永磁同步电机以及直流无刷电机的电磁设计

合集下载

(完整)调速永磁同步电动机的电磁设计与磁场分析

(完整)调速永磁同步电动机的电磁设计与磁场分析

调速永磁同步电动机的电磁设计与磁场分析1 引言与传统的电励磁电机相比,永磁同步电动机具有结构简单,运行稳定;功率密度大;损耗小,效率高;电机形状和尺寸灵活多变等显著优点,因此在航空航天、国防、工农业生产和日常生活等各个领域得到了越来越广泛的应用。

随着电力电子技术的迅速发展以及器件价格的不断下降,越来越多的直流电动机调速系统被由变频电源和交流电动机组成的交流调速系统所取代,变频调速永磁同步电动机也应运而生。

变频调速永磁同步电动机可分为两类,一类是反电动势波形和供电电流波形都是理想矩形波(实际为梯形波)的无刷直流电动机,另一类是两种波形都是正弦波的一般意义上的永磁同步电动机。

这类电机通常由变频器频率的逐步升高来起动,在转子上可以不用设置起动绕组。

本文使用Ansoft Maxwell 软件中的RMxprt 模块进行了一种调速永磁同步电动机的电磁设计,并对电机进行了性能和参数的计算,然后将其导入到Maxwell 2D 中建立了二维有限元仿真模型,并在此模型的基础上对电机的基本特性进行了瞬态特性分析。

2 调速永磁同步电动机的电磁设计2.1 额定数据和技术要求调速永磁同步电动机的电磁设计主要包括主要尺寸和气隙长度的确定、定子冲片设计、定子绕组的设计、永磁体的设计等.通过改变电机的各个参数来提高永磁同步电动机的效率η、功率因数cos ϕ、起动转矩st T 和最大转矩max T .本例所设计永磁同步电动机的额定数据及其性能指标如下:计算额定数据:(1) 额定相电压:N 220V U U ==(2) 额定相电流:3N N N N N1050.9A cos P I mU ηϕ⨯== (3) 同步转速:160=1000r /min f n p= (4) 额定转矩:3N N 19.5510286.5N m P T n ⨯== 2.2 主要尺寸和气隙长度的确定永磁电机的主要尺寸包括定子内径和定子铁心有效长度,它们可由如下公式估算得到:2i11P D L C n '= N N N cos E K P P ηϕ'=, 6.1p Nm dp C K K AB δα=' 式中,i1D 为定子内径,L 为定子铁心长度,P '为计算功率,C 为电机常数。

