及电动车的其它电子器件的核心控制器件。
VCU作为纯电动汽车控制系统最核心的部件,其承担了数据交换、安全管理、驾驶员意图解释、能量流管理的任务。
VCU采集电机控制系统信号、加速踏板信号、制动踏板信号及其他部件信号,根据驾驶员的驾驶意图综合分析并作出响应判断后,监控下层的各部件控制器的动作,对汽车的正常行驶、电池能量的制动回馈、网络管理、故障诊断与处理、车辆状态监控等功能起着关键作用。
技术VCU是实现整车控制决策的核心电子控制单元,在传统汽车上需求很小。
整车控制器的开发包括软、硬件设计。
核心软件一般由整车厂研发,硬件和底层驱动软件可选择由汽车零部件厂商提供。
VCU采集电机控制系统信号、加速踏板信号、制动踏板信号及其他部件信号,根据驾驶员的驾驶意图综合分析并作出响应判断后,监控下层的各部件控制器的动作,对汽车的正常行驶、电池能量的制动回馈、网络管理、故障诊断与处理、车辆状态监控等功能起着关键作用。
整车控制系统能够实现对汽车动力、舒适度、安全性以及能耗等多方面进行调整优化,配合大数据让电动汽车拥有更好的操作性和可靠性,具体来讲整车控制器对电动汽车主要有以下功能:1)数据交互管理:整车控制器要实时采集驾驶员的操作信息和其他各个部件的工作状态信息,这是实现整车控制器其他功能的基础和前提。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新能源汽车核心技术详解:电池包和BMS、VCU、 MCU电子创新网| 2001-15-20 11:542014年国内新能源汽车产销突破8万辆,发展态势喜人。
为了使新能源爱好者和初级研发人员更好地了解新能源汽车的核心技术,笔者结合研发过程中的经验总结,从新能源汽车分类、模块规划、电控技术和充电设施等方面进行了分析。
1 新能源汽车分类在新能源汽车分类中,“弱混、强混”与“串联、并联”不同分类方法令非业内人士感到困惑,其实这些名称是从不同角度给出的解释、并不矛盾。
1.1消费者角度消费者角度通常按照混合度进行划分,可分为起停、弱混、中混、强混、插电和纯电动,节油效果和成本增等指标加如表1所示。
表中“-”表示无此功能或较弱、“+”个数越多表示效果越好,从表中可以看出随着节油效果改善、成本增加也较多。
1.2技术角度图1 技术角度分类技术角度由简到繁分为纯电动、串联混合动力、并联混合动力及混联混合动力,具体如图1所示。
其中P0表示BSG(Belt starter generator,带传动启停装置)系统,P1代表ISG(Integrated starter generator,启动机和发电机一体化装置)系统、电机处于发动机和离合器之间,P2中电机处于离合器和变速器输入端之间,P3表示电机处于变速器输出端或布置于后轴,P03表示P0和P3的组合。
从统计表中可以看出,各种结构在国内外乘用或商用车中均得到广泛应用,相对来说P2在欧洲比较流行,行星排结构在日系和美系车辆中占主导地位,P03等组合结构在四驱车辆中应用较为普遍、欧蓝德和标致3008均已实现量产。
新能源车型选择应综合考虑结构复杂性、节油效果和成本增加,例如由通用、克莱斯勒和宝马联合开发的三行星排双模系统,尽管节油效果较好,但由于结构复杂且成本较高,近十年间的市场表现不尽如人意。
2 新能源汽车模块规划尽管新能源汽车分类复杂,但其中共用的模块较多,在开发过程中可采用模块化方法,共享平台、提高开发速度。
总体上讲,整个新能源汽车可分为三级模块体系、如图2所示,一级模块主要是指执行系统,包括充电设备、电动附件、储能系统、发动机、发电机、离合器、驱动电机和齿轮箱。
二级模块分为执行系统和控制系统两部分,执行部分包括充电设备的地面充电机、集电器和车载充电机,储能系统的单体、电箱和PACK,发动机部分的气体机、汽油机和柴油机,发电机的永磁同步和交流异步,离合器中的干式和湿式,驱动电机的永磁同步和交流异步,齿轮箱部分的有级式自动变速器(包括AMT、AT和DCT等)、行星排和减速齿轮;二级模块的控制系统包括BMS、ECU、GCU、CCU、MCU、TCU和VCU,分别表示电池管理系统、发动机电子控制单元、发电机控制器、离合器控制单元、电机控制器、变速器控制系统和整车控制器。
