半导体物理课件详解
《半导体物理》课件
半导体器件
半导体应用
探索各种半导体器件,如二极管、 晶体管和集成电路的工作原理。
了解半导体在电子通信、计算机 和能源技术等领域中的应用。
晶体物理基础
本节将介绍晶体物理学的基本原理及晶格结构。了解晶体的性质和结构对于理解半导体物理至关重要。
晶体结构
探索晶体的结晶结构和晶格参数。
布拉维格子
了解布拉维格子及其在晶体物理中的重要性。
PN结与二极管
深入了解PN结和二极管的工作原理和特性。探索PN结在电子器件中的重要性和应用。
PN结形成
了解PN结的形成过程和材料特性。
正向偏置
介绍正向偏置情况下PN结的导电性能和电流行为。
反向偏置
研究反向偏置情况下PN结的特性和电流行为。
场效应晶体管
本节将深入研究场效应晶体管的工作原理和应用。了解场效应晶体管作为重要的电子器件的优势和特性。
晶体缺陷
研究晶体中的缺陷和杂质对材料性能的影响。
晶体生长
了解晶体的生长原理和方法。
晶体缺陷与扩散
本节将深入研究晶体缺陷和扩散现象。了解这些关键概念对于半导体器件设计和制造至关重要。
1
缺陷类型
介绍晶体缺陷的种类,如点缺陷和线缺
扩散过程
2
陷。
详细了解扩散现象的原理和应用,包括
掺杂和控制扩散速率。
3
热扩散
1
原理介绍
详细了解场效应晶体管的基本物理原理和工作机制。
2
பைடு நூலகம்
MOSFET
研究金属氧化物半导体场效应晶体管的结构和特性。
3
JFET
了解结型场效应晶体管的结构和特点。
集成电路基础
在本节中,我们将介绍集成电路的基本概念和设计原则。了解集成电路的演变和应用。
半导体物理与器件-课件-教学PPT-作者-裴素华-第1章-半导体材料的基本性质
简化为
J = pqv p
1.6.4 半导体的电阻率ρ
电阻率是半导体材料的一个重要参数,其值为电导率
的倒数。 1
1
ρ= =
σ nqμn + pqμ p
对于强P型和强N型半导体业有相应的简化。
从上面的公式可以看出,半导体电阻率的大小决定于 n, p, μn ,μp的具体数值,而这些参数又与温度有关, 所以电阻率灵敏的依赖于温度,这是半导体的重要 特点之一。
b) P型硅中电子和空穴 的迁移率
载流子的迁移率还要随温度而变化。
硅中载流子迁移率随温度变化的曲线 a) μn b) μp
1.6.3 半导体样品中的漂移电流密度
设一个晶体样品如图所示, 以单位面积为底,以平 均漂移速度v为长度的矩 形体积。先求出电子电 流密度,设电场E为x方 向,在电场的作用下, 电子应沿着-x方向运动。
不论半导体中的杂质激发还是本征激发,都是依靠吸收 晶格热振动能量而发生的。由于晶格的热振动能量是随 温度变化的,因而载流子的激发也要随温度而变化。
载流子激发随温度的变化 a)温度很低 b)室温临近 c)温度较高 d)温度很高
伴随着温度的升高,半导体的费米能级也相应地发 生变化
杂质半导体费米能级随温度的变化 a)N型半导体 b)P型半导体
a)随机热运动 b) 随机热运动和外加电场作用下的运动合成
随机热运动的结果是没有电荷迁移,不能形成电流。
引入两个概念:
1. 大量载流子碰撞间存在一个路程的平均值,称为平 均自由程,用λ表示,其典型值为10-5cm;
2. 两次碰撞间的平均时间称为平均自由时间,用τ表示, 约为1ps;
建立了上述随机热运动的图像后,就可以比较实际地去 分析载流子在外加电场作用下的运动了。
半导体物理学第二章-PPT
9
施主:掺入在半导体中的杂质原子,能够向半导体中提供导电的电子, 并成为带正电的离子。如Si中的P 和As
N型半导体
半导体的掺杂
施主能级
大家好
10
2.1.3 受主杂质 受主能级
在硅中掺入3价的硼B,硼原子有3个价电子,与周围四个硅原子形成共价鍵,缺少一个电子,必须从周围获得一个电子,成为负电中心B-。硼的能级距价带能级顶部很近,容易得到电子。负电中心B-不能移动;而价带顶的空穴易于被周围电子填充,形成空穴的移动,即“导电空穴”。这种能够接受电子的杂质称之为“受主杂质”,或P型杂质。受主杂质获得电子的过程称之为“受主电离”;受主束缚电子的能量状态称之为“受主能级EA”;受主能级比价带顶EV高“电离能EA” 。
大家好
11
受主:掺入在半导体中的杂质原子,能够向半导体中提供导电的空穴, 并成为带负电的离子。如Si中的B
P型半导体
半导体的掺杂
受主能级
大家好
12
半导体的掺杂
