雷电监测定位系统
四川雷电监测定位系统简介
明 ,全球在任何一个时刻都有上千个雷暴在活动 ,大多数发 生在较低纬度地区 ,两极地区也时有发生 。在现代生活中 , 雷电对森林 、引燃火工品 、易燃易爆物等的安全构成威胁 ,对 航天 、航空 、通讯 、电力 、建筑等诸多方面都有着很大的影响 。 因此世界各国都很重视雷电的研究与防护 。我国气象部门 也相当重视雷电轨道的建设 。《国家气象局业务技术体制改 革总体方案 》确定雷电业务需要将雷电各项业务工作有机地 结合起来 ,建立雷电监测 、科研 、服务等综合运行的大平台 , 形成以雷电监测为基础 ,雷电科研为支撑 ,雷电预警预报 、防 护技术开发与服务为主要内容的研究型业务服务体系 。 2 闪电的介绍
目前四川省使用的客户端有三种版本 : 210、310 和 410 版本 ,其中 210版本除了连接中心站服务器之外 ,还要连接 SQL数据库服务器 。这三个版本有各自不同的特点和优势 , 以下就对这三个版本进行对比说明 。 4. 2. 1 图形显示客户端 210版本
该版本最大优势就是功能比较齐全 ,操作比较方便 ,而 且可以对全年的雷暴日数进行统计和作图 ,这是 210版本所 独有的功能 。图 4就是用图形显示客户端 210 制作的 2006 年全省雷暴日数分布图 ,从图上可以清晰的看到 ,颜色较深 的部分在四川东部和南部地区 ,说明该区域雷暴较多 ,而北 部地区和西部地区雷暴较少 。
摘要 :气象部门雷电轨道方面的工作 ,包含了雷电监测 、预警 预报 、检测与防护技术服务 、研究开发和管理协调等业务 。 雷电轨道的建设 ,就是为了提高雷电防护科技水平 ,重点是 加强对雷电监测 、预警预报的研究开发 ,提高气象部门防雷 技术服务水平 ,增强社会防御雷电灾害的能力 ,真正实现防 雷减灾为社会经济发展保驾护航的目的 。本文介绍了各种 雷电的特征及产生机制 ,详细说明了四川省气象系统采用的 雷电监测定位系统的组成与功能 ,并对不同版本的图形显示 客户端作了对比说明 。 关键词 :闪电 ;探测仪 ;图形显示客户端 中图分类号 : P427132 文献标识码 : B 文章编号 : 1003 - 7187 (2007) 04 - 0028 - 03
雷电监测预警系统分析及应用
雷电监测预警系统分析及应用雷电是自然界中存在的一种天气现象,是由于云层内部和云与地之间的互相碰撞所产生的静电放电现象。
当云层的静电荷积累到一定程度时,就会发生闪电,并伴随着强烈的雷声和明亮的闪光。
虽然雷电在生态系统中具有重要意义,但是对人类和设施等造成的危害也不可忽略。
因此,对雷电的监测和预警显得尤为重要。
雷电监测预警系统是一种用于实时监测和预警雷电的系统。
根据系统所用的监测技术,雷电监测预警系统可以分为以下几种:1.雷电定位系统:该系统通过测量电磁波的到达时间差,来确定雷电的发生位置。
它可以精确地定位雷电的位置和强度,并能够实时监测雷电的动态变化。
该系统现已广泛应用于气象、航空、安全等领域。
2.雷电电场探测系统:该系统通过监测空中电场的变化来判断是否有雷电的产生。
在雷电产生前,电场强度会逐渐增大,当达到一定程度时就能够触发探测系统发出预警信号。
该系统主要应用于航空、军事、电力等领域。
雷电监测预警系统的应用非常广泛。
它可以用于航空安全、森林防火、电力安全、交通安全、防雷减灾等方面。
例如,在航空领域中,雷电是致使飞机垮毁的主要原因之一。
因此,航空部门在飞行前必须对飞行路线和飞行高度进行雷电监测,并在必要时采取规避措施。
在森林防火领域中,雷电是森林火灾的主要起因之一。
因此,林业部门在森林管理过程中必须对森林进行雷电监测,并在必要时采取预防措施。
在电力领域中,雷电对电力设施造成的损失非常严重。
因此,电力部门必须对电力设施进行雷电监测,并采取相应的防护措施。
在交通领域中,雷电会对路面和铁轨产生直接影响,可能会造成交通事故。
因此,交通部门在交通管理过程中也必须对雷电进行监测,并采取相应的防护措施。
总之,雷电监测预警系统的应用,在现代社会中具有非常重要的意义。
雷电定位系统在雷电灾害防御和监测预警中的应用探讨
雷电定位系统在雷电灾害防御和监测预警中的应用探讨1. 引言1.1 雷电定位系统简介雷电定位系统是一种集雷击监测、闪电定位和预警于一体的专业设备,通过接收和处理地面和空中的电磁信号,可以准确地定位雷电活动的位置和强度。
雷电定位系统的工作原理是利用多个接收站同时接收闪电信号,并通过信号的到达时间差来确定雷电的位置。
这种系统可以实时监测雷电活动,提前预警可能发生的雷电灾害,为防范措施的制定提供准确的数据支持。
雷电活动具有极大的危害性,不仅可能造成人员伤亡和财产损失,还可能对电力设施、通讯系统和交通运输等基础设施造成重大影响。
及时准确地监测雷电活动并采取相应的防御措施对于保障人民生命财产安全和社会稳定具有重要意义。
雷电定位系统的出现大大提高了雷电监测预警的准确性和及时性,为雷电灾害防御工作提供了重要的技术支持和保障。
1.2 雷电灾害的危害性1. 人员伤亡:雷电是一种极具破坏性的自然灾害,根据统计数据显示,每年因雷电而导致的人员伤亡数量不容忽视。
雷电击中人体会造成电击伤,严重的甚至会导致死亡。
2. 财产损失:雷电引发的火灾、爆炸等灾害会造成建筑物、农田、林木等财产的巨大损失。
特别是在雷电活跃的季节,雷击烧毁的财物屡见不鲜。
3. 交通事故:雷电活跃时,飞机、火车、汽车等交通工具容易受到雷电的影响而发生事故,严重威胁行车安全。
4. 生活设施受损:雷电引发的电力中断、通讯瘫痪等问题会给人们的生活带来严重影响,尤其对医疗、通讯、电力等重要行业的正常运作造成隐患。
雷电灾害不仅对人们的生命财产安全构成威胁,还会影响社会的正常运转和发展。
正确防范和及时预警雷电灾害至关重要,而雷电定位系统的应用则可以有效提高雷电灾害的监测预警能力,减少潜在的危害。
2. 正文2.1 雷电定位系统在雷电灾害预警中的应用雷电定位系统在雷电灾害预警中的应用是非常重要的,它可以实时监测雷电活动的位置、强度和发展趋势,为预防和减少雷电灾害提供了重要的科学依据。
浅谈雷电定位监测系统在电力系统中的应用
度 , 常采 用 r2 0 m, 此 范 围 内接 收到 的雷 电信 号强 度 大 , 通 =0 在 k 误
差小 。但 一个 A D L F站不 能 定位 , 个 A D 两 L F站 共 同有效 的探 测 部
2. 雷 电 位 置 分 析 仪 2
视, 因而 未发 挥其 应 有 的作用 。
4 3 指 导 防 雷 工 作 的 开 展 .
