南京外国语学校2020~2021学年度高一第一学期期中考试数学试卷及答案
江苏省南京市金陵中学2020-2021学年高一下学期期中考试数学试题(含答案)
江苏省金陵中学2020至2021学年高一第二学期期中考试高一数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z =1+i ,则|z 2-2z |=( ▲ ).A .0B .1C.2D .22.在平面直角坐标系xOy 中,已知AB →=(2,3),AC →=(3,t ),|BC →|=1,则AB →·AC →=( ▲ ). A .-3B .-10C .9D .15 3.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,c =2,cos(B +C )=14,则a 等于( ▲ ).A .10B .15C .4D .174.在△ABC 中,AB =2,AC =3,∠BAC =π3,点D 为边BC 上靠近B 的三等分点,则AD →·BC →的值为( ▲ ). A .-113B .-13C .23D .435.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若其面积S =a 2+b 2-c 243,则C =( ▲ ).A .π6B .π3C .π4D .π26.若α,β∈(π2,π),且sin α=255,sin(α-β)=-1010,则sin β=( ▲ ).A .7210B .22C .12D .1107.已知|AB →|=3,|AC →|=2,若对于任意的实数m ,不等式|AB →+AC →|≤|AB →+mAC →|恒成立,则 cos ∠BAC =( ▲ ). A .53 B .-53 C .-23 D .238.已知ΔABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若A =2B ,则c b +(2ba)2的最小值为( ▲ ).A .-1B .73C .3D .103二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分,有选错的得0分,部分选对的得3分.9.下列命题为真命题的是( ▲ ).A .若z 1,z 2互为共轭复数,则z 1z 2为实数B .若i 为虚数单位,则i 3=iC .若复数z =1+i ,则z 2=2iD .若复数z =-12+32i ,则1+z +z 2=010.如图,在正方形ABCD 中,E ,F 分别是BC ,CD 的中点,G 是EF 的中点,现在沿AE ,AF及EF 把这个正方形折成一个空间图形,使B ,C ,D 三点重合,重合后的点记为H ,那么,在这个空间图形中必有( ▲ ). A .AG ⊥△EFH 所在平面B .AH ⊥△EFH 所在平面C .EF ⊥△AGH 所在平面D .HG ⊥△AEF 所在平面11.给出下列命题,其中正确的选项有( ▲ ).A .若非零向量a ,b 满足|a +b |=|a |+|b |,则a 与b 共线且同向B .若非零向量a 、b 满足|a |=|b |=|a -b |,则a 与a +b 的夹角为30°C .若单位向量的e 1、e 2的夹角为60°,则当|2e 1+t e 2| (t ∈R )取最小值时,t =1D .在△ABC 中,若(AB →|AB →|+AC →|AC →|)·BC →=0,则△ABC 为等腰三角形12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,下列四个命题中,正确的命题有( ▲ ).A .c =a cosB +b cos A B .若A >B ,则sin2A >sin2BC .若A =30º,a =4,b =6,则满足条件的三角形有两解D .若△ABC 是钝角三角形,则tan A ·tan C <1三、填空题:本题共4小题,每小题5分,共20分.13.已知a =(sinα,4),b =(1,cosα),且a ⊥b ,则sin2α+2sin 2α=▲________.14.已知函数f (x )=2cos 2(π2x -π4)-1,g (x )=x 3,设函数F (x )=f (x )-g (x ),则F (x )所有的零点之和为▲________.15.如图,在矩形ABCD 中,M ,N 分别为线段BC ,CD 的中点,若MN →=λ1AM →+λ2BN →,λ1,λ2∈R ,则λ1λ2的值为▲________.16.向量是数学中一个很神奇的存在,它将“数”和“形”完美地融合在一起,在三角形中就有很多与向量有关的结论.例如,在△ABC 中,若O 为△ABC 的外心,则AO →·AB →=12AB →2.证明如下:取AB 中点E ,连接OE ,可知OE ⊥AB ,则AB →·AO →=2AE →·AO →=2|AE →||AO →|cos ∠OAE=2|AE →|(|AO →|cos ∠OAE )=2AE →2=12AB →2.利用上述材料中的结论与方法解决下面的问题:在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,满足a >c 且2b cos A =3c ,3(c +a )=2b . 设O 为△ABC 的外心,若AO →=x AB →+yAC →,x ,y ∈R ,则x -2y =▲________.DC A B MNEAB·O四、解答题:本题共6小题,第17题10分,其余每小题12分,共70分.17.(本小题10分)已知复数z =b i(b ∈R ),z -21+i 是实数,i 是虚数单位(1) 求复数z ;(2) 若复数(m +z )2所表示的点在第一象限,求实数m 的取值范围.18.(本小题12分)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数. ①sin 213°+cos 217°-sin13°cos17° ②sin 215°+cos 215°-sin15°cos15° ③sin 218°+cos 212°-sin18°cos12° ④sin 2(-18°)+cos 248°-sin(-18°)cos48° ⑤sin 2(-25°)+cos 255°-sin(-25°)cos55°(1)试从上述五个式子中选择一个,求出这个常数.(2)根据(1)的计算结果,将该同学的发现推广为一般的三角恒等式,并证明你的结论.19.(本小题12分)设向量a =(3cos α,sin α),b =(sin β,3cos β),c =(cos β,-3sin β). (1)若a 与b -c 垂直,求tan(α+β)的值;(2)求|b -c |的最小值;20.(本小题12分)如图,在四棱锥O -ABCD 中,底面ABCD 四边长为1的菱形,∠ABC =π4, OA ⊥平面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点(1)画出平面AMN 与平面OCD 的交线(保留作图痕迹,不需写出作法); (2)证明:直线MN ||平面OCD ; (3)求异面直线AB 与MD 所成角的大小.ABCDOM N21.(本小题12分)某公园为了吸引更多的游客,准备进一步美化环境.如图,准备在道路AB 的一侧进行绿化,线段AB 长为4百米,C ,D 都设计在以AB 为直径的半圆上.设∠COB =θ. (1)现要在四边形ABCD 内种满郁金香,若∠COD =π3, 则当θ为何值时,郁金香种植面积最大;(2)为了方便游人散步,现要搭建一条道路,道路由线段BC , CD 和DA 组成,若BC =CD ,则当θ为何值时,栈道的总 长l 最长,并求l 的最大值.22.(本小题12分)已知ΔABC 为锐角..三角形,设角A ,B ,C 所对的边分别为a ,b ,c .R 为ΔABC 外接圆半径. (1)若R =1,且满足sin B sin C =(sin 2B +sin 2C -sin 2A )tan A ,求b 2+c 2的取值范围; (2)若b 2+c 2=2aR cos A +a 2,求tan A +tan B +tan C 的最小值.江苏省金陵中学2020至2021学年高一第二学期期中考试高一数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z =1+i ,则|z 2-2z |=( ▲ ).A .0B .1 C.2 D .2答案:D2.在平面直角坐标系xOy 中,已知AB →=(2,3),AC →=(3,t ),|BC →|=1,则AB →·AC →=( ▲ ).A .-3B .-10C .9D .15答案:D3.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,c =2,cos(B +C )=14,则a 等于( ▲ ).注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页,包含单项选择题(第1题~第8题)、多项选择题(第9题~第12题)填空题(第13题~第16题)、解答题(第17题~第22题)四部分。
2020-2021学年第一学期期中高一数学试卷及答案
高一级期中质量测试数学科试参考答案(第1页共4页)2020-2021学年度第一学期期中高中一年级质量测试数学科试卷参考答案题号123456789101112答案A C D A B D C A AB ABD AD BCD 三、13.1214.{x |x ≥−1且x ≠0}15.5≤4a −2b ≤1016.1516;0或1312.四、解答题17.解:(1)由图象观察可知f (x )的单调增区间为(0,2];……………………………………5分(2)函数f (x )的图象如图所示:……………………………………………7分f (x )<0的解集为(−∞,−4)∪(4,+∞).………………………………………………………10分18.解:因为A ∩B ={9},故9∈A 且9∈B ,………………………………………………1分所以2m −1=9,或者m 2=9,…………………………………………………………………3分解得m =5,或者=±3,…………………………………………………………………………5分当m =5时,A ={−4,9,25},B ={0,−4,9},A ∩B ={−4,9},不合题意;……………………7分当m =3时,B ={−2,−2,9},与集合元素的互异性矛盾;…………………………………9分当m=−3时,A={−4,−7,9},B={−8,4,9},A∩B={9},符合题意;……………………11分综上所述,m=−3.……………………………………………………………………………12分19.解:(1)已知x<2,∴x−2<0.……………………………………………………………1分∴4x+1x−2=4(x−2)+1x−2+8……………………………………………………………………2分∴−4(x−2)−1x−2≥4,……………………………………………………………………………3分当且仅当−4(x−2)=−1x−2,即x=32时等号成立.………………………………………………4分∴4(x−2)+1x−2≤−4……………………………………………………………………………5分∴4x+1x−2=4(x−2)+1x−2+8≤4∴4x+1x−2的最大值为4………………………………………………………………………6分(2)解:∵x+4y+xy=5,∴5−xy=x+4y≥24xy=4xy……………………………………………………………………7分当且仅当x=4y,x+4y+xy=5即x=2,y=12时,等号成立……………………………………………………………………8分∴xy+4xy−5≤0………………………………………………………………………………9分∴xy≤1………………………………………………………………………………………11分∴xy的最大值为1……………………………………………………………………………12分20.解:(1)f(x)为R上的奇函数,……………………………………………………………1分∴f(0)=0,得b=0,…………………………………………………………………………3分又f(1)=a+b2=12,∴a=1,…………………………………………………………………5分∴f(x)=xx2+1……………………………………………………………………………………6分高一级期中质量测试数学科试参考答案(第2页共4页)(2)f(x)在[1,+∞)上为减函数,……………………………………………………………7分证明如下:在[1,+∞)上任取x1和x2,且x1<x2,……………………………………………8分则f(x2)−f(x1)=x2x22+1−x1x21+1=(x21+1)x2-(x22+1)x1(x21+1)(x22+1)=x21x2-x22x1+x2-x1(x21+1)(x22+1)=(x1-x2)(x1x2-1)(x21+1)(x22+1)……………………9分∵x2>x1≥1,∴x1x2−1>0,x1−x2<0,…………………………………………………………10分∴f(x2)−f(x1)<0,即f(x2)<f(x1),………………………………………………………………11分∴f(x)在[1,+∞)上为减函数.…………………………………………………………………12分21.解:(1)由已知条件f(x)−g(x)=x+ax−2………………①………………………………1分①式中以−x代替x,得f(−x)−g(−x)=−x−ax−2………②………………………………2分因为f(x)是奇函数,g(x)是偶函数,故f(−x)=−f(x),g(−x)=g(x),②可化为−f(x)−g(x)=−x−ax−2………③…………………………………………………3分①−③,得2f(x)=2x+2ax,……………………………………………………………………4分故f(x)=x+ax,g(x)=2,x∈(−∞,0)∪(0,+∞);…………………………………………6分(2)由(1)知,f(x)+g(x)=x+ax+2,x∈[1,+∞),……………………………………………7分当a≥0时,函数f(x)+g(x)的值恒为正;……………………………………………………8分当a<0时,函数f(x)+g(x)=x+ax+2在[1,+∞)上为增函数,…………………………9分故当x=1时,f(x)有最小值3+a,故只需3+a>0,解得−3<a<0.………………………………………………………………11分综上所述,实数a的取值范围是(−3,+∞).………………………………………………12分高一级期中质量测试数学科试参考答案(第3页共4页)【法二:由(1)知,f(x)+g(x)=x+ax+2,……………………………………………………7分当x∈[1,+∞)时,f(x)+g(x)>0恒成立,等价于a>−(x2+2x),…………………………9分而二次函数y=−(x2+2x)=−(x+1)2+1在[1,+∞)上单调递减,………………………10分x=1时,y max=−3,.…………………………………………………………………………11分故a>−3………………………………………………………………………………………12分】22.解:(1)由题意知,y−x−(10+2p),…………………………………………2分将p=3−2x+1代入化简得y=16−4x+1−x(0≤x≤a).…………………………………………5分【注:没注明定义域,扣1分】(2)当a≥1时,y=17x+−24x+1×(x+1)=13,…………………………7分当且仅当4x+1=x+1,即x=1时,上式取等号.…………………………………………8分所以当a≥1时,促销费用投入1万元时,厂家的利润最大为13万元.…………………9分当0<a<1时,y=16−4x+1−x在(0,1)上单调递增,…………………………………………11分所以当0<a<1时,促销费用投入a万元时,厂家的利润最大为4161aa-万元………12分高一级期中质量测试数学科试参考答案(第4页共4页)。
江苏省扬州中学2020-2021学年高一上学期期中考试数学试题(PDF版含答案)
二、多选题(本大题共 4 小题,每小题 5 分,共 20 分,在每小题给出的选项中,有多项符 合题目要求,全部选对得 5 分,有选错的得 0 分,部分选对得 3 分.)
BD AD CD BCD
三、填空题(本大题共 4 小题,每小题 5 分,多空题,第一空 2 分,第二空 3 分,共 20 分.)
13、 x R,3x2 2x 1 0
(2)函数 f x =0 在0, 2上有解,即方程 x a x 2b 在0, 2上有解;
设
h
x
{
x
2
x
ax 2 ax
x
(x
a
a)
,
当a
0 时,则 h x
x2
ax,
x
0,
2
,且
h
x
在
0,
2
上单调增,∴
h
x
min
h0
0,
h
x
max
h2
4 2a ,则当 0
2b
4
2a
时,原方程有解,则
a
A.
x
1
y
1 4
B.
1 x
1 y
1
C. xy 2
D.
1 xy
1
7.已知函数
f
(x)
x2 ax 5,(x1)
a x
,( x
1)
是
R
上的增函数,则 a
的取值范围是(
)
A. 3a 0
B. 3a 2
C. a 2
D. a 0
8.设平行于 x 轴的直线 l 分别与函数 y 2x 和 y 2x1 的图象相交于点 A,B,若在函数
2
由(1)知集合 A
江苏省南京市鼓楼区2022-2023学年度第一学期期中高一数学试题(原卷版)
高一数学试题第 1 页 (共 6 页)高一(上)期中试卷数 学 2022.11注意事项:1.本试卷考试时间为120分钟,试卷满分为150分,考试形式为闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 第 Ⅰ 卷 (选择题 共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={-1,1},B ={0,1},则A ∪B =( )A .{-1,1}B .{1}C .{-1,0}D .{-1,0,1}2.已知p :x ≥1,q :x =1,则( )A .p 是q 的充分条件但不是必要条件B .p 是q 的必要条件但不是充分条件C .p 是q 的充要条件D .p 不是q 的充分条件也不是必要条件3.不等式1x -1<1的解为( ) A .1<x <2 B .-2<x <-1 C .x >2或x <1 D .x >-1或x <-24.已知命题:(1)任何实数的平方都是非负数;(2)有些三角形的三个内角都是锐角;(3)每一个实数都有相反数;(4)所有数与0相乘,都等于0.其中存在量词命题的个数是( )A .1B .2C .3D .4 5.计算823+9-12的结果是( )高一数学试题第 2 页 (共 6 页)A .113B .133C .56D .766.在下列图象表示的函数中,既是奇函数又是增函数的可以是( )A .B .C .D .7.已知函数f (x )=|x |+x 2+1,g (x )=f (x -2)+1,则不等式f (x )>g (x )的解集为( ) A .(-∞,2) B .(1,2) C .(1,+∞) D .(2,+∞)8.设a =202122020×2022,b =202222021×2023,c =202322022×2024,则( ) A .a >b >c B .c >b >a C .a >c >b D .c >a >b二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)9.已知a >b >0,则( )A .a 2>b 2B .2a -b >3a -2bC .1b >1aD .a -1b >b -1a10.若U =Z ,A ={x |x =2k ,k ∈Z },B ={x |x =2k +1,k ∈Z },则( )A .A ∩B ={0} B .A ∪B =UC .C U B =AD .A ⊂≠B11.约定:如果一个函数的图象上存在一个点,该点的横坐标和纵坐标相等,那么就称该点为该函数的一个回归点,称该函数是一个具有回归点的函数.如果一个函数有且仅有n 个回归点,那么就称该函数为一个具有n 个回归点的函数.例如,点(0,0)和(1,1)都是函数f (x )=x 2的回归点,函数f (x )=x 2是一个具有两个回归点的函数.根据约定,下列选项中止确的是( )高一数学试题第 3 页 (共 6 页)A .函数f (x )=x 5是个具有回归点的函数B .具有回归点的函数有无数个C .存在无数个具有无数个回归点的函数D .已知点(a ,a )是函数f (x )的一个回归点,则点(2a ,2a )也是函数f (x )的一个回归点12.已知函数f (x )=x 2+1x(x >0),则( ) A .f (x )的图象与x 轴有且仅有1个交点B .g (x )=xf (x )在(0,+∞)上单调递增C .f (x )的最小值为334D .f (-x )的图象在h (x )=2x(x <0)的图象的上方 第 Ⅱ 卷 (非选择题 共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.在对数式log a (2-x )=b (a >0,a ≠1)中,实数x 的取值范围是 ▲ .14.写出命题“所有的矩形都是平行四边形”的否定: ▲ .15.多种原因导致国际原材料价格不断上涨.2021年11月,海关总署统计了当年前10个月我国主要大宗商品进口情况,数据如下表:高一数学试题第 4 页 (共 6 页)原材料价格的不断上涨导致终端产品被动提价.由于钢材和铜材这两种原料价格上涨,某出口企业决定根据这两种原料的增幅,对某种产品分两次提价,现有三种提价方案: 方案甲:第一次提价p %,第二次提价q %;方案乙:第一次提价q %,第二次提价p %方案丙:第一次提价p +q 2%,第二次提价p +q 2%. 其中p >q >0,那么在三种方案中,提价多的是方案 ▲ .16.已知a ,b ∈R ,若函数f (x )=(1-x 2)(x 2+ax +b )的图象关于直线x =-2对称,且对于任意正数x 都有x 2-ax +t ≥bx 成立,则a +b = ▲ ,实数t 的最小值是 ▲ .四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)(1)解不等式:1-x 2-16<x +12; (2)证明不等式:a 2+b 2≥2a +4b -5..18.(本小题满分12分)(1)求(lg2)2+lg2lg50+2lg5的值;(2)已知a 是非零实数,满足a -a -1,分别求a +a -1,a 2+a -2的值.19.(本小题满分12分)设集合A={x|x2-4≤0},B={x|2x+a≤0},其中a∈R.(1)若A∩B={x|-2≤x≤1},求a的值;(2)若“x∈B”是“x∈A”的必要条件,求a的取值范围.20.(本小题满分12分)某单位要建造一间地面面积为12m2的背靠墙的长方体形小房,房屋正面留有一扇宽为1m 的小门,房屋的墙和门的高度都是3m,房屋正面的单位面积造价为1200元/m2,房屋侧面的单位面积造价为800元/m2,屋顶的造价为5800元.若不计房屋背面的费用和门的费用,问:怎样设计房屋能使总造价W(单位:元)最低?最低总造价是多少?高一数学试题第5页(共6页)高一数学试题第 6 页 (共 6 页) 21.(本小题满分12分)我们知道,函数y =f (x )的图象关于坐标原点成中心对称图形的充要条件是函数y =f (x )为奇函数.有同学发现可以将其推广为如下结论:函数y =f (x )的图象关于点P (a ,b )成中心对称图形的充要条件是函数y =f (x +a )-b 为奇函数.已知该结论是真命题.(1)求函数h (x )=x 3-6x 2图象的对称中心;(2)还有同学提出了如下两个命题:命题① 已知函数y =f (x )的定义域为R ,如果函数y =f (x +1)为偶函数,那么函数y =f (x )的图象关于直线x =1成轴对称图形;命题② 已知函数y =f (x )的定义域为R ,如果函数y =f (x )的图象关于直线x =1成轴对称图形,那么函数y =f (x +1)为偶函数;请你在这两个命题中选择一个,判断它是否是真命题,并给出理由.(若两个都选,则只对你选的第一个评分)22.(本小题满分12分)已知f (x )=x 2-2ax ,a ∈R .(1)当0≤x ≤1时,求f (x )的最小值;(2)若任意x ≥0,f (x )≥12ax 2-1,求a 的取值范围.。