Ⅲ、Ⅴ族杂质在Si、Ge晶体中分别为受主和施主杂质,它们在禁带中引入了能级;受主能级比价带顶高 ,施主能级比导带底低 ,均为浅能级,这两种杂质称为浅能级杂质。杂质处于两种状态:中性态和离化态。当处于离化态时,施主杂质向导带提供电子成为正电中心;受主杂质向价带提供空穴成为负电中心。
大家好
30
杂质在GaAs中的位置
替代Ⅲ族时,周围是四个Ⅴ族原子替代Ⅴ族时,周围是四个Ⅲ族原子
大家好
31
IV族元素碳、硅、锗等掺入III-V族化合物中,若取代III族元素起施主作用;若取代V族元素起受主作用。总效果是施主还是受主与掺杂条件有关。
例如,硅在砷化镓中引入一个浅的施主能级,即硅起施主作用,向导带提供电子。当硅杂质浓度达到一定程度后,导带电子浓度趋向饱和,杂质的有效浓度反而降低。
半导体物理学第一章PPT课件
简立方(SC)
体心立方(BCC) 面心立方(FCC)
16
17
18
19
1.金刚石型结构和共价键
Si,Ge都是第四周期的 元素,即外层有四个价 电子。硅、锗的结合依 靠共价键结合,组成金 刚石型结构。结构特点: 每一个原子周围有四个 最邻近的原子,这四个 原子分别处在四个顶角 上,任一顶角的原子和 中心原子各贡献一个价 电子为两个原子所共有。
25
2.闪锌矿型结构和离子键
由三族元素Al、Ga,铟和五族元素P、As组 成的三五族化合物,它们大都是闪锌矿型结 构。 闪锌矿结构:与金刚石型结构类似,由两 类原子组成,双原子复式格子。
以共价键为主,但有一定的离子键成分。
26
27
3.纤锌矿型结构
二-六族化合物,如锌、铬、汞和硫、 硒、碲等组成的化合物大部分具有闪 锌矿型结构,但其中有些也可具有纤 锌矿型结构。 离子键
28
29
30
1.2半导体中的电子状态和能带
半导体材料大都是单晶体。单晶体是 由靠得很紧密的原子周期性重复排列 而成,相邻原子之间间距在nm量级, 因此半导体中电子状态肯定和单原子 的电子状态有所不同。
31
电子的共有化运动
32
共有化运动的能量
33
原子能级分裂为能带的示意图
34
金刚石型结构价电子能带示意图 导带 价带 禁带
20
四面体的结合
21
结晶学原胞
两个面心立方沿立方 体的空间对角线互相 位移了空间对角线四 分之一的长度套构而 成。
8个原子在角顶,6个 在面中心,晶胞内部 有4个原子,顶角和 面心与这4个原子周 围不同,是相同原子 构成的复式格子。
第一章 微电子器件 半导体物理课件
1 d 2 Ec 1 2 2 dk k k0 mn
1 dE 电子运动速度 dk
基本图形 • • • • 半导体、绝缘体、导体能带示意图 半导体本征激发能带示意图 硅半导体能带结构图 砷化镓半导体能带结构图
基本图示 • 一定温度下,载流子迁移率与杂质浓度的关系 • 一定掺杂浓度下,载流子迁移率与温度的关系 • 载流子漂移速度与电场关系 • 砷化镓载流子漂移速度与电场关系
第五章 非平衡半导体
一、基本关系式
导带电子浓度(包含非平衡导带电子)n n n0 价带空穴浓度(包含非平衡价带空穴)
表面复合率 U s s p s 电子扩散电流密度 J n 扩 空穴扩散电流密度 J p 扩 电子漂移电流密度 J n 空穴漂移电流密度
d n x qDn dx
d p x qD p dx
漂
q(n0 n)n E
q( p0 p) p E
半导体空间电荷密度方程 0 x q p0 x nDj x n0 x p Ai x
基本概念
1、状态密度——能带中能量E附近单位能量间隔内的电子状态数
2、费米统计分布——半导体电子服从的统计分布 3、少子浓度——半导体单位体积中的少子数 4、多子浓度——半导体单位体积中的多子数 5、非简并半导体——载流子分布从费米分布蜕化化服从波尔兹曼统计分布的半导体 6、简并半导体—掺杂浓度很高,使费米能级非常接近、甚至进入导带或价带的半导体 7、载流子冻析效应——温度很低时,杂质不能完全电离,电子或空穴被杂质束缚
基本关系式 漂移电流密度 J (nqn pq p ) E
半导体物理课件:第一章 半导体中的电子状态
14
1.1 半导体的晶格结构和结合性质
4. 闪锌矿结构和混合键
与金刚石结构的区别
▪ 共价键具有一定的极性 (两类原子的电负性不 同),因此晶体不同晶面 的性质不同。
▪ 不同双原子复式晶格。
常见闪锌矿结构半导体材料 ▪ Ⅲ-Ⅴ族化合物 ▪ 部分Ⅱ-Ⅵ族化合物,如硒化汞,碲化汞等半金属材料。
2024/1/4