雷 电位 置 分析 仪相 当于 雷 电定 位 系统 的 大脑 ,它 一般 由一 台
雷 电定位 系统 可 以全 面 掌握 雷 电 的活 动规 律 ,对 防 雷 是 非常
监 测 , 定 雷 电发 生 的详 细 位 置 、 电幅 值 、 雷密 度 , 可对 相 关 分才 是 定位 系统 的 覆盖 范 围 。 确 雷 落 并 雷 电数 据进 行 统 计分 析 , 出 雷 电发 生 的规 律 , 用在 电力 系统 中 找 应 4 系 统 应 用 可快 速进 行 雷击 点 故障 定位 , 效避 免 雷 电灾 害 的发 生 。 有
4. 快 速 指 导 寻 找 线 路 雷 击 点 1
2 系统 组成
由 于雷 电定 位 系 统 可 以实 时监 测 每 次 云 对 地 雷击 的 时间 、 方
电流 等 参数 , 因此 在 雷 电定 位 系统 中 输入 线 路跳 闸时 间 以及利 雷 电定位 系 统通 常 由若 干 个 ( 3个 或 3个 以上 ) 探 测 站 位 、 用 预 先 输入 的输 电线 路 坐标 ,就 可 以快速 方 便地 寻 找 到可 能 的雷 ( L F 、 置 分析 仪 ( P ) 若 干 个 本 地或 远 方 显 示 系统 ( DS A D )位 N A和 N ) 击点, 检修 工 作人 员 就可 以有 目的地 寻找 雷 击 故障 点 , 从而 大 大缩 组 成 。 各 自独立 功 能所 需 的 电路和 终 端 设备 外 , 除 都包 含有 预 编程
输电线路雷电定位监测系统
输电线路雷电定位监测系统前言随着经济的发展和城市化的加速,对电力供应的需求也随之增加。
这种增长带来的是对输电线路的频繁使用,同时由于人类活动不断扩张,将城市缩小,将花园和森林大大缩小,导致了对大气的污染。
大气能量的不断积累带来雷电危险的增加,给输电线路的安全带来了巨大的挑战,所以一种从雷电监测的角度对输电线路进行安全监测的系统变得越来越重要。
系统概述输电线路雷电定位监测系统是一种基于雷电检测技术的监测系统,该系统利用观测波形的双电极闪电峰值时间差来精准地对传输线路的雷电击距进行快速定位。
系统主要由外部雷电探测器、输电线路数据采集设备、数据传输设备、数据处理与分析系统等四大部分组成。
外部雷电探测器外部雷电探测器通常包括内部闪电电路和环境检测元件。
它能实现闪电辐射信号的实时检测,并将检测到的信号发到输电线路数据采集设备。
输电线路数据采集设备输电线路数据采集设备主要用来采集外部雷电探测器所检测到的雷电信号,同时为数据传输设备提供数据。
数据传输设备数据传输设备有两种方式:有线传输和无线传输。
有线传输主要采用可靠性高、抗干扰能力强的RS232串行通信;无线传输主要采用采用ZigBee技术,但是稳定性较差,容易受到干扰。
数据处理与分析系统数据处理与分析系统主要负责对已采集到的输电线路雷电定位监测数据进行数据分析与处理,以及构建雷电定位监测数据库。
该系统通过对数据的分析和处理得到最后的分析结果信息,提供决策支持,同时也可为监测过程中的管理提供技术支持。
系统设计输电线路雷电定位监测系统设计方案的成败直接影响到系统的实际效果和应用范围。
设计方案主要涉及从系统结构和性能两个方面展开。
下面从三个方面进行具体阐述。
系统结构设计系统结构设计是指针对输电线路雷电监测所采用的具体系统架构设置。
基于管理的角度,系统分为数据采集系统、数据库和数据分析与处理系统三个部分。
其中,数据库系统主要存储管理、采集到的数据和分析结果等实时数据,并按需求设定备份和恢复方式,以保证数据不丢失。
雷电定位系统在雷电灾害防御和监测预警中的应用探讨
雷电定位系统在雷电灾害防御和监测预警中的应用探讨雷电是一种非常具有破坏力的自然灾害,它经常伴随着猛烈的雷雨和强烈的电磁辐射,不仅给人们的生活和财产带来巨大的危害,而且在一定程度上还对环境和生态系统造成损害。
为了有效防御和监测雷电灾害,科学家们研发了各种雷电定位系统,并应用于雷电监测预警工作中。
本文将就雷电定位系统在雷电灾害防御和监测预警中的应用进行探讨。
一、雷电定位系统的基本原理雷电定位系统是一种利用雷电产生的电磁信号进行定位的技术。
它主要包括两个部分,即雷电观测系统和雷电定位分析系统。
雷电观测系统通常包括雷电探测器、闪电定位雷达、电场传感器等设备,用于对雷电活动进行实时监测和观测。
而雷电定位分析系统则是利用观测到的雷电信号进行分析和定位,以确定雷电的发生位置、强度和移动轨迹。
雷电定位系统的基本原理是通过对雷电信号的收集和分析,确定雷电的发生位置和强度,进而预测雷电的移动轨迹和可能造成的影响范围。
对于雷电监测预警工作来说,雷电定位系统的快速响应和准确性至关重要,它能够帮助人们及时采取必要的防护措施,减少雷电灾害可能带来的损失。
1. 提供实时监测数据2. 辅助灾害应急响应在雷电灾害发生后,雷电定位系统能够辅助灾害应急响应工作。
通过对雷电活动情况的实时监测和分析,相关部门能够及时采取必要的救援和保护措施,保障受灾人员和财产的安全。
3. 为灾害防御决策提供科学依据雷电定位系统所提供的雷电监测数据能够为灾害防御决策提供科学依据。
它能够帮助相关部门科学评估雷电灾害的可能影响范围和程度,及时制定针对性的防护措施和预案,最大限度地减少雷电灾害带来的损失。
1. 实现对雷电活动的实时监测雷电定位系统能够实现对雷电活动的实时监测,能够在雷电发生后迅速、准确地确定雷电的位置和强度,为雷电监测预警工作提供重要的数据支持。
2. 预测雷电的移动轨迹和影响范围3. 加强灾害预警和应急响应能力雷电定位系统能够加强灾害预警和应急响应能力。
雷电定位监测系统在输电线路防雷的应用