2020-2020年南通中学期终考试高一数学试卷及答案
江苏省南通中学2020-2020学年度第一学期期终考试高一数学试卷一、填空题:本大题共14小题,每小题5分,共70分。
不需要写出解答过程,请把答案直接填空在答题卡相应位置上........。
1. 求值sin 300= ▲ .2. 函数tan(2)3y x π=-的周期为 ▲ . 3. 在正方形ABCD 中,E 是DC 边的中点,且AB =a ,AD =b ,则BE = ▲ .4. 已知0tan cos <⋅θθ,则角θ是第 ▲ 象限角.5. 函数()sin cos f x x x =的最小值为 ▲ .6. 已知向量(4,0),(2,2),AB AC ==则AC BC 与的夹角的大小为 ▲ .7. 已知向量()1,1=a ,()2,n =b ,若| a +b |=a·b,则n = ▲ .8. 已知函数1tan sin )(++=x b x a x f ,满足(5)7f =,则)5(-f = ▲ .9. 下面有四个命题:①函数44sin cos y x x =-的最小正周期是π. ②终边在y 轴上的角的集合是,2k k Z παα⎧⎫=∈⎨⎬⎩⎭. ③把函数3sin(2)3y x π=+的图象向右平移6π个单位长度得到3sin 2y x =的图象. ④函数sin()2y x π=-在[]0,π上是减函数. 其中,正确的是 ▲ .(填序号)10. 将函数sin y x =的图象向右平移4π个单位长度得到图象1C ,再将图象1C 上的所有点的横坐标变为原来的12倍(纵坐标不变)得到图象2C ,则2C 的函数解析式为 ▲ . 11.已知8,2x ⎛⎫= ⎪⎝⎭a ,(),1x =b ,其中0x >,若(a -2b )∥(2a +b ),则x 的值 ▲ . 12.函数3sin(2)6y x π=--的单调递减区间为 ▲ . 13.在△ABC 中,π6A ∠=,D 是BC 边上任意一点(D 与B C 、不重合),且22||||AB AD BD DC =+⋅,则B ∠等于 ▲ .14.在直角坐标系中, 如果两点(,),(,)A a b B a b --在函数)(x f y =的图象上, 那么称[],A B 为函数()f x 的一组关于原点的中心对称点([],A B 与[],B A 看作一组). 函数4sin ,0()2log (1),0x x g x x x π⎧<⎪=⎨⎪+>⎩关于原点的中心对称点的组数为 ▲ .二、解答题:本大题共6小题,共90分。
2021-2022学年高一上学期期中考试数学试卷及答案解析
2021-2022学年高一上学期期中考试数学试卷一.选择题(共8小题,满分40分,每小题5分)1.设集合A ={x |x >0},B ={x |log 2(3x ﹣2)<2},则( ) A .A ∩B =(0,53] B .A ∩B =(0,13] C .A ∪B =(13,+∞)D .A ∪B =(0,+∞)2.命题p :∀x ∈N ,x 3>x 2的否定形式¬p 为( ) A .∀x ∈N ,x 3≤x 2B .∃x ∈N ,x 3>x 2C .∃x ∈N ,x 3<x 2D .∃x ∈N ,x 3≤x 23.已知p :|m +1|<1,q :幂函数y =(m 2﹣m ﹣1)x m 在(0,+∞)上单调递减,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.已知幂函数f (x )=x 2m﹣1的图象经过点(2,8),则实数m 的值是( )A .﹣1B .12C .2D .35.设集合M ={x |x =4n +1,n ∈Z },N ={x |x =2n +1,n ∈Z },则( ) A .M ⫋NB .N ⫋MC .M ∈ND .N ∈M6.已知a =312,b =log 2√3,c =log 92,则a ,b ,c 的大小关系为( ) A .a >b >c B .a >c >bC .b >a >cD .c >b >a7.函数y =4xx 2+1的图象大致为( ) A .B .C.D.8.给出下列不等式:①a2+3>2a;②a2+b2>2(a﹣b﹣1);③x2+y2>2xy.其中恒成立的个数是()A.0B.1C.2D.3二.多选题(共4小题,满分20分,每小题5分)9.已知关于x的不等式ax2+bx+3>0,关于此不等式的解集有下列结论,其中正确的是()A.不等式ax2+bx+3>0的解集可以是{x|x>3}B.不等式ax2+bx+3>0的解集可以是RC.不等式ax2+bx+3>0的解集可以是{x|﹣1<x<3}D.不等式ax2+bx+3>0的解集可以是∅10.函数f(x)是定义在R上的奇函数,下列命题中正确的有()A.f(0)=0B.若f(x)在[0,+∞)上有最小值﹣1,则f(x)在(﹣∞,0]上有最大值1C.若f(x)在[1,+∞)上为增函数,则f(x)在(﹣∞,﹣1]上为减函数D.若x>0时,f(x)=x2﹣2x,则当x<0时,f(x)=﹣x2﹣2x11.如图,某池塘里浮萍的面积y(单位:m2)与时间t(单位:月)的关系为y=a t.关于下列说法正确的是()A.浮萍每月的增长率为2B.浮萍每月增加的面积都相等C.第4个月时,浮萍面积不超过80m2D.若浮萍蔓延到2m2,4m2,8m2所经过的时间分别是t1,t2,t3,则2t2=t1+t3 12.若集合A={x∈R|ax2﹣3x+2=0}中只有一个元素,则a的取值可以是()A.92B.98C.0D.1三.填空题(共4小题,满分20分,每小题5分)13.若函数f(x)的定义域为[﹣2,2],则函数f(3﹣2x)的定义域为.14.某数学小组进行社会实践调查,了解到某桶装水经营部在为如何定价发愁,进一步调研,了解到如下信息:该经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如表:销售单价/元6789101112日均销售量/桶480440400360320280240根据以上信息,你认为该经营部把桶装水定价为元/桶时能获得最大利润.15.不等式0.1x﹣ln(x﹣1)>0.01的解集为.16.对于函数f(x),若在定义域存在实数x,满足f(﹣x)=﹣f(x),则称f(x)为“局部奇函数”.若函数f(x)=4x﹣m•2x﹣3是定义在R上的“局部奇函数”,则实数m的取值范围为.四.解答题(共6小题,满分70分)17.(10分)(1)已知a ≤2,化简:√(a −2)2+√(a +3)33+(14)−12;(2)求值:3−log 32+log 610⋅(lg2+lg3)+log 927.18.(12分)已知全集U =R ,集合A ={x |1≤x <5},B ={x |2<x <8},C ={x |a <x ≤a +3}. (1)求A ∪B ,(∁U A )∩B ;(2)若“x ∈C ”为“x ∈A ”的充分不必要条件,求a 的取值范围.19.(12分)已知函数f(x)=x2−2x+ax.(1)当a=4时,求函数f(x)在x∈(0,+∞)上的最小值;(2)若对任意的x∈(0,+∞),f(x)>0恒成立.试求实数a的取值范围;(3)若a>0时,求函数f(x)在[2,+∞)上的最小值.20.(12分)国家发展改革委、住房城乡建设部于2017年发布了《生活垃圾分类制度实施方案》,规定46个城市在2020年底实施生活垃圾强制分类,垃圾回收、利用率要达35%以上.截至2019年底,这46个重点城市生活垃圾分类的居民小区覆盖率已经接近70%.某企业积极响应国家垃圾分类号召,在科研部门的支持下进行技术创新,新上一种把厨余垃圾加工处理为可重新利用的化工产品的项目.已知该企业日加工处理量x(单位:吨)最少为70吨,最多为100吨.日加工处理总成本y(单位:元)与日加工处理量x之间的函数关系可近似地表示为y=12x2+40x+3200,且每加工处理1吨厨余垃圾得到的化工产品的售价为100元.(Ⅰ)该企业日加工处理量为多少吨时,日加工处理每吨厨余垃圾的平均成本最低?此时该企业处理1吨厨余垃圾处于亏损还是盈利状态?(Ⅱ)为了该企业可持续发展,政府决定对该企业进行财政补贴,补贴方式共有两种.①每日进行定额财政补贴,金额为2300元;②根据日加工处理量进行财政补贴,金额为30x.如果你是企业的决策者,为了获得最大利润,你会选择哪种补贴方式进行补贴?为什么?21.(12分)定义在R上的奇函数f(x)是单调函数,满足f(3)=6,且f(x+y)=f(x)+f(y)(x,y∈R).(1)求f(0),f(1);(2)若对于任意x∈[12,3]都有f(kx2)+f(2x﹣1)<0成立,求实数k的取值范围.22.(12分)已知函数f(x)=2x−12x,g(x)=(4﹣lnx)•lnx+b(b∈R).(1)若f(x)>0,求实数x的取值范围;(2)若存在x1,x2∈[1,+∞),使得f(x1)=g(x2),求实数b的取值范围;2021-2022学年高一上学期期中考试数学试卷参考答案与试题解析一.选择题(共8小题,满分40分,每小题5分)1.设集合A ={x |x >0},B ={x |log 2(3x ﹣2)<2},则( ) A .A ∩B =(0,53] B .A ∩B =(0,13] C .A ∪B =(13,+∞)D .A ∪B =(0,+∞)解:∵集合A ={x |x >0},B ={x |log 2(3x ﹣2)<2}, ∴B ={x |23<x <2},则A ∪B =(0,+∞),A ∩B =(23,2),故选:D .2.命题p :∀x ∈N ,x 3>x 2的否定形式¬p 为( ) A .∀x ∈N ,x 3≤x 2B .∃x ∈N ,x 3>x 2C .∃x ∈N ,x 3<x 2D .∃x ∈N ,x 3≤x 2解:命题p :∀x ∈N ,x 3>x 2的否定形式是特称命题; ∴¬p :“∃x ∈N ,x 3≤x 2”. 故选:D .3.已知p :|m +1|<1,q :幂函数y =(m 2﹣m ﹣1)x m 在(0,+∞)上单调递减,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解:p :|m +1|<1等价于﹣2<m <0,∵幂函数y =(m 2﹣m ﹣1)x m 在(0,+∞)上单调递减, ∴m 2﹣m ﹣1=1,且m <0, 解得m =﹣1,∴p 是q 的必要不充分条件, 故选:B .4.已知幂函数f (x )=x 2m﹣1的图象经过点(2,8),则实数m 的值是( )A .﹣1B .12C .2D .3解:∵幂函数f (x )=x 2m ﹣1的图象经过点(2,8),∴22m ﹣1=8,∴m =2, 故选:C .5.设集合M ={x |x =4n +1,n ∈Z },N ={x |x =2n +1,n ∈Z },则( ) A .M ⫋NB .N ⫋MC .M ∈ND .N ∈M解:①当n =2m ,m ∈Z 时,x =4m +1,m ∈Z , ②当n =2m +1,m ∈Z 时,x =4m +3,m ∈Z , 综合①②得:集合N ={x |x =4m +1或x =4m +3,m ∈Z }, 又集合M ={x |x =4n +1,n ∈Z }, 即M ⫋N , 故选:A . 6.已知a =312,b=log 2√3,c =log 92,则a ,b ,c 的大小关系为( )A .a >b >cB .a >c >bC .b >a >cD .c >b >a解;∵a =312∈(1,2),b=log 2√3>log 2√2=12,∵log 2√3<log 22=1, ∴12<b <1,c =log 92<log 93=12, 则a >b >c , 故选:A . 7.函数y =4xx 2+1的图象大致为( ) A .B.C.D.解:函数y=4xx2+1的定义域为实数集R,关于原点对称,函数y=f(x)=4xx2+1,则f(﹣x)=−4xx2+1=−f(x),则函数y=f(x)为奇函数,故排除C,D,当x>0时,y=f(x)>0,故排除B,故选:A.8.给出下列不等式:①a2+3>2a;②a2+b2>2(a﹣b﹣1);③x2+y2>2xy.其中恒成立的个数是()A.0B.1C.2D.3解:①a2+3﹣2a=(a﹣1)2+2>0恒成立,所以a2+3>2a,故①正确;②a2+b2﹣2a+2b+2=(a﹣1)2+(b﹣1)2≥0,所以a2+b2≥2(a﹣b﹣1),故②正确;③x2+y2≥2xy,当且仅当x=y时等号成立,故③不正确.故恒成立的个数是2.故选:C.二.多选题(共4小题,满分20分,每小题5分)9.已知关于x的不等式ax2+bx+3>0,关于此不等式的解集有下列结论,其中正确的是()A.不等式ax2+bx+3>0的解集可以是{x|x>3}B.不等式ax2+bx+3>0的解集可以是RC.不等式ax2+bx+3>0的解集可以是{x|﹣1<x<3}D.不等式ax2+bx+3>0的解集可以是∅解:在A 项中,依题意可得a =0,且3b +3=0,解得b =﹣1,此时不等式为﹣x +3>0,解得x <3,故A 项错误;在B 项中,取a =1,b =2,可得x 2+2x +3=(x +1)2+2>0,解集为R ,故B 项正确; 在C 项中,依题意可得a <0,且{−1+3=−ba −1×3=3a ,解得{a =−1b =2,符合题意,故C 项正确.在D 选中,当x =0时,ax 2+bx +3=3>0,可得其解集不为∅,故D 选错误; 故选:BC .10.函数f (x )是定义在R 上的奇函数,下列命题中正确的有( ) A .f (0)=0B .若f (x )在[0,+∞)上有最小值﹣1,则f (x )在(﹣∞,0]上有最大值1C .若f (x )在[1,+∞)上为增函数,则f (x )在(﹣∞,﹣1]上为减函数D .若x >0时,f (x )=x 2﹣2x ,则当x <0时,f (x )=﹣x 2﹣2x 解:根据题意,依次分析选项:对于A ,函数f (x )是定义在R 上的奇函数,则f (﹣x )=﹣f (x ),当x =0时,有f (0)=﹣f (0),变形可得f (0)=0,A 正确,对于B ,若f (x )在[0,+∞)上有最小值﹣1,即x ≥0时,f (x )≥﹣1,则有﹣x ≤0,f (﹣x )=﹣f (x )≤1,即f (x )在(﹣∞,0]上有最大值1,B 正确,对于C ,奇函数在对应的区间上单调性相同,则若f (x )在[1,+∞)上为增函数,则f (x )在(﹣∞,﹣1]上为增函数,C 错误,对于D ,设x <0,则﹣x >0,则f (﹣x )=(﹣x )2﹣2(﹣x )=x 2+2x ,则f (x )=﹣f (﹣x )=﹣(x 2+2x )=﹣x 2﹣2x ,D 正确, 故选:ABD .11.如图,某池塘里浮萍的面积y (单位:m 2)与时间t (单位:月)的关系为y =a t .关于下列说法正确的是( )A .浮萍每月的增长率为2B .浮萍每月增加的面积都相等C .第4个月时,浮萍面积不超过80m 2D .若浮萍蔓延到2m 2,4m 2,8m 2所经过的时间分别是t 1,t 2,t 3,则2t 2=t 1+t 3 解:图象可知,函数过点(1,3), ∴a =3,∴函数解析式为y =3t , ∴浮萍每月的增长率为:3t+1−3t3t=2×3t 3t=2,故选项A 正确,∵函数y =3t 是指数函数,是曲线型函数,∴浮萍每月增加的面积不相等,故选项B 错误, 当t =4时,y =34=81>80,故选项C 错误,对于D 选项,∵3t 1=2,3t 2=4,3t 3=8,∴t 1=log 32,t 2=log 34,t 3=log 38, 又∵2log 34=log 316=log 32+log 38,∴2t 2=t 1+t 3,故选项D 正确, 故选:AD .12.若集合A ={x ∈R |ax 2﹣3x +2=0}中只有一个元素,则a 的取值可以是( ) A .92B .98C .0D .1解:∵A ={x ∈R |ax 2﹣3x +2=0}中只有一个元素,∴若a =0,方程等价为﹣3x +2=0,解得x =23,满足条件. 若a ≠0,则方程满足△=0,即9﹣8a =0,解得a =98.故选:BC .三.填空题(共4小题,满分20分,每小题5分)13.若函数f (x )的定义域为[﹣2,2],则函数f (3﹣2x )的定义域为 [12,52] . 解:∵函数f (x )的定义域为[﹣2,2], ∴由﹣2≤3﹣2x ≤2,解得12≤x ≤52.∴函数f (3﹣2x )的定义域为[12,52].故答案为:[12,52].14.某数学小组进行社会实践调查,了解到某桶装水经营部在为如何定价发愁,进一步调研,了解到如下信息:该经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如表: 销售单价/元 6 7 8 9 10 11 12 日均销售量/桶480440400360320280240根据以上信息,你认为该经营部把桶装水定价为 11.5 元/桶时能获得最大利润. 解:由表可知,销售单价每增加1元,日均销售就减少40桶. 设每桶水的价格为(6+x )元,公司日利润为y 元,则y =(6+x ﹣5)(480﹣40x )﹣200=﹣40x 2+440x +280=﹣40(x −112)2+1490, 所以当x =5.5时,y 取得最大值,所以每桶水定价为11.5元时,公司日利润最大. 故答案为:11.5.15.不等式0.1x ﹣ln (x ﹣1)>0.01的解集为 (1,2) . 解:设函数f (x )=0.1x ﹣ln (x ﹣1), ∵y =0.1x 和y =﹣ln (x ﹣1)均为减函数, ∴函数f (x )为减函数,∵f (2)=0.01,且函数的定义域为(1,+∞), ∴原不等式等价于f (x )>f (2), ∴1<x <2,∴不等式的解集为(1,2). 故答案为:(1,2).16.对于函数f (x ),若在定义域存在实数x ,满足f (﹣x )=﹣f (x ),则称f (x )为“局部奇函数”.若函数f (x )=4x ﹣m •2x ﹣3是定义在R 上的“局部奇函数”,则实数m 的取值范围为 [﹣2,+∞) .解:根据题意,由“局部奇函数”的定义可知:若函数f (x )=4x ﹣m •2x ﹣3是定义在R 上的“局部奇函数”,则方程f (﹣x )=﹣f (x )有解; 即4﹣x ﹣m •2﹣x ﹣3=﹣(4x ﹣m •2x ﹣3)有解;变形可得4x +4﹣x ﹣m (2x +2﹣x )﹣6=0,即(2x +2﹣x )2﹣m (2x +2﹣x )﹣8=0有解即可;设2x +2﹣x =t (t ≥2),则方程等价为t 2﹣mt ﹣8=0在t ≥2时有解;设g (t )=t 2﹣mt ﹣8=0,必有g (2)=4﹣2m ﹣8=﹣2m ﹣4≤0, 解可得:m ≥﹣2,即m 的取值范围为[﹣2,+∞); 故答案为:[﹣2,+∞).四.解答题(共6小题,满分70分) 17.(10分)(1)已知a ≤2,化简:√(a−2)2+√(a +3)33+(14)−12;(2)求值:3−log 32+log 610⋅(lg2+lg3)+log 927. 解:(1)∵a ≤2, ∴√(a −2)2+√(a +3)33+(14)−12, =2﹣a +a +3+2=7;(2)3−log 32+log 610⋅(lg2+lg3)+log 927, =12+log 610⋅lg6+32, =12+1+32=3.18.(12分)已知全集U =R ,集合A ={x |1≤x <5},B ={x |2<x <8},C ={x |a <x ≤a +3}. (1)求A ∪B ,(∁U A )∩B ;(2)若“x ∈C ”为“x ∈A ”的充分不必要条件,求a 的取值范围.解:(1)∵集合A ={x |1≤x <5},B ={x |2<x <8}∴A ∪B ={x |1≤x <8},(∁U A )={x |x <1或x ≥5},(∁U A )∩B ={x |5≤x <8}(2)∵“x ∈C ”为“x ∈A ”的充分不必要条件,C ={x |a <x ≤a +3}∴C ⫋A ,∴{a +3<5a ≥1,解得1≤a <2,故a的取值范围是[1,2).19.(12分)已知函数f(x)=x2−2x+ax.(1)当a=4时,求函数f(x)在x∈(0,+∞)上的最小值;(2)若对任意的x∈(0,+∞),f(x)>0恒成立.试求实数a的取值范围;(3)若a>0时,求函数f(x)在[2,+∞)上的最小值.解:(1)当a=4时,f(x)=x−2x+4x=x+4x−2,当x∈(0,+∞)时,f(x)=x+4x−2≥2√x×4x−2=2,当且仅当x=4x即x=2时等号成立,所以f(x)的最小值为2.(2)根据题意可得x2﹣2x+a>0在x∈(0,+∞)上恒成立,等价于a>﹣x2+2x在x∈(0,+∞)上恒成立,因为g(x)=﹣x2+2x在(0,1)上单调递增,在(1,+∞)上单调递减,所以g(x)max=g(1)=1,所以a>1.(3)f(x)=x+ax−2,设0<x1<x2<√a,f(x1)﹣f(x2)=x1﹣x2+ax1−a x2=(x1﹣x2)(1−ax1x2)=(x1−x2)(x1x2−a)x1x2,∵0<x1<x2<√a,∴x1x2<a,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2),∴f(x)在(0,√a)单调递减,同理可证f(x)在(√a,+∞)单调递增,当0<a≤4时,0<√a≤2,函数f(x)在[2,+∞)上单调递增,f(x)min=f(2)=a 2,当a>4时,√a>2,函数f(x)在[2,√a)上单调递减,在(√a,+∞)上单调递增,f(x)min=f(√a)=2√a−2.