量子力学认为微观粒子(如电子)的运动须用波 函数来描述,经典意义上的轨道实质上是电子出 现几率最大的地方。电子的状态可用四个量子数 表示。 (主量子数、角量子数、磁量子数、自旋量子数)
▪ 能级存在简并
2024/1/4
19
1.2 半导体中的电子状态和能带
▪ 电子共有化运动
原子中的电子在原子核的势场和其它电子的作用 下,分列在不同的能级上,形成所谓电子壳层 不同支壳层的电子分别用 1s;2s,2p;3s,3p,3d;4s…等符号表示,每一壳层对 应于确定的能量。
29
1.2 半导体中的电子状态和能带
▪ 金刚石结构的第一布里渊区是一个十四面体。
2024/1/4
30
1.2 半导体中的电子状态和能带
3. 导体、半导体、绝缘体的能带
能带产生的原因:
▪ 定性理论(物理概念):晶体中原子之间的相 互作用,使能级分裂形成能带。
▪ 定量理论(量子力学计算):电子在周期场中 运动,其能量不连续形成能带。
•结果每个二度简并的能级都分裂为二个彼此相距 很近的能级;两个原子靠得越近,分裂得越厉害。
2024/1/4
22
1.2 半导体中的电子状态和能带
▪ 内壳层的电子,轨道交叠少,共有化运动弱,可忽略 ▪ 外层的价电子,轨道交叠多,共有化运动强,能级分
《半导体物理学》课件
半导体物理学是现代电子科技和信息 科技的基础,对微电子、光电子、电 力电子等领域的发展具有至关重要的 作用。
半导体物理学的发展历程
19世纪末期
半导体概念的形成,科学家开始认识到 某些物质具有导电性介于金属和绝缘体
之间。
20世纪中叶
晶体管的商业化应用,集成电路的发 明,推动了电子科技和信息科技的发
半导体中的热电效应
总结词
解释热电效应的原理及其在半导体中的应用。
详细描述
当半导体受到温度梯度作用时,会在两端产生电压差 ,这一现象被称为热电效应。热电效应的原理在于不 同温度下,半导体内部载流子的分布不同,导致出现 电势差。热电效应在温差发电等领域有应用价值,可 以通过优化半导体的材料和结构来提高热电转换效率 。
分析器件在长时间使用或恶劣环 境下的性能退化,以提高其可靠 性。
THANKS
THANK YOU FOR YOUR WATCHING
06
半导体材料与工艺
半导体材料的分类和特性
元素半导体
如硅、锗等,具有稳定的化学性质和良好的半导 体特性。
化合物半导体
如砷化镓、磷化铟等,具有较高的电子迁移率和 光学性能。
宽禁带半导体
如金刚石、氮化镓等,具有高热导率和禁带宽度 大等特点。
半导体材料的制备和加工
气相沉积
通过化学气相沉积或物理气相沉积方法制备 薄膜。
05
半导体器件的工作原理
二极管的工作原理
总结词
二极管是半导体器件中最简单的一种 ,其工作原理基于PN结的单向导电性 。
详细描述
二极管由一个P型半导体和一个N型半 导体结合而成,在交界处形成PN结。 当正向电压施加时,电子从N区流向P 区,空穴从P区流向N区,形成电流; 当反向电压施加时,电流极小或无电流 。
半导体物理课件
结论:磷杂质在硅、锗中电离时,能够释放电子而 产生导电电子并形成正电中心。这种杂质称施主杂 质 。掺施主杂质后,导带中的导电电子增多,增 强了半导体的导电能力。
主要依靠导带电子导电的半导体称n型半导体。
*从Si的电子能量图看:
电离能的计算:
氢原子
En
mq4
(4 0 )2 22
1 n
(2)受主杂质 (Acceptor) p型半导体 Ⅳ族元素硅、锗中掺Ⅲ族元素,如硼(B): *从si的共价键平面图看:
两边取对数并整理,得:
EF
1 2
EC ED
1 2
k0T
ln(
ND 2NC
)
ED起了本征EV 的作用
载流子浓度:
EC EF
EC
EF
n0 NCe k0T NCe k0T e k0T
ND NC
1
2
EC ED
e 2k0T
ND NC
1 2
ED
e 2k0T
2
2
(2)中温强电离区
N
D
n0 ND
(2)EF ~T
(3)EF ~掺杂(T一定,则NC也一定)
T一定,ND越大,EF越靠近EC(低温: ND > NC 时 , ND
(ln ND -ln2 NC)
ND < NC 时, ND
|ln ND -ln2 NC| 中温:由于T的升高, NC增加,使ND < NC , ND
B13:1S22S22P63S23P1 B有三个价电子,当它与周围的四
个Si原子形成共价键时,必须从别 处的硅原子中夺取一个价电子,共价 键中缺少一个价电子,产生空穴。 硼原子接受一个电子后,成为带负 电的硼离子。 B- —负电中心.