无刷直流永磁电动机设计流程和实例

无刷直流永磁电动机设计流程和实例

无刷直流永磁电动机设计实例一. 主要技术指标1. 额定功率:W 30P N =2. 额定电压:V U N 48=,直流3. 额定电流:A I N 1<3. 额定转速:m in /10000r n N =4. 工作状态:短期运行5. 设计方式:按方波设计6. 外形尺寸:m 065.0036.0⨯φ二. 主要尺寸的确定 1. 预取效率63.0='η、 2. 计算功率i P '直流电动机 W P K P NNm i 48.4063.03085.0'=⨯==η,按陈世坤书; 长期运行 N i P P ⨯''+='ηη321 短期运行 N i P P ⨯''+='ηη431 3. 预取线负荷m A A s /11000'= 4. 预取气隙磁感应强度T B 55.0'=δ 5. 预取计算极弧系数8.0=i α 6. 预取长径比L/D λ′=27.计算电枢内径m n B A P D N s i i i 23311037.110000255.0110008.048.401.61.6-⨯=⨯⨯⨯⨯⨯=''''='λαδ 根据计算电枢内径取电枢内径值m D i 21104.1-⨯= 8. 气隙长度m 3107.0-⨯=δ 9. 电枢外径m D 211095.2-⨯= 10. 极对数p=111. 计算电枢铁芯长 m D L i 221108.2104.12--⨯=⨯⨯='='λ根据计算电枢铁芯长取电枢铁芯长L= m 2108.2-⨯12. 极距 m p D i 221102.22104.114.32--⨯=⨯⨯==πτ 13. 输入永磁体轴向长m L L m 2108.2-⨯==三.定子结构 1. 齿数 Z=6 2. 齿距 m z D t i 22110733.06104.114.3--⨯=⨯⨯==π3. 槽形选择梯形口扇形槽,见下图;4. 预估齿宽: m K B tB b Fe t t 2210294.096.043.155.010733.0--⨯=⨯⨯⨯==δ ,t B 可由设计者经验得,t b 由工艺取m 210295.0-⨯5. 预估轭高: m B K B a K lB h j Fe i Fe j j 211110323.056.196.0255.08.02.222-⨯=⨯⨯⨯⨯=≈Φ=δδτ1j B 可由设计者经验得,1j h 由工艺取m 210325.0-⨯根据齿宽和轭高作出下图,得到具体槽形尺寸6. 气隙系数 135.1)5()5(2010101=-++=b b t b t K δδδ7.电枢铁心轭部沿磁路计算长度m h ph h D L j ij t i i 2111110064.2)21(2)2(-⨯=+-⨯++=απ8.槽面积2410272.0m S -⨯=电枢铁芯材料确定从数据库中读取电枢冲片材料DW540-50电枢冲片叠片系数96.01=Fe K 电枢冲片材料密度331/1075.7m j ⨯=ρ电枢冲片比损耗kg W p s /16.2)50/10(=四.转子结构1. 转子结构类型:瓦片磁钢径向冲磁2. 永磁体外径m D D i m 211026.12-⨯=-=δ3. 永磁体内径m H D D m m mi 21086.02-⨯=-=4. 永磁体极弧系数8.0=m α5. 紧圈外经D 2=m 21032.1-⨯6. 永磁材料磁化方向截面积24221043.421026.114.3108.28.02m p D L S mm m m ---⨯=⨯⨯⨯⨯⨯==πα7. 永磁材料的选取永磁体材料:钕铁硼 剩磁r B :矫顽力c H :796 kA/m 永磁体材料密度m ρ:cm 38. r B 对应的磁通Wb S B m r r 41087676.4-⨯=⋅=φ 9.c H 对应的磁势A D D H F mim c c 3200)2(2=-= 10. 转子轭材料选择由于转子较细,故转轴、磁轭为一体,选用10号钢 11.转子磁轭等效宽度 m D D D D b i mi i e j 22222221033.02102.01086.022---⨯=⨯-⨯=-=-=12.转子磁轭沿磁路方向长度瓦片m pD D b L mii e j j 222221083.0)21(4)(-⨯=-++=απ五、磁路计算1. 漏磁系数2.1=σ2. 气隙磁通δδδταB L B i 926.4==Φ3.空载电枢齿磁密δδδB B K b t B B Fe t t 588.296.010295.010733.022=⨯⨯⨯⨯==-- 4. 空载电枢轭磁密δδδB B L K h B Fe j j 819.28.296.0325..02926.4211=⨯⨯⨯=Φ=5. 空载转子轭磁密δδδσB B L b B j j 198.38.233.02926.42.1222=⨯⨯⨯=Φ= 6. 气隙磁势A B B B K F 462610127.010135.11007.06.1106.1⨯=⨯⨯⨯⨯⨯=⨯=-δδδδδδ7. 定子齿磁势A H H h H F t t t t t 22109.01045.022--⨯=⨯⨯== 8. 定子轭部磁势A H L H F j j j j 211110064.2-⨯== 9. 转子轭部磁势A H L H F j j j j 222221083.0-⨯== 10. 总磁势∑+++=21j j t F F F F F δ 11. 总磁通Wb B m 410926.42.1-⨯⨯=Φ=Φδδσ12.空载特性曲线计算见表;因为表面磁钢永磁电机电动机负载时气隙的合成磁场与空载时差不多;六.电路计算1. 绕组形式及电子开关形式:两相导通星形三相六状态 2. 绕组系数采用单层集中整距绕组,即 第一节距)(31槽==τy 每极每相槽数12pmZq ==m 是相数;p 为极对数 故绕组系数1=w K3. 预取空载转速m in /120000r n =' 4. 每相绕组串联匝数φW '0.7V U 24.8025.700为管子压降,取匝,∆=Φ'∆-='δφαpn UU W i取匝82W =φ5. 电枢总导体数根4922==φmW N6. 实际每槽导体数N s =N/Z=82根7. 实际空载转速0nmin /11742109039.28217.02488.05.725.7400r pW U U n i=⨯⨯⨯⨯-⨯⨯=Φ∆-=-δφα8. 计算绕组端部长度m pD D pDav l i b 211101.42)2)(2.122.1-⨯=+=='ππ 9. 计算电枢绕组每匝平均长度m l L L bav 2108.13)(2-⨯='+= 10. 预估导线截面积2661007086.01101463.04830m a J U P S aN N c-⨯=⨯⨯⨯⨯=''='η 式中26'/1014m A J a⨯=为预取导线电流密度 1=a 为每相绕组支路数 11. 导线选取选择F 级绝缘导线QZY-2 导线计算截面积26210066.04m d S c c -⨯==π导线最大截面积262max max 10092.04m d S c c -⨯==π导线直径md m d c c 3max 310342.01029.0--⨯=⨯=12. 槽满率计算公式选择35.01042max=⨯⋅=-S c s s S S N K π13. 实际导线电流密度26'/1015m A aS U P J c N Na ⨯==η 14. 每相电枢绕组电阻Ω==⨯=Φ-31022)20(62)20(20cavcava S a l W S ma Nl r ρρ式中)/(0157.02)20(m mm ⋅Ω=ρ为导线的电阻率 设电机绕组的工作温度t 为75C 0,则导线工作温度电阻Ω=⨯-+=65.3])20(1[20t a at p t r r 式中00395.0=t p 为导线的电阻温度系数七.电枢反应计算1. 起动电流 A r UU I atst 77.722=∆-=2. 起动时每极直轴电枢反应最大值A K W I F w st sdm 27643==φ 3. 额定工作时的反电动势 V n W pC N ie 5.39152'==δφφα 4. 额定工作时电枢电流 A r EU U I ata 97.022=-∆-=5. 额定工作时最大直轴去磁磁势A K W I F W a adm 3443==φ 6. 负载工作点:根据sdm F 和adm F ,可在空载永磁体工作图上作出负载和起动时的特性曲线2、3,求负载特性曲线与永磁体去磁曲线的交点,得负载工作点:负载气隙磁感应强度T B 5872.0=δ 负载气隙磁通Wb 4108925.2-⨯=Φδ负载电枢齿磁感应强度t B = 负载电枢轭磁感应强度j B =7. 额定工作时电磁转矩m N I W pT a iem .0366.04==δφφπα8. 起动电磁转矩 m N I C T st T st .293.0=Φ=δ 八. 性能计算1. 电枢铜损W r I p at a Cu 87.622== 2. 电枢铁损W G B G B f p K p j j t t a Fe 11.4)()50)(50/10(12123.1=+= 式中a K ------铁损工艺系数,取2=a K1j G ------定子轭重kg L h D D G j s j 05816.010])2([43211211=⨯--=-πρt G ------定子齿重kg ZL h b G t t s t 0173.0103=⨯=-ρ3. 轴承摩擦损耗W n G K p N p mp mpn 05.1103=⨯=-Kmp=3,p G 为磁钢重 转子轭重 转轴重 传感器转子重的和 3=mp K 为默认情况,可让用户自己指定kg G G G G r g m p 035.0=++=4. 风损W L n D p N mpb 13.01026332=⨯=-5. 机械损耗和铁损W p p p p mpb mpn Fe 29.5=++='6. 考虑到附加损耗后的机械损耗和铁损 W p p 877.63.1='=系数可选 7. 开关管损耗W U I p a 358.12=∆⨯=∆8. 电机总损耗W p p p p Cu 1.15=++=∆∑9. 输入功率W I U P a N 56.461==10. 输出功率W p P P N 46.311=-=∑ 11. 效率%57.67%1001=⨯=P P N η 12. 摩擦转距m N n p T N.00657.056.90== 13. 额定输出转距 m N T T T em .03.002=-=。