所以f(x)min={a2(0<a<4)2√a−2(a>4).20.(12分)国家发展改革委、住房城乡建设部于2017年发布了《生活垃圾分类制度实施方案》,规定46个城市在2020年底实施生活垃圾强制分类,垃圾回收、利用率要达35%以上.截至2019年底,这46个重点城市生活垃圾分类的居民小区覆盖率已经接近70%. 某企业积极响应国家垃圾分类号召,在科研部门的支持下进行技术创新,新上一种把厨余垃圾加工处理为可重新利用的化工产品的项目.已知该企业日加工处理量x (单位:吨)最少为70吨,最多为100吨.日加工处理总成本y (单位:元)与日加工处理量x 之间的函数关系可近似地表示为y =12x 2+40x +3200,且每加工处理1吨厨余垃圾得到的化工产品的售价为100元.(Ⅰ)该企业日加工处理量为多少吨时,日加工处理每吨厨余垃圾的平均成本最低?此时该企业处理1吨厨余垃圾处于亏损还是盈利状态?(Ⅱ)为了该企业可持续发展,政府决定对该企业进行财政补贴,补贴方式共有两种. ①每日进行定额财政补贴,金额为2300元; ②根据日加工处理量进行财政补贴,金额为30x .如果你是企业的决策者,为了获得最大利润,你会选择哪种补贴方式进行补贴?为什么? 解:(Ⅰ)由题意可知,每吨厨余垃圾平均加工成本为yx=x 2+3200x+40,x ∈[70,100],而x2+3200x +40≥2√x 2⋅3200x+40=2×40+40=120,当且仅当x2=3200x,即x =80时,每吨厨余垃圾的平均加工成本最低.因为80<100,所以此时该企业处理1吨厨余垃圾处于亏损状态.(Ⅱ)若该企业采用补贴方式①,设该企业每日获利为y 1,y 1=100x −(12x 2+40x +3200)+2300=−12x 2+60x −900=−12(x −60)2+900, 因为x ∈[70,100],所以当x =70吨时,企业获得最大利润,为850元. 若该企业采用补贴方式②,设该企业每日获利为y 2,y 2=130x −(12x 2+40x +3200)=−12x 2+90x −3200=−12(x −90)2+850, 因为x ∈[70,100],所以当x =90吨时,企业获得最大利润,为850元.结论:选择方案一,当日加工处理量为70吨时,可以获得最大利润;选择方案二,当日加工处理量为90吨时,获得最大利润, 由于最大利润相同,所以选择两种方案均可.21.(12分)定义在R 上的奇函数f (x )是单调函数,满足f (3)=6,且f (x +y )=f (x )+f (y )(x ,y ∈R ). (1)求f (0),f (1);(2)若对于任意x ∈[12,3]都有f (kx 2)+f (2x ﹣1)<0成立,求实数k 的取值范围. 解:(1)因为R 上的奇函数f (x )是单调函数,满足f (3)=6,且f (x +y )=f (x )+f (y ).令x =y =0可得f (0)=2f (0), 所以f (0)=0,令x =1,y =1,可得f (2)=2f (1),令x =2,y =1可得f (3)=f (1)+f (2)=3f (1)=6, 所以f (1)=2;(2)∵f (x )是奇函数,且f (kx 2)+f (2x ﹣1)<0在x ∈[12,3]上恒成立, ∴f (kx 2)<f (1﹣2x )在x ∈[12,3]上恒成立,且f (0)=0<f (1)=2; ∴f (x )在R 上是增函数,∴kx 2<1﹣2x 在x ∈[12,3]上恒成立, ∴k <(1x )2−2(1x )在x ∈[12,3]上恒成立, 令g(x)=(1x )2−2(1x )=(1x −1)2−1. 由于12≤x ≤3,∴13≤1x≤2.∴g (x )min =g (1)=﹣1,∴k <﹣1,即实数k 的取值范围为(﹣∞,﹣1). 22.(12分)已知函数f (x )=2x −12x ,g (x )=(4﹣lnx )•lnx +b (b ∈R ). (1)若f (x )>0,求实数x 的取值范围;(2)若存在x 1,x 2∈[1,+∞),使得f (x 1)=g (x 2),求实数b 的取值范围;解:(1)f(x)>0⇔2x−12x>0,∴2x>2﹣x,∴x>﹣x,即x>0.∴实数x的取值范围为(0,+∞).(2)设函数f(x),g(x)在区间[1,+∞)的值域分别为A,B.∵f(x)=2x−12x在[1,+∞)上单调递增,∴A=[32,+∞).∵g(x)=(4﹣lnx)•lnx+b=﹣(lnx﹣2)2+b+4(b∈R).∵x∈[1,+∞),∴lnx∈[0,+∞),∴g(x)≤b+4,依题意可得A∩B≠∅,∴b+4≥32,即b≥−32.∴实数b的取值范围为[−32,+∞).。
2020-2021学年度高一上学期期中考试英语试卷及答案
2020-2021学年度高一上学期期中考试英语试卷及答案考试时间:120分钟试卷满分:120分第一卷(共85分)第一部分听力(共20小题,每题1分,满分20分)第一节听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What color book does the man want?A. The red one.B. The blue one.C. The black one.2. What did the woman do on her vacation?A. She went for a bike ride.B. She relaxed on the beach.C. She cooked a fancy dinner.3. When does the man have breakfast on weekends?A. At about 9:00.B. At about 10:00.C. At about 11:00.4. What will Lisa do after school?A. Go home directly.B. Come to Tim’s house.C. Stay late to do homework.5. What does the woman say about her house?A. It’s next to a bar.B. It’s in the city center.C. It’s not comfortable inside.第二节听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
江苏省2020-2021学年高一上学期数学期中试题汇编04:函数的概念与性质【填选题】(答案版)
8.(江苏省南京市第十二中学2020-2021学年上学期期中4)下面各组函数中表示同个函数的是()
A. , B. ,
C. , D. ,
【答案】B
【解析】对于A, 的定义域为 ,而 的定义域为 ,两函数的定义域不相同,所以不是同一函数;
对于B,两个函数的定义域都为 ,定义域相同, ,所以这两个函数是同一函数;
A.0B.2
C.4D.-2
【答案】B
【解析】取 ,则 ,
因为函数为奇函数,则 , 即 ,
整理可得 ,即 .故选:B
10.(江苏省南通市西亭高级中学2020-2021学年上学期期中4)已知函数 ,若 =10,则实数a的值为()
A 5B.9C.10D.11
【答案】B
【解析】由 ,令 ,则 .
因为 ,所以a=9.故选:B
A.-4 B.5 C.14 D.23
【答案】C
【解析】由题意可设 ,则当 时, 单调,且 ≥0恒成立,因为 的对称轴方程为 ,则 或 ,解得6≤a≤17或-3≤a≤-2,即 ,则只有14满足题意,故答案选C.
23.(江苏省南通市西亭高级中学2020-2021学年上学期期中6)已知 是偶函数,且其定义域为 ,则 的值是()
【答案】C
【解析】满足条件的函数的定义域为 、 、 、 、 、 、 、 、 ,共 个.故选:C.
18.(江苏省南京市南师附中2020-2021学年上学期期中5)函数 的值域为( )
A. B. C. D.
【答案】D
19.(江苏省南通市西亭高级中学2020-2021学年上学期期中5)已知函数 的值域是()
C.[-4,-1]∪[0,2]D.(-∞,-1]∪[0,2]
2021年高一下学期期中考试数学试卷+答案
2020-2021学年度第二学期高一年级期中检测时间:120分钟 总分:150分注意事项:2021.41.答题前,考生先将自己的姓名、准考证号填写在答题卡上并检查试卷.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.4.保持卡面清洁,不折叠,不破损. 一、单项选择题:本大题共8小题,每小题5分,共40分.1. 设a =log 0.20.3,b =log 20.3,则( )A .a +b <ab <0B .ab <a +b <0C .a +b <0<abD .ab <0<a +b2. 已知实数x ,y 满足⎩⎪⎨⎪⎧ 2x +y -2≥0,x -2y +4≥0,3x -y -3≤0,若y ≥k (x +1)-1恒成立,那么k 的取值范围是( )A. ⎣⎡⎦⎤12,3B. ⎝⎛⎦⎤-∞,43C. [3,+∞)D. ⎝⎛⎦⎤-∞,12 3. 在△ABC 中,A ,B ,C 的对边分别是a ,b ,c .若A =120°,a =1,则2b +3c 的最大值为( )A .3 B. 2213 C .3 2 D. 3524. 素数也叫质数,法国数学家马林·梅森是研究素数的数学家中成就很高的一位,因此后人将“2n -1”形式(n 是素数)的素数称为梅森素数.已知第20个梅森素数为P =24423-1,第19个梅森素数为Q =24253-1,则下列各数中与P Q最接近的数为(参考数据:lg 2≈0.3)( )A .1045B .1051C .1056D .10595. 在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,b cos A =c -12a ,点D 在AC 上,2AD =DC ,BD =2,则△ABC 的面积的最大值为( ) A. 332B. 3 C .4 D .6 6. 欧拉公式e i x =cos x +isin x (i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式可知,e πie π4i 表示的复数在复平面中位于( )A .第一象限B .第二象限C .第三象限D .第四象限 7. 如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线8. 定义在R 上的偶函数f (x )对任意实数都有f (2-x )=f (x +2),且当x ∈(-1,3]时,f (x )=⎩⎨⎧ 1-x 2,x ∈(-1,1],1-|x -2|,x ∈(1,3],则函数g (x )=5f (x )-|x |的零点个数为( ) A .5 B .6 C .10 D .12二、多项选择题:本大题共4题,每小题5分,共20分.9. 正五角星是一个非常优美的几何图形,且与黄金分割有着密切的联系。
2020-2021学年第一学期八年级数学期中考试卷(及答案)共五套
2020-2021学年第一学期期中考试试卷八年级数学一、选择题(本大题共10小题,每小题2分,共20分)1.下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的A .B .C .D .2.在平面直角坐标系中,点P (1,﹣2)的位置在A .第一象限B .第二象限C .第三象限D .第四象限3.等腰三角形两边长分别为2和4,则这个等腰三角形的周长为A .6B .8C .10D .8或104.今年10月环太湖中长跑中参赛选手达到21780人,这个数精确到千位表示约为( ) A .2.2×104B .22000C .2.1×104D .225.如图,在数轴上表示实数7+1的点可能是A .PB .QC .RD .S6.如图是跷跷板的示意图,支柱OC 与地面垂直,点O 是AB 的中点,AB 绕着点O 上下转动.当A 端落地时,∠OAC =20°,跷跷板上下可转动的最大角度(即∠A ′OA )是 A .80° B .60° C .40° D .20°7.如图,将一个三角形纸片ABC 沿过点B 的直线折叠,使点C 落在AB 边上的点E 处,折痕为BD ,则下列结论一定正确的是 A .AD =BDB .AE =ACC .ED +EB =DBD .AE +CB =AB8.由下列条件不能判定△ABC 为直角三角形的是A .a =,b =,c =B .∠A +∠B =∠C C .∠A :∠B :∠C =1:3:2D .(b +c )(b ﹣c )=a 29.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =6,DE =3,则△BCE 的面积等于A .6B .8C .9D .1810.如图,在四边形ABCD 中,AB =AC =BD ,AC 与BD 相交于H ,且AC ⊥BD .①ABPQ RS(第5题)ABCA 'B 'O(第6题)(第7题)∥CD ;②△ABD ≌△BAC ;③AB 2+CD 2=AD 2+CB 2;④∠ACB +∠BDA =135°.其中真命题的个数是A .1B .2C .3D .4二、填空题(本大题共8小题,每空2分,共16分) 11.81的算术平方根是 ▲ .12.在平面直角坐标系中,点P (-1,2)关于x 轴的对称点的坐标为 ▲ . 13.如图,在R t △ABC 中,CD 是斜边AB 上的中线,若AB =20,则CD = ▲ . 14.如图,△ABC 是边长为6的等边三角形,D 是BC 上一点,BD =2,DE ⊥BC 交AB 于点E ,则线段AE = ▲ .15.如图,三个正方形中,其中两个正方形的面积分别是100,36,则字母A 所代表的正方形的边长是 ▲ .16.如图,在△ABC 中,AB =AC ,∠B =66°,D ,E 分别为AB ,BC 上一点,AF ∥DE ,若∠BDE =30°,则∠F AC 的度数为 ▲ .17.如图,数轴上点A 、点B 表示的数分别中1和5,若点A 是线段BC 的中点,则点C 所表示的数是 ▲ .18.已知:如图,ΔABC 中,∠A =45°,AB =6,AC =24,点D 、E 、F 分别是三边AB 、BC 、CA 上的点,则ΔDEF 周长的最小值是 ▲ .AB CD E(第14题)AB CD(第13题)(第15题)ABCDH(第10题)(第9题)A BCF DE(第16题)(第17题)(第18题)FEDCBA三、解答题(本大题共9题,共64分) 19.(8分)(1)计算:()234272-+-; (2)已知:4x 2=20,求x 的值.20.(4分)如图,四边形ABCD 中,AB =BC ,AD =CD ,求证:∠A =∠C .CDBA21.(6分)如图,在△ABC 中,AD ⊥BC ,AB =10,BD =8,∠ACD =45°. (1)求线段AD 的长;(2)求△ABC 的周长.22.(6分)已知点A (1,2a -1),点B (-a ,a -3) . ①若点A 在第一、三象限角平分线上,求a 值.②若点B 到x 轴的距离是到y 轴距离的2倍,求点B 所在的象限.23.(8分)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB ,在图③中已画出点A .按下列要求画图:(1)在图①中,以格点为顶点,AB 为一边画一个等腰三角形ABC ; (2)在图②中,以格点为顶点,AB 为一边画一个正方形;(3)在图③中,以点A 为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形,这个正方形的面积= .24.(8分)如图,在△ABC 中,AB =AC ,点D 、E 、F 分别在BC 、AB 、AC 边上,且BE =CF ,BD =CE .(1)求证:△DEF 是等腰三角形;(2)当∠A =40°时,求∠DEF 的度数.25.(8分)如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足P A=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.26.(8分)如图,在Rt△ABC中,∠ACB=90°,AD、BE、CF分别是三边上的中线.(1)若AC=1,BC=.求证:AD2+CF2=BE2;(2)是否存在这样的Rt△ABC,使得它三边上的中线AD、BE、CF的长恰好是一组勾股数?请说明理由.(提示:满足关系a2+b2=c2的3个正整数a、b、c称为勾股数.)27.(8分)定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三等分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.2020~2021学年度第一学期期中考试八年级数学试题一、选择题(共10小题,每小题3分,共30分) 1.下列图形中不是轴对称图形的是( )2.在平面直角坐标系中,点P (-3,2)在( ) A .第一象限B .第二象限C .第三象限D .第四象限 3.三角形中最大的内角不能小于( ) A .30°B .45°C .60°D .90°4.下列关于两个三角形全等的说法: ① 三个角对应相等的两个三角形全等 ② 三条边对应相等的两个三角形全等③ 有两边和它们的夹角对应相等的两个三角形全等 ④ 有两边和其中一边上的高对应相等的两个三角形全等 正确的说法个数是( ) A .1个 B .2个 C .3个 D .4个 5.在平面直角坐标系中,点P (2,-3)关于x 轴的对称点是( )A .(-2,3)B .(2,3)C .(-2,-3)D .(-3,2) 6.如图所示,∠A =28°,∠BFC =92°,∠B =∠C ,则∠BDC 的度数是( )A .85°B .75°C .64°D .60°7.如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别是D 、E ,AD 、CE 交于点H .已知EH =EB =3,AE =5,则CH 的长是( ) A .1B .2C .53D .358.如图所示的正方形网格中,网格线的交点称为格点,已知A 、B 是两格点,如果C 也是图中的格点,且使得△ABC 为等腰三角形,则点C 的个数是( ) A .6个B .7个C .8个D .9个9.如图,AB =2,BC =AE =6,CE =CF =7,BF =8,四边形ABDE 与△CDF 面积的比值是( ) A .21B .32C .43 D .110.如图,在△ABC 中,BC 的垂直平分线DF 交△ABC 的外角平分线AD 于点D ,DE ⊥AB 于点E ,且AB >AC ,则( ) A .BC =AC +AEB .BE =AC +AEC .BC =AC +AD D .BE =AC +AD二、填空题(本大题共6个小题,每小题3分,共18分)11.若一个多边形的内角和是外角和的2倍,则它的边数是___________12.设△ABC 的三边长分别为a 、b 、c ,其中a 、b 满足|a +b -6|+(a -b +4)2=0,则第三边长c 的取值范围是_____________13.点M (-5,3)关于直线x =1的对称点的坐标是___________14.如图所示,在△FED 中,AD =FC ,∠A =∠F .如果用“SAS ”证明△ABC ≌△FED ,只需添加条件_____________即可15.在△ABC 中,高AD 、BE 所在的直线相交于点G ,若BG =AC ,则∠ABC 的度数是_____16.如图,在Rt △ABC 中,∠C =90°,BC =6,AC =8,一条线段PQ =AB =10,P 、Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,如果以A 、P 、Q 为顶点的三角形与△ABC 全等,则AP =____________三、解答题(共8小题,共72分)17.(本题8分)解方程组:(1) ⎩⎨⎧=-=-32373y x y x(2) ⎩⎨⎧=-=+5342y x y x18.(本题8分)如图所示,在△ABC 中:(1) 画出BC 边上的高AD 和中线AE(2) 若∠B =30°,∠ACB =130°,求∠BAD 和∠CAD 的度数19.(本题8分)如图,点B 、E 、C 、F 在同一直线上,且AB =DE ,AC =DF ,BE =CF ,请将下面说明△ABC ≌△DEF 的过程和理由补充完整解:∵BE =CF (_____________)∴BE +EC =CF +EC即BC =EF在△ABC 和△DEF 中⎪⎩⎪⎨⎧===__________________BC DF AB )()(∴△ABC ≌△DEF (__________)20.(本题8分)如图所示,D是边AB的中点,△BCD的周长比△ACD的周长大3 cm,BC=8 cm,求边AC的长21.(本题8分)已知,如图所示,CE⊥AB与E,BF⊥AC与F,且BD=CD,求证:(1) △BDE≌△CDF(2) 点D在∠BAC的角平分线上22.(本题10分)如图,设△ABC和△CDE都是等边三角形,并且∠EBD=90°,求证:(1) △ACE≌△BCD(2) 求∠AEB的度数23.(本题10分)如图1,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F(1) 直接写出∠AFC的度数(2) 请你判断并写出FE与FD之间的数量关系(3) 如图2,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,试判断线段AE、CD 与AC之间的数量关系并说明理由24.(本题12分)如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E.已知AO=m,BO=n,且m、n 满足(n-6)2+|n-2m|=0(1) 求A、B两点的坐标(2) 若点D为AB中点,求OE的长(3) 如图2,若点P(x,-2x+6)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P 的坐标2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共12小题,满分36分,每小题3分)1.下面的图形中,是轴对称图形的是()A.B.C.D.2.下列因式分解结果正确的是()A.x2+3x+2=x(x+3)+2 B.4x2﹣9=(4x+3)(4x﹣3)C.x2﹣5x+6=(x﹣2)(x﹣3)D.a2﹣2a+1=(a+1)23.利用尺规进行作图,根据下列条件作三角形,画出的三角形不唯一的是()A.