半导体物理学-刘恩科PPT课件
K空间等能面
▪ 在k=0处为能带极值
2k2 E(k)E(0) 2mn*
导带底附近
E(k)E(0) 2m2kp2*
价带顶附近
半导体器件
K空间等能面
▪ 以 k x 、k y 、k z 为坐标轴构成 k 空间,k 空间 任一矢量代表波矢 k
k2kx2ky2kz2
▪ 导带底附近
2
E(k)E(0)2mn*(kx2ky2kz2)
半导体器件
半导体及其基本特性
什么是半导体? 固体材料分成:超导体、导体、半导体、绝缘体
半导体器件
半导体器件
半导体物理学
一.半导体中的电子状态 二.半导体中杂质和缺陷能级 三.半导体中载流子的统计分布 四.半导体的导电性 五.非平衡载流子 六.pn结 七.金属和半导体的接触 八.半导体表面与MIS结构
半导体器件
点缺陷
▪ 替位原子(化合物半导体)
半导体器件
位错
▪ 位错是半导体中的一种缺陷,它严重影 响材料和器件的性能。
半导体器件
位错
施主情况
受主情况
半导体器件
练习
1、Ⅲ、Ⅴ族杂质在Si、Ge晶体中为深能级杂质。
()
2、受主杂质向价带提供空穴成为正电中心。( )
3、杂质处于两种状态:( )和(
有效质量的意义
▪ 自由电子只受外力作用;半导体中的电子 不仅受到外力的作用,同时还受半导体内 部势场的作用
▪ 意义:有效质量概括了半导体内部势场的 作用,使得研究半导体中电子的运动规律 时更为简便(有效质量可由试验测定)
半导体器件
空穴
▪ 只有非满带电子才可导电
▪ 导带电子和价带空穴具有导电特性;电子 带负电-q(导带底),空穴带正电+q(价 带顶)
(第一章)半导体物理ppt课件
下这些部分占满的能带中的电子将参与导电。由于绝缘
体的禁带宽度很大,电子从价带激发到导带需要很大能
量,所以通常温度下绝缘体中激发到导带去的电子很少,
导电性差;半导体禁带比较小(数量级为1eV),在通常
温度下有不少电子可以激发到导带中去,所以导电能力
比绝缘体要好。
最新课件
27
§1.3 半导体中电子(在外力下)的运动 及有效质量
§1.1半导体中的电子状态和能带
§1.1.2电子在周期场中的运动——能带论
⒉波函数
德布罗意假设:一切微观粒子都具有波粒二象性。 自由粒子的波长、频率、动量、能量有如下关系
Eh P h k
即:具有确定的动量和确定能量的自由粒子,相当 于频率为ν和波长为λ的平面波,二者之间的关系 如同光子与光波的关系一样。
书中(1-13)
最新课件
16
§1.1半导体中的电子状态和能带
§1.1.2电子在周期场中的运动——能带论
布洛赫曾经证明,满足式(1-13)的波函数一定具有 如下形式:
k(x)uk(x)eikx 书中(1-14)
式中k为波数,u k ( x是) 一个与晶格同周期的周期性函 数,即:
uk(x)uk(xna)
1.3.1半导体导带中E(k)与k 的关系
定性关系如图所示 定量关系必须找出E(k)函数带底附近E(k)与k的关 系
用泰勒级数展开可以近似求出极值附近的E(k)与k 的关系,以一维情况为例,设能带底位于k=0,将 E(k)在E ( kk =) 0E 附(0 近) 按(d 泰d勒)E k k 级0k 数 展1 2(开d d 2 ,E 2k )取k 0 至k2 k项2 ,得到
K=0时能量极小,所以(ddEk)k0k ,0因而
《半导体物理》PPT课件
半导体物理 Semiconductor Physics
若B沿[1 1 1]方向, 则与上述六个<100>
方2向的方2 向 余2弦相1/等3:
对于每个旋转椭球来
讲:
mn*
mt mt ml
mt 2 mt 2 ml 2
mt
3ml 2mt ml
大小相等,对应的回旋频率大小相同,因此只有一个吸收峰
半导体物理 Semiconductor Physics