雷电定位监测系统在输电线路防雷的应用摘要:雷电定位系统(LLS)是一个综合运用大地空间测量、地理信息、信号识别及信息处理等有关技术的实时雷电监测系统,它主要由方向时差探测器(TDF)、基地处理机(NPA)和雷电信息体系(LIS)三部分所构成。
本文对雷电定位系统的组成及定位原理进行了论述,并对雷电定位系统误差和系统时间误差进行了分析,最后重点对雷电定位系统在输电线路的应用进行了研究。
关键词:雷电定位系统;输电线路;防雷;应用1雷电定位系统的组成及定位原理雷电定位系统是目前研究雷电活动情况最先进的手段,对电力系统的帮助非常大,在电力系统中得到了越来越广泛应用。
当雷电发生时,雷电探测器将会接受到以光速向周围传达的雷电电磁波信号,而且将接收到的雷电信号经过有关通讯设备传送到基地站,基地站的有关数据处理设备会对接收到的信号进行剖析和计算,依据各个雷电探测器发送信号的时间差以及间隔,经过具体的剖析和计算就能精确的定位雷击发生的方位,而且能直观的反映到地图上,以经纬度的方法定位雷击故障点。
不仅如此,雷电定位体系还能精确计量雷击发生时间、位置、雷电流幅值和极性等雷电参数,为故障发生后的维修排查供给了极大的帮助。
2雷电定位系统应用存在一定的误差2.1雷电定位系统误差任何体系都有其不完美之处,雷电定位体系尽管对雷击故障点能迅速精确的施行定位,但是在某些情况下也存在着误差,这种误差主要有两方面,分别为雷电定位系统误差和输电线路运行单位误差。
雷电定位系统误差主要是体现在进行雷击故障点定位时,因为输电线路架起时穿越山水形成系生误差,对待这种误差能够运用核算机技术对接收到的雷电信号线进行批改再由体系对故障点进行定位,这样能够有效削减因雷电信号波形畸变所带来的定位不精确疑问。
关于输电线路运行单位误差,主要是有线路架起和线路衔接方法的不一样使得雷电定位体系随雷击故障点定位发生误差,关于这种误差,能够挑选在架起输电线路时就对各线路杆塔做精确定位,并对线路杆塔的坐标做有效记载,这样能在雷击定位体系对雷击故障点定位是有精确参阅,能够进一步提高雷电定位体系对雷击故障点定位的精度,减小误差。
雷电监测预警系统分析及应用
雷电监测预警系统分析及应用随着气候变化和环境保护意识的增强,雷电对于人们的生活和生产带来了越来越多的影响。
雷电灾害不仅仅是对人身安全和财产造成威胁,同时也对能源、通信、农业等领域造成了严重影响。
雷电监测和预警系统的建设和应用变得尤为重要。
本文将对雷电监测预警系统进行深入分析,并探讨其在实际应用中的作用和意义。
一、雷电监测预警系统的构成和原理雷电监测预警系统主要由雷达、地闪定位系统、气象探测仪器、数据处理和分析系统等组成。
雷达系统是最常见的雷电监测设备,通过发送和接收电磁波来探测雷电天气。
地闪定位系统是通过接收大气中产生的闪电电磁信号来进行定位,可以对雷电进行更准确的监测和预警。
气象探测仪器则用于监测气象条件,如气压、温度、湿度等,以提供更全面的雷电预警信息。
雷电监测预警系统的工作原理是通过监测大气中的电磁信号来确定雷电的发生和位置,并利用气象参数来分析雷电的可能性和危险程度,再通过数据处理和分析系统来生成预警信息,并及时向相关部门和公众发布。
这样可以在雷电发生前及时采取预防措施,保护人们的生命和财产安全。
1. 民用领域雷电监测预警系统在民用领域的应用较为广泛,主要体现在以下几个方面:a. 交通安全:雷电是交通安全的一个重要隐患,特别是在航空领域。
雷电监测预警系统可以及时发现雷电活动,并提醒飞行员或交通管制部门采取相应措施,以确保飞机和地面交通的安全。
b. 居民生活:雷电监测预警系统可以提醒居民避开雷电活动的区域,以减少人员伤亡和财产损失。
在建筑物和设施设计中考虑雷电的影响,也可以减少雷电对民众生活的影响。
2. 农业领域雷电对农业有着不可忽视的影响,特别是在作物生长期间。
雷电监测预警系统可以帮助农民及时采取保护作物的措施,减少因雷电而导致的农作物损失。
雷电监测也可以提供给农民天气预测和农业生产建议,有利于提高农业生产效率和质量。
工业设施和生产线对雷电的影响也十分敏感,雷电监测预警系统可以帮助工业企业及时采取防护措施,减少因雷电而引起的生产损失和安全隐患。
雷电定位系统在输电线路防雷中的应用
雷电定位系统在输电线路防雷中的应用雷电定位系统在输电线路防雷中的应用随着经济的发展,电力行业的重要性日益凸显。
但是,因为天气变化、气候状况等原因,电力实行大规模输送时常常会遭受到雷击的威胁,给电力供应带来巨大的风险。
因此,对于输电线路防雷问题需要引起重视。
雷电定位系统在输电线路防雷中的应用,可以更加精准地预测雷电活动的发生位置和时间,进而做出相应的预防措施,减少因雷电而引起的电力损失,提高供电的稳定性。
1. 雷电定位系统的基本工作原理雷电定位系统通过接收自然产生的雷电电磁波和电场信号的相位数据,采取双向时差测量原理计算出雷电产生点周围的可能区域。
该系统也被称作多点电力雷电定位系统,它利用先进的计算机技术和电学原理来追踪雷电活动的位置,预测雷电活动发生的方向和强度。
雷电定位系统主要由雷电探测器、雷电传输机和雷电定位中心组成。
雷电探测器负责实时采集雷电电磁波和电场信号,将其传送到地面上的雷电传输机上。
雷电传输机将采集到的数据通过光纤传输或者微波信号传输的方式传送到位于雷电定位中心的计算机上,计算机随后将利用电学原理追踪雷电的位置,并通过轨迹预测来实现对于雷电活动的预报功能。
这样,电力公司就可以及时制定有效的采取措施,以避免因雷电而产生的电力损失和影响。
2. 雷电定位系统的应用现状目前,随着雷电定位技术的迅速发展,雷电定位系统已经广泛应用于实际生产和生活中的各个领域,如石油、航空、通信、城市公共建筑等。
在能源领域,电力公司通过安装雷电定位系统,可以在雷电天气即将到来时及早采取有力措施,以避免电网故障或设备受损而导致用户供电中断。