(完整版)无刷电机的设计最终版

(完整版)无刷电机的设计最终版

9-10 直流无刷电机的设计9-10-1直流无刷电机的概述直流电机有无可伦比的优点,体积小,重量轻,结构简单,速度变化范围大,供源简单,移动方便,价格低廉,制造简单,工艺性好等等,是我国用量最大的一种电机。

但是直流电机由于换向的需要,因此必需要由电刷和换向器来换向。

由于换向器和电刷的作用,就给电机带来各种不良的影响,如噪声,电刷运行寿命,电机干扰和电机本身体积等问题。

直流电机最大的缺点是电机寿命远远不如交流电机,交流同步电机等等无刷电机。

交流电机,交流同步电机是交流供电的,由于用的是交流电源,在50HZ 的交流电源中,一对极的交流异步电机的同步理论转速是:m in /30001506060r p f n =⨯=⨯=,在交流同步电机中的同步转速也应该为m in /3000r ,如果把电源的频率调高或调低,则电机的工作转速也可以很高或者较低的。

但这个电机的供源是交流电,如果把直流电源通过电路的转换,变成可以交变的波形供给交流电机或交流同步电机,那么交流异步电机或交流同步电机也可以很好的转动起来的,这就是直流无刷电机的最直观的概念。

要把直流电转换成单相或三相交变电源,在上世纪中叶还是一个非常麻烦的事,那时只有电子真空管,体积很大,输出电流很小,那时台式收音机就有12英寸的电视机那么大,无法和现在手指那么大的MP3相比拟。

后来发明了半导体和相应的各种半导体技术使电子控制技术推向了一个新纪元。

各种电源逆变,分配技术,换相技术的相继出现,许多高性能,高功率的半导体器件的研制成功,从而使电机领域出现了机电一体化的步进电机,直流无刷电机,并迅速在各个领域得到了广泛的应用。

当出现了永磁直流无刷电机后,就体现了它强大的生命力,永磁直流无刷电机有许多优点,如干扰小,(电路部分有一定的电磁干扰的),运行寿命长,调速性能好,控制方法多,输出力矩大,过载能力强,调速范围宽,起动响应快,运行平稳,效率高等。

永磁无刷直流电机有许多交流异步电机,步进电机和直流电机不具备的优点。

无刷直流电动机的设计

无刷直流电动机的设计

无刷直流电动机的设计无刷直流电动机(BLDC)是一种基于电子换向器和磁传感器的新型电机,具有高效率、高功率密度、高可靠性、无摩擦等优点,广泛应用于工业、农业、家电和汽车等领域。