上式代表的等能面不再是球面(只有当 C为零时是球面),而是扭曲的球面, 重空穴带的扭曲比轻空穴带的扭曲更为 显著。
半导体物理 Semiconductor Physics
两个带下面的第三个能带,由于自旋-轨道 耦合作用,使能量降低了Δ,与以上两个能 带分开,具有球形等能面。其能量表示式
半导体物理 Semiconductor Physics
在Si中,其它能 谷比<100>谷高 的多
半导体物理 Semiconductor Physics
硅和锗的价带结构
半导体物理 Semiconductor Physics
硅锗的价带结构是比较复杂的。价带 顶位于k=0。在价带顶附近有三个带, 其中两个最高的带在k=0处简并,分别 对应于重空穴带和轻空穴带(曲率较 大的为轻空穴带),下面还有一个带, 是由于自旋-轨道耦合分裂出来的。
半导体物理 Semiconductor Physics
若B沿[1 0 0]方向,则:
对于[1 0 0] 轴上的两个 椭球来讲,其
2 2 0 2 1
mn*
mt mt ml
mt 2 mt 2 ml 2
mt
半导体物理 Semiconductor Physics
《半导体物理基础》课件
04 半导体中的载流子输运
CHAPTER
载流子的产生与复合
载流子的产生
当半导体受到外界能量(如光、热、电场等)的作用时,其 内部的电子和空穴的分布状态会发生改变,导致电子和空穴 从价带跃迁到导带,产生电子-空穴对。
06 半导体物理的应用与发展趋势
CHAPTER
半导体物理在电子器件中的应用
01
02
03
晶体管
利用半导体材料制成的晶 体管是现代电子设备中的 基本元件,用于放大、开 关和整流信号。
集成电路
集成电路是将多个晶体管 和其他元件集成在一块芯 片上,实现特定的电路功 能。
太阳能电池
利用半导体的光电效应将 光能转化为电能,太阳Hale Waihona Puke 电池是可再生能源的重要 应用之一。
半导体物理在光电子器件中的应用
LED
发光二极管,利用半导体的光电效应发出可见光 ,广泛应用于照明和显示领域。
激光器
利用半导体的光放大效应产生激光,用于数据存 储、通信和医疗等领域。
光探测器
利用半导体的光电效应探测光信号,用于光纤通 信、环境监测等领域。
半导体物理的发展趋势与展望
新材料和新型器件
随着科技的发展,人们不断探索新的半导体材料和新型器件,以 提高性能、降低成本并满足不断变化的应用需求。
闪锌矿结构
如铬、钨等金属的晶体结构。
如锗、硅等半导体的晶体结构。
面心立方结构(fcc)
如铜、铝等金属的晶体结构。
纤锌矿结构
如氮化镓、磷化镓等半导体的晶 体结构。
晶体结构对半导体性质的影响
《半导体物理学》课件
探索半导体物理学的奥秘,了解半导体的基础概念、晶体结构与晶格常数, 以及能带结构与载流子的相关知识。
晶体的奇妙世界
晶体结构
了解晶体的结构和晶格常数, 揭示晶体的秘密。
能带结构
探索半导体中电子在能带中的 行为和载流子的形成机制。
掺杂与输运理论
深入了解掺杂技术和半导体中 的电荷传输现象。
了解半导体材料的制备技术和制备过程中 的关键因素。
揭示浅表面态和接触势在半导体材料中的 作用和应用。
3 色散与激发态
4 NV中心及其应用
探索半导体材料中的色散效应和激发态, 了解它们对器件性能的影响。
深入了解NV中心的特性和应用,揭示量子 信息技术的前沿进展。
小结
深入探索
半导体物理学是一个广阔而 深奥的领域,不断追求知识 的深度。
半导体激光器和光电子器件
半导体激光器
激光二极管
探索半导体激光器的基础理论 和应用,揭示激光技术的魅力。
了解激光二极管的工作原理和 应用,探索光电子学中的新概 念。
集成光电子器件
深入了解集成光电子器件的设 计和制造,揭示光电子学的未 来发展方向。