已知三条边B.已知两边和夹角C.已知两角和夹边D.已知三个角4.用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS5.已知一个三角形有两边相等,且周长为25,若量得一边为5,则另两边长分别为()A.10,10 B.5,10 C.12.5,12.5 D.5,156.若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为()A.﹣1 B.1 C.﹣3 D.37.如图,已知AB∥CF,E为DF的中点,若AB=8cm,CF=5cm,则BD为()A.2cm B.3cm C.4cm D.1cm8.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°9.当x=1时,代数式x3+x+m的值是7,则当x=﹣1时,这个代数式的值是()A.7 B.3 C.1 D.﹣710.如图,△BDC′是将矩形纸片ABCD沿BD折叠得到的,BC′与AD交于点E,则图中共有全等三角形()A.2对B.3对C.4对D.5对11.已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC 对称,点E与点F关于BD对称,AC与BD相交于点G,则()A.1+AB/AD=B.2BC=5CFC.∠AEB+22°=∠DEF D.4AB/BD =12.如图,Rt△ABC中,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,AC=6cm,则BE的长度为()A.10cm B.6cm C.4cm D.2cm二.填空题(共6小题,满分18分,每小题3分)13.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.14.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C= 度.15.已知:在△ABC中,AH⊥BC,垂足为点H,若AB+BH=CH,∠ABH=70°,则∠BAC= °.16.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF= .17.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于.18.我们将1×2×3×…×n记作n!(读作n的阶乘),如2!=1×2,3!=1×2×3,4!=1×2×3×4,若设S=1×1!+2×2!+3×3!+…+2016×2016!,则S除以2017的余数是.三.解答题(共7小题)19.因式分解:(1)9a2﹣4(2)ax2+2a2x+a320.如图,△ABC三个顶点的坐标分别为A(4,5)、B(1,0)、C(4,0).(1)画出△ABC关于y轴的对称图形△A1B1C1,并写出A1点的坐标;(2)在y轴上求作一点P,使△PAB的周长最小,并求出点P的坐标及△PAB的周长最小值.21.如图,已知:A、F、C、D在同一条直线上,BC=EF,AB=DE,AF=CD.求证:BC∥EF.22.若m2﹣2m n+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+()=0,即()2+()2=0.根据非负数的性质,∴m=n=阅读上述解答过程,解答下面的问题,设等腰三角形ABC的三边长a、b、c,且满足a2+b2﹣4a﹣6b+13=0,求△ABC的周长.23.如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)求∠5、∠7的度数.24.如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A、B重合),BE⊥CD于E,交直线AC于F.(1)点D在边AB上时,证明:AB=FA+BD;(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请画出图形并直接写出正确结论.25.如图,某学校(A点)与公路(直线L)的距离AB为300米,又与公路车站(D点)的距离AD为500米,现要在公路上建一个小商店(C点),使CA=CD,求商店与车站之间的距离CD的长.参考答案一.选择题1. D.2. C.3. D.4. D.5. A.6. A.7. B.8. B.9. B.10. C.11. A.12. C.二.填空题13. 4.14. 24.15. 75°或35°16. 4.17..18. 2016.三.解答题19.解:(1)9a2﹣4=(3a+2)(3a﹣2)(2)ax2+2a2x+a3=a(x+a)220.解:(1)如图所示,由图可知 A1(﹣4,5);(2)如图所示,点P即为所求点.设直线AB1的解析式为y=kx+b(k≠0),∵A(4,5),B1(﹣1,0),∴,解得,∴直线AB1的解析式为y=x+1,∴点P坐标(0,1),∴△PAB的周长最小值=AB1+AB=+=5+.21.证明:如图,∵AF=CD,∴AF+CF=CD+CF,即AC=DF.∴在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠BCA=∠EFD,∴BC∥EF.22.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0,即(m﹣n)2+(n﹣4)2=0.根据非负数的性质,∴m=n=4,故答案为:n2﹣8n+16;m﹣n;n﹣4;4;已知等式变形得:(a﹣2)2+(b﹣3)2=0,所以a=2,b=3,第一种情况2,2,3,周长=7;第二种情况3,3,2,周长=8.23.解:(1)CO是△BCD的高.理由如下:∵BC⊥CD,∴∠DCB=90°,∴∠1=∠2=∠3=45°,∴△DCB是等腰直角三角形,∴CO是∠DCB的角平分线,∴CO⊥BD(等腰三角形三线合一);(2)∵在△ACD中,∠1=∠3=45°,∠4=60°,∴∠5=30°,又∵∠5=∠6,∴∠6=30°,∴在直角△AOB中,∠7=180°﹣90°﹣30°=60°.24.(本题满分8分)(1)证明:如图1,∵BE⊥CD,即∠BEC=90°,∠BAC=90°,∴∠F+∠FBA=90°,∠F+∠FCE=90°.∴∠FBA=∠FCE.……………………………………………………………(1分)∵∠FAB=180°﹣∠DAC=90°,∴∠FAB=∠DAC.∵AB=AC,∴△FAB≌△DAC.………………………………………………(2分)∴FA=DA.………………………………………………∴AB=AD+BD=FA+BD.………………………………………(4分)(2)如图2,当D在AB延长线上时,AF=AB+BD,…………(6分)理由是:同理得:△FAB≌△DAC,∴AF=AD=AB+BD;如图3,当D在AB反向延长线上时,BD=AB+AF,…………………(8分)理由是:同理得:△FAB≌△DAC,∴AF=AD,∴BD=AB+AD=AB+AF.25.解:∵AB⊥l于B,AB=300m,AD=500m.∴BD==400m.设CD=x米,则CB=(400﹣x)米,x2=(400﹣x)2+3002,x2=160000+x2﹣800x+3002,800x=250000,x=312.5m.答:商店与车站之间的距离为312.5米.2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm2.下列四个图案中,不是轴对称图案的是()A.B.C.D.3.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)4.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CADC.BE=DC D.AD=DE5.下列计算正确的是()A.a2+a2=2a4B.2a2×a3=2a6C.3a﹣2a=1 D.(a2)3=a6[来6.只用一种正六边形地砖密铺地板,则能围绕在正六边形的一个顶点处的正六边形地砖有()A.3块B.4块C.5块D.6块7.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC ≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE8.到三角形三个顶点的距离相等的点是三角形()的交点.A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高9.如图,四边形ABCD中,F是CD上一点,E是BF上一点,连接AE、AC、DE.若AB=AC,AD=AE,∠BAC=∠DAE=70°,AE平分∠BAC,则下列结论中:①△ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正确的个数有()A.1个B.2个C.3个D.4个10.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 个B.7 个C.8 个D.9个二.填空题(共6小题,满分18分,每小题3分)11.计算(2m2n2)2•3m2n3的结果是.12.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.13.等腰三角形的一个外角是80°,则其底角是度.14.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是.15.如图,在Rt△ABC中,斜边AB的垂直平分线交边AB于点E,交边BC于点D,如果∠B=28°,那么∠CAD= 度.16.在等边三角形ABC中,AD是BC边上的高,E为AC的中点P为AD上一动点,若AD=12,则PC+PE的最小值为.三.解答题(共9小题,满分72分)17.(6分)计算:(1)(12a3﹣6a2+3a)÷3a;(2)(x﹣y)(x2+xy+y2).18.(6分)如图,∠A=50°,OB、OC为角平分线,求∠BOC.19.(8分)如图,方格图中每个小正方形的边长为1,点A,B,C都是格点.(1)画出△ABC关于直线BM对称的△A1B1C1;(2)写出AA1的长度.20.(8分)计算:(1)﹣(a2b)3+2a2b•(﹣3a2b)2(2)(a+2b﹣c)(a﹣2b+c)(3)已知6x﹣5y=10,求[(﹣2x+y)(﹣2x﹣y)﹣(2x﹣3y)2]÷4y的值.21.(8分)如图,点D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求证:AB=EF.22.(8分)已知一个等腰三角形的三边长分别为2x﹣1、x+1、3x﹣2,求这个等腰三角形的周长.(1)完成部分解题过程,在以下解答过程的空白处填上适当的内容.解:①当2x﹣1=x+1时,解x= ,此时构成三角形(填“能”或“不能”).②当2x﹣1=3x﹣2时,解x= ,此时构成三角形(填“能”或“不能”).(2)请你根据(1)中两种情况的分类讨论,完成第三种情况的分析,若能构成等腰三角形,求出这个三角形的周长.24.(10分)已知,△ABC是等边三角形,过点C作CD∥AB,且CD=AB,连接BD交AC于点O(1)如图1,求证:AC垂直平分BD;(2)点M在BC的延长线上,点N在AC上,且MD=NM,连接BN.①如图2,点N在线段CO上,求∠NMD的度数;②如图3,点N在线段AO上,求证:NA=MC.25.(10分)已知△ABC是等边三角形,点D,E,F分别是边AB,BC,AC的中点,点M是射线EC上的一个动点,作等边△DMN,使△DMN与△ABC在BC边同侧,连接NF.(1)如图1,当点M与点C重合时,直接写出线段FN与线段EM的数量关系;(2)当点M在线段EC上(点M与点E,C不重合)时,在图2中依题意补全图形,并判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)连接DF,直线DM与直线AC相交于点G,若△DNF的面积是△GMC面积的9倍,AB=8,请直接写出线段CM的长.参考答案与试题解析一.选择题1.【解答】解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16, 16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.2.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.3.【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选:A.4.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.5.【解答】解:A、应为a2+a2=2a2,故本选项错误;B、应为2a2×a3=2a5,故本选项错误;C、应为3a﹣2a=a,故本选项错误;D、(a2)3=a6,正确.故选:D.6.【解答】解:因为正六边形的内角为120°,所以360°÷120°=3,即每一个顶点周围的正六边形的个数为3.故选:A.7.【解答】解:A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误.故选:A.8.【解答】解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.故选:B.9.【解答】解:∵AB=AC,∠BAC=∠DAE,AE=AD,∴ABE≌△ACD,故①正确.∵ABE≌△ACD,∴∠AEB=∠ADC.∵∠AEB+∠AEF=180°,∴∠AEF+∠ADC=180°,∴∠BFD=180°﹣∠EAD=180°﹣70°=110°,故③正确.∵AE平分∠BAC,∴∠EAC=35°.又∵∠DAE=70°,∴AC平分∠EAD.又∵AE=AD,∴AC⊥EF,AC平分EF.∴AC是EF的垂直平分线,故④正确.由已知条件无法证明BE=EF,故②错误.故选:C.10.【解答】解:如图,分情况讨论:①AB为等腰△ABC的底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.二.填空题(共6小题,满分18分,每小题3分)11.【解答】解:原式=4m4n4•3m2n3=12m6n7,故答案是:12m6n7.12.【解答】解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得n=8.则这个多边形的边数是八.13.【解答】解:与80°角相邻的内角度数为100°;当100°角是底角时,100°+100°>180°,不符合三角形内角和定理,此种情况不成立;当100°角是顶角时,底角的度数=80°÷2=40°;故此等腰三角形的底角为40°.故填40.14.【解答】解:过O作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD,OD=OF,即OE=OF=OD=4,∴△ABC的面积是:S△AOB+S△AOC+S△OBC=×AB×OE+×AC×OF+×BC×OD=×4×(AB+AC+BC)=×4×21=42,故答案为:42.15.【解答】解:在Rt△ABC中,∠B=28°,∴∠CAB=90°﹣28°=62°,∵DE垂直平分AB,∴AD=BD,∴∠DAB=∠B=28°,∴∠CAD=∠CAB﹣∠DAB=62°﹣28°=34°.故答案为:34.16.【解答】解:如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵AD=12,点E是边AC的中点,∴AD=BE=12,∴PE+PC的最小值是12.故答案为12,三.解答题(共9小题,满分72分)17.【解答】解:(1)(12a3﹣6a2+3a)÷3a;=12a3÷3a﹣6a2÷3a+3a÷3a=4a2﹣2a+1;(2)(x﹣y)(x2+xy+y2).=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.18.【解答】解:∵OB、OC为角平分线,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∵∠ABC+∠ACB=180°﹣∠A,∠OBC+∠OCB=180°﹣∠BOC,∴2∠OBC+2∠OCB=180°﹣∠A,∴180°﹣∠A=2(180°﹣∠BOC),∴∠BOC=90°+∠A=90°+×50°=115°.19.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)由图可知,点A与点A1之间10个格子,所以AA1的长度为10.20.【解答】解:(1)原式=﹣a6b3+2a2b•9a4b2=﹣a6b3+18a6b3=17a6b3(2)原式=[a+(2b﹣c)][a﹣(2b﹣c)]=a2﹣(2b﹣c)2=a2﹣(4b2﹣4bc+c2)=a2﹣4b2+4bc﹣c2(3)当6x﹣5y=10时,∴3x﹣2.5y=5原式=[4x2﹣y2﹣(4x2﹣12xy+9y2)]÷4y=(12xy﹣10y2)÷4y=3x﹣2.5y=522.【解答】解:(1)①当2x﹣1=x+1时,解x=2,此时3,3,4,能构成三角形.②当2x﹣1=3x﹣2时,解x=1,此时1,2,1不能构成三角形.故答案为2,能,1,不能;(2)③当x+1=3x﹣2,解得x=,此时2,,能构成三角形.23.【解答】解:接OA,OB后,可证∠OAP=∠OBP=90°,其依据是直径所对圆周角为直角;由此可证明直线PA,PB都是⊙O的切线,其依据是经过半径外端且垂直于这条半径的直线是圆的切线,证明过程如下:由作图可知OP为⊙C的直径,∴∠OAP=∠OBP=90°,即OA⊥PA、OB⊥PB,∵OA、OB是⊙O的半径,∴OP是⊙O的切线.故答案为:直径所对圆周角为直角,经过半径外端且垂直于这条半径的直线是圆的切线.2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共6小题,满分18分,每小题3分)1.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形2.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm3.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙4.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE 5.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2) C.(1,﹣2)D.(2,﹣1)6.如右图是三条两两相交的笔直公路,某物流公司现要修建一个货物中转站,使它到三条公路的距离相等,这个货物中转站可选的位置有()A.3个B.4个C.5个D.6个二.填空题(共8小题,满分24分,每小题3分)7.如图,点E在△ABC边BC的延长线上,CD平分∠ACE,若∠A=70°,∠DCA=65°,则∠B的度数是.8.(3分)如图,在△ABC中,∠B=40°,∠C=28°,点D在BA的延长线上,则∠CAD的大小为.9.若一个多边形的内角和比外角和大360°,则这个多边形的边数为.10.如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为度.11.在△ABC中,∠C=∠A=∠B,则∠A= 度.12.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是(填上你认为适当的一个条件即可).13.已知点P(3,1)关于y轴的对称点Q的坐标是(a+b,﹣1﹣b),则ab的值为.14.在△ABC中,BC=9,AB的垂直平分线交BC与点M,AC的垂直平分线交BC于点N,则△AMN的周长= .三.解答题(共4小题,满分24分,每小题6分)15.(6分)等腰三角形一腰上的中线,分别将该三角形周长分成30cm 和33cm,试求该等腰三角形的底边长.16.(6分)如图,点F是△ABC的边BC延长线上一点.DF⊥AB,∠A=30°,∠F=40°,求∠ACF的度数.17.(6分)如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.18.(6分)如图所示,已知在△ABC中,AB=AC,D为线段BC上一点,E为线段AC上一点,且AD=AE.(1)若∠ABC=60°,∠ADE=70°,求∠BAD与∠CDE的度数;(2)设∠BAD=α,∠CDE=β,试写出α、β之间的关系并加以证明.四.解答题(共3小题,满分21分,每小题7分)19.(7分)已知:如图,△ABC中,D是BC延长线上一点,E是CA 延长线上一点,F是AB上一点,连接EF.求证:∠ACD>∠E.20.(7分)一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数.21.(7分)如图,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠C=40°,求∠BAD的度数;(2)若AC=5,DC=4,求△ABC的周长.五.解答题(共2小题,满分16分,每小题8分)22.(8分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).23.(8分)已知:如图1所示,等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN经过点A,BD⊥MN于点D,CE⊥MN于点E.(1)试判断线段DE、BD、CE之间的数量关系,并说明理由;(2)当直线MN运动到如图2所示位置时,其余条件不变,判断线段DE、BD、CE之间的数量关系.六.解答题(共2小题,满分17分)24.(8分)如图1,P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连接PQ交AC于点D.(1)求证:PD=DQ;(2)如图2,过P作PE⊥AC于E,若AB=2,求DE的长.25.(9分)如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C 逆时针旋转角α.(0°<α<90°)得到△A1B1C1,连接BB1.设CB1交AB于D,A1B1分别交AB、AC于E、F.(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以说明(△ABC与△A1B1C1全等除外);(2)当△BB1D是等腰三角形时,求α.参考答案一.选择题1. A.2. B.3. B.4. D.5. A.6. B.二.填空题7.60°.8.68°.9. 6.10.37.11. 60.12.【解答】解:∵∠1=∠2,∴∠AEB=∠AEC,又 AE公共,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).13. 214. 9三.解答题16.解:在△DFB中,∵DF⊥AB,∴∠FDB=90°,∵∠F=40°,∠FDB+∠F+∠B=180°,∴∠B=50°.在△ABC中,∵∠A=30°,∠B=50°,∴∠ACF=∠A+∠B=30°+50°=80°.18.解:(1)∵AB=AC,∴∠B=∠C=60°,∴∠BAC=60°,∵AD=AE,∴∠ADE=∠AED=70°,∴∠DAE=40°,∴∠BAD=∠BAC﹣∠DAE=20°,∵∠AED=∠CDE+∠C,∴∠CDE=70°﹣60°=10°.(2)结论:α=2β,理由是:设∠BAC=x°,∠DAE=y°,则α=x°﹣y°,∵∠ACB=∠ABC,∴∠ACB=,∵∠ADE=∠AED,∴∠AED=,∴β=∠AED﹣∠ACB=﹣==,∴α=2β;19.证明:∵∠ACD是△ABC的一个外角,∴∠ACD>∠BAC,∵∠BAC是△AEF的一个外角,∴∠BAC>∠E,∴∠ACD>∠E.20.解:根据题意,得(n﹣2)•180=1620,解得:n=11.则这个多边形的边数是11,内角和度数是1620度.21.(1)解:∵EF垂直平分AC,∴AE=CE,∴∠C=∠EAC=40°,∵AD⊥BC,BD=DE,∴AB=AE,∴∠B=∠BEA=2∠C=80°,∴∠BAD=90°﹣80°=10°;(2)由(1)知:AE=EC=AB,∵BD=DE,∴AB+BD=DE+AE=DE+CE=DC,∴C△ABC=AB+BC+AC=2DC+AC=2×4+5=13..25.解:(1)全等的三角形有:△CBD≌△CA1F或△AEF≌△B1ED或△ACD≌△B1CF;证明:∵∠ACB1+∠A1CF=∠ACB1+∠BCD=90°∴∠A1CF=∠BCD∵A1C=BC∴∠A1=∠CBD=45°∴△CBD≌△CA1F;∴CF=CD,∵CA=CB1,∴AF=B1D,∵∠A=∠EB1D,∠AEF=∠B1ED,∴△AEF≌△B1ED,∵AC=B1C,∠ACD=∠B1CF,∠A=∠CB1F,∴△ACD≌△≌△B1CF.(2)在△CBB1中。