本文将介绍无刷直流电动机的设计原理、设计流程和一些关键技术。

一、设计原理无刷直流电动机的工作原理是利用永磁体和电流产生的磁场相互作用,从而产生转矩。

它的转子由一个或多个永磁体组成,通过电流换向器控制电流的方向,从而实现转子的旋转。

无刷直流电动机通常采用三相设计,每相之间的换向角为120度。

二、设计流程1.确定电机的额定功率和转速。

根据设计要求,确定电机的额定功率和转速。

这些参数将决定电机的尺寸、材料和冷却方式等。

2.选择永磁材料和磁路设计。

根据电机的运行环境和功率需求,选择合适的永磁材料。

同时,设计磁路以确保磁通密度的均匀分布和最小的磁路损耗。

3.设计定子绕组和绝缘系统。

根据电机的功率和电压要求,设计定子绕组。

同时,设计合适的绝缘系统以确保电机的安全性和可靠性。

4.确定电流换向器的拓扑和控制策略。

选择合适的电流换向器拓扑(如半桥、全桥等)以及控制策略(如PWM控制、电流环控制等),以实现电机的换向操作。

5.进行磁场分析和电磁设计。

通过磁场分析软件,进行电磁设计。

通过磁场分析,可以得到电机的特性曲线、转矩和功率密度等指标。

6.进行结构设计和热分析。

根据电机的尺寸和电机的工作环境,进行结构设计和热分析。

结构设计要考虑机械强度、制造成本等因素,热分析要考虑散热方式和绝缘系统。

7.制造和测试。

根据设计图纸进行电机的制造。

制造完成后,进行测试,通过测试结果对电机的设计进行修正和优化。

三、关键技术1.电磁设计技术。

电磁设计是无刷直流电动机设计的核心技术,它涉及到永磁体选材、磁路参数计算、磁场分析等方面。

2.电流换向器设计技术。

电流换向器是控制无刷直流电动机运行的关键部件,它的设计直接影响到电机的性能。

目前常用的换向器有半桥、全桥等拓扑,选择合适的拓扑和控制策略对电机的效率和稳定性有重要影响。

无刷直流电机控制系统的设计及仿真

无刷直流电机控制系统的设计及仿真

目录1 前言............................................................................................................... - 0 -1.1 无刷直流电机的开展......................................................................... - 0 -1.2 无刷直流电机的优越性..................................................................... - 0 -1.3 无刷直流电机的应用......................................................................... - 1 -1.4 无刷直流电机调速系统的研究现状和未来开展............................. - 1 -2 无刷直流电机的原理................................................................................... -3 -2.1 三相无刷直流电动机的根本组成..................................................... - 3 -2.2 无刷直流电机的根本工作过程......................................................... - 4 -2.3 无刷直流电动机本体......................................................................... - 5 -2.3.1 电动机定子............................................................................... - 5 -2.3.2 电动机转子............................................................................... - 6 -2.3.3 有关电机本体设计的问题....................................................... - 7 -3 转子位置检测............................................................................................... - 8 -3.1 位置传感器检测法............................................................................. - 8 -3.2 无位置传感器检测法......................................................................... - 9 -4 系统方案设计............................................................................................. - 11 -4.1 系统设计要求................................................................................... - 11 -4.1.1 系统总体框架......................................................................... - 11 -4.2 主电路供电方案选择....................................................................... - 11 -4.3 无刷直流电机电子换相器............................................................... - 13 -4.3.1 三相半控电路......................................................................... - 13 -4.3.2 三相全控电路......................................................................... - 14 -4.4 无刷直流电机的根本方程............................................................... - 15 -4.5 逆变电路的选择............................................................................... - 17 -4.6 基于MC33035的无刷直流电动机调速系统................................... - 18 -4.6.1 MC33035无刷直流电动机控制芯片...................................... - 18 -4.6.2 基于MC33035的无刷直流电动机调速系统设计 ................ - 19 -5 无刷直流电机调速系统的MATLAB仿真................................................... - 22 -5.1 电源、逆变桥和无刷直流电机模型............................................... - 23 -5.2 换相逻辑控制模块........................................................................... - 24 -5.3 PWM调制技术.................................................................................... - 29 -5.3.1 等脉宽PWM法......................................................................... - 31 -5.3.2 SPWM(Sinusoidal PWM)法..................................................... - 31 -5.4 控制器和控制电平转换及PWM发生环节设计............................... - 31 -5.5 系统的仿真、仿真结果的输出及结果分析................................... - 33 -5.5.1 起动,阶跃负载仿真............................................................. - 33 -5.5.2 可逆调速仿真......................................................................... - 35 -6 总结和体会................................................................................................. - 37 -无刷直流电机调速控制系统设计1前言直流无刷电机,无机械刷和换向器的直流电机,也被称为无换向器直流电动机。

永磁同步电机以及直流无刷电机的电磁设计

永磁同步电机以及直流无刷电机的电磁设计

永磁同步电机以及直流无刷电机的电磁设计首先,永磁同步电机采用永磁体作为励磁源,与传统的感应电机相比,具有更高的效率和功率密度。

永磁同步电机的电磁设计主要包括磁极形状、磁路设计和绕组设计。

磁极形状是永磁同步电机电磁设计的重要组成部分。

常见的磁极形状有平面磁极、凸起磁极和凹陷磁极等。

磁极形状的选择与电机的输出功率和转速有关。

例如,对于高转速应用,凸起磁极可以减小磁场漏磁,提高电机的效率。

磁路设计是永磁同步电机电磁设计中的关键环节。

通过优化磁路设计,可以改善电机的磁路磁阻和磁导率等参数,提高电机的磁路利用率和效率。

同时,磁路设计也需要考虑减小磁铁磁感应强度损失,采用合适的磁路材料和结构设计,降低磁铁的温升,提高电机的稳定性和可靠性。

绕组设计是永磁同步电机电磁设计中的另一个重要方面。

绕组设计涉及电机的定子和转子绕组的布置和计算。

合理设计绕组可以降低电动机的电阻损耗和铜损耗,提高电机的效率。

此外,绕组设计还需要考虑绕组的散热和绝缘问题,确保电机的安全运行。

直流无刷电机是一种采用永磁转子的直流电机。

与传统的有刷直流电机相比,直流无刷电机具有更高的效率和更小的电刷磨损,可以实现长时间的高速运转。

直流无刷电机的电磁设计主要包括转子和定子的磁路设计和绕组设计。

转子磁路设计是直流无刷电机电磁设计的重要组成部分。

合理设计转子磁路可以提高磁路磁阻和磁导率,提高电机的效率和转矩输出。

通常情况下,直流无刷电机采用内置式磁铁转子,磁铁的选择和磁铁的磁场分布对电机的性能有重要影响。

定子绕组设计是直流无刷电机电磁设计的另一个重要环节。

定子绕组设计涉及到绕组的尺寸、材料选择以及绕组的布局和计算等。

合理设计绕组可以降低电阻和损耗,提高电机的效率和输出性能。

此外,定子绕组设计还需要考虑电机的散热和绝缘等问题,确保电机的稳定运行和安全性。

综上所述,永磁同步电机和直流无刷电机的电磁设计是电机设计中的重要环节。

通过优化磁极形状、磁路设计和绕组设计,可以提高电机的效率、功率密度和输出性能。

永磁同步电动机技术

永磁同步电动机技术

9-转子铁心
11—风罩 15-专用变频驱
12-位置、速度传感器 动器
13,14-电缆
永磁同步电动机的转子结构
表面式转子磁路结

1




1.表面凸出式 结构简单、制造成本较低、转动惯量小等优点, 在矩形波永磁同步电动机和恒功率运行范围不宽的正弦波永磁 同步电动机中得到了广泛应用。此外,表面凸出式转子结构中 的永磁磁极易于实现最优设计,使之成为能使电动机气隙磁密 波形趋近于正弦波的磁极形状,可显著提高电动机乃至整个传 动系统的性能。 2.表面插入式 可充分利用转子磁路的不对称性所产生的磁阻 转矩,提高电动机的功率密度,动态性能较凸出式有所改善, 制造工艺也较简单,常被某些调速永磁同步电动机所采用。但 漏磁系数和制造成本都较凸出式大。
永磁同步电动机分类