因此,多个国家的电力公司已经开始使用雷电定位系统来帮助预测和防范雷电灾害。
3. 雷电定位系统的优点与其它雷电预测技术相比,雷电定位系统的优点在于它不仅具有高精度和高准确性,而且在预报雷电活动的盲区上有很好的工作表现。
此外,该系统的预警时间可达3分钟,能供电公司有更多的时间来制定预防措施,提高供电的质量和可靠性。
(整理)雷电定位系统学习
用户名guest,密码无第一章 LIS简介1.1雷电定位系统(LLS)雷电定位系统(LLS)是一个实时监测雷电活动的系统,它主要由方向时差探测器(TDF)、中央处理机(NPA) 和雷电信息系统(LIS) 三部分所组成,它能实时测量雷电发生的时间、地点、幅值、极性、回击次数等参数,为防雷保护工作提供大量实用数据,并为快速查找输电线路的雷击故障点提供方便。
1.2 雷电信息系统(LIS)LIS是雷电定位系统的三个组成部分之一。
它是一个由计算机等硬件和LIS 专用软件所构成的雷电分析显示终端,主要实现雷击点位置及雷暴运行轨迹的彩色屏幕显示及雷电信息的分析统计。
1.3 LIS工作原理LIS收到中央处理机NPA发来的雷电信号后,根据雷电的经纬度,通过一系列的变换、计算、处理使其成为计算机屏幕图形坐标,并将雷击点及雷电参数定位在屏幕上地图的相应位置。
LIS既可作为一个本地终端与NPA放在同一处,也可作为远方显示终端远离NPA放置,此时,必须建立起LIS与NPA之间的通讯通道。
1.4 LIS用户工作站的结构用户工作站有三种结构方式,即:专线终端用户系统、C/S和WEB用户系统。
⏹专线终端用户系统通过串口实时接收数据,在网络不普及的时候应用较广;⏹C/S(客户端/服务器)用户系统通过访问HTTP服务器获得数据;⏹WEB用户系统通过JAVA服务程序直接访问数据库获得雷电数据。
本手册只介绍WEB用户系统。
第二章 WEB用户系统2.1 特点利用日益完善的网络资源,通过大家熟悉的浏览器界面,即可实现雷电数据的图形化共享。
只要有IE6.0及以上版本的浏览器,用户不需要安装任何程序。
只要对IE的操作比较熟悉,基本上不需要培训即可使用。
2.2 功能雷电数据的准实时图形显示、雷击线路故障的故障杆的查询、雷电活动统计、雷电活动详情、输电线路浏览、程序文件下载、访客留言板、用户管理、雷电定位系统介绍及帮助等功能。
以下图一,以国网武汉高压研究院的雷电信息系统为例,在IE地址栏内输入雷电定位系统WEB用户系统的地址,进入网页后的主界面如图2-1。
ADTD雷电监测定位系统简介
动 力 与 电 气工 程
ADTD莺 电监测 定位 系统简介
蔡河章 ’ 洪加肯 彭涛 (. 1 三明市气象局 福建三 明 3 5 0 : 2 石狮 市气象局 福建石狮 3 2 0 ; 3 四川省 大气探测中, 。 成都 6 0 7 ) 60 0 . 670 . 1 0 1
3. . 2 1图形 显 示 客 户 端 2. 0版 本 该版 本最大 优势就 是功能 比较齐全 , 操 作 比较 方便 , 且 可 以 对 全 年 的雷 暴 1 而 9 数进 行 统计 和 作 图 , 是 2 0 这 . 版本 所 独有 的 功能 。 3. . 2 2图形 显 示 客 户 端 3 0版 本 . 3 0 本 和 2 0 本 的本 质 区别 在 于它 .版 .版 不 依 赖 于 数 据 库 , 接 从 中 心 站 服 务 器 上 直 面接 收 o e d y数据 到 本地 , 后再 处 理生 n—a 然 成 图 形 。3 0 本 制 作的 图形 比较 简单 , .版 醒 目 , 图的 速 度 也 比较 快 。 抓 3. 3图形 显示 客 户端 4. 本 2. 0版 4. 0版 本 则 是 在 3. 0版 本 基 础 上 的升 级 , 形更加美观 , 其是对密度的分析 , 图 尤 图 形 生 成 非 常 清 楚 , 确 度 较 高 。采 用 了 精 网格 形 式 的密 度 分 析 , 视觉 上更 加 直 观 , 在 对雷 暴 密 度 的 区域 判 断 更 加 准 确 。
大量 的 气 象 观 测 、卫 星 探 测 以 及 电学 测 量 等 综 合 分 析 表 明 , 球 在 任 何 一 个 时 全 刻 都 有 上 千 个 雷 暴 在 活 动 , 多 数 发 生 在 大 较 低 纬 度 地 区 。 随 着 近 百 年 来 人 类社 会 的 快 速 发 展 , 电 对 人 类 活 动 产 生 越 来 越 大 雷 的影 响 。为 了更 准 确 、直 观 的观 测 闪 电 , 我 国 气象 部 门 在 全 国 各 地 布 设 了 大量 的雷 电 监 测 定位 系统 , 文 介 绍 的 ADTD 雷 电 监 本 测 定 位 系 统 就 是 其 中的 一 种 。
雷电定位监测系统在工作中应用
针对雷电定位监测系统在电网35kV线路查找雷击故障点中的运用,通过电网在使用雷电定位监测系统前后两年的雷击故障查询有关数据,输电线路运行中的重要,同时指出了雷电定位监测系统在今后电网建设设计和规划中的应用前景。这对充分发挥雷电定位监测系统在电网建设中的作用,提高电力系统的安全、经济、可靠运行具有重要的意义。随着国民经济的发展和电力需求的不断增长,电力生产的安全问题越来越突出。对于送电线路来讲,雷击跳闸一直是影响高压输电线路供电可靠的重要因素。对此电力部门采取了架设避雷线、减小保护角,降低杆塔接地电阻,安装线路避雷器等方法来降低雷击事故造成的,雷电定位监测系统是一套全自动、大面积、高度、实时雷电监测系统,能实时遥测并显示云对地放电(地闪)的时间、位置、雷电流峰值、回击次数以及每次回击的参数,雷击点的分时图能清晰地显示雷的运动。通过雷电定位监测系统的应用,使线路运行部门能够在较短时间内发现雷击故障点,降低线路工人寻找故障点的劳动强度;又能及时更换浪涌介绍雷击瓷瓶以保证线路与电力系统的安全运行,同时也为供电企业带来了较好的经济效益和社会效益。在使用雷电定位监测系统后,作为线路设计和运行管理人员可以及时收集到任一时间段内某一区域雷电的落雷密度、落雷强度等详细的一手资料,使得对雷电的监测更为具体和实用。这一技术的应用使电力部门在线路设计和防雷工作建立在更为科学和先进数据积累的基础之上成为可能。