三级模块体系中,包括电池单体的功率型和能量型,永磁和异步电机的水冷和风冷形式,控制系统的三级模块主要包括硬件、底层和应用层软件。
图2三级模块体系根据功能和控制的相似性,三级模块体系的部分模块可组成纯电动(含增程式)、插电并联混动和插电混联混动三种平台架构,例如纯电动(含增程式)由充电设备、电动附件、储能系统、驱动电机和齿轮箱组成。
各平台模块的通用性较强,采用平台和模块的开发方法,可共享核心部件资源,提升新能源系统的安全性和可靠性,缩短周期、降低研发及采购成本。
3 新能源三大核心技术在三级模块体系和平台架构中,整车控制器(VCU)、电机控制器(MCU)和电池管理系统(BMS)是最重要的核心技术,对整车的动力性、经济性、可靠性和安全性等有着重要影响。
3.1 VCUVCU是实现整车控制决策的核心电子控制单元,一般仅新能源汽车配备、传统燃油车无需该装置。
VCU通过采集油门踏板、挡位、刹车踏板等信号来判断驾驶员的驾驶意图;通过监测车辆状态(车速、温度等)信息,由VCU判断处理后,向动力系统、动力电池系统发送车辆的运行状态控制指令,同时控制车载附件电力系统的工作模式;VCU具有整车系统故障诊断保护与存储功能。
图3为VCU的结构组成,共包括外壳、硬件电路、底层软件和应用层软件,硬件电路、底层软件和应用层软件是VCU的关键核心技术。
图3 VCU组成VCU硬件采用标准化核心模块电路( 32位主处理器、电源、存储器、CAN )和VCU专用电路(传感器采集等)设计;其中标准化核心模块电路可移植应用在MCU和BMS,平台化硬件将具有非常好的可移植性和扩展性。
随着汽车级处理器技术的发展,VCU从基于16位向32位处理器芯片逐步过渡,32位已成为业界的主流产品。
底层软件以AUTOSAR汽车软件开放式系统架构为标准,达到电子控制单元(ECU)开发共平台的发展目标,支持新能源汽车不同的控制系统;模块化软件组件以软件复用为目标,以有效提高软件质量、缩短软件开发周期。
应用层软件按照V型开发流程、基于模型开发完成,有利于团队协作和平台拓展;采用快速原型工具和模型在环(MIL)工具对软件模型进行验证,加快开发速度;策略文档和软件模型均采用专用版本工具进行管理,增强可追溯性;驾驶员转矩解析、换挡规律、模式切换、转矩分配和故障诊断策略等是应用层的关键技术,对车辆动力性、经济性和可靠性有着重要影响。
3.2 MCUMCU是新能源汽车特有的核心功率电子单元,通过接收VCU的车辆行驶控制指令,控制电动机输出指定的扭矩和转速,驱动车辆行驶。
实现把动力电池的直流电能转换为所需的高压交流电、并驱动电机本体输出机械能。
同时,MCU 具有电机系统故障诊断保护和存储功能。
MCU由外壳及冷却系统、功率电子单元、控制电路、底层软件和控制算法软件组成,具体结构如图4所示。
图4 MCU组成MCU硬件电路采用模块化、平台化设计理念(核心模块与VCU同平台),功率驱动部分采用多重诊断保护功能电路设计,功率回路部分采用汽车级IGBT模块并联技术、定制母线电容和集成母排设计;结构部分采用高防护等级、集成一体化液冷设计。
与VCU类似,MCU底层软件以AUTOSAR开放式系统架构为标准,达到ECU开发共同平台的发展目标,模块化软件组件以软件复用为目标。
应用层软件按照功能设计一般可分为四个模块:状态控制、矢量算法、需求转矩计算和诊断模块。
其中,矢量算法模块分为MTPA控制和弱磁控制。
MCU关键技术方案包括:基于32位高性能双核主处理器;汽车级并联IGBT 技术,定制薄膜母线电容及集成化功率回路设计,基于AutoSAR架构平台软件及先进SVPWM PMSM控制算法;高防护等级壳体及集成一体化水冷散热设计。
表3为世界主流MCU硬件供应商的技术参数,代表着MCU的发展动态。
3.3 电池包和BMS电池包是新能源汽车核心能量源,为整车提供驱动电能,它主要通过金属材质的壳体包络构成电池包主体。