永磁同步电动机分类方法比较多:按工作主磁场方向 的不同,可分为径向磁场式和轴向磁场式;按电枢绕 组位置的不同,可分为内转子式(常规式)和外转子式; 按转子上有无起动绕组,可分为无起动绕组的电动机 ( 用于变频器供电的场合,利用频率的逐步升高而起 动,并随着频率的改变而调节转速,常称为调速永磁 同步电动机 )和有起动绕组的电动机(既可用于调速运 行又可在某一频率和电压下利用起动绕组所产生的异 步转矩起动,常称为异步起动永磁同步电动机 ) ;按 供电电流波形的不同,可分为矩形波永磁同步电动机 和正弦波永磁同步电动机 (简称永磁同步电动机 )。异 步起动永磁同步电动机用于频率可调的传动系统时,
为了保证永磁电机的电气性能不发
生变化,能长期可靠地运行,要求 永磁材料的磁性能保持稳定。通常 用永磁材料的磁性能随环境、温度 和时间的变化率来表示其稳定性, 主要包括热稳定性、磁稳定性、化 学稳定性和时间稳定性。

永磁同步电机以及直流无刷电机的电磁设计

永磁同步电机以及直流无刷电机的电磁设计
其计算功率和转速n之比 决定;
其中 D 为电枢直径;
l e f 为等效铁心长度;
(2)相同的电磁负荷, 相同转速,电机体积越大
n 为电机的额定点转速; P ' 为电机的计算功率; 可实现的功率也越大;

' p
为电机计算极弧系数;
K n m 为电机气隙磁场的波形系数; K d p 为电机的绕组系数; A 为电机的线负荷;
电流矢量应满 足的两条件


T em / is
id

0


T em / is
iq

0
IPM
Tem
Is
3p[miq(LdLq)idiq]
2 id2iq2

id
m
m 2 412L2dL2q 21Ld
id

0


T em / is
iq

0
Tem
Is
3p[miq(LdLq)idiq]
2 id2iq2
SPM
表贴式永磁电机: Ld=Lq
电 机
可推出结论:Id=0
SPM电机的定子电流矢量轨迹
13
4.2 最大转矩/电流控制
最大转矩/电流控制也称单位电流输出最大转矩的控制,是凸极式永磁同步电动 机用的较多的一种电流控制策略。对于隐极式永磁同步电机(大多数表贴式永磁电 机)来说,最大转矩/电流控制就是id=0控制。
磁场定向控制时的相量图
12
4.2 最大转矩/电流控制
最大转矩/电流控制也称单位电流输出最大转矩的控制,是凸极式永磁同步电动 机用的较多的一种电流控制策略。对于隐极式永磁同步电机(大多数表贴式永磁电 机)来说,最大转矩/电流控制就是id=0控制。

永磁无刷直流电机的设计与电磁分析

永磁无刷直流电机的设计与电磁分析

永磁无刷直流电机的设计与电磁分析1.确定电机的功率需求:根据应用场景和使用要求,确定电机所需的功率大小。

功率通常由电机的输出扭矩和转速来决定。

2.选择永磁体:根据电机的功率需求选择适当的永磁体。

永磁体的质量和磁场强度会直接影响电机的性能。

3.确定电机的结构参数:根据电机的功率和永磁体的特性,确定电机的尺寸和结构参数。

包括定子绕组的匝数、绕组的截面积、铁芯厚度等。

4.确定永磁体的磁路:根据电机的结构参数和永磁体的特性,设计电机的磁路。

通过优化磁路结构,提高电机的磁场分布和效率。

5.优化电机的绕组设计:根据电机的功率需求和电流大小,优化电机的绕组设计。

绕组的材料和截面积决定了电机的耐受能力和效率。

电磁分析是永磁无刷直流电机设计中的重要环节,主要包括电机的磁场分布和效率分析。

电磁分析主要通过有限元建模和仿真分析来实现。

1.有限元建模:将电机的结构参数、永磁体的特性和绕组的设计转化为电机的几何模型。

通过建立几何模型,将电机分为不同的区域和网格,计算每个区域的磁场分布和电磁力。

2.磁场分布分析:根据几何模型和边界条件,计算电机中各个区域的磁场分布。

通过计算磁场分布,可以了解电机的磁场强度、磁通分布和磁能分布等。

3.效率分析:根据磁场分布和绕组参数,计算电机的电磁力、电流和功率损耗等。

通过计算效率分布,可以评估电机的性能和工作效率。

4.仿真分析:通过仿真模拟,模拟电机的动态性能和控制特性。

可以评估电机的加速度、动态响应和调速范围等。

以上是永磁无刷直流电机设计与电磁分析的基本内容,通过合理的设计与分析,可以提高电机的工作效率和性能。

同时,还可以优化电机的结构和材料,减轻电机的重量和体积,提高电机的功率密度和综合性能。

永磁直流无刷电机实用设计及应用技术

永磁直流无刷电机实用设计及应用技术

永磁直流无刷电机实用设计及应用技术1. 引言1.1 概述随着科技的不断发展,无刷电机在各个领域的应用越来越广泛。

其中,永磁直流无刷电机作为一种重要的驱动装置,在电动汽车、工业自动化设备和家用电器等领域中扮演着重要角色。

本文将对永磁直流无刷电机进行实用设计及应用技术的全面探讨,旨在帮助读者更好地理解并应用该技术。

1.2 文章结构本文分为五个主要部分:引言、永磁直流无刷电机的原理和特点、实用设计技术、应用案例分析以及结论与展望。

通过这些内容,我们将全面介绍永磁直流无刷电机及其相关技术的基本原理、实际应用过程中需要考虑的设计参数,以及一些常见的应用案例。

最后,我们将总结研究成果,并探讨未来该领域的发展趋势和前景。

1.3 目的本文的主要目的是介绍永磁直流无刷电机实用设计及其应用技术,从而使读者能够了解和掌握这一重要领域的知识。

通过深入研究各种设计和优化技术,我们可以更好地理解电动汽车、工业自动化设备和家用电器等领域中永磁直流无刷电机的应用,并为实际工程设计提供参考和指导。

同时,本文也旨在为未来的研究和创新提供一定的启示,并展望该领域的发展趋势。

2. 永磁直流无刷电机的原理和特点:2.1 原理介绍:永磁直流无刷电机是一种利用永磁体产生磁场,通过电子器件控制换相的电机。

其工作原理基于法拉第感应定律和洛伦兹力定律。

在该电机中,通过转子上的永磁体所产生的磁场与由驱动器产生的旋转磁场进行交互作用,从而实现电机运转。

2.2 特点分析:永磁直流无刷电机具有以下几个特点:(1)高效率:相比传统直流有刷电机,无刷电机采用固态换向器件,减少了刷子摩擦损耗和碳粉污染等问题,因此具有较高的效率。