雷电定位系统在桐庐电网中的应用
雷电定位系统在桐庐电网中的应用近年来,气候异常频繁,雷电灾害也屡见不鲜。
为了确保电网运行的安全可靠,桐庐电网引进了先进的雷电定位系统,以提升对雷电灾害的预警和应急处理能力。
本文将就雷电定位系统在桐庐电网中的应用进行探讨。
一、雷电定位系统的原理及技术特点雷电定位系统是一项通过接收天空中的电磁信号,利用时间差计算的原理来确定雷电发生位置的技术。
其技术特点包括以下几个方面:1. 定位准确性高:雷电定位系统采用多台接收设备同时工作,通过测量雷电信号到达各个接收设备的时间差,来计算雷电的发生位置。
该系统准确度高,能够精确到数百米。
2. 实时性强:雷电定位系统能够实时监测雷电信号,通过快速响应系统可以在雷电发生前几分钟进行预警,提前采取相应的措施。
3. 覆盖范围广:雷电定位系统具备宽频带特性,能够接收到大气中不同频率范围的电磁信号,因此可以对广大区域内的雷电进行定位。
二、桐庐电网中雷电定位系统的应用雷电定位系统在桐庐电网中得到了广泛应用,主要体现在以下几个方面:1. 雷电预警和监控:雷电定位系统可以准确判断雷电的发生位置和趋势,当监测到雷电活动时,系统能够发出警报信号,及时提醒相关工作人员采取必要的防护措施,避免雷电对电网设备和人员造成损害。
2. 防雷装置的设计和优化:通过雷电定位系统获取到雷电的发生位置和频率等信息,可以为电网的防雷装置的设计提供依据。
针对不同区域的雷电特点,可以优化防雷装置的布局和参数设置,提升电网的防雷能力。
3. 雷电灾害的快速应急处理:在雷电发生后,雷电定位系统可以精确锁定雷电的落地点,以便快速指导抢修人员前往事故现场进行处理。
同时,也可以通过系统分析雷电的传输路径和范围,预估潜在的影响范围,为救援和应急决策提供科学依据。
4. 大气电场监测:雷电定位系统也可以监测大气电场的变化情况,包括电场强度和电势梯度等参数。
这对于电网运行中的其他故障诊断和故障排除也具有重要意义。
总之,雷电定位系统在桐庐电网的应用使得电网管理者能够及时了解雷电的情况,采取相应的措施来保障电网运行的安全稳定。
第三章 雷电监测定位系统
1、闪电的高速旋转照相法
1926年博尹斯(Boys)设计了一种旋转 式相机,后来称Boys相机,如图。
BOYS相机观测原理图
由于该相机获取的闪电照片结构呈波纹 状,所以时常将这种相机称为波纹状相机。
1929年博尹斯又对他的相机作了进一步的 改进,如图 。
旋转胶片鼓 旋转方向 棱镜
镜头
具有移动 的胶片和 固定的光 学系统的 BOYS相机
(2)旋转(场磨)式大气静电场仪
为观测晴天条件下的地面大气电场,以及观 测雷暴天气条件下地面大气电场和闪电所引起地 面大气电场的变化。用电子学方法进行电场强度 的监视时间是电子系统中等效RC的函数,它只能 在秒量级的时间内是可行的,要长时间测量大气 电场强度则采用称之旋转式场磨仪,其原理是根 据导体在电场中产生的感应电荷原理,来测量大 气电场。仪器由大气电场感应器、信号处理电路、 显示系统和雷暴警报器等四部分组成。
由于航天发射遭雷击,70 年代中期,美 国研制了雷电定位系统用于雷电预警。雷电 是电力中断的头号环境因素,在美国每年造 成数十亿美元的损失,因此雷电定位系统在 美国的电力系统得到快速发展,主要用于电 力系统雷击故障点的检测,航空雷暴区和森 林火灾的预警。
本世纪八十年代初,随着雷电物理、 电子技术、计算机技术的发展,美国科学 家首先推出了一种探测闪电产生的低频电 磁脉冲的多站探测系统,法国科学家在九 十年代中期推出了甚高频(VHF)雷电探测系 统(干涉仪)。
高速成线扫描照相机原理图
从空间探测闪电已经有30多年的历史, 一 些卫星闪电探测仪器已提供了许多极有价值 的资料。例如, 闪电全球范围内发生的频率, 其随纬度和季节的变化以及日变化, 超级闪电 的发生等等。 这些资料在雷电灾害预警预报、强对流 天气监测、某些军事目标的识别等业务和科 研工作中得到了应用。
输电线路雷电定位监测系统
雷电定位监测系统雷电信息系统用户使用手册第一章 LIS简介 (1)1.1雷电定位系统(LLS) (1)1.2 雷电信息系统(LIS) (1)1.3 LIS工作原理 (1)1.4 LIS用户工作站的结构 (1)第二章 WEB用户系统 (1)2.1 特点 (1)2.2 功能 (2)2.2.1 基本地图操作 (3)2.2.2 图层控制 (4)2.2.3 实时与重放 (5)2.2.4 线路缓冲区查询 (6)2.2.5 点信息热激活 (8)2.2.6 地图测距 (9)2.2.7 点查询 (9)2.2.8 矩形查询 (11)附录 (11)第一章 LIS简介1.1雷电定位系统(LLS)雷电定位系统(LLS)是一个实时监测雷电活动的系统,它主要由方向时差探测器(TDF)、中央处理机(NPA) 和雷电信息系统(LIS) 三部分所组成,它能实时测量雷电发生的时间、地点、幅值、极性、回击次数等参数,为防雷保护工作提供大量实用数据,并为快速查找输电线路的雷击故障点提供方便。
1.2 雷电信息系统(LIS)LIS是雷电定位系统的三个组成部分之一。