半导体材料与制备技术
1 材料制备技术
2 浅表面态与接触势
1
量子点与纳米结构
探索量子点和纳米结构在半导体领域的研究和应用质结的特性和优势,探讨它们在电子元件中的重要性。
3
集成光电子元件
探索集成光电子元件的设计和制造技术,展望未来的光电子学发展方向。
4
芯片设计与制造技术
深入了解芯片设计和制造技术,揭示电子器件的前沿研究和应用动向。
半导体器件的魅力
二极管
探索PN结和二极管的原理,了解它们在电子 学领域的应用。
半导体物理ppt课件
面心立方:简立方的六 个面的中心各有一个原 子。
§1.1 晶体结构预备知识,半导体晶体结构 2.几种晶格结构
结晶学晶胞:
金刚石结构:同种原子构成的两个面心立方沿体对角线 相对位移体对角线的套构而成。
每个晶胞含原子数:
1×(8 顶角)+1 (6 面心)+4(体心)=8个
8
2
§1.2半导体中的电子状态和能带
§1.2.2晶体中的电子状态
原子组成晶体后,由于电子壳层的交叠,电子不再完全 局限在某一个原子上,可以由一个原于转移到相邻的原 子上去,因而,电子将可以在整个晶体中运动。这种运 动称为电子的共有化运动
格矢:在固体物理学中,选某一格点为原点O, l任1, l一2 , l格3为点晶A轴的上格的矢投为影,取整RA数 ,l1a1 l2a2 l3a3 a1, a2, a3为晶轴上的单位矢量。
§1.1 晶体结构预备知识,半导体晶体结构 1.晶体结构的描述(有关的名词)
在结晶学中(用的较多),选某一格点为原点 O,任一格点A的格矢为 RA l1a l2b l3c
(b)金刚石型结构
§1.1 晶体结构预备知识,半导体晶体结构 3.半导体硅锗的晶体结构(金刚石结构)
(c)金刚石型结构的晶胞
§1.1 晶体结构预备知识,半导体晶体结构 3.半导体硅锗的晶体结构(金刚石结构)
(d)(111)面的堆积
§1.1 晶体结构预备知识,半导体晶体结构 3.半导体硅锗的晶体结构(金刚石结构)
l1, l2 , l3 为对应晶轴上的投影,取有理数
a1, a2 , a3为晶轴上的单位矢量。
§1.1 晶体结构预备知识,半导体晶体结构 1.晶体结构的描述(有关的名词)
《半导体物理第一章》课件
3
1.3.3 pn结的I-V特性
详细解释pn结的I-V特性曲线,包括正向和反向电流的变化。
1.4 光电应及其在太 阳能电池中的应用。
2 1.4.2 光电二极管
阐述光电二极管的原理 及其在通信和显示技术 中的应用。
3 1.4.3 光电池
讨论光电池的构造、工 作原理和应用领域。
1.5 半导体器件的制作技术
晶体生长
介绍半导体晶体生长方法和技 术,如Czochralski法和液相外 延。
晶体制备
讨论半导体晶体的切割、抛光 和清洗等制备工艺。
制作半导体器件
概述半导体器件制作的关键步 骤,包括光刻、扩散和金属沉 积等工艺。
1.6 总结与展望
1.6.1 半导体物理的应用前景
评估半导体物理在电子技术、通信和能源领域 的未来发展。
1.1 半导体材料的基本性质
半导体的定义
介绍半导体的定义,以及其与导体和绝缘体的区别。
半导体的基本性质
探讨半导体的导电性、禁带宽度、载流子等基本特性。
半导体的能带结构
解释能带理论,讨论导带与禁带之间的能量差异对电子行为的影响。
1.2 掺杂半导体
1.2.1 掺杂的概念
介绍半导体掺杂的概念,包 括n型和p 型半导体的区别。
《半导体物理第一章》 PPT课件
An engaging and comprehensive introduction to the fundamental properties of semiconductor materials and their applications in electronic devices.