(2)低维护成本:无刷电机没有刷子和换向环境等易损部件,从而降低了维护成本,并延长了使用寿命。

(3)快速响应能力:无刷电机具有较高的动态响应能力,并且可以通过调整驱动器参数来实现不同的控制策略,以满足不同工况下的要求。

(4)高功率密度:由于无刷电机采用了永磁体产生较强磁场,而且没有绕组饱和现象,因此具有较高的功率密度。

五种新型电机简介

五种新型电机简介

五种新型电机简介姓名:赵涛学号:1、超声波电机简介:原理:超声波电机就是利用超声波频率范围内的机械振动来获得动力源的装置,借助摩擦传递弹性超声波振动以获得动力。

超声波电机获得能量的超声波振动源又与压电陶瓷有着密切联系,当对压电陶瓷施加交变电压时,压电陶瓷本身或压电陶瓷和金属的混合体就会产生周期性地伸缩,即逆压电效应,通过这种伸缩,电机产生了动力。

人耳所能听到的的声音频率约为20Hz-20KHZ,而当频率超过20KHz以上,人耳便无法辨识,成为超声波。

对超声波电机的压电材料输入电压所产生的是晶体的形变,因此利用压电材料来带动转子,其前进的距离相当小,约是微米等级,因此若要此电机做长距离运动,就必须输入超声波的高频电压,使定子产生极高的振动频率才能得到合适的转速,这也正是超声波电机的由来。

特点: 1、超声波电机弹性振动体的振动速度和依靠摩擦传递能量的方式决定了它是一种低速电机,同时其能量密度是电磁电机的5到10倍左右,使得它不需要减速机构就能低速时获得大转矩,可直接带动执行机构。

2、超声波电机的构成不需要线圈与磁铁,本身不产生电磁波,所以外部磁场对其影响较小。

3、超声波电机断电时,定子与转子之间的静摩擦力使电机具有较大的静态保持力矩,从而实现自锁,省去了制动闸,简化了定位控制,其动态响应时间也较短。

4、超声波电机依靠定子的超声振动来驱动转子运动,超声振动的振幅一般在微米数量级,在直接反馈系统中,位置分辨率高,容易实现较高的定位控制精度。

应用:1、超声波电机可用于照相机的自动聚焦系统的驱动器;航空航天领域的自动驾驶仪伺服驱动器;机器人或微型器械自动控制系统的驱动器;高级轿车门窗和座椅靠头调节的驱动装置;窗帘或百叶窗自动启闭装置;2、医学领域的人造心脏驱动器、人工关节驱动器;强磁场环境下设备的驱动装置,如磁悬浮列车的控制系统;不希望驱动装置产生磁场的场合,如磁通门的自动测试转台等。

2、无刷直流电动机:原理:无刷永磁电动机伺服系统主要由4个部分组成:永磁同步电动机MS、转子位置检测器BQ、逆变器和控制器。

永磁无刷直流电机的设计

永磁无刷直流电机的设计

永磁无刷直流电机的设计摘要:永磁无刷直流电机是一种新型电机,其特点是不需要传统的机械电刷,因此在家用电器等领域得到广泛运用。

其简单结构、高可靠性和高效率使其备受青睐。

关键词:永磁无刷直流电机;设计虽然其工作原理与传统的电磁式直流电机相似,但借助高性能的永磁材料和电子控制技术,这种电机在单位体积内能提供较高的转矩,同时转矩惯性比较小,启动时的转矩也很大,此外,其调速特性也相当优越。

因此,在家用电器领域,永磁无刷直流电机得以广泛应用。

1.永磁无刷直流电机的主要特点和应用1.1永磁无刷直流电机的主要特点(1) 由于无电火花和磨损问题,永磁无刷直流电机拥有卓越的工作寿命和高度可靠性。

(2) 其低转动惯量和高转矩惯量比使其具有出色的响应速度。

(3) 通过永磁体产生的气隙磁场,使得电机的效率和功率因数保持在高水平,且发热主要分布在定子上,便于热量散发。

(4) 虽然与有刷直流电机相比略微成本较高,但与异步电机相比,其控制性能卓越。

1.2永磁无刷直流电机的主要应用目前,不断扩大的市场需求迅速推动了永磁无刷直流电机的蓬勃发展。

自上世纪90年代起,随着科技的不断进步,永磁材料的性能得到了显著提升。

尤其以钕铁硼等第三代永磁材料为代表,不仅在耐腐蚀性方面有了巨大突破,其在高温环境下的稳定性也得到了显著提升,同时生产成本也在逐步降低。

许多高校和制造单位都在永磁无刷直流电机的研发中投入了大量资源,为其发展注入了新的活力。

永磁无刷直流电机的功率范围广泛,从毫瓦级到数十千瓦级不等,为用户提供了多样的选择。

2.无刷直流电机的结构及工作原理2.1无刷直流电机的基本结构无刷直流电机的基本组成结构包括电机本体、转子位置传感器和电子换相电路,具体如图2.1所示。

图2.1永磁无刷直流电机系统的组成结构示意图无刷直流电机的结构类似于永磁同步电机,其核心部分是电机本体,是实现机电能量转换的核心。

因此,其设计在确保整个系统可靠运行方面具有关键性作用。

永磁同步电机以及直流无刷电机的电磁设计

永磁同步电机以及直流无刷电机的电磁设计

永磁同步电机以及直流无刷电机的电磁设计永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)和直流无刷电机(Brushless DC Motor, BLDC)都是目前电机领域中应用广泛的电机类型。