2020-2021学年江苏省南京师大附中高一(下)期中数学试卷 (解析版)
2020-2021学年江苏省南京师大附中高一(下)期中数学试卷一、单项选择题(共8小题).1.已知O、A、B是平面上三点,直线AB上有一点C满足+3=,则=()A.﹣B.+C.D.+2.已知正方形ABCD的边长为3,=()A.3B.﹣3C.6D.﹣63.已知平面向量=(2,4),=(﹣1,2),若=﹣(•),则||等于()A.4B.2C.8D.84.已知α﹣β=,且cosα+cosβ=,则cos(α+β)等于()A.B.﹣C.D.﹣5.已知sinθ=,<θ<3π,那么tan+cos的值为()A.﹣3B.3﹣C.﹣3﹣D.3+6.已知a为正整数,tanα=1+lga,tanβ=lga,且α=β+,则当函数(θ∈[0,π])取得最大值时,θ=()A.B.C.D.7.△ABC中若有,则△ABC的形状一定是()A.等腰三角形B.直角三角形C.锐角三角形D.等腰直角三角形8.如图,在平行四边形ABCD中,DE=EC,F为BC的中点,G为EF上的一点,且,则实数m的值为()A.B.C.D.二、多项选择题(共4小题).9.已知复数z1=2+i,z2在复平面内对应的点在直线x=1上,且满足是纯虚数,则()A.=1﹣2i B.=1+2iC.z2的虚部为﹣2D.z2的虚部为210.下列四个等式其中正确的是()A.tan25°+tan35°+tan25°tan35°=B.=1C.cos2﹣sin2=D.﹣=411.在△ABC中,角A,B,C所对的边分别为a,b,c,以下说法中正确的是()A.若a=5,b=10,A=,则符合条件的三角形不存在B.若b cos C+c cos B=a sin A,则△ABC为直角三角形C.若A>B,则tan A>tan BD.若A>B,则cos2B>cos2A12.已知(ω>0),则下列说法正确的是()A.若y=|f(x)|的最小正周期为π,则ω=2B.若f(x)在(0,π)内无零点,则C.若f(x)在(0,π)内单调,则D.若ω=2时,直线是函数f(x)图象的一条对称轴三、填空题(共4小题).13.在复平面内,对应的复数是1﹣i,对应的复数是2i﹣3,则对应的复数是.14.cos271o+cos249o+cos71°cos49°=.15.如图所示,位于A处的信息中心获悉,在其正东方向相距海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西45o,相距20海里的C处的乙船,现乙船朝北偏东θ的方向沿直线CB前往B处救援,则BC=海里,cosθ=.16.对于集合{θ1,θ2,θ3,⋅⋅⋅,θn}和常数θ0,定义:为集合{θ1,θ2,θ3,⋅⋅⋅,θn}相对θ0的“余弦方差”.集合相对常数θ0的“余弦方差”是一个常数T,则T=.四、解答题(本大题共6小题,共70分,解答时应写出文字说明,证明过程或演算步骤). 17.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.18.已知平面向量.(1)若,且,求的坐标;(2)当k为何值时,与垂直;(3)若与的夹角为锐角,求实数λ的取值范围.19.已知向量=(cosα,sinβ+2sinα),=(sinα,cosβ﹣2cosα),且∥.(1)求cos(α+β)的值;(2)若α,β∈(0,),且tanα=,求2α+β的值.20.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a sin A=4b sin B,ac=(a2﹣b2﹣c2).(1)求cos A的值;(2)求sin(2B﹣A)的值.21.在△ABC中,角A,B,C所对的边分别为a,b,c.已知.(1)求角C的大小;(2)若△ABC是锐角三角形,且b=1,求△ABC面积的取值范围.22.在△ABC中,角A,B,C所对的边分别为a,b,c.已知.(1)求tan A+tan B的值;(2)求cos2A+cos2B的最大值.参考答案一、单项选择题(共8小题).1.已知O、A、B是平面上三点,直线AB上有一点C满足+3=,则=()A.﹣B.+C.D.+解:=,∴.故选:D.2.已知正方形ABCD的边长为3,=()A.3B.﹣3C.6D.﹣6解:如图;因为正方形ABCD的边长为3,=2,则•=(+)•(﹣)=(+)•(﹣)=﹣•﹣=32﹣×32=3.故选:A.3.已知平面向量=(2,4),=(﹣1,2),若=﹣(•),则||等于()A.4B.2C.8D.8解:∵向量=(2,4),=(﹣1,2)∴∴=(2,4)﹣(﹣6,12)=(8,﹣8)∴故选:D.4.已知α﹣β=,且cosα+cosβ=,则cos(α+β)等于()A.B.﹣C.D.﹣解:因为cosα+cosβ=2cos cos=cos=,则cos(α+β)=2cos2﹣1=2×﹣1=﹣.故选:D.5.已知sinθ=,<θ<3π,那么tan+cos的值为()A.﹣3B.3﹣C.﹣3﹣D.3+解:∵sinθ=,<θ<3π,∴cosθ=﹣=﹣,∈(,),∴sin=﹣=﹣,cos=﹣=﹣,∴tan==3,∴tan+cos=3﹣,故选:B.6.已知a为正整数,tanα=1+lga,tanβ=lga,且α=β+,则当函数(θ∈[0,π])取得最大值时,θ=()A.B.C.D.解:已知α=β+,所以,所以tan(α﹣β)=1==1,解得a=1或a=(舍去).则f(x)=sin=,由于θ∈[0,π],所以.则当,即时,函数f(x)取得最大值.故选:C.7.△ABC中若有,则△ABC的形状一定是()A.等腰三角形B.直角三角形C.锐角三角形D.等腰直角三角形【解答】证明:∵在△ABC中,∴sin(A+B)=∴2sin cos=∴2cos2﹣1=0∴cos(A+B)=0∴A+B=,即C=,∴△ABC是直角三角形.故选:B.8.如图,在平行四边形ABCD中,DE=EC,F为BC的中点,G为EF上的一点,且,则实数m的值为()A.B.C.D.解:∵,F为BC的中点,∴,,设===,又,∴,解得m=.故选:A.二、多项选择题:本大题共4小题,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对得5分,选错得0分,部分选对得2分.9.已知复数z1=2+i,z2在复平面内对应的点在直线x=1上,且满足是纯虚数,则()A.=1﹣2i B.=1+2iC.z2的虚部为﹣2D.z2的虚部为2解:设z2=1+bi(b∈R),∵z1=2+i,∴,则=(2﹣i)(1+bi)=2+2bi﹣i﹣bi2=(2+b)+(2b﹣1)i,由题意,,解得b=﹣2.∴,故A错误,B正确;z2的虚部为﹣2,故C正确,D错误.故选:BC.10.下列四个等式其中正确的是()A.tan25°+tan35°+tan25°tan35°=B.=1C.cos2﹣sin2=D.﹣=4解:对①:tan60°=tan(25°+35°)==,故tan25°+tan35°+tan25°tan35°=,故正确;对②:=tan45°=1,故=,故错误;对③:cos2﹣sin2=cos=,故错误;对④:﹣====4,故正确.故选:AD.11.在△ABC中,角A,B,C所对的边分别为a,b,c,以下说法中正确的是()A.若a=5,b=10,A=,则符合条件的三角形不存在B.若b cos C+c cos B=a sin A,则△ABC为直角三角形C.若A>B,则tan A>tan BD.若A>B,则cos2B>cos2A解:对于A:由于a=5,b=10,A=,则利用正弦定理:,解得sin B >1,与三角函数的值的范围矛盾,故该三角形不存在,故A正确;对于B:若b cos C+c cos B=a sin A,利用正弦定理:sin B cos C+sin C cos B=sin A sin A,故sin (B+C)=sin A=sin2A,由于sin A>0,故sin A=1,所以A=,故△ABC为直角三角形,故B正确;对于C:当时,tan A<tan B,故C错误;对于D:由于A>B,所以a>b,整理得sin A>sin B,故sin2A>sin2B,整理得1﹣2sin2A<1﹣2sin2B,所以cos2B>cos2A,故D正确;故选:ABD.12.已知(ω>0),则下列说法正确的是()A.若y=|f(x)|的最小正周期为π,则ω=2B.若f(x)在(0,π)内无零点,则C.若f(x)在(0,π)内单调,则D.若ω=2时,直线是函数f(x)图象的一条对称轴解:函数==sin(ωx﹣),对于A:当ω=2时,f(x)=sin(2x﹣)的最小正周期为π,由于函数|f(x)|的周期减半,则最小正周期为,故A错误;对于B:令x=0,,由于x∈(0,π),所以,由于f(x)在(0,π)内无零点,x=0是sin x的零点,所以,故,故B正确;对于C:由于sin x在[]上单调递增,所以,所以,故C正确;对于D:当ω=2时,函数f()=sin(﹣)=1,故直线是函数f(x)的一条对称轴,故D正确.故选:BCD.三、填空题(本大题共4小题,每小题5分,共20分)13.在复平面内,对应的复数是1﹣i,对应的复数是2i﹣3,则对应的复数是4﹣3i.解:∵对应的复数是1﹣i,对应的复数是2i﹣3,∴=(3﹣2i)+(1﹣i)=4﹣3i.故答案为:4﹣3i.14.cos271o+cos249o+cos71°cos49°=.解:设x=cos271o+cos249o+cos71°cos49°,y=sin271o+sin249o+sin71°sin49°,所以x+y=2+cos22°,①,x﹣y=﹣﹣cos22°,②,①+②得:x=.故答案为:.15.如图所示,位于A处的信息中心获悉,在其正东方向相距海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西45o,相距20海里的C处的乙船,现乙船朝北偏东θ的方向沿直线CB前往B处救援,则BC=10海里,cosθ=.解:如图所示,在△ABC中,AB=30,AC=20,∠BAC=90°+45°=135°,由余弦定理得,BC2=AB2+AC2﹣2AB•AC•cos135°=+202﹣2×30×20×(﹣)=3400,解得BC=10,正弦定理得=,所以sin∠ACB===,由∠BAC=135°知∠ACB为锐角,所以cos∠ACB====.所以cosθ=cos(∠ACB+45°)=cos∠ACB cos45°﹣sin∠ACB sin45°=×﹣×=.故答案为:10,.16.对于集合{θ1,θ2,θ3,⋅⋅⋅,θn}和常数θ0,定义:为集合{θ1,θ2,θ3,⋅⋅⋅,θn}相对θ0的“余弦方差”.集合相对常数θ0的“余弦方差”是一个常数T,则T=.解:集合相对常数θ0的“余弦方差”是一个常数T,可得μ====.所以此时“余弦方差”是一个常数,且常数为.故答案为:.四、解答题(本大题共6小题,共70分,解答时应写出文字说明,证明过程或演算步骤). 17.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.18.已知平面向量.(1)若,且,求的坐标;(2)当k为何值时,与垂直;(3)若与的夹角为锐角,求实数λ的取值范围.解:(1)平面向量,∵,∴=λ•(﹣1,2),由=,∴λ=±2,当λ=2时,的坐标为(﹣2,4);当λ=﹣2时,的坐标为(2,﹣4).(2)由于与垂直,=(k﹣3,2k﹣2),=(10,8),∴()•()=(k﹣3,2k﹣2)•(10,8)=10k﹣30+8(2k﹣2)=0,∴k=.(3)∵与的夹角为锐角,+λ=(1﹣3λ,2﹣2λ),∴•(+λ)>0 且与不平行,∴1﹣3λ+2(2﹣2λ)>0,且≠,解得λ<且λ≠0.19.已知向量=(cosα,sinβ+2sinα),=(sinα,cosβ﹣2cosα),且∥.(1)求cos(α+β)的值;(2)若α,β∈(0,),且tanα=,求2α+β的值.解:(1)因为∥,所以cosα(cosβ﹣2cosα)﹣sinα(sinβ+2sinα)=0,所以(cosαcosβ﹣sinαsinβ)=2(sin2α+cos2α)=2,所以cos(α+β)=2,即cos(α+β)=.(2)因为α,β∈(0,),所以0<α+β<π,因为cos(α+β)=,所以sin(α+β)=,所以tan(α+β)=,因为tanα=,所以tan(2α+β)===1,因为0<α+β<π,且cos(α+β)=>0,所以0,因为,所以0<2α+β<π.因为tan(2α+β)=1,所以2α+β=.20.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a sin A=4b sin B,ac=(a2﹣b2﹣c2).(1)求cos A的值;(2)求sin(2B﹣A)的值.解:(1)由,得a sin B=b sin A,又a sin A=4b sin B,得4b sin B=a sin A,两式作比得:,所以a=2b.由ac=(a2﹣b2﹣c2),得b2+c2﹣a2=﹣ac,由余弦定理,得cos A===﹣;(2)由(1),可得sin A=,代入a sin A=4b sin B,得sin B==.由(Ⅰ)知,A为钝角,则B为锐角,所以cos B==,于是sin2B=2sin B cos B=,cos2B=1﹣2sin2B=,故sin(2B﹣A)=sin2B cos A﹣cos2B sin A=sin(2B﹣A)=sin2B cos A﹣cos2B sin A=﹣=﹣.21.在△ABC中,角A,B,C所对的边分别为a,b,c.已知.(1)求角C的大小;(2)若△ABC是锐角三角形,且b=1,求△ABC面积的取值范围.解:(1)已知,利用正弦定理整理得:,所以,化简得:,由于A∈(0,π),所以sin A≠0,整理得tan C=,所以C=.(2)由正弦定理得:,且b=1,故,整理得=,所以,由于△ABC是锐角三角形,故,解得,故tan A,则,故a=,则.22.在△ABC中,角A,B,C所对的边分别为a,b,c.已知.(1)求tan A+tan B的值;(2)求cos2A+cos2B的最大值.解:(1)在△ABC中,角A,B,C所对的边分别为a,b,c.已知.整理得,所以两边同除以cos A cos B,所以tan A+tan B=2.(2)cos2A+cos2B===,==,由于(tan A tan B﹣1)2+12>0,所以14﹣2tan A tan B>0,令t=14﹣2tan A tan B,则t>0,tan A tan B=,所以=.当且仅当t=时,等号成立,故最大值为.。
2020--2021学年度第一学期期中考试安排
育英中学高中部2020—2021学年度第一学期期中考试工作安排高中部定于11月9日至11月11日进行2020—2021学年度第一学期期中考试。
现将有关事项安排如下:一、考试工作领导小组:组长:梁耀録副组长:马永昌考务组:贾兴隆乔小飞李洋巡查组:贾兴隆乔小飞赵龙龙刘迎考务办设在三楼会议室。
李洋负责试题印制、发放、收交、装订、保管,负责考务办开关门、考勤、收发考场记录,准备考务办公室各种物品(考场标牌、监考牌、草稿纸、考场记录单、考场对照表等)。
李洋负责试题印制、考场布置、考场卫生,收集教室门钥匙,准备探测仪,发考试指令。
李洋负责试卷的扫描,每科考试结束后,迅速开始试卷的扫描。
二、考试科目:高一理科:语文、数学、英语、物理、化学、生物高一文科:语文、数学、英语、政治、历史、地理高二理科:语文、数学、英语、物理、化学、生物高二文科:语文、数学、英语、政治、历史、地理三、考试时间:高一高二考试时间四、各科考试用时及分值:语文:150分钟,数学、英语:120分钟,地理、化学、物理90分钟,语数英满分均为150分,政史地理化生满分均为100分。
五、试场编排1、考场设置:(1)高一年级13个试场(1--13),共计551人。
高一1班--高一8班对应1到8考场,每场40人,高一9班--高一12班对应9到12场,每考场对应50人,四楼培优教室对应13考场,31人。
(2)高二年级14个试场(14--27),共计452人。
高二年级理科205人,6个试场(14-18)。
高二1班--高二5班对应14--18考场,每考场41人。
高二年级文科237人,8个试场(19-25)高二6班--高二8班为文科19、20、21考场,每场40人,物理实验室301对应22考场,物理实验室303对应23考场,物理实验室305对应24考场,化学实验室101对应25考场,每考场30人,尾考场27人。
3、座位排列:试场桌椅排成5列8排,座位号从前门内左手第一行开始,按倒“S”形依次排列,每列8人。
2020-2021学年度第一学期江苏省南京市鼓楼区九年级期中考试数学模拟试卷(含解析)
2020-2021学年度第一学期江苏省南京市鼓楼区九年级期中考试数学模拟试卷一、选择题(本大题共2小题,每小题2分,共12分.请把答案填写在答题卡相应位置上).1.一元二次方程x2﹣4x﹣3=0的二次项系数、一次项系数和常数项分别是()A. 1,4,3B. 0,﹣4,﹣3C. 1,﹣4,3D. 1,﹣4,﹣32.已知关于x的一元二次方程x2+bx﹣1=0,则下列关于该方程根的判断,正确的是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 实数根的个数与实数b的取值有关3.有下列四个命题:①经过三个点一定可以作圆②等弧所对的圆周角相等;③三角形的外心到三角形各顶点的距离都相等; ④在同圆中,平分弦的直径一定垂直于这条弦.其中正确的有( )A. 0B. 1C. 2D. 34.如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为()A. 55°B. 65°C. 60°D. 75°5.如图,在△ABC中,AC=50m,BC=40m,∠C=90°,点P从点A开始沿AC 边向点C以2m/s的速度匀速移动,同时另一点Q由C点开始以3m/s的速度沿着射线CB匀速移动,当△PCQ的面积等于300m2运动时间为()A. 5秒B. 20秒C. 5秒或20秒D. 不确定6.如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0).与y轴分别交于点B(0,4)与点C(0,16).则圆心M到坐标原点O的距离是()A. 10B. 8 √2C. 4 √13D. 2 √41二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置上)7.一元二次方程x2−2x+c=0有两个相等的实数根,则c=________.8.用半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为________.9.设m ,n是一元二次方程x2+2x-7=0的两个根,则m2+3m+n=________.10.一个两位数,个位数字比十位数字大3,个位数字的平方刚好等于这个两位数,则这个两位数是________.11.如图,AB为⊙O的直径,弦CD⊥AB于点E,若CD=6,且AE:BE =1:3,则AB=________.12.如图,直线a⊥b,垂足为H,点P在直线b上,PH=4cm,O为直线b上一动点,若以1cm为半径的⊙O与直线a相切,则OP的长为________.13.如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A、B、C为格点,作△ABC 的外接圆,则BC的长等于________.14.一个三角形的两边长分别为2和5,第三边长是方程x2−8x+12=0的根,则该三角形的周长为________.15.疫情期间居民为了减少外出时间,大家更愿意使用APP在线上买菜,某买菜APP今年一月份新注册用户为200万,三月份新注册用户为338万,则二、三两个月新注册用户每月平均增长率是________.16.如图,点0为正六边形ABCDEF的中心,点M为AF中点,以点0为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON 的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1:r2=________三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.解答下列各题:(1)用配方法解方程:x2−8x−4=0 .(2)已知一元二次方程2x2−mx−m=0的一个根是−12.求m的值和方程的另一个根.18.已知:平行四边形ABCD的两边AB,AD的长是关于x的方程x²-mx+ m2- 14=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么平行四边形ABCD的周长是多少?19.