1.2.2 正、负离子掺 杂
说明正、负离子掺杂对半导 体电子结构的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、什么是半导体(semi-conductor)?导 体 半 导 体 绝缘体10-6~ 10-4 电阻率r (W cm)10 -4~ 10 10>10 10绪言SL SL R r=#2 A.可以用来收听广播B.导电性能较好的材料C.导电性能较差的材料D.导电性能可以在很大范围内变化的材料二、哪些因素影响半导体的电阻率?杂质对半导体电阻率的影响硅2x105硼 / 1百 万 0.2 W cm磷 / 1百 万 2x10 5硅的纯度仍高达99.9999%纯硅: T=300K ρ=2x 105 Ωcm T=320K ρ=2 x104 Ωcm ρT半导体 金属温度对半导体的影响硫化镉(CdS)半导体薄膜,无光照时的暗电阻为几十MΩ,当受光照后电阻值可以下降为几十KΩ。
气体、压力、磁场等对半导体电阻率都产生较大的影响光照对半导体的影响三、半导体的发展史第一阶段:实验现象观察1833年:M.Faraday发现半导体所具有的负电阻温度系数1873年:W.Smith 首次发现半导体的光电导效应1874年:F.Braun 首次发现半导体的整流效应1883年:制造出硒整流器1927年:制造出氧化亚铜整流器1879年:Hall首次发现 Hall效应(半导体 RH >0, RH<0)1931年:H.Dember 首次发现了光电池效应第二阶段:理论指导1931年:A.H.Wilson 通过解薛定谔方程发展了能带理论1942年前后,多位科学家提出了基本类似的整流理论第三阶段:晶体管诞生1947年:Bardeen等人制造了第一个晶体管1956诺贝尔John BardeenWilliam Bradford ShockleyWalter H. Brattain 晶体管的三位发明人:巴丁、肖克莱、布拉顿第四阶段:集成电路出现*1958年:杰克-S-基尔比发明第一块集成电路*1966年:形成大规模集成电路 *1971年: 英特尔公司研制出第一块CPU 集成电 4004(4位) *1973年: 8008(8位);*1978年: 8086(16位);……2000诺贝尔SSI MSILSIVLSI ULSI GSI 元件数 <102 102 ~ 10 3 103 ~ 10 5 105 ~ 10 7 107 ~ 10 9 >109 门数 <1010 ~ 102102 ~ 104104 ~ 106106 ~ 108>108109108 107 106 105 104 1031975 1980 19851990 1970 1995 2000▲ ▲▲ ▲ ▲▲ ▲▲ ▲▲● ● ● ● ●● ● ● ●●●动态随机存储器 DRAM1Kb 4Kb 16Kb 64Kb 256Kb 1Mb 4Mb 16Mb 64Mb 256Mb 4004 80088080/80858086 80286 80386 80486Pentium Pent. Pro80786 年份单位芯片上的晶体管数集成电路发展的 Moore 定律(1965年):晶体管数目(集成度)每十八个月增长一倍(即每三年增至四倍)80808086802868038680486PentiumPentiumPro404000.050.10.150.20.251997199920012003200620092012沟道长度(微米)微电子 -> 纳电子1946年,世界上第一台电子计算机(第一代),重30吨,用18800个电子管,耗电174千瓦,5000次运算/秒1959年,IBM7090 晶体管计算机(第二代),运算速度达到229000次/秒1964年,IBM360 集成电路通用计算机系列(第三代),具有全方位的特点,研发经费50亿美元GaAsAlGaAsGaAsGaAsAlGaAs......E导带价带超晶格、量子阱第五阶段:能带工程提出*1970年:Esaki(江琦〕提出超晶格半导体的概念 *1971年:生长出GaAs/AlGaAs 超晶格材料禁带E禁带导带价带AlGaAsGaAs高速器件 光电子器件Application of quantum well structureHigh-speed devicestwo-dimensional electron gasApplication of quantum well structure Optic-electric DevicesHigh Brightness LEDsNICHIA CHEMICAL INDUSTRIES, LTD.白炽灯和LED交通灯比较长寿命、节能、安全、色彩丰富Lifetime 2,000h >100,000h2000诺贝尔赫伯特-克勒默:1963年提出了双异质结构激光的概念 若尔斯-阿尔费罗夫:1962年提出半导体异质结构概念 for developing semiconductor heterostructures used in high-speed- and opto-electronicsZhores I. Alferov Herbert Kroemer在近十年内半导体太阳能电池将得到飞速发展太阳能的利用✓洁净能源: 与石油、煤炭等矿物燃料不同,不会致 “温室效应”,也不会造成环境污染 目前太阳能的利用仅占极小部分,但在未来几十年中会有高速发展✓ 资源丰富: 40分钟照射地球辐射的能量=全球人类一年的能量需求✓ 使用方便: 同水能、风能等新能源相比,不受地域 的限制,利用成本低。