它们在功能、特性以及电磁设计方面存在一些差异,下面将分别对这两种电机的电磁设计进行介绍。

首先,永磁同步电机是一种利用永磁体产生磁场的同步电机。

其主要由永磁体、转子和定子组成。

永磁体的磁场与定子磁场同步旋转,从而产生电动势并转化为电力输出。

永磁同步电机具有高效率、高功率密度以及较高的控制精度等优点,在电动车、工业机械和家用电器等领域有广泛应用。

永磁同步电机的电磁设计主要包括定子槽形状设计、磁场调整和绕组设计等方面。

定子槽形状设计是为了提高定子磁场分布的均匀性和磁场利用率,常见的槽形包括梳齿形槽和圆弧形槽等。

磁场调整是为了改善永磁同步电机的磁场波形和减小磁场谐波,通过调整永磁体的磁场分布和形状来达到目的。

绕组设计考虑到定子槽内的线圈布局和参数选取等因素,以提高定子线圈的利用率和电磁性能。

其次,直流无刷电机是一种利用电子换向器控制电流流向的电机。

它的结构包括转子、永磁体和绕组等。

直流无刷电机由于无刷换向,减少了机械磨损和摩擦力,具有高效率、可靠性高以及无噪音等特点,在电动汽车、航空等领域有广泛应用。

直流无刷电机的电磁设计主要包括磁场布置、定子槽形状以及转子磁场等方面。

磁场布置是为了控制磁通分布和磁感应强度,常见的磁场布置包括轴向磁场、径向磁场和斜磁场等。

定子槽形状决定定子绕组布局和绕组参数选取,常见的槽形有整槽形、分槽形和圆弧形等。

转子磁场的设计考虑到磁极数量和极对槽比等因素,以实现期望的转矩输出和运行性能。

综上所述,永磁同步电机和直流无刷电机在电磁设计方面有一些共同点,如磁场布置和绕组设计等,同时也有一些差异,如定子槽形状和转子磁场等。

这些设计因素直接影响到电机的性能和效率,对于实际应用中的性能优化和控制参数选取至关重要。

中小旋转电机设计手册

中小旋转电机设计手册

中小旋转电机设计手册(最新版)目录一、中小旋转电机设计手册概述二、中小旋转电机的电磁设计原理三、中小旋转电机的机械计算、通风温升计算和噪声计算四、中小旋转电机常用材料及零部件五、高效电动机、永磁同步电动机和永磁无刷直流电动机的设计技术六、电机噪声抑制内容七、相关标准更新正文一、中小旋转电机设计手册概述《中小旋转电机设计手册 (第 2 版)》是一本针对中小旋转电机设计的专业书籍,旨在帮助工程师和设计人员更好地进行电机设计工作。

本书详细介绍了中小旋转电机电磁设计的概要,各种类型中小旋转电机的设计原理、方法和程序,并附有算例和技术数据。

同时,本书还扼要介绍了机械计算、通风温升计算、噪声计算、电机基础标准和电机常用材料及零部件。

二、中小旋转电机的电磁设计原理中小旋转电机的电磁设计原理主要包括异步电动机、同步发电机、直流电机、永磁同步电动机和无刷直流电机的设计原理。

这些原理是电机设计的基础,了解这些原理对进行电机设计具有重要意义。

三、中小旋转电机的机械计算、通风温升计算和噪声计算在电机设计过程中,机械计算、通风温升计算和噪声计算是不可或缺的环节。

这些计算是保证电机性能和可靠性的重要手段。

本书对这些计算方法进行了详细介绍,并提供了相应的计算公式和参数。

四、中小旋转电机常用材料及零部件电机的设计离不开各种材料和零部件。

本书介绍了电机常用的材料和零部件,包括电机钢材、绝缘材料、轴承、密封件等,以帮助设计人员更好地选择和使用这些材料和零部件。

五、高效电动机、永磁同步电动机和永磁无刷直流电动机的设计技术本书重点增加了高效电动机、永磁同步电动机和永磁无刷直流电动机的设计技术,以满足市场对高效、节能、环保电机的需求。

这些设计技术是电机行业技术发展的方向,掌握这些技术对电机设计人员具有重要意义。

六、电机噪声抑制内容电机噪声是一个影响电机性能和用户体验的重要因素。

本书增加了电机噪声抑制内容,介绍了噪声产生的原因和抑制方法,以帮助设计人员降低电机噪声,提高电机性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电流矢量应满 足的两条件
Tem /
id
is
0
Tem /
iq
is
0
Tem
Is
3 p[ miq (Ld Lq )idiq ] 2 id2 iq2
IPM