它是一个由计算机等硬件和LIS专用软件所构成的雷电分析显示终端,主要实现雷击点位置及雷暴运行轨迹的彩色屏幕显示及雷电信息的分析统计。
1.3 LIS工作原理LIS收到中央处理机NPA发来的雷电信号后,根据雷电的经纬度,通过一系列的变换、计算、处理使其成为计算机屏幕图形坐标,并将雷击点及雷电参数定位在屏幕上地图的相应位置。
LIS既可作为一个本地终端与NPA放在同一处,也可作为远方显示终端远离NPA 放置,此时,必须建立起LIS与NPA之间的通讯通道。
1.4 LIS用户工作站的结构用户工作站有三种结构方式,即:专线终端用户系统、C/S和WEB用户系统。
⏹专线终端用户系统通过串口实时接收数据,在网络不普及的时候应用较广;⏹C/S(客户端/服务器)用户系统通过访问HTTP服务器获得数据;⏹WEB用户系统通过JAVA服务程序直接访问数据库获得雷电数据。
雷电定位系统原理及影响定位结果的因素
雷电定位系统原理及影响定位结果的因素雷电定位系统原理及影响定位结果的因素摘要:在时间差闪电定位算法的基础上,采⽤蒙特卡罗模拟⽅法,实现了对闪电定位误差的定量评估。
详细分析了闪电定位系统中测站数⽬、布站⽅式和站址基线长度3个因素对定位结果的影响。
研究表明:定位误差与测站数⽬、布站⽅式和基线长度有密切关系。
当测站数⽬⼀定时,矩形加中⼼站的布站⽅式定位结果较好;当布站⽅式⼀定时,测站数⽬越多定位误差越⼩;在仪器允许的探测范围内,基线越长,覆盖区域越⼤,定位误差越⼩。
闪电定位误差的定量分析研究,为闪电监测⽹的站址选择、⼦站布设等实际⼯作提供了重要参考依据。
关键词:到达时间;定位原理;定位误差1.引⾔据统计,⽆论那⼀时刻,世界上都约有2000个雷暴区在活动,这些雷暴区每秒钟产⽣1000个以上云地闪和云闪。
雷电监测定位系统在雷电的研究、监测及防护领域中处于极其核⼼的位置。
通过实时监测雷暴的发⽣、发展、成灾情况和移动⽅向及其它活动特性,对⼀些重点⽬标给出类似于台风的监测预报,使雷电造成的损失降到最低点。
⾃然界中的闪电可以细分为:1)云闪:云对云、云内放电;2)地闪:云对地的放电;3)诱发闪电:⼈⼯引雷所形成的闪电;4)球闪:球状闪电,常常成为地滚闪。
其中,云地闪电对地⾯上的⽬标危害最⼤,是电⼒、森林防⽕等领域研究的重点。
云地闪电的放电过程如下:云层电荷形成电分布初始击穿梯级先导联接过程第⼀回击K过程、J过程直窜先导第⼆回击。
闪电的放电过程中最重要的过程是回击过程,因为回击的电流⼤、时间短,辐射的电磁场强,是形成故障、造成危害的主要原因。
每次闪电持续的时间主要由回击数决定,闪电持续的时间⼀般在1秒以内,平均在0.2秒。
⼀个回击的持续时间⼀般⼩于0.1ms(毫秒),回击和回击之间的时间间隔⼀般为20-200ms之间,平均值为50-70ms。
雷电定位系统所测定的回击放电时间是回击产⽣的电磁脉冲的第⼀个峰值到达监测站的时刻,精度⼤约为10-7秒,它等于回击发⽣的时刻加上传播时延。
浅谈防雷预警中的雷电定位系统
浅谈防雷预警中的雷电定位系统
编辑:郑州万佳防雷薛
雷电定位系统是一套专门探测云地闪的系统,它通过监测云地闪辐射的甚低频信号,再经波形判断给出闪电信号到达传感器的精确时间。
闪电定位系统由WJSD闪电定位仪、中心站数据处理机、数据库服务器、WEB服务器组成。
WJSD 雷电定位系统传感器能够准确采集云地闪波形峰点到达时间,时间精度达到了0.1us。
中心定位处理软件采用时差测向混合定位算法,保证了定位精度。
如果想获得有效的雷电观测定位数据,则应该由3个或以上闪电定位仪组成探测网络。
WJSD闪电定位仪可靠性高,易于安装和易于维护。
功能特点
中心数据处理站经通信信道可和多个探头相连,对接收到的闪电回击数据实时进行定位处理,给出每个闪电回击的准确位置、强度等参数,由其图形显示终端设备随时存储、显示、打印或拷贝成图;中心数据处理站也可经通信系统对各个探头进行参数设置、调出探头工作状态等等;中心数据处理站可通过数据服务网络设置多个图形显示终端,以便多个部门共享雷电的信息资源。
通讯方式多样化,可采用无线网络、有线网络、系统专线、卫星通信网
数据实时性好、连续性好、布网速度快、运行及维护费用低、覆盖范围大、应用领域广高性能和高可靠性,记录数据的完整性
完备的电源和信号措施
容错性强、界面友好、操作简单
统一数据处理中心站提供综合定位数据
系统组成
雷电传感器探头
电源箱(包含通用模块电源、空气开关、电源防雷模块和通信防雷模块)
安装立柱。
闪电定位系统原理介绍
云地闪回击
后续回击
一、雷电定位系统简介
当前国际上主要应用的雷电定位系统主要 有两种: 磁方向探测系统(DF) 时差法定位系统(TOA)
磁方向探测系统
时差法定位系统(TOA)
定位原理
设有三个接收机R1、R2、R3按图1.3所示布成一个 接收网,R1、R2、R3均被同步在同一时间系统上,即 三个接收机的时间相同。t0时刻,在L处发生了一个雷 击,该雷击所辐射的电磁脉冲信号至各站时的时刻分 别为t1、t2、t3,则: t2-t1 = (t2-t0)-(t1-t0) =(R2L-R1L)/C 其中C为光速,R2L-R1L为R1,R2两站到雷击点的距离 差。若测得t2-t1,则雷击点也必然位于以R1,R2为 焦点,到两点距离差为恒定值(R2L-R1L)的一条双曲 线AB上。同样,对于R3、R2来说也可以通过测量t3- t2而得到另外一条相对应的双曲线CD。AB与CD的交 点就必然是雷击发生的位置。这样就把一个定位问题 变成了测量信号到达不同接收站的时间问题。
2001年5月8日,广东惠阳市秋长镇 一间工厂遭雷击爆炸起火,死亡三 人,伤八人。深圳气象局雷电定位 网为这次灾害提供了精确的雷电定 位数据
一、什么是闪电?