如图1,有一张长40cm,宽20cm的长方形硬纸片,裁去角上2个小正方形和2个小长方形(图中阴影部分)之后,恰好折成如图2的有盖纸盒.(1)若纸盒的高是3cm,求纸盒底面长方形的长和宽;(2)若纸盒的底面积是150cm2,求纸盒的高.20.如图,⊙O中,弦AB与CD相交于点E, AB=CD,连接AD、BC .求证:(1)弧AD=弧BC ;(2)AE=CE .21.如图,在方格纸中,A,B,C三点都在小方格的顶点上(每个小方格的边长为1).(1)在图甲中画一个以A,B,C为其中三个顶点的平行四边形,并求出它的周长.(2)在图乙中画一个经过A,B,C三点的圆,并求出圆的面积.22.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?23.如图,四边形ABCD中,AB∥CD,点O在BD上,以O为圆心的圆恰好经过A、B、C三点,⊙O 交BD于E,交AD于F,且弧AE=弧CE,连接OA、OF.(1)求证:四边形ABCD是菱形;(2)若∠AOF=3∠FOE,求∠ABC的度数.24.已知:如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45° .(1)求∠EBC的大小;(2)若⊙O的半径为2,求图中阴影部分的面积.25.阅读理解:材料一:若三个非零实数x ,y ,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实教x ,y ,z构成“和谐三数组”.,材料二:若关于x的一元二次方程ax2+bx +c= 0(a≠0)的两根分别为x1,x2,则有x1+x2=−ba .x1⋅x2=ca问题解决:(1)请你写出三个能构成“和谐三数组”的实数________;(2)若x1,x2是关于x的方程ax2+bx +c= 0 (a ,b ,c均不为0)的两根,x3是关于x的方程bx+c=0(b ,c均不为0)的解.求证:x1,x2,x3可以构成“和谐三数组”;的图象上,且三点的(3)若A(m ,y1) ,B(m + 1,y2) ,C(m+3,y3)三个点均在反比例函数y=4x纵坐标恰好构成“和谐三数组”,求实数m的值.26.如图,四边形ABCD内接于圆,∠ABC=60°,对角线BD平分∠ADC.(1)求证:△ABC是等边三角形;(2)过点B作BE//CD交DA的延长线于点E,若AD=2,DC=3,求△BDE的面积.27.问题提出:(1)如图①,半圆O的直径AB=10,点P是半圆O上的一个动点,则△PAB的面积最大值是________. (2)如图②,在边长为10的正方形ABCD中,点G是BC边的中点,E、F分别是AD和CD边上的点,请探究并求出四边形BEFG的周长的最小值.(3)如图③,四边形ABCD中,AB=AD=6,∠BAD=60°,∠BCD=120°,四边形ABCD的周长是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.答案一、选择题1.解:一元二次方程x2-4x-3=0的二次项系数、一次项系数和常数项分别为1,-4,-3.故答案为:D.2.解:∵△=b2﹣4×(﹣1)=b2+4>0,∴方程有两个不相等的实数根.故答案为:A.3.解:①经过在同一条直线上的三个点不能作圆,只有三个点不在同一条直线上时才可以作圆,故本小题不符合题意;②等弧所对的圆周角相等,符合圆周角定理,故本小题符合题意;③三角形的外心是三角形三边垂直平分线的交点,所以到三角形各顶点的距离都相等,故本小题符合题意;④在同圆中,平分弦(不是直径)的直径一定垂直于这条弦,故本小题不符合题意.故答案为:C.4.解:连接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是边BC的中点,∴OD⊥BC,∴BD=CD,∠BDC=65°,∴∠ODB=∠ODC=12故答案为:B.5.解:设运动的时间为t,则AP=2t,CQ=3t∴PC=50-2t∵∠C=90°,S△PCQ=300·PC·CQ=300∴12解得t1=5,t2=20.故答案为:C。
2020-2021学年江苏省南京市金陵中学、一中高一(上)期中数学试卷及答案
2020-2021学年江苏省南京市金陵中学、一中高一(上)期中数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分,请把答案直接填写在答题卡相应位置上.1.(5分)已知集合A={1,2,3},B={x|x﹣2≥0,x∈R},则A∩B=()A.{3}B.{2,3}C.{2}D.{1,2,3} 2.(5分)命题“∃x0∈R,x02﹣1≥0”的否定是()A.∃x0∈R,x02﹣1<0B.∃x0∈R,x02﹣1≤0C.∀x∈R,x2﹣1≤0D.∀x∈R,x2﹣1<03.(5分)函数y=+的定义域为()A.[﹣1,]B.(﹣∞,]C.(﹣∞,﹣1]D.(﹣∞,﹣1]∪(﹣1,]4.(5分)函数f(x)=的最小值为()A.3B.2C.2D.15.(5分)函数y=的图象大致为()A.B.C.D.6.(5分)若函数f(x)=在R上是增函数,则实数a的取值范围是()A.[﹣4,﹣]B.[,4]C.[﹣3,4]D.[3,]7.(5分)若关于x的不等式ax2+2x+1<0有实数解,则a的取值范围是()A.(0,1]B.[0,1]C.(﹣∞,1]D.(﹣∞,1)8.(5分)若非空数集G满足“对于∀a,b∈G,都有a+b,a﹣b,ab∈G,且当b≠0时,∈G”,则称G是一个“理想数集”,给出下列四个命题:①0是任何“理想数集”的元素;②若“理想数集”M有非零元素,则N*⊆M③集合P={x|x=2k,k∈Z}是一个“理想数集”;④集合T={x|x=a+b,a,b∈Z}是“理想数集”.其中真命题的个数是()A.1B.2C.3D.4二、多项选择题:(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对得5分,选对但不全的得3分,有选错的得0分)9.(5分)以下说法中正确的有()A.“f(x)是定义在R上的偶函数”的含义是“存在x∈R,使得f(﹣x)=f(x)”B.“f(x)是定义在R上的增函数”的含义是“∀x1,x2∈R,当x1<x2时,有f(x1)<f (x2)”C.设M,P是两个非空集合,则M⊆P的含义是“对于∀x∈M,x∈P”D.设f(x)是定义在R上的函数,则“f(0)=0”是“f(x)是奇函数”的必要条件10.(5分)已知a,b,c,d∈R,则下列结论中正确的有()A.若ac2>bc2,则a>bB.若,则a>bC.若a>b>0,ac>bd>0,则c>dD.若,则a<b11.(5分)下列说法中不正确的有()A.设A,B是两个集合,若A∪B=A∩B,则A=BB.函数y=与y=为同一个函数C.函数y=+的最小值为2D.设y=f(x)是定义在R上的函数,则函数y=xf(|x|)是奇函数12.(5分)若函数f(x)同时满足:①对于定义域内的∀x,都有f(x)+f(﹣x)=0;②对于定义域内的∀x1,x2当x1≠x2时,都有<0则称函数f(x)为“颜值函数”.下列函数中,是“颜值函数”的有()A.f(x)=B.f(x)=x2C.f(x)=D.f(x)=﹣2x三、填空题:本大题共4小题,每小题5分,共20分,请把答案直接填写在答题卡相应位置上.13.(5分)设x∈R,则“0<x<5”是“|x﹣1|<1”的条件(填“充分且不必要”“必要且不充分”“充要”“既不充分也不必要”).14.(5分)已知函数f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x2+x+2,则f(1)+g(1)=.15.(5分)在平面直角坐标系xOy中,若直线y=a与函数y=|x﹣a|+2﹣a的图象有且只有一个公共点,则实数a的值为.16.(5分)已知x>0,y>0,x+2y=2,则的最小值为.三、解答题:本大题共6小题,共70分,请把答案填写在答题卡相应位置上17.(10分)计算:(1)lg52+lg8+lg5•lg20+(lg2)2;(2)π0﹣(8)﹣2+×(4)﹣1.18.(12分)设全集U=R,已知集合A={x|x2﹣x﹣6≥0},B={x|<0},C={x|m﹣1≤x≤2m}.(1)求A∩B和(∁U A)∪B;(2)若B∩C=C,求实数m的取值范围.19.(12分)设函数f(x)=x2+bx+c(b,c∈R),已知f(x)<0的解集为区间(﹣1,3).(1)求b,c的值;(2)若函数g(x)=f(x)﹣ax在区间[0,2]上的最小值为﹣4,求实数a的值.20.(12分)根据试验检测,一辆P型运输汽车在高速公路上匀速行驶时,耗油率(L/h)近似与车速(km/h)的平方成正比,且当车速是100km/h时,耗油率为L/h.已知A,B两地间有一条长130km的高速公路,最低限速60km/h,最高限速120km/h.若某环保公司用一辆该型号运输车将垃圾从A地转运至B地,已知过路费为40元,支付给雇用司机的工资平均每小时80元.假设汽油的价格是8元/L,汽车匀速行驶(起步、必要的减速或提速等忽略不计),问:当行车速度为多少时,转运一次的总费用最低?最低为多少元?21.(12分)已知函数f(x)=为奇函数.(1)求实数a的值;(2)求证:f(x)在区间[2,+∞)上是增函数;(3)若对任意的x1,x2∈[2,4],都有f(x1)﹣f(x2)≤m2﹣2m﹣2,求实数m的取值范围.22.(12分)设f(x)是R上的减函数,且对任意实数x,y,都有f(x+y)=f(x)+f(y);函数g(x)=x2+ax+b(a,b∈R).(1)判断函数f(x)的奇偶性,并证明你的结论;(2)若a=﹣1,b=5,且______.(①存在t∈[﹣3,2];②对任意t∈[﹣3,2]),不等式f(g(t)﹣1)+f(3t+m)>0成立,求实数m的取值范围;请从以上两个条件中选择一个填在横线处,并完成求解.(3)当a>0时,若关于x的不等式g(x)≤0与g(g(x))≤3的解集相等且非空,求a的取值范围.2020-2021学年江苏省南京市金陵中学、一中高一(上)期中数学试卷参考答案与试题解析一、单项选择题:本大题共8小题,每小题5分,共40分,请把答案直接填写在答题卡相应位置上.1.(5分)已知集合A={1,2,3},B={x|x﹣2≥0,x∈R},则A∩B=()A.{3}B.{2,3}C.{2}D.{1,2,3}【分析】可以求出集合B,然后进行交集的运算即可.【解答】解:∵A={1,2,3},B={x|x≥2},∴A∩B={2,3}.故选:B.【点评】本题考查了列举法、描述法的定义,交集的定义及运算,考查了计算能力,属于基础题.2.(5分)命题“∃x0∈R,x02﹣1≥0”的否定是()A.∃x0∈R,x02﹣1<0B.∃x0∈R,x02﹣1≤0C.∀x∈R,x2﹣1≤0D.∀x∈R,x2﹣1<0【分析】根据特称命题的否定形式进行判断【解答】解:命题“∃x0∈R,x02﹣1≥0”的否定是∀x∈R,x2﹣1<0,故选:D.【点评】本题考查了命题的否定,属于基础题.3.(5分)函数y=+的定义域为()A.[﹣1,]B.(﹣∞,]C.(﹣∞,﹣1]D.(﹣∞,﹣1]∪(﹣1,]【分析】可看出,要使得原函数有意义,需满足,然后解出x的范围即可.【解答】解:要使原函数有意义,则,解得且x≠﹣1,∴原函数的定义域为:.故选:D.【点评】本题考查了函数定义域的定义及求法,区间的定义,考查了计算能力,属于基础题.4.(5分)函数f(x)=的最小值为()A.3B.2C.2D.1【分析】先研究函数在每一段的单调性,分别求出它们的最值,然后求解函数的最值,就是大中取大,小中取小.【解答】解:对于函数函数f(x)=,当x≤1时,f(x)=x2﹣2x+3.在(﹣∞,1]上递减;所以此时y min=f(1)=2,当x>1时,f(x)=x+≥2=2,当且仅当x=,取等号,综上可知原函数的最小值为:2.故选:C.【点评】本题考查分段函数的性质,一般来讲分段函数的处理原则:分段函数,分段处理.如本题求最值,应先在每一段上求它们的最大(小)值,最后大中取大.小中取小.5.(5分)函数y=的图象大致为()A.B.C.D.【分析】根据函数的奇偶性和函数值的正负即可判断.【解答】解:函数y=的定义域为实数集R,关于原点对称,函数y=f(x)=,则f(﹣x)=﹣=﹣f(x),则函数y=f(x)为奇函数,故排除A,C,当x>0时,y=f(x)>0,故排除D,故选:B.【点评】本题考查了函数图象的识别,属于基础题.6.(5分)若函数f(x)=在R上是增函数,则实数a的取值范围是()A.[﹣4,﹣]B.[,4]C.[﹣3,4]D.[3,]【分析】根据分段函数的单调性的判断方法建立不等式组,即可求解.【解答】解:要满足已知题意,只需,解得,故选:B.【点评】本题考查了分段函数的单调性,考查了学生解不等式的能力,属于基础题.7.(5分)若关于x的不等式ax2+2x+1<0有实数解,则a的取值范围是()A.(0,1]B.[0,1]C.(﹣∞,1]D.(﹣∞,1)【分析】讨论a=0、a<0和a>0时,求出不等式有解时a的取值范围.【解答】解:a=0时,不等式为2x+1<0,有实数解,满足题意;a<0时,一元二次不等式为ax2+2x+1<0,不等式对应的二次函数开口向下,所以有实数解;a>0时,一元二次不等式为ax2+2x+1<0,应满足△=4﹣4a>0,解得a<1;综上知,a的取值范围是(﹣∞,1).故选:D.【点评】本题考查了不等式有解的应用问题,也考查了分类讨论思想,是基础题.8.(5分)若非空数集G满足“对于∀a,b∈G,都有a+b,a﹣b,ab∈G,且当b≠0时,∈G”,则称G是一个“理想数集”,给出下列四个命题:①0是任何“理想数集”的元素;②若“理想数集”M有非零元素,则N*⊆M③集合P={x|x=2k,k∈Z}是一个“理想数集”;④集合T={x|x=a+b,a,b∈Z}是“理想数集”.其中真命题的个数是()A.1B.2C.3D.4【分析】利用已知条件中理想数集的定义判断命题的真假,题目中给出了对两个实数的四种运算,要满足对四种运算的封闭,只有一一验证.【解答】解:对于①,设a=b∈G,显然有a﹣a∈G,即0∈G,故0是任何“理想数集”的元素,故①正确;对于②:当a=b时,显然有,则1+1,2+1,…,N+1∈M,所以N*∈M,故②正确;对于③:易知2∈P,而,故③错误;对于④:a,b∈Z,故1+2∈T,而,故④错误.故选:B.【点评】本题考查学生对于新定义题型的理解和把握能力,理解“理想数集”的定义是解决该题的关键,题目着重考察学生的构造性思维,属于难题.二、多项选择题:(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对得5分,选对但不全的得3分,有选错的得0分)9.(5分)以下说法中正确的有()A.“f(x)是定义在R上的偶函数”的含义是“存在x∈R,使得f(﹣x)=f(x)”B.“f(x)是定义在R上的增函数”的含义是“∀x1,x2∈R,当x1<x2时,有f(x1)<f (x2)”C.设M,P是两个非空集合,则M⊆P的含义是“对于∀x∈M,x∈P”D.设f(x)是定义在R上的函数,则“f(0)=0”是“f(x)是奇函数”的必要条件【分析】根据偶函数的定义即可判断A;由增函数的定义即可判断B;由子集的定义即可判断C;由充分必要条件的定义即可判断D.【解答】解:对于A,“f(x)是定义在R上的偶函数”的含义是“对任意的x∈R,都有f(﹣x)=f(x)”,故A错误;对于B,“f(x)是定义在R上的增函数”的含义是“∀x1,x2∈R,当x1<x2时,有f(x1)<f(x2)”,故B正确;对于C,由子集的定义可知C正确;对于D,若f(x)是定义在R上的奇函数,则f(0)=0,若f(x)是定义在R上的函数,且f(0)=0,不能得出f(x)为奇函数,例如f(x)=x2,故“f(0)=0”是“f(x)是奇函数”的必要条件,故D正确.故选:BCD.【点评】本题主要考查函数奇偶性单调性的定义,考查子集的定义,充要条件的定义,属于中档题.10.(5分)已知a,b,c,d∈R,则下列结论中正确的有()A.若ac2>bc2,则a>bB.若,则a>bC.若a>b>0,ac>bd>0,则c>dD.若,则a<b【分析】由不等式的基本性质逐一判断即可.【解答】解:对于A,若ac2>bc2,则a>b,故A正确;对于B,若<0<,则a<0<b,故B错误;对于C,取a=9,b=1,c=2,d=3,满足a>b>0,ac>bd>0,但c<d,故C错误;对于D,若,则﹣=>0,则b>a,故D正确.故选:AD.【点评】本题主要考查不等式的基本性质,属于基础题.11.(5分)下列说法中不正确的有()A.设A,B是两个集合,若A∪B=A∩B,则A=BB.函数y=与y=为同一个函数C.函数y=+的最小值为2D.设y=f(x)是定义在R上的函数,则函数y=xf(|x|)是奇函数【分析】由集合的基本运算即可判断A;判断定义域与解析式是否相同即可判断B;利用换元及对勾函数的性质即可判断选项C;由函数的奇偶性的定义即可判断D.【解答】解:对于A,设A,B是两个集合,若A∪B=A∩B,则A=B,故A正确;对于B,函数y==|x|,函数y==x,两函数定义域相同,解析式不同,故不是同一函数,故B错误;对于C,令t=≥,则y=+t在[,+∞)上单调递增,所以当t=时,取得最小值为,所以函数y=+的最小值为,故C错误;对于D,函数y=g(x)=xf(|x|),g(﹣x)=﹣xf(|﹣x|)=﹣xf(|x|)=﹣g(x),所以函数y=xf(|x|)是奇函数,故D正确.故选:BC.【点评】本题主要考查即可得基本运算,同一函数的判断,函数最值的求法,以及函数奇偶性的判断,属于中档题.12.(5分)若函数f(x)同时满足:①对于定义域内的∀x,都有f(x)+f(﹣x)=0;②对于定义域内的∀x1,x2当x1≠x2时,都有<0则称函数f(x)为“颜值函数”.下列函数中,是“颜值函数”的有()A.f(x)=B.f(x)=x2C.f(x)=D.f(x)=﹣2x【分析】先理解已知两条性质反映的函数性质,①f(x)为奇函数,②f(x)为定义域上的减函数,由此判断各选项是否同时具备两个性质即可.【解答】解:依题意,性质①反映函数f(x)为定义域上的奇函数,性质②反映函数f (x)为定义域上的减函数,对于A,f(x)=为定义域上的奇函数,但不是定义域上的减函数,其单调区间为(﹣∞,0),(0,+∞),故A不是“颜值函数”;对于B,f(x)=x2为定义域上的偶函数,故B不是“颜值函数”;对于C,函数f(x)=的图象如图所示,显然此函数为奇函数,且在定义域上为减函数,故C是“颜值函数”.对于D,f(x)=﹣2x为定义域上的奇函数,且是定义域上的减函数,故D是“颜值函数”.故选:CD.【点评】本题主要考查了抽象表达式反映的函数性质,对新定义函数的理解能力,奇函数的定义,函数单调性的定义,基本初等函数的单调性和奇偶性及其判断方法,复合函数及分段函数的单调性和奇偶性的判断方法,属于中档题.三、填空题:本大题共4小题,每小题5分,共20分,请把答案直接填写在答题卡相应位置上.13.(5分)设x∈R,则“0<x<5”是“|x﹣1|<1”的必要且不充分条件(填“充分且不必要”“必要且不充分”“充要”“既不充分也不必要”).【分析】解出关于x的不等式,结合充分必要条件的定义,从而求出答案.【解答】解:∵|x﹣1|<1,∴0<x<2,∵0<x<5推不出0<x<2,0<x<2⇒0<x<5,∴0<x<5是0<x<2的必要且不充分条件,即0<x<5是|x﹣1|<1的必要且不充分条件故答案为:必要且不充分.【点评】本题考查了充分必要条件,考查解不等式问题,是一道基础题.14.(5分)已知函数f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x2+x+2,则f(1)+g(1)=2.【分析】根据题意,由函数的解析式可得f(﹣1)﹣g(﹣1)=(﹣1)2﹣1+2=2,结合函数的奇偶性可得f(﹣1)﹣g(﹣1)=f(1)+g(1),即可得答案.【解答】解:根据题意,f(x)﹣g(x)=x2+x+2,则f(﹣1)﹣g(﹣1)=(﹣1)2﹣1+2=2,又由函数f(x),g(x)分别是定义在R上的偶函数和奇函数,则f(﹣1)﹣g(﹣1)=f(1)+g(1)=2.故答案为:2.【点评】本题考查函数的奇偶性的性质以及应用,关键是掌握函数奇偶性的定义,属于基础题.15.(5分)在平面直角坐标系xOy中,若直线y=a与函数y=|x﹣a|+2﹣a的图象有且只有一个公共点,则实数a的值为1.【分析】由已知可转化为函数y=2a﹣2与函数y=|x﹣a|的图象只有一个交点,利用函数的图象性质即可求解.【解答】解:由已知可令a=|x﹣a|+2﹣a,可得:2a﹣2=|x﹣a|,可看成函数y=2a﹣2与函数y=|x﹣a|图象只有一个公共点,而函数y=|x﹣a|是以x=a为对称轴,最小值为0的函数,所以要满足题意只需令2a﹣2=0,即a=1,故答案为:1【点评】本题考查了函数的零点与方程根的关系,属于基础题.16.(5分)已知x>0,y>0,x+2y=2,则的最小值为16.【分析】由=+++=++(+)(x+2y),利用基本不等式即可求得最小值.【解答】解:∵x>0,y>0,x+2y=2,∴=+++=++(+)(x+2y)=++4≥4+2=16,当且仅当=时,取得最小值16.故答案为:16.【点评】本题考查了利用基本不等式性质求最值问题,属于基础题.三、解答题:本大题共6小题,共70分,请把答案填写在答题卡相应位置上17.(10分)计算:(1)lg52+lg8+lg5•lg20+(lg2)2;(2)π0﹣(8)﹣2+×(4)﹣1.【分析】(1)利用对数的运算性质求解.(2)利用有理数指数幂的运算性质求解.【解答】解:(1)原式=2lg5+2lg2+lg5•lg20+(lg2)2=2+lg5•(2lg2+lg5)+(lg2)2=2+(lg5)2+2lg5•lg2+(lg2)2=2+(lg5+lg2)2=2+1=3.(2)原式=1﹣+×=1﹣16+2=﹣13.【点评】本题主要考查了对数的运算性质和有理数指数幂的运算性质,是基础题.18.(12分)设全集U=R,已知集合A={x|x2﹣x﹣6≥0},B={x|<0},C={x|m﹣1≤x≤2m}.(1)求A∩B和(∁U A)∪B;(2)若B∩C=C,求实数m的取值范围.【分析】(1)可以求出集合A={x|x≤﹣2或x≥3},B={x|1<x<5},然后进行交集、并集和补集的运算即可;(2)根据B∩C=C可得出C⊆B,然后讨论C是否为空集:C=∅时,m﹣1>2m;C≠∅时,,然后解出m的范围即可.【解答】解:(1)A={x|x≤﹣2或x≥3},B={x|1<x<5},U=R,∴A∩B={x|3≤x<5},∁U A={x|﹣2<x<3},(∁U A)∪B={x|﹣2<x<5};(2)∵B∩C=C,∴C⊆B,①C=∅时,m﹣1>2m,解得m<﹣1;②C≠∅时,,解得;综上得实数m的取值范围为.【点评】本题考查了描述法的定义,交集、并集和补集的定义及运算,全集的定义,子集的定义,考查了计算能力,属于基础题.19.