第一章 半导体中的电子能量状态晶体中能带的形成物质固体液体气体非晶体晶体单晶体多晶体 Ge, Si IV族半导体元素半导体GaAs,GaN,InP GaAlAs,GaPAsIII-V族半导体ZnSe,ZnS,CdTe ZnCdSe,ZnSSeII-VI族半导体GeSi SiCIV-IV族半导体化合物半导体半导体材料金刚石(C )、硅 ( Si ) 、锗 ( Ge ) 原子结构及简化模型+14 2 8 4 +32 2 8 418 +4价电子原子实简化原子结构模型+4共价键价电子+4+4+4+4+4+4+4+4+6 2 4C晶体中的能带1S2S2P 原子中能级晶体中能带的形成固体中若有N 个原子,由于各原子间的相互作用,对应于原来孤立原子的每一个能级,变成了N 条靠得很近的能级,称为能带。
1.越是外层电子,能带越宽 2.点阵间距越小,能带越宽 3.两个能带有可能重叠晶体中能带的特点•能带:电子轨道交迭而形成,低能带窄,高能带宽能带中的能级数取决于晶体中的原子数•满带:填满电子的能带 •导带:没有被电子填满的能带 •价带: 由价电子填充的能带 •禁带:相邻能带之间的能量状态区域晶体中的电子运动:局域运动+共有化运动●金刚石晶体的能带杂化#11 半导体禁带宽度随温度的上升而____,随压力的增加而___。
A.增加,增加B. 增加,减少C. 减少,增加D. 减少,减少⏹半导体、导体、绝缘体的能带导带价带半导体∙ ∙∙ ∙∙ ∙∙ ∙∙ ∙禁带导带价带绝缘体∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙禁带价带导体∙ ∙∙ ∙∙ ∙∙ ∙∙ ∙元素 C Si Ge Sn 晶格常数(埃) 3.57 5.43 5.65 6.49 禁带宽度(eV)5.471.120.670.08*金刚石结构的原子排列(C ,Si ,Ge )共价四面体109º28´+4+4 +4 +4 +4 +4+4 +4 +4 +4+4+4 +4+4 +4 +4+4 +4 +4 +4 +4 +4 +4 +4 +4 +4 *闪锌矿结构的原子排列(AsGa 等Ⅲ-Ⅵ半导体) +5+3+3 +5 +3 +3 +5+5 +5 +3 +3+5+5 +3+5 +3 +5+5 +3 +3 +5 +5 +3 +3 +5 +5 +3 共价四面体109º28´,1 ,1,1 ,1,1原子在平面上的投影距离基本单元:高度对称,通过上下左右前后平移能得到整个晶体#4 属于一个金刚石晶胞的原子数为:A. 8个B. 12C. 16D. 18金刚石结构晶胞马国悦( 2014-03-03 6:30 下午)那个正四面体构型大家都很熟了,不过我觉得另外描述也很好,在看晶格的时候理解结构会比较有帮助。
单晶硅的排列就看做两套面心立方,沿其立方体对角线位移 1/4 的长度套构而成。
这样一来较复杂的晶格结构就很清晰了。
两个面心立方沿对角线位移 1/4套构而成单晶硅中的原子会怎样排列?a: 晶格常数#5 晶格常数为a 的金刚石结构,其形成共价键的二个原子间距为: A. B. C. a/2 D. a/42/2a 4/3a 硅锗 晶格常数(nm) 0.543089 0.565754 原子密度(cm -3) 5.0×1022 4.4×1022 共价半径(nm)0.1170.122晶体结构 晶格面心立方体晶格: 将晶体中的原子结构排列用点阵表示,这些格点可以代表一个原子,也可代表若干个原子。
每个格点都相同,其在空间分布的周期性与晶体中原子排列的周期性完全一致。
晶胞能反映晶格对称性的基本单元 基矢用 a ,b ,c 表示面心立方体晶胞*晶胞晶胞的上下左右前后平移能得到整个晶格 能够最大限度反映晶格对称性的最小基本单元 以格点为顶点,以三个独立方向上的周期为边长构成的平行六面体。
基矢用a 1,a 2,a 3表示*原胞晶格的最小基本单元沿基矢a 1,a 2,a 3方向平移原胞可覆盖所有晶格 每个元胞仅包含一个格点,所有格点都在原胞的顶点晶格中每一个格点都等同其附近物理性质完全相同a 2 a 1R n*格矢:晶格中所有格点的径向矢量112233n R n a n a n a =++123320n R a a a =++晶体中任意一点r 和另一点r 1若满足:)(3322111a n a n a n r r +++=面心立方原胞的体积是晶胞的体积:A. 1/2B. 1/3C. 1/4D. 1/6 #6晶列和晶面*晶列:晶格中的所有格点全部位于一系列相互平行的直线上,这些直线系称为晶列。
*晶向:表示晶列的方向从原点O 沿某个晶列到另一格点P 作位移矢量 123R l a l b l c=++*晶列指数[mnp ]:晶向矢量在三晶轴上投影的互质整数123::::l l l m n p=同类晶向记为<mnp >用<100>表示 [100]、 [010] 、[001] 、 [Ī00]、[0Ī0] 、[00Ī]等价 <111> 等价的晶向有_____个.A. 4B. 6C. 8D. 12 #7 <110> 等价的晶向有_____个.A. 4B. 6C. 8D. 12#8 *晶面:晶格中的所有格点全部位于一系列相互平行等距的平面上,这样的平面系称为晶面。