定义:闪电是一种自然现象,是云与云, 云与地以及云体内各部位之间的强 烈放电现象。
过程:对流云在大气中摩擦产生电荷,不同部位 聚集着不同符号的电荷,当电荷积累到一定程度 时,就在云团之间、不同云团之间以及云团与地 面之间产生很强的电场。当电场强度超过大气电 离的临界电场强度(空气30Kv/cm,10Kv/cm), 就使云内外的大气层击穿而产生瞬时强火花放电, 这就是闪电。 闪电对地的放电过程可分为先导放电和主放 电两个阶段。先导放电是雷云与大地间的局部电 场强度超过临界场强,局部放电通道自雷云边缘 向大地发展。在先导接近地面的一刹那,大气强 烈电离形成高导电率的等离子体通道,使先导通 道及云中电荷与大地电荷迅速中和,这就是主放 电过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
雷电监测定位系统ADTD 雷电探测仪用户手册中国科学院空间科学与应用研究中心ADTD雷电监测定位系统课题组二○○四年十月目录页号一、概论 21.1 ADTD 雷电探测仪的工作原理 2 1.2 雷电监测定位系统的构成 31.3 雷电探测仪的结构 4二、ADTD 雷电探测仪的技术功能指标 112.1 每个雷电探测仪布站配置 11 2.2 雷电探测仪布站连接简图 112.3 雷电探测仪的主要技术指标 11三、雷电探测仪的安装 133.1 安装场地要求 13 3.2 安装基座 13 3.3 探头供电 13 3.4 探头接地 13 3.5 通讯标准及波特率17 3.6 探头与中心数据处理站间的通信 17 3.7 通讯电缆 18 3.8 探头的安装及水平调节 18 3.9 探头NS磁场天线环方位的调整 18 3.10 探头的初次通电 223.11 探头的密封 22四、雷电探测仪运行设置和操作 234.1 DIP开关的设置 23 4.2 探头的运行方式 25 4.3 探头的数据输出及帧格式 25 4.4 自动自检 28 4.5 探头命令 284.6 CPU板、PDL板以及电源/接口板上的LED灯的涵义 39五、雷电探测仪维修 415.1探头的检修维护 41 2维修程序设置及测试终端连接 44 5.3探头故障修理 47一、概论1.1 ADTD 雷电探测仪的工作原理———闪电物理特性,探测原理,处理技术大量的气象观测、卫星探测仪以及很多国家的电学测量等综合分析表明,全球在任一时刻都有上千个雷暴在活动,大多数发生在较低纬度地区,但两极地区也时有发生。
由于雷电在现代生活中,仍然威胁着森林、引燃火工品、造成人员的伤亡,对航天、航空、通讯、电力、建筑等国防和国民经济的许多部门都有着很大的影响。
因此各国都很重视雷电的研究与防护。
闪电可以分为:云闪(包含云与云、云与空气、云放电)、云地闪、诱发闪电、球闪等多种,其中对地面设施危害最大的是云地闪电。
云地闪电又可以细分为:正闪(正电荷对地的放电)和负闪(负电荷对地的放电)。
目前,闪电探测仪主要用来探测云地闪,并且能区分正负极性。
一次闪电的放电过程如下所述:云层荷电形成电分布—初始击穿—梯级先导—联结过程—第一回击—K过程—J过程—直窜先导—第二回击—………。
闪电的放电过程中最重要的是回击过程,因为回击的电流大,辐射的电磁场强,是形成故障造成危害的主要原因。
回击的放电特征参量为:1.回击的放电时间:指回击发生时的自然时间。
1.闪电的回击数:每次闪电的回击次数。
1.回击发生的位置:回击通道取垂直分量在地面或者在目标上的投影。
1.回击的电流值:指回击电流波形的峰值。
1.回击电流波形陡度最大值:指回击放电过程中单位时间电流变化的最大值,它反映了闪电回击放电最剧烈时的状况。
1.回击波形前沿持续时间:指回击电流波形中,从2KA到峰值电流的过渡时间。
1.放电电荷:指每次回击放电所释放出的电荷,即电流对时间的积分。
闪电监测定位系统从理论上讲,其核心是通过几个站同时测量闪电回击辐射的电磁场来确定闪电源的电流参数。
Maxwell方程组和特殊路径上的传播影响,将两者联系起来。
高精度雷电定位系统将测量每次回击放电辐射的电磁脉冲的下列参量:*回击的放电时间*回击发生的位置*100公里处回击波形的强度峰值*100公里处回击波形陡度值*100公里处回击波形陡点时间*100公里处回击波形前沿上升时间*100公里处回击波形宽度*另外,根据100公里处辐射场的波形,可以近似计算出回击的放电电荷、辐射能量。
其中,探测仪的探测参量与指标如下表所示:组网后的雷电监测定位系统的探测参量与指标如下表所示:1.2 雷电监测定位系统的构成———ADTD 雷电探测仪+中心数据处理站+用户数据服务网络+图形显示终端由布置在不同地理位置上的两台以上的雷电探测仪(以下简称探头)可以构成一个雷电探测定位系统网。
如图1-1所示:中心数据处理站经通信信道可和多达16个探头相连,对接收到的闪电回击数据实时进行交汇处理,给出每个闪电回击的准确位置、强度等参数,由其图形显示终端设备随时存储、显示、打印或拷贝成图;中心数据处理站也可经通信系统对各个探头进行参数设置、调出探头工作状态等等;中心数据处理站可通过数据服务网络或设置多个图形显示终端,以便多个部门共享雷电的信息资源。
显然,这样的一个系统网,除探头,中心数据处理站,图形显示终端专用设备外,其通讯系统也是个重要组成部门,通讯的好坏直接影响整个系统网的可靠性,通讯可以图1-1 雷击监测定位系统用多种途径来实现,如长途线,超高频通讯,电力载波通讯,微波接力通讯,甚至现代化的卫星通讯等等。
我们推荐采用微波通讯,或专用有线线路。
一般而言,多站交汇误差要比两站交汇误差小,因此多站布置可以提高雷电定位精度,同时可以扩大探测围。