(12分)设函数f(x)=x2+bx+c(b,c∈R),已知f(x)<0的解集为区间(﹣1,3).(1)求b,c的值;(2)若函数g(x)=f(x)﹣ax在区间[0,2]上的最小值为﹣4,求实数a的值.【分析】(1)由f(x)<0的解集为区间(﹣1,3)可知x=﹣1,x=3是x2+bx+c=0的解,然后结合方程的根与系数关系可求;(2)g(x)=f(x)﹣ax=x2﹣(a+2)x﹣3开口向上,对称轴x=,然后结合对称轴与已知区间的位置关系进行分类讨论可求.【解答】解:(1)由f(x)<0的解集为区间(﹣1,3)可知x=﹣1,x=3是x2+bx+c =0的解,故,解得,b=﹣2,c=﹣3,(2)g(x)=f(x)﹣ax=x2﹣(a+2)x﹣3开口向上,对称轴x=,(i)即a≥2时,函数g(x)在[0,2]上单调递减,g(x)min=g(2)=﹣2a ﹣3=﹣4,解得,a=(舍),(ii)即a≤﹣2时,函数g(x)在[0,2]上单调递增,g(x)min=g(0)=﹣3≠﹣4,(舍),(iii)当0即﹣2<a<2时,函数g(x)在[0,2]上先减后增,g(x)min=g ()=﹣3﹣=﹣4,解得,a=4(舍)或a=0,综上,a=0.【点评】本题主要考查了二次函数与二次不等式的相互转化关系的应用及二次函数闭区间上最值的求解,体现了转化思想及分类讨论思想的应用.20.(12分)根据试验检测,一辆P型运输汽车在高速公路上匀速行驶时,耗油率(L/h)近似与车速(km/h)的平方成正比,且当车速是100km/h时,耗油率为L/h.已知A,B两地间有一条长130km的高速公路,最低限速60km/h,最高限速120km/h.若某环保公司用一辆该型号运输车将垃圾从A地转运至B地,已知过路费为40元,支付给雇用司机的工资平均每小时80元.假设汽油的价格是8元/L,汽车匀速行驶(起步、必要的减速或提速等忽略不计),问:当行车速度为多少时,转运一次的总费用最低?最低为多少元?【分析】设车速为xkm/h,用x表示出油耗和行车时间,得出总费用关于x的函数,根据基本不等式求出费用最小值.【解答】解:设车速为xkm/h,耗油率m(x)=kx2,则由题意可得m(100)=10000k =,∴k==.∴从A地到B地消耗汽油的价钱为,司机的工资为=,故从A地到B地的总费用f(x)=≥2=300元.当且仅当,即x=80∈[60,120]时取等号.∴从A地到B地的车速是80km/h时,转运一次的总费用最低为300元.【点评】本题考查函数模型的选择及应用,考查函数解析式求解,函数最值的计算,属于中档题.21.(12分)已知函数f(x)=为奇函数.(1)求实数a的值;(2)求证:f(x)在区间[2,+∞)上是增函数;(3)若对任意的x1,x2∈[2,4],都有f(x1)﹣f(x2)≤m2﹣2m﹣2,求实数m的取值范围.【分析】(1)由f(x)为奇函数,结合奇函数的定义代入可求;(2)结合单调性定义,设2≤x1<x2,然后利用作差法比较f(x1)与f(x2)的大小即可判断;(3)结合(2)中单调性即可求解函数最值.【解答】解:(1)因为f(x)=为奇函数,x≠0,所以f(﹣x)=﹣f(x),所以,整理可得,ax=0,所以a=0,(2)证明:由(1)可得f(x)==x+,设2≤x1<x2,则f(x1)﹣f(x2)=x1﹣x2+,=x1﹣x2+=(x1﹣x2)(1﹣)<0,所以f(x1)<f(x2),所以f(x)在区间[2,+∞)上是增函数;(3)由(2)可得f(x)=x在[2,4]上单调递增,故f(x)max=f(4)=5,f(x)min=f(2)=4,若对任意的x1,x2∈[2,4],都有f(x1)﹣f(x2)≤m2﹣2m﹣2,所以1≤m2﹣2m﹣2,解得m≥3或m≤﹣1.【点评】本题主要考查了函数奇偶性及单调性的应用及判断,还考查了函数单调性在求解最值中的应用.22.(12分)设f(x)是R上的减函数,且对任意实数x,y,都有f(x+y)=f(x)+f(y);函数g(x)=x2+ax+b(a,b∈R).(1)判断函数f(x)的奇偶性,并证明你的结论;(2)若a=﹣1,b=5,且______.(①存在t∈[﹣3,2];②对任意t∈[﹣3,2]),不等式f(g(t)﹣1)+f(3t+m)>0成立,求实数m的取值范围;请从以上两个条件中选择一个填在横线处,并完成求解.(3)当a>0时,若关于x的不等式g(x)≤0与g(g(x))≤3的解集相等且非空,求a的取值范围.【分析】(1)令x=y=0,可得f(0),再令y=﹣x,结合奇偶性的定义,即可得到结论;(2)分别选①②,将原不等式转化为﹣m>t2+2t+4对t∈[﹣3,2]成立或恒成立,结合参数分离和二次函数的最值求法,可得所求范围;(3)考虑g(x)=0与g(g(x))=3的解集相等,求得b=3,再由g(x)≤0的解集,结合判别式的符号和因式分解,可得所求范围.【解答】解:(1)令x=y=0,则f(0)=f(0)+f(0),即f(0)=0,再令y=﹣x,则f(0)=f(x)+f(﹣x),即f(﹣x)=﹣f(x),所以f(x)为R上的奇函数;(2)①存在t∈[﹣3,2].f(g(t)﹣1)+f(3t+m)=f[(g(t)﹣1)+(3t+m)]>0=f(0),由f(x)是R上的减函数可得g(t)﹣1+(3t+m)<0,即t2﹣t+4+3t+m<0,也即t2+2t+4+m<0,可得﹣m>t2+2t+4对t∈[﹣3,2]成立,y=t2+2t+4=(t+1)2+3在t=﹣1时取得最小值4,则﹣m>3,即m<﹣3;选②任意t∈[﹣3,2],f(g(t)﹣1)+f(3t+m)=f[(g(t)﹣1)+(3t+m)]>0=f(0),由f(x)是R上的减函数可得g(t)﹣1+(3t+m)<0,即t2﹣t+4+3t+m<0,也即t2+2t+4+m<0,可得﹣m>t2+2t+4在任意t∈[﹣3,2]恒成立,y=t2+2t+4=(t+1)2+3在t=2时取得最大值12,则﹣m>12,即m<﹣12;(3)当a>0时,若关于x的不等式g(x)≤0与g(g(x))≤3的解集相等且非空,可得g(x)=0与g(g(x))=3的解集相等,可得g(0)=3,即b=3,g(x)=x2+ax+3≤0,可得△=a2﹣12≥0,即a≥2(a≤﹣2舍去),又g(g(x)﹣3=(x2+ax+3)2+a(x2+ax+3)+3﹣3=(x2+ax+3)(x2+ax+3+a),由题意可得x2+ax+3+a≥0恒成立,可得△=a2﹣4(a+3)≤0,解得﹣2≤a≤6,又a>0,可得0<a≤6,综上可得2≤a≤6.【点评】本题考查抽象函数的奇偶性和单调性的判断和运用,以及不等式恒成立和成立问题解法,考查转化思想和运算能力、推理能力,属于中档题.。
2020-2021学年江苏省南京市金陵中学高一上学期第一次月考数学试卷及答案
一、单项选择题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上) 1.已知全集U ={0,1,2,3,4},M ={0,1,2},N ={2,3},则(UM)N 等于A .{2,3,4}B .{3}C .{2}D .{0,1,2,3,4} 2.设P(x ,y ),则“x =2且y =﹣1”是“点P 在一次函数y =﹣x +1的图像上”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.设a >b ,c >d ,则下列不等式中一定成立的是A .a c b d ->-B .ac bd >C .a c b d +>+D .a d b c +>+ 4.已知集合A =40, 1x xx Z x ⎧-⎫<∈⎨⎬-⎩⎭,B ={m ,2,8},若A B =B ,则m =A .1B .2C .3D .5 5.若不等式240x ax ++<的解集为∅,则a 的取值范围是 A .[﹣4,4] B .(﹣4,4)C .(-∞,﹣4][4,+∞)D .(-∞,﹣4)(4,+∞)6.已知x >2,则函数442y x x =+-的最小值是 A .6 B .8 C .12 D .167.设全集U =R ,M ={}22x x x <->或,N ={}13x x ≤≤.如图所示,则阴影部分所表示的集合为A .{}21x x -≤<B .{}23x x -≤≤C .{}23x x x ≤>或 D .{}22x x -≤≤ 第7题 8.定义一个集合A 的所有子集组成的集合叫做集合A 的幂集,记为P(A),用n (A)表示有限集A 的元素个数,给出下列命题:①对于任意集合A ,都有A ⊆P(A);②存在集合A ,使得n [P(A)]=3;③若A B =∅,则P(A)P(B)=∅;④若A ⊆B ,则P(A)⊆P(B);⑤若n (A)﹣n (B)=1,则n [P(A)]=2×n [P(B)].其中正确的命题个数为 A .5 B .4 C .3 D .2二、 多项选择题(本大题共3小题,每小题5分, 共计15分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上) 9.下列命题中是真命题的是A .R x ∀∈,22340x x -+> B .x ∀∈{1,﹣1,0},2x +1>0C .N x ∃∈,使x x ≤D .N x *∃∈,使x 为29的约数10.已知p :260x x +-=;q :10ax +=.若p 是q 的必要不充分条件,则实数a 的值可以是A .﹣2B .12-C .13D .13- 11.已知函数2y x ax b =++(a >0)有且只有一个零点,则 A .224a b -≤ B .214a b+≥ C .若不等式20x ax b +-<的解集为(1x ,2x ),则120x x >D .若不等式2x ax b c ++<的解集为(1x ,2x ),且124x x -=,则c =4三、填空题(本大题共5小题, 每小题5分,共计25分.请把答案填写在答题卡相应位置上)12.集合A ={}28150x x x -+=,B ={}20x x ax b -+=,若AB ={2,3,5},AB ={3},则ab = .13.若关于x 的不等式0ax b +>的解集为(1,+∞),则11a b-+的最小值为 . 14.若不等式102x m x m -+<-成立的一个充分不必要条件是1132x <<,则实数m 的取值范围是 .15.若存在两个互不相等的实数a ,b ,使得2211a mab mb ⎧=-⎪⎨=-⎪⎩成立,则实数m 的取值范围是.16.已知正实数x ,y 满足22541x xy y +-=,则22128x xy y +-的最小值为 .四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)(1124()25-; (2)解不等式:262318x x x -≤-<.18.(本小题满分12分)若1x 和2x 分别是函数2243y x x =+-的两个零点.(1)求12x x -的值;(2)求3312x x +的值.19.(本小题满分12分)设集合A ={}12x x -≤≤,非空集合B ={}21x m x <<.(1)若“x ∈A ”是“x ∈B ”成立的必要条件,求实数m 的取值范围; (2)若B (RA)的元素中只有两个整数,求实数m 的取值范围.20.(本小题满分12分)精准扶贫是巩固温饱成果、加快脱贫致富、实现中华民族伟大“中国梦”的重要保障.某地政府在对某乡镇企业实施精准扶贫的工作中,准备投入资金将当地农产品进行二次加工后进行推广促销,预计该批产品销售量w 万件(生产量与销售量相等)与推广促销费x 万元之间的函数关系为32x w +=(其中推广促销费不能超过5万元). 已知加工此农产品还要投入成本33()w w+万元(不包括推广促销费用),若加工后的每件成品的销售价格定为30(4)w+元/件.(1)试将该批产品的利润y 万元表示为推广促销费x 万元的函数;(利润=销售额﹣成本﹣推广促销费)(2)当推广促销费投入多少万元时,此批产品的利润最大?最大利润为多少? 21.(本小题满分12分)已知23(6)12y x a a x =-+-+.(1)若不等式y >b 的解集为(0,3),求实数a ,b 的值;(2)若a =3时,对于任意的实数x ,都有2396y x m m ≤+-,求m 的取值范围. 22.(本小题满分14分)设函数2y ax x b =+-(a ∈R ,b ∈R). (1)若b =a ﹣54,且集合{}0x y =中有且只有一个元素,求实数a 的取值集合; (2)求不等式(22)2y a x b <+--的解集;(3)当a >0,b >1时,记不等式y >0的解集为P ,集合Q ={}22x t x t --<<-+.若对于任意正数t ,PQ ≠∅,求11a b-的最大值.参考答案1.B 2.A 3.C 4.C 5.A 6.D 7.A 8.D 9.ACD 10.BC 11.ABD12.30 13.3 14.[14,43] 15.(-∞,﹣2)(2,+∞) 16.7317.18.19.20.21.22.。
江苏省南京市第五高级中学2020-2021学年高一上学期12月质量监测数学试题 Word版含答案
江苏省南京市第五高级中学2020至2021学年高一年级第一学期12月质量监测数学一、单选题1.已知a 是第一象限角,那么2a是() A .第一象限角 B .第二象限角 C .第一或第二象限角D .第一或第三象限角2.已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<3.角θ的终边上一点(-,则cos()2πθ-=( )A.2B. C .12D .12-4.大西洋鲑鱼每年都要逆流而上,游回产地产卵.研究鲑鱼的科学家发现鲑鱼的游速v (单位:/m s )可以表示为31log 2100Q v =,其中Q 表示鱼的耗氧量的单位数.当一条鲑鱼的游速为32/m s 时,则它的耗氧量的单位数为( ) A .900 B .1600C .2700D .81005.已知3sin()35x π-=,则7cos()6x π+等于( ) A .35B .45 C .35D .45-6.若θθ) A .2tan θB .2tan θ-C .2tan θ-D .2tan θ7.若函数()()222,1log 1,1xx f x x x ⎧+≤⎪=⎨->⎪⎩在(],a -∞上的最大值为4,则a 的取值范围为( )A .[]0,17B .(],17-∞ C .[]1,17D .[)1,+∞ 8.现有四个函数:①sin y x x =⋅;②cos y x x =⋅;③cos y x x =⋅;④2x y x =⋅的图象(部分)如下,则按照从左到右图象对应的函数序号安排正确的一组是( )A .④④④④B .④④④④C .④④④④D .④④④④二、多选题 9.已知|,2k x x x k Z π⎧⎫∈≠∈⎨⎬⎩⎭,则函数sin cos tan |sin ||cos ||tan |x x x y x x x =+-的值可能为( )A .3B .-3C .1D .-110.已知(0,)θπ∈,1sin cos 5θθ+=,则下列结论正确的是( ) A .,2πθπ⎛⎫∈⎪⎝⎭ B .3cos 5θ=-C .3tan 4θ=-D .7sin cos 5θθ-=11.下列命题是真命题的是( ) A .若幂函数()a f x x 过点1,42⎛⎫⎪⎝⎭,则12α=-B .(0,1)x ∃∈,121log 2xx ⎛⎫> ⎪⎝⎭C .(0,)x ∀∈+∞,1123log log x x>D .命题“x ∃∈R ,sin cos 1x x +<”的否定是“x ∀∈R ,sin cos 1x x +≥”12.已知函数()()11,0,2,0.x x f x f x x ⎧+-<⎪=⎨-≥⎪⎩则以下结论正确的是( )A .()20200f =B .方程()114f x x =-有三个实根 C .当[)4,6x ∈时,()51f x x =--D .若函数()y f x t =-在(),6-∞上有8个零点()1,2,3,,8i x i =⋅⋅⋅,则()81iii x f x =∑的取值范围为()16,0-三、填空题13.若tan 2θ=,则3cos()sin()cos()sin()22θπθππθθ---=-++__________.14.若不等式220ax x a ++<对任意x ∈R 恒成立,则实数a 的取值范围是_________.15.若两个正实数x ,y1=,26m m >-恒成立,则实数m 的取值范围是________. 四、双空题16.已知函数()20.521,0log ,0x x x f x x x ⎧--+⎪=⎨>⎪⎩,若方程()f x a =有四个不同的解1234,,,x x x x ,且1234x x x x <<<,则a 的最小值是______,()41223416x x x x x ⋅++⋅的最大值是______. 五、解答题17.在平面直角坐标系xOy 中,已知角α的终边与以原点为圆心的单位圆交于点34,55P ⎛⎫- ⎪⎝⎭. (1)请写出sin α,cos α,tan α的值; (2)若角β满足ππ,2k k αβ+=+∈Z . (ⅰ)计算tan β的值;(ⅱ)计算22cos 2sin cos sin ββββ+的值. 18.已知全集为R ,集合6|03x A x x -⎧⎫=∈>⎨⎬+⎩⎭R ,{}2|2(10)50B x x a x a =∈-++≤R . (1)若B A ⊆R,求实数a 的取值范围;(2)从下面所给的三个条件中选择一个,说明它是B A ⊆R的什么条件(充分必要性).①[7,12)a ∈-;②(7,12]a ∈-;③(6,12]a ∈.19.1766年;人类已经发现的太阳系中的行星有金星、地球、火星、木星和土星.德国的一位中学教师戴维一提丢斯在研究了各行星离太阳的距离(单位:AU ,AU 是天文学中计量天体之间距离的一种单位)的排列规律后,预测在火星和木星之间应该还有一颗未被发现的行星存在,并按离太阳的距离从小到大列出了如下表所示的数据:受他的启发,意大利天文学家皮亚齐于1801年终于发现了位于火星和木星之间的谷神星.(1)为了描述行星离太阳的距离y 与行星编号之间的关系,根据表中已有的数据画出散点图,并根据散点图的分布状况,从以下三种模型中选出你认为最符合实际的一种函数模型(直接给出结论即可);①y ax b =+;②(1)xy a b c b =⋅+>;③log (1)b y a x c b =⋅+>.(2)根据你的选择,依表中前几组数据求出函数解析式,并用剩下的数据检验模型的吻合情况; (3)请用你求得的模型,计算谷神星离太阳的距离.20.已知,,a b c ∈R ,二次函数2()f x ax bx c =++的图象经过点(0,1),且()0f x >的解集为11,32⎛⎫- ⎪⎝⎭.(1)求实数a ,b 的值;(2)若方程()7f x kx =+在(0,2)上有两个不相等的实数根,求实数k 的取值范围. 21.已知函数()412xf x a a =-+(0a >,且1a ≠),且()113f =. (1)求实数a 的值;(2)判断函数()f x 的奇偶性并证明(3)若函数()()1g x kf x =-有零点,求实数k 的取值范围. 22.知函数()2log 1f x x =+,()()()22g x f x f x =+⎡⎤⎣⎦.(1)求方程()2g x =的解集;(2)若()f x 的定义域是[]1,16,求函数()g x 的最值;(3)若不等式()()22log 4f x x m f x ++>⋅⎡⎤⎣⎦对于[]1,16x ∀∈恒成立,求m 的取值范围.江苏省南京市第五高级中学2020至2021学年高一年级第一学期12月质量监测数学一、单选题1.已知a 是第一象限角,那么2a是() A .第一象限角 B .第二象限角 C .第一或第二象限角 D .第一或第三象限角【答案】D 【分析】 根据象限角写出2a 的取值范围,讨论即可知2a在第一或第三象限角 【详解】依题意得22()2k a k k Z πππ<<+∈,则()24a k k k Z πππ<<+∈, 当2k n n Z =∈, 时,2a是第一象限角 当2+1k n n Z =∈, 时,2a是第三象限角【点睛】本题主要考查象限角,属于基础题.2.已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<【答案】B 【分析】运用中间量0比较,a c ,运用中间量1比较,b c 【详解】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,<<=则01,c a c b <<<<.故选B .【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.3.角θ的终边上一点(-,则cos()2πθ-=( )A B . C .12D .12-【答案】A 【分析】首先利用三角函数的定义求出sin θ,再利用诱导公式即可求解. 【详解】根据题意可得sin 2θ==,cos()cos sin 222ππθθθ⎛⎫-=-==⎪⎝⎭故选:A 【点睛】本题考查了三角函数的定义以及诱导公式,需熟记公式,属于基础题.4.大西洋鲑鱼每年都要逆流而上,游回产地产卵.研究鲑鱼的科学家发现鲑鱼的游速v (单位:/m s )可以表示为31log 2100Q v =,其中Q 表示鱼的耗氧量的单位数.当一条鲑鱼的游速为32/m s 时,则它的耗氧量的单位数为( ) A .900 B .1600C .2700D .8100【答案】C 【分析】 将32v =/m s 代入式子,利用指数式与对数式的互化即可求解. 【详解】由31log 2100Qv =,当32v =时, 则331log 22100Q =,即3log 3100Q =,解得3327100Q ==, 所以2700Q =.故选:C 【点睛】本题考查了指数式与对数式的互化,属于基础题. 5.已知3sin()35x π-=,则7cos()6x π+等于( ) A .35B .45 C .35D .45-【答案】C 【分析】由诱导公式化简后即可求值. 【详解】7πcos x 6⎛⎫+ ⎪⎝⎭=-π cos x 6⎛⎫+=- ⎪⎝⎭sin[26x ππ⎛⎫-+ ⎪⎝⎭]=π3sin x 35⎛⎫-=- ⎪⎝⎭故选C . 【点睛】本题主要考查了三角函数诱导公式的应用,属于基础题. 6.若θ) A .2tan θ B .2tan θ-C .2tan θ-D .2tan θ【答案】D 【分析】利用同角三角函数的平方关系化简即可. 【详解】θ为第四象限角,则sin 0θ<,且0cos 1θ<<,1cos 0θ∴±>,=1cos 1cos 1cos 1cos 2sin sin sin sin tan θθθθθθθθθ-+-+==-=-+=.故选:D. 【点睛】本题考查利用同角三角函数的平方关系化简,在去绝对值时,要考查代数式的符号,考查计算能力,属于中等题.7.若函数()()222,1log 1,1xx f x x x ⎧+≤⎪=⎨->⎪⎩在(],a -∞上的最大值为4,则a 的取值范围为( )A .