id m
2 m
4
1 2 L2d L2q
矢量正交,即β =90 °,电机转矩中只有永磁转矩分量。
例如:工缝机电机、以及所有表贴式永磁同步电机。
Tem
3 2
p[ m Is
sin
1 2
(Ld
Lq
)
I
2 s
sin 2 ]
90o
Tem
3 2
p m Is
为什么表贴式永磁电机都适合用这种控制方式?
表贴式永磁电机的交直轴电感相等, 不可能有磁阻转矩存在。
自行车电机
工业电机
汽车电机
可整理ppt
9
一、传感器的不同: 直流无刷电机(BLDC):位置传感器,如霍尔等; 永磁同步电机(PMSM):速度和位置传感器,如旋转变压器、光电编码器等;
二、反电势波形不同: BLDC :近似梯形波(理想状态); PMSM :正弦波(理想状态);
三、三相电流波形不同: BLDC :近似方波或梯形波(理想状态); PMSM :正弦波(理想状态);
四、控制系统的区别: BLDC:通常包括位置控制器、速度控制器和电流(转矩)控制器; PMSM:不同控制策略的会有不同的控制系统;
五、设计的原理与方法上的区别: BLDC:尽量拓宽反电势波形的宽度(使之近似为梯行波); PMSM:使反电势接近与正弦波; 体现在设计上主要是定子绕组、转子结构(如极弧系数)上的区别。
q
iq
Ψs ψ
is
β N
ω d
id
Ψm
四、最大输出功率控制
Tem
3 2
p[ miq
(Ld
Lq )idiq ]
3 2
p[
mIs
sin
1 2
(Ld
Lq
)
I
2 s
sin
2 ]
S 永磁电机的dq轴旋转坐标系
可整理ppt
11
4.1 Id=0控制(磁场定向控制)
Id控制0 是矢量控制中的一个特殊的控制方法,从电动机端口看,相当于一台他励 直流电动机,定子电流中只有交轴分量,且定子磁动势空间矢量与永磁体磁场空间
电流矢量应满 足的两条件
Tem /
id
is
0
Tem /
iq
is
0
Tem
Is
3 p[ miq (Ld Lq )idiq ] 2 id2 iq2
SPM

表贴式永磁电机: Ld=Lq
机 可推出结论:Id=0
SPM电机的定子电流矢量轨迹
可整理ppt
13
4.2 最大转矩/电流控制
最大转矩/电流控制也称单位电流输出最大转矩的控制,是凸极式永磁同步电动机 用的较多的一种电流控制策略。对于隐极式永磁同步电机(大多数表贴式永磁电机 )来说,最大转矩/电流控制就是id=0控制。
(1)电机的主要尺寸由 其计算功率和转速n之比 决定;
其中 D 为电枢直径;
lef 为等效铁心长度;
(2)相同的电磁负荷, 相同转速,电机体积越大
n 为电机的额定点转速; P ' 为电机的计算功率; 可实现的功率也越大;
' p
为电机计算极弧系数;
Knm 为电机气隙磁场的波形系数; Kdp为电机的绕组系数; A 为电机的线负荷;
6
内转子电机的多种磁路结构形式
径向式IPM 切向式IPM 混合式IPM
Honda-Accord的IPM转子结构
多层径向式IPM结构
连续斜极转子结构
可整理ppt
Toyota-Prius的分段斜极转子结构
7
电机的交直(DQ)轴磁路
径向式IPM
切向式IPM
可整理ppt
8
三、永磁同步电机与直流无刷电机的区别
永磁同步电机以及直流 无刷电机的电磁设计
可整理ppt
1
主要内容
一、永磁电机主要设计参数之间的关系式 二、永磁电机的磁路结构形式简介 三、永磁同步电机与直流无刷电机的区别 四、电磁设计与控制的紧密结合
可整理ppt
2
一、永磁电机主要设计参数之间的关系式
D2lef n
6.1
P'
a'p Knm Kdp AB
Bδ 为电机的气隙磁密最大值;
反映电机 的磁负荷
反映电机 的电负荷
(3)相同的电磁负荷下 ,出相同功率,转速越高 则电机的体积越小;
(4)一定功率和转速下 ,电磁负荷决定电机的主 要尺寸;
可整理ppt
3
极弧系数的概念解释














可整理ppt
4
电机主要尺寸比
经济
在选定电机的电磁负荷后,可 性 基本确定电机的 D。2lef
三、电机细长,则相对的铁心与机座之间的 接触面积增大,对散热有利。(对用气体作为 冷却介质时,风路加长,冷却条件变差);
四、电机细长,线圈数目常较粗短的电机为 少,因而使线圈制造工时和绝缘材料消耗减 少;但机座加工费时,下线难度较大,下线 工时增多;此外,冲片数目增大,冲片冲剪 和铁心叠压费时,冲模磨损加剧;
适用于恒速运行,以及调速范围要求不高的场合。
磁场定向控制时的相量图
可整理ppt
12
4.2 最大转矩/电流控制
最大转矩/电流控制也称单位电流输出最大转矩的控制,是凸极式永磁同步电动机 用的较多的一种电流控制策略。对于隐极式永磁同步电机(大多数表贴式永磁电机 )来说,最大转矩/电流控制就是id=0控制。
电机主要尺寸比定义如下: 电磁
lef
性能
为电机的极距;
λ的大小与电机运行性能、 热性 经济性、工艺性等均有密切关 能 系,或有一定影响。
来分析一下,在电机体积未 变的情况下,主要尺寸比较大 的影响:
工艺 性
一、尺寸比越大,电机越细长;端部短,因 而端部用铜相应减少;
二、体积未变,铁重基本不变,同一磁密下 基本铁耗也不变,再考虑电流密度一定时, 端部用铜相对减少,总体损耗下降,效率提 高;
可整理ppt
10
四、电磁设计与控制策略的紧密结合
不同的控制策略,可能导致不同的电磁设计结果;而同一种电磁设计,采取不同 的控制策略,则会有不同的效果。
因此,对应不同的设计指标,电磁设计必须和控制策略匹配,才能总体上产生一 个最佳的效果。
矢 方量 法控

一、Id=0控制 二、最大转矩/电流控制 三、弱磁控制
可整理ppt
Hale Waihona Puke 5二、永磁电机的磁路结构形式简介
就目前公司所生产的电机来说,可分为大致两种:
径向磁场结构;
一、内转子结构; 二、外转子结构; 三、混合磁路结构(天津电机);
轴向磁场结构(盘式电机);
ISG电机(内转子)
磁钢表贴式(SPM) 外转子轮毂电机
可整理ppt
磁钢内嵌式(IPM一字形) 轴向磁场的混合励磁电机
相关文档
最新文档