模块化的结构设计实现了电芯的集成,通过热管理设计与仿真优化电池包热管理性能,电器部件及线束实现了控制系统对电池的安全保护及连接路径;通过BMS实现对电芯的管理,以及与整车的通讯及信息交换。
电池包组成如图5所示,包括电芯、模块、电气系统、热管理系统、箱体和BMS。
BMS能够提高电池的利用率,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的状态。
图5 电池包组成BMS是电池包最关键的零部件,与VCU类似,核心部分由硬件电路、底层软件和应用层软件组成。
但BMS硬件由主板(BCU)和从板(BMU)两部分组成,从版安装于模组内部,用于检测单体电压、电流和均衡控制;主板安装位置比较灵活,用于继电器控制、荷电状态值(SOC)估计和电气伤害保护等。
BMU硬件部分完成电池单体电压和温度测量,并通过高可靠性的数据传输通道与BCU 模块进行指令及数据的双向传输。
BCU 可选用基于汽车功能安全架构的32 位微处理器完成总电压采集、绝缘检测、继电器驱动及状态监测等功能。
底层软件架构符合AUTOSAR标准,模块化开发容易实现扩展和移植,提高开发效率。
应用层软件是BMS的控制核心,包括电池保护、电气伤害保护、故障诊断管理、热管理、继电器控制、从板控制、均衡控制、SOC估计和通讯管理等模块,应用层软件架构如图6所示。
图6 应用层软件架构表4为国内外主流BMS供应商的技术参数,代表着BMS的发展动态。
4 充电设施充电设施不完善是阻碍新能源汽车市场推广的重要因素,对特斯拉成功的解决方案进行分析,并提出新能源汽车的充电解决方案、剖析充电系统组成。
4.1 特斯拉充电方案分析特斯拉超级充电器代表了当今世界最先进的充电技术,它为MODEL S充电的速度远高于大多数充电站,表5为特斯拉电池和充电参数。
特斯拉具有5种充电方式,采用普通110/220V市电插座充电,30小时充满;集成的10kW充电器,10小时充满;集成的20kW充电器,5小时充满;一种快速充电器可以装在家庭墙壁或者停车场,充电时间可缩短为5小时;45分钟能充80%的电量、且电费全免,这种快充装置仅在北美市场比较普遍。
特斯拉使用太阳能电池板遮阳棚的充电站,既可以抵消能源消耗又能够遮阳。
与在加油站加油需要付费不同,经过适当配置的MODEL S 可以在任何开放充电站免费充电。
特斯拉充电技术特点可总结如下两点:1)特斯拉充电站加入了太阳能充电技术,这一技术使充电站尽可能使用清洁能源,减少对电网的依赖,同时也减少了对电网的干扰,国内这一技术也能实现。
2)特斯拉充电时间短也不足为奇,特斯拉的充电机容量大90~120kWh,充电倍率0.8C,跟普通快充一样,并没有采用更大的充电倍率,所以不会影响电池寿命;20分钟充到40%,就能满足续航要求,主要原因是电池容量大。
4.2 充电解决方案图7充电系统组成图7为一种可参考的新能源汽车充电解决方案,充电系统组成:配电系统(高压配电柜、变压器、无功补偿装置和低压开关柜)、充电系统(充电柜和充电机终端)以及储能系统(储能电池与逆变器柜)。
无功补偿装置解决充电系统对电网功率因数影响,充电柜内充电机一般都具备有源滤波功能、解决谐波电流和功率因数问题。
储能电池和逆变器柜解决老旧配电系统无法满足充电站容量要求、并起到削峰填谷作用,在不充电时候进行储能,大容量充电且配电系统容量不足时释放所储能量进行充电。
如果新建配电系统容量足够,储能电池和逆变器柜可以不选用。
风力发电和光伏发电为充电系统提供清洁能源,尽量减少从电网取电。
5 总结从消费者和技术角度分别对新能源汽车结构进行归纳分类,分析各种结构的优势,以及国内外各主机厂的应用情况。
分析新能源汽车的模块组成和平台架构,详细介绍了三级模块体系中相关的执行系统和控制系统。
分析VCU、MCU和BMS的结构组成及关键技术,以及世界主流供应商的技术参数和发展动态。
对特斯拉成功的解决方案进行分析,并提出新能源汽车的充电解决方案。