[]0,17B .(],17-∞ C .[]1,17D .[)1,+∞ 【答案】C 【分析】要求函数()f x 的最大值,可先分别探究函数()122,1xf x x =+≤与()()22log 1,1f x x x =->的单调性,从而得到()f x 的最大值.【详解】易知()122,1xf x x =+≤在(],1-∞上单调递增,()()22log 1,1f x x x =->()1,+∞上单调递增.因为()14f =,()174f =,所以a 的取值范围为[]1,17. 【点睛】本题考查分段函数的单调性,考查运算求解能力与数形结合的数学方法.8.现有四个函数:①sin y x x =⋅;②cos y x x =⋅;③cos y x x =⋅;④2x y x =⋅的图象(部分)如下,则按照从左到右图象对应的函数序号安排正确的一组是( )A .①④②③B .①④③②C .④①②③D .③④②①【答案】A 【分析】根据各个函数的奇偶性、函数值的符号,判断函数的图象特征,即可得到. 【详解】解:①sin y x x =⋅为偶函数,它的图象关于y 轴对称,故第一个图象即是; ②cos y x x =⋅为奇函数,它的图象关于原点对称,它在0,2π⎛⎫⎪⎝⎭上的值为正数, 在,2ππ⎛⎫⎪⎝⎭上的值为负数,故第三个图象满足; ③cos y x x =⋅为奇函数,当0x >时,()0f x ≥,故第四个图象满足;④2x y x =⋅,为非奇非偶函数,故它的图象没有对称性,故第二个图象满足, 故选A . 【点睛】本题主要考查函数的图象,函数的奇偶性、函数的值的符号,属于中档题.二、多选题 9.已知|,2k x x x k Z π⎧⎫∈≠∈⎨⎬⎩⎭,则函数sin cos tan |sin ||cos ||tan |x x x y x x x =+-的值可能为( )A .3B .-3C .1D .-1【答案】BC 【分析】讨论x 在第一象限;x 在第二象限;x 在第三象限;x 在第四象限;四种情况分别化简得到答案. 【详解】|,2k x x x k Z π⎧⎫∈≠∈⎨⎬⎩⎭,当x 在第一象限时:sin cos tan 1111|sin ||cos ||tan |x x xy x x x =+-=+-=;当x 在第二象限时:sin cos tan 1111|sin ||cos ||tan |x x xy x x x =+-=-+=当x 在第三象限时:sin cos tan 1113|sin ||cos ||tan |x x xy x x x =+-=---=-当x 在第四象限时:sin cos tan 1111|sin ||cos ||tan |x x xy x x x =+-=-++=故选:BC 【点睛】本题考查了三角函数值化简,分类讨论是常用的数学方法,需要熟练掌握. 10.已知(0,)θπ∈,1sin cos 5θθ+=,则下列结论正确的是( ) A .,2πθπ⎛⎫∈⎪⎝⎭ B .3cos 5θ=-C .3tan 4θ=-D .7sin cos 5θθ-=【答案】ABD 【分析】对1sin cos 5θθ+=两边平方,利用同角关系化简可得2sin cos θθ,在根据θ范围,确定sin 0θ>,cos 0θ<;根据()2sin cos 12sin cos θθθθ-=-,求出sin cos θθ-的值,将其与1sin cos 5θθ+=联立,求出sin ,cos θθ,再根据三角函数同角的基本关系,结合各选项,即可得到结果. 【详解】1sin cos 5θθ+=①()221sin cos 5θθ⎛⎫∴+= ⎪⎝⎭,即221sin 2sin cos cos 25θθθθ++=,242sin cos 25θθ∴=-, (0,)θπ∈,sin 0θ∴>,cos 0θ<,,2πθπ⎛⎫∴∈ ⎪⎝⎭()249sin cos 12sin cos 25θθθθ∴-=-= 7sin cos 5θθ∴-=②①加②得4sin 5θ=①减②得3cos 5θ=-4sin 45tan 3cos 35θθθ∴===--综上可得,正确的有ABD. 故选:ABD. 【点睛】本题主要考查了三角函数同角的基本关系的应用,考查学生的分析能力和计算能力,属于基础题. 11.下列命题是真命题的是( ) A .若幂函数()a f x x 过点1,42⎛⎫⎪⎝⎭,则12α=-B .(0,1)x ∃∈,121log 2xx ⎛⎫> ⎪⎝⎭C .(0,)x ∀∈+∞,1123log log x x>D .命题“x ∃∈R ,sin cos 1x x +<”的否定是“x ∀∈R ,sin cos 1x x +≥”【答案】BD 【分析】根据幂函数的定义判断A ,结合图象判断BC ,根据特称命题的否定为全称命题可判断D . 【详解】解:对于A :若幂函数()a f x x 过点1,42⎛⎫ ⎪⎝⎭,则142解得2α=-,故A 错误;对于B :在同一平面直角坐标系上画出12xy ⎛⎫= ⎪⎝⎭与12log y x =两函数图象,如图所示由图可知(0,1)x ∃∈,121log 2xx ⎛⎫> ⎪⎝⎭,故B 正确;对于C :在同一平面直角坐标系上画出13log y x =与12log y x =两函数图象,如图所示由图可知,当(0,1)x ∈时,1123log log x x>,当1x =时,1123log log x x=,当(1,)x ∈+∞时,1123log logx x<,故C 错误;对于D :根据特称命题的否定为全称命题可知,命题“x ∃∈R ,sin cos 1x x +<”的否定是“x ∀∈R ,sin cos 1x x +≥”,故D 正确;故选:BD 【点睛】本题考查指数函数对数函数的性质,幂函数的概念,含有一个量词的命题的否定,属于基础题.12.已知函数()()11,0,2,0.x x f x f x x ⎧+-<⎪=⎨-≥⎪⎩则以下结论正确的是( )A .()20200f =B .方程()114f x x =-有三个实根 C .当[)4,6x ∈时,()51f x x =--D .若函数()y f x t =-在(),6-∞上有8个零点()1,2,3,,8i x i =⋅⋅⋅,则()81iii x f x =∑的取值范围为()16,0-【答案】ACD 【分析】根据函数性质以及数形结合逐个判断即可. 【详解】对A, ()()()20202018...0(2)2110f f f f ====-=-+-=.故A 正确.对B,画出()()11,0,2,0.x x f x f x x ⎧+-<⎪=⎨-≥⎪⎩图像有故()114f x x =-有四个根.故B 错误. 对C, 当[)4,6x ∈时,()()()()24661151f x f x f x f x x x =-=-=-=-+-=--. 故C 正确.对D,画出图像,()y f x t =-有8个零点,即()y f x =与y t =有8个交点.此时()()88111212325216iiii i x f x t xt t ====-⨯+⨯+⨯+⨯=⎡⎤⎣⎦∑∑.又()1,0t ∈-.故()1616,0t ∈-.即()81iii x f x =∑的取值范围为()16,0-.故D 正确.故选:ACD 【点睛】本题主要考查了函数图像零点的综合运用,需要根据题题意画出图像,再分析函数图像的交点等.属于难题.三、填空题13.若tan 2θ=,则3cos()sin()cos()sin()22θπθππθθ---=-++__________.【答案】13【分析】利用同角三角函数的基本关系,将3cos sin cos sin θθθθ-+分子、分母同除cos θ即可求解.【详解】3cos sin 3tan 321cos sin 1tan 123θθθθθθ---===+++,故答案为:13【点睛】本题考查了同角三角函数的基本关系,考查了齐次式,属于基础题.14.若不等式220ax x a ++<对任意x ∈R 恒成立,则实数a 的取值范围是_________. 【答案】(,1)-∞- 【分析】由不等式220ax x a ++<恒成立可得函数22y ax x a =++的图象始终在x 轴下方,从而得出结论.【详解】解:∵不等式220ax x a ++<对任意x ∈R 恒成立,∴函数22y ax x a =++的图象始终在x 轴下方,∴20440a a <⎧⎨∆=-<⎩,解得1a <-, 故答案为:(,1)-∞-. 【点睛】本题主要考查不等式恒成立问题,通常转化为最值问题,本题借助三个二次(二次函数、一元二次不等式、一元二次方程)之间的关系解题,考查数形结合,属于基础题. 15.若两个正实数x ,y1=,26m m >-恒成立,则实数m 的取值范围是________. 【答案】(2,8)-. 【分析】m 的不等式,解不等式即可. 【详解】 解:1x y+=44⎛⎫+==++816≥+= 当且仅当16x y =,即4y =且64x =时取等号.246x m m +>-恒成立,则2166m m >-解得28m -<<即()2,8m ∈-故答案为:()2,8- 【点睛】本题考查基本不等式的应用,以及不等式恒成立的问题,属于中档题.四、双空题16.已知函数()20.521,0log ,0x x x f x x x ⎧--+⎪=⎨>⎪⎩,若方程()f x a =有四个不同的解1234,,,x x x x ,且1234x x x x <<<,则a 的最小值是______,()41223416x x x x x ⋅++⋅的最大值是______. 【答案】1 4【分析】画出()20.521,0log ,0x x x f x x x ⎧--+⎪=⎨>⎪⎩的图像,再数形结合分析参数的a 的最小值,再根据对称性与函数的解析式判断1234,,,x x x x 中的定量关系化简()41223416x x x x x ⋅++⋅再求最值即可. 【详解】画出()20.521,0log ,0x x x f x x x ⎧--+⎪=⎨>⎪⎩的图像有:因为方程()f x a =有四个不同的解1234,,,x x x x ,故()f x 的图像与y a =有四个不同的交点,又由图,()01f =,()12f -=故a 的取值范围是[)1,2,故a 的最小值是1.又由图可知,1212122x x x x =-⇒+=-+,0.530.54log log x x =,故0.530.540.534log log log 0x x x x =-⇒=,故341x x =.故()4124234416162x x x x x x x ⋅++=-⋅+. 又当1a =时, 0.544log 12x x -=⇒=.当2a =时, 0.544log 24x x -=⇒=,故[)42,4x ∈. 又44162y x x +=-在[)42,4x ∈时为减函数,故当42x =时44162y x x +=-取最大值162242y +=-⨯=. 故答案为:(1). 1 (2). 4 【点睛】本题主要考查了数形结合求解函数零点个数以及范围的问题,需要根据题意分析交点间的关系,并结合函数的性质求解.属于难题.五、解答题17.在平面直角坐标系xOy 中,已知角α的终边与以原点为圆心的单位圆交于点34,55P ⎛⎫- ⎪⎝⎭.(1)请写出sin α,cos α,tan α的值;(2)若角β满足ππ,2k k αβ+=+∈Z . (ⅰ)计算tan β的值;(ⅱ)计算22cos 2sin cos sin ββββ+的值.【答案】(1)4sin 5α,3cos 5α=-,4tan 3α=-.(2)(ⅰ) 3tan 4β=-(ⅱ) 1615- 【分析】(1)根据三角函数的定义直接写出即可.(2)i.根据两角和的余弦公式以及同角三角函数的关系求解即可. ii.根据3tan 4β=-与同角三角函数的关系求解sin ,cos ββ,再根据二倍角公式代入求解即可. 【详解】(1)由三角函数定义可知:4sin 5α,3cos 5α=-,4tan 3α=-. (2)(ⅰ)由题意可知:ππ,2k k αβ+=+∈Z ,所以π13tan tan πcot 2tan 4k βααα⎛⎫=+-===-⎪⎝⎭,(ⅱ)由22sin cos 1sin 3tan cos 4βββββ⎧+=⎪⎨==-⎪⎩,可知3sin 54cos 5ββ⎧=-⎪⎪⎨⎪=⎪⎩或3sin 54cos 5ββ⎧=⎪⎪⎨⎪=-⎪⎩原式2216cos 16252492sin cos sin 152525ββββ===-+-+【点睛】本题主要考查了三角函数的定义以及同角三角函数的关系式以及三角恒等变换公式计算等.属于中档题.18.已知全集为R ,集合6|03x A x x -⎧⎫=∈>⎨⎬+⎩⎭R ,{}2|2(10)50B x x a x a =∈-++≤R . (1)若B A ⊆R,求实数a 的取值范围;(2)从下面所给的三个条件中选择一个,说明它是B A ⊆R的什么条件(充分必要性).①[7,12)a ∈-;②(7,12]a ∈-;③(6,12]a ∈.【答案】(1)612a -≤≤(2)选择①,则结论是不充分不必要条件;选择②,则结论是必要不充分条件;选择③,则结论是是充分不必要条件.【分析】(1)解出集合A ,根据补集的定义求出A R,由B A ⊆R,得到关于a 的不等式,解得;(2)由(1)知B A ⊆R的充要条件为[6,12]a ∈-,再根据集合的包含关系判断即可.【详解】解:(1)集合6|0(3)(6,)3x A x x -⎧⎫=∈>=-∞-⋃+∞⎨⎬+⎩⎭R , 所以[3,6]A =-R,集合{}2|2(10)50{|(2)(5)0}B x x a x a x x a x =∈-++≤=∈--≤R R , 若B A ⊆R,且5[3,6]A ∈=-R,只需362a-≤≤, 所以612a -≤≤. (2)由(1)可知B A ⊆R的充要条件是[6,12]a ∈-,选择①,[7,12)[6,12]-⊄-且[6,12][7,12)-⊄-,则结论是不充分不必要条件; 选择②,[6,12]- (7,12]-,则结论是必要不充分条件; 选择③,(6,12] [6,12]-,则结论是充分不必要条件. 【点睛】本题考查根据集合的包含关系求参数的取值范围,以及充分条件必要条件的判断,属于基础题.19.1766年;人类已经发现的太阳系中的行星有金星、地球、火星、木星和土星.德国的一位中学教师戴维一提丢斯在研究了各行星离太阳的距离(单位:AU ,AU 是天文学中计量天体之间距离的一种单位)的排列规律后,预测在火星和木星之间应该还有一颗未被发现的行星存在,并按离太阳的距离从小到大列出了如下表所示的数据:受他的启发,意大利天文学家皮亚齐于1801年终于发现了位于火星和木星之间的谷神星.(1)为了描述行星离太阳的距离y 与行星编号之间的关系,根据表中已有的数据画出散点图,并根据散点图的分布状况,从以下三种模型中选出你认为最符合实际的一种函数模型(直接给出结论即可);①y ax b =+;②(1)xy a b c b =⋅+>;③log (1)b y a x c b =⋅+>.(2)根据你的选择,依表中前几组数据求出函数解析式,并用剩下的数据检验模型的吻合情况; (3)请用你求得的模型,计算谷神星离太阳的距离. 【答案】(1)模型②符合题意(2)见解析(3)2.8AU 【分析】(1)画出散点图,根据图形得到答案.(2)将(1,0.7),(2,1),(3,1.6)分别代入xy a b c =⋅+得到解析式,再验证得到答案. (3)取4x =,代入计算得到答案. 【详解】(1)散点图如图所示:根据散点图可知,模型②符合题意(2)将(1,0.7),(2,1),(3,1.6)分别代入xy a b c =⋅+得230.711.6a b c a b c a b c ⋅+=⎧⎪⋅+=⎨⎪⋅+=⎩,解得0.15,2,0.4a b c ===,所以()*0.1520.4xy x =⨯+∈N当5x =时,50.1520.4 5.2y =⨯+=. 当6x =时,60.1520.410y =⨯+=. 与已知表中数据完全吻合.(3)当4x =时,40.1520.4 2.8AU y =⨯+=,即谷神星距太阳的距离为2.8AU 【点睛】本题考查了散点图,函数解析式,意在考查学生的应用能力和计算能力.20.已知,,a b c ∈R ,二次函数2()f x ax bx c =++的图象经过点(0,1),且()0f x >的解集为11,32⎛⎫- ⎪⎝⎭.(1)求实数a ,b 的值;(2)若方程()7f x kx =+在(0,2)上有两个不相等的实数根,求实数k 的取值范围. 【答案】(1)6a =-,1b =(2)(14,11)-- 【分析】(1)根据一元二次不等式的解集和一元二次方程的关系计算可得.(2)由(1)知2()61f x x x =-++,得方程()7f x kx =+等价于方程26(1)60x k x +-+=,令2()6(1)6g x x k x =+-+,即()g x 的两个零点满足12,(0,2)x x ∈分析可得.【详解】解:(1)因为()f x 的图象经过点(0,1),所以1c =, 所以2()1f x ax bx =++,2()10f x ax bx =++>的解集为11,32⎛⎫- ⎪⎝⎭,所以11()032f x a x x ⎛⎫⎛⎫=+-> ⎪⎪⎝⎭⎝⎭,且0a <, 且1c =,得2()61f x x x =-++, 故6a =-,1b =(2)由2()61f x x x =-++,得方程()7f x kx =+等价于方程26(1)60x k x +-+=,令2()6(1)6g x x k x =+-+,即()g x 的两个零点满足12,(0,2)x x ∈,所以必有(0)0(2)0102120g g k>⎧⎪>⎪⎪⎨-<<⎪⎪∆>⎪⎩, 即142311311k k k k >-⎧⎪-<<⎨⎪><-⎩或,解得1411k -<<-, 所以实数k 的取值范围是(14,11)-- 【点睛】本题考查一元二次方程,二次函数以及一元二次不等式的关系,二次函数的零点问题,属于中档题.21.已知函数()412xf x a a =-+(0a >,且1a ≠),且()113f =. (1)求实数a 的值;(2)判断函数()f x 的奇偶性并证明(3)若函数()()1g x kf x =-有零点,求实数k 的取值范围. 【答案】(1)2(2)奇函数.见解析 (3)1k <-或1k >. 【分析】 (1)代入()113f =求解即可. (2)由(1)化简可得()2121x x f x -=+,再分析()f x -与()f x 的关系判定即可.(3)分析可知2121x x k +=-有实根,再换元令2x t =,分析()11t h t t +=-,()()0,11,t ∈+∞的取值范围进而求得k 的取值范围即可. 【详解】 (1)因为()411123f a a =-=+解得2a =(2)()f x 是奇函数.由2a =得:()421122221x xxf x -=-=⋅++ 故()()21122112x xx xf x f x -----===-++,所以()f x 是奇函数 (3)方法一:代入2a =可得()2121x x f x -=+因为()21121x x g x k -=⋅-+有零点,所以()211021x x g x k -=⋅-=+有实根.显然0x =不是()0g x =的实根,所以2121x x k +=-有实根.设2x t =,()11t h t t +=-,()()0,11,t ∈+∞.因为()211h t t =+-.①当()0,1t ∈时,()11,0t -∈-,所以111t <--, 所以()2111h t t =+<-- ②当()1,t ∈+∞时,()10,t -∈+∞,所以()2111h t t =+>- 综上,()h t 的值域为()(),11,-∞-+∞ 所以,当()(),11,k ∈-∞-+∞时,2121x x k +=-有实根, 即()21121x x g x k -=-+有零点 方法二:代入2a =可得()2121x x f x -=+ 因为()21121x x g x k -=⋅-+有零点,所以()211021x x g x k -=⋅-=+有实根. 所以()121xk k -=+有实根. 显然,1k =时上式不成立,所以121x k k +=-有实根 因为20x >, 所以101k k +>- 所以1k <-或1k >.所以,当()(),11,k ∈-∞-+∞时,121x k k +=-有实根. 即()21121x x g x k -=-+有零点 【点睛】本题主要考查了函数解析式的求解以及根据函数的零点个数求解参数的方法,需要根据题意参变分离,分析构造的函数的值域进而求得参数的范围.属于中档题.22.知函数()2log 1f x x =+,()()()22g x f x f x =+⎡⎤⎣⎦. (1)求方程()2g x =的解集;(2)若()f x 的定义域是[]1,16,求函数()g x 的最值;(3)若不等式()()22log 4f x x m f x ++>⋅⎡⎤⎣⎦对于[]1,16x ∀∈恒成立,求m 的取值范围.【答案】(1){}41,2- (2)()min 2g x =,()max 34g x = (3)1m <+【分析】 (1)将()f x 表达式代入()g x 中求解方程的解.(2)写出()g x 表达式后化简求值域.(3)先将不等式进行换元处理后,分离参数求解m 的取值范围.【详解】(1)()()()22g x f x f x =+⎡⎤⎣⎦()2222log 1log 1x x =+++()222log 4log 2x x =++ 因为()2g x =,即()222log 4log 22x x ++= 即2log 0x =或2log 4x =-,所以1x =或42x -=,方程的解集为{}41,2-.(2)因为()f x 的定义域是[]1,16,1612≤≤x ,所以41≤≤x 所以2l 02≤≤x og又()()222log 4log 2g x x x =++设)20(l t 2≤≤=t x og 则()242g t t t =++)20(≤≤t所以()()()04g g t g ≤≤,14)2()()0(g 2=≤≤=g x g 即()234g t ≤≤所以2)(min =x g 14)(;ax =m x g(3)设()()15k f x k =≤≤所以不等式()()22log 4f x x m f x ++>⋅⎡⎤⎣⎦对于[]1,16x ∀∈恒成立等价于不等式23k k mk ++>对于[]1,5k ∀∈恒成立即()2130k m k +-+>在[]1,5k ∀∈恒成立 第一种情况:当0<时,即()21120m --<,11m -<<+.第二种情况:当0=时,即1m =±415<+<,所以舍去1+,即1m =-. 第三种情况:当0>时,即1m +或者1m <- i>21121130m m -⎧≤⎪⎨⎪+-+>⎩,解得:1m <- ii>21525(1)530m m -⎧≥⎪⎨⎪+-⋅+>⎩解得:无解.m<+综上所述:1【点睛】此题考查换元思想和含参讨论二次函数在定区间恒成立问题,难点是分类讨论时的依据,属于较难题目.。