从交汇原理的合理性通常希望把探头布置成三角形,正四边形........更为有利,然而站的数量,站址的布置,站间的距离等的选取要从系统雷电的定位精度要求,覆盖面积,场站的通讯条件以及场址背景条件等诸多因素综合分析决定。
场地环境也是非常重要的,经过测试如果背景噪声很大也不宜用作站点,否则探头将不能正常运行,对于雷电定位将带来较大误差。
站与站间的站距通常选为150公里至180公里为宜,平原地区可以适当拉开一些,山区可以适当缩短一些。
1.3 雷电探测仪的结构探头的主要部件有支柱和仪器舱。
这些部件以及探头的其它单元分别表示在图1-2到图1-4中。
1.3.1 支柱探头的支柱是一根厚壁钢管(9,图1-3),它有精密机加工的顶端表面和焊接的底部安装盘。
仪器舱安装在它的顶端。
用三根螺栓,通过支柱安装盘上的三个安装孔,将整个探头安装在水泥墩上,或用槽钢制成的“井”字架上。
1.3.2 仪器舱仪器舱是一个组合部件,它是由电源腔(6,图1-3),电子盒(4,图1-3),天线部件(2,图1-3),密封圈(5,图1-3)以及玻璃钢罩(1,图1-3)组成。
仪器舱被四颗特殊螺丝固定在支柱顶端的槽,固定螺丝松开后,整个仪器舱可以用手转动,以便安装时校准天线部件的正北方向。
在仪器舱的安装托盘上,设计有气压卸压阀。
在要打开玻璃钢罩前,用于平衡罩外的气压。
1.3.2.1 部主连接电缆部主连接电缆,从电源/接口盒背面上的P901-19插座一直引到仪器舱安装托盘底部的P900-19插座上。
1.3.2.2 电子盒电子盒(4,图1-3)是由五块印制电路板,长方形盒及连接电缆组成。
电子盒用四个滚花螺钉固定在安装托盘上,整个部件可容易拆卸更换。
图1-4表示取去顶盖的电子盒。
取去顶盖后,可取出盒的四块印制电路板。
另外电子盒还有四个(P505-6、P506-10、J401-1、J801-1)和探头其它部件连接的插座。
电子盒中的五块印制电路板是:1.AFE板2.PDL板3.CPU板4.时基TIME板5.母板整个电子盒是用两块半园柱面金属板(3,图1-3)和一个园形金属平板进行电屏蔽的。
两块半园柱面金属板装在安装托盘上面的一个园形导槽中,可自由滑动,当打开时,可从部取出被屏蔽的电子盒。
1.3.2.3 天线部件天线部件(2,图1-3)由四个天线组成:1.平板电场天线2.东-西磁场环天线3.北-南磁场环天线4.GPS接收天线平板电场天线是由上下两块园形印刷电路板的顶表面上的铜皮和四根特殊机加工图1-2 ADTD雷电探测仪1 玻璃钢罩21 GPS 天线2 天线部件3 射频屏蔽罩5 密封圈9 支柱4 电子盒19 P506-1020 P505-615 16 保险丝17 MOV 18 电源/图 1-3 ADTD 雷击探测仪主要组成单元6 GPS5 母板4 时基TIME 16 P301-103 CPU的支柱构成。
东-西磁场天线是由电场天线底部印刷电路板下面的一个连接器的多股电缆形成的方环构成。
多股电缆首先沿一根支柱外边向上,穿过电场天线顶部印刷电路板的下面,再沿着对面的一根支柱外边向下,然后回到电场天线底部印刷电路板下面的另一个连接器。
北-南磁场天线和东-西磁场天线一样,但这两个天线环之间精确成90°。
1.3.2.4 保护罩玻璃钢罩(1,图1-3)罩住整个仪器舱,它座落在安装盘上的一个特殊密封圈上,罩上有三个M4螺孔,用螺丝可把它固定在安装盘上,并压缩密封圈以密封仪器舱。
1.3.2.5 密封圈保护罩密封圈(5,图1-3)是一个由微孔橡胶制成的环。
1.3.3 电源/接口盒电源/接口盒(8,图1-3)具有绞链门,用两个螺丝关闭,电源/接口盒安装在仪器舱托盘下面的电源腔中。
电源/接口盒有两个部分,一是交流电源托架,一是电源/接口板,包括探头的电源、瞬变保护、状态指示、以及通讯和电源接口等。
电源/接口盒后面的两个小园形连接器(P1000-5和P1001-3)为与外部的交流电源和数据线提供连接,电源电缆和通信电缆节点分配见图1-5。
电源/接口盒后部的大园形连接器(P901-19)与部主电缆连接(见图1-6)。
电源/接口盒底部还焊有一个螺栓,可用一根铜编织线把探头的地连接到地。
P1001-3的连接方法:1------------------------------市电~220伏(L)2------------------------------市电~220伏(N)3P1000-5(RS-232接口)的连接方法1------------------------------TXD2------------------------------D GND3------------------------------RXD4------------------------------D GND5图1-5 电源电缆和通信电缆接点分配图+5VD G+15VA G-15VA GJ 505P 900+12VD GS TD GF LT D 1T D 1 R E T U R NR D 1R D 1 R E T U R NR E S E TR E S E T R E T U R NJ 900J 901P 901J 600J 602P 1000+5VG N D+15VG N D-15VG N D+12VG N DS TG N D F LT D 1T D 1 R E T U R NR D 1R D 1 R E T U R NR E S E TR E S E T R E T U R N图 1-6 内部电缆连接图二、 ADTD 雷电探测仪的技术功能指标雷电探测仪的结构见图1-2。
它的电子盒放在玻璃钢保护罩,由平板电场天线,正交环磁场天线,GPS接收天线以及具有预编程的微处理机系统组成,通过主电缆与电源接口盒相连。
它的主要功能是自动地接收和处理闪电电磁脉冲信号,并把经过予处理的闪电数据实时地通过通讯系统送到中心数据处理站实时进行交汇处理。