矩阵理论-第1讲

合集下载

矩阵分析引论--第一章 线性空间与线性变换-线性空间的概念、 基变换与坐标变换

矩阵分析引论--第一章 线性空间与线性变换-线性空间的概念、 基变换与坐标变换
二、线性空间的定义 1、数域
复数集的一个非空子集,含非零数,对和、差、 积、商(除数不为零)运算封闭.
• 性质:
必包含0与1; 有理数域是最小的数域.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
2、线性空间
定义1-1(线性空间) 设V是一非空集合,P是一数域,若
(1)在V上定义了一个二元运算(称为加法, a与b 的和记为a+b), 且 a , b V,有 a b V ;
(2)在P与V的元素之间还定义了一种运算(称为
数乘, k与a的数乘记为ka),
且 a V ,k P, 有 ka V ;
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(3)加法与数乘满足以下八条规则:
(ⅰ) a b b a; (ⅱ) (a b ) a (b );
第一章第一二节 线性空间的概念、基变换与坐标变换
第一节 线性空间的概念
一、线性代数回顾
★ n维向量:有序数组 ★ 线性运算:加法、数乘 ★ 运算律(八条) ★ 向量关系:线性相关、线性无关 ★ 向量空间 ★ 子空间 ★基
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(ⅲ) a 0 a;
(ⅳ) a (a ) 0;
(ⅴ) 1a a;
(ⅵ) k(la ) (kl)a;
(ⅶ) (k l)a ka la ;(ⅷ) k(a b ) ka kb .
则称集合V为数域P上的线性空间或向量空间.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
又若向量 b k1a1 k2a2 knan , 则b 也称为向量 a1,a2,,an 的线性组合,或称 b 可以由向量 a1,a2,,an 线性表示.

矩阵论简明教程(第二版)第一讲[1]

矩阵论简明教程(第二版)第一讲[1]

所以A的特征值为1 2 2,3 7.
当1 2 2时,解方程组 2 I A x 0.由 2 2 1 2 2 1 2 I A 2 4 4 0 0 0 2 4 4 0 0 0
1 k 1
1
1 3 E i, j k
1
k 1
1
三、其他特殊矩阵
k 1 幂零矩阵: A 0, k : 某正整数;
A 2 幂等矩阵:
C11 C12 C21 C22 则AB Cs1 Cs 2
C1r t C2 r , 其中 Cij Aik Bkj k 1 Csr i 1, 2, , s; j 1, 2, , r
4、转置与共轭转置
A11 A21 设 A As1 A12 A22 As 2
k3 x3,k3 0.
二、特征值与特征向量的性质 定义3
设A aij
定理1
nn
C
nn
, 称 a11 a22 ann .
ann为A的迹,记为
trA,即trA a11 a22
设n 阶方阵A aij
1 1 +2 + +n a11 a22 ann =trA; 2 12 n det A; 3 AT的特征值是1,2, ,n ,而AH的特征值是
2 2 得基础解系 x1 1 , x2 0 0 1
所以对应1 2 2的全部特征向量为 k1 x1 k2 x2 , 其中k1 , k2不同时为0.
当3 7时,解方程组 7 I A x 0.由 8 2 2 1 0 0.5 7 I A 2 5 4 0 1 1 2 4 5 0 0 0 1 得基础解系 x3 2 , 故对应3 7的全部特征向量为 2

第一节 矩阵的运算

第一节 矩阵的运算
-15-
作业: 作业
P27 1( 2), ( 3)
-16-
1 2 1 4 例5 设 A = 5 − 8 0 2 1 1 3 7
解:
求 E 3 A 和 AE 4
2 1 4 1 1 2 1 4 1 1 5 − 8 0 2 = 5 − 8 0 2 1 3×3 1 1 3 7 3×4 1 1 3 7 3×4
a11 a 21
a12 a 22
b11 a13 b21 a 23 b31
b12 def c11 b22 c 21 b32
c12 c 22
-9-
定义: A = (a ij ) m× s B = (bij ) s×n 设
a11 L a1 j M M A = a i 1 L a ij M M a m1 L a mj L a1 s b11 L b1 j L b1n M M M M L a is B = bi 1 L bij L bin M M M M a L bsj L a sn L a ms s×n m × s s1
c11 = a11b11 + a12b21 + a13 b31 c21 = a 21b11 + a 22 b21 + a 23b31 c12 = a11b12 + a12b22 + a13b32 c22 = a 21b12 + a 22b22 + a 23b32
y1 = a11 (b11t1 + b12 t 2 ) + a12 (b21t1 + b22 t 2 ) + a13 (b31t1 + b32 t 2 )

矩阵理论1

矩阵理论1

§4 线性变换的矩阵表示引言:数域P 上线性空间V 上的所有线性变换组成的集合—L (V )是数域P 的线性空间。

若V 是n 维线性空间,那么L (V )的维数是多少呢?L (V )与n n P ⨯之间具有什么关系?为此,我们先研究一下线性变换的矩阵表示。

一、线性变换在一组基下的矩阵表示:设n εεε,,,21 是数域P 上的n 维线性空间V 的一组基,A 是V 上的一个线性变换,对V ∈∀α,则有n n k k k εεεα+++= 2211 )()()(11n n A k A k A εεα++=∴又),1()(n i VA i =∈ε则有:)()()()(22112222112212211111*⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=n nn n n n nn nn a a a A a a a A a a a A εεεεεεεεεεεε用矩阵形式表述(*)有⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n n n a a a a a a a a a A A A 2122221112112121),,())(),(),((εεεεεε习惯上记上式左边为:),(21n A εεε,,则有:A A n n ),(),(2121εεεεεε,,,, =;这就有了下面的定义:1.Df 1.若A A n n ),(),(2121εεεεεε,,,, =则称A 为线性变换A 在基n εεε,,,21 下的矩阵,且可逆若V ∈α在n εεε,,,21 下的坐标为⎪⎪⎪⎭⎫⎝⎛n k k 1,那么)(αA 在基n εεε,,,21 下的坐标又如何呢?⎪⎪⎪⎭⎫ ⎝⎛=++=n n n n k k A A A A k A k A 12111))(),(),(()()()(εεεεεα⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=n n n n k k A k k A 121121),,,(),,(εεεεεε可见,)(αA 在基n εεε,,,21 下的坐标是由A 与α在n εεε,,,21 下的坐标来确定的。

矩阵论第一章

矩阵论第一章

定义 1. 具有某种特定性质的事物的总体称为 集合. 组成集合的事物称为元素. 不含任何元素的集合称为空集 , 记作 .
元素 a 属于集合 M , 记作 a M .
元素 a 不属于集合 M , 记作
a M
(或
a M ) .
表示法:
(1) 列举法: 按某种方式列出集合中的全体元素 .
例: 有限集合 A a1 , a2 , , an
实质:二元关系是描述两个集合之间元素与元素 的关系或者是一个集合内部两个元素之间的关系, 它是满足某种规律的有序对全体。
例 1:
A与B之间是一个住宿关系。
设A {甲,乙,丙,丁}(四个人),B {1, 2,3} (三套房间),
显然,R {(甲,1),(乙,3),(丁,3),(丙,2)} A B
逆映射与复合映射
1.1.8 逆映射的定义
定义: 设有映射 使 称此映射 g为 f 的逆映射 , 习惯上 计为 f 1. 若f有逆映射,则称f可逆. 例如, 映射
A
f
f 1
若存在一新映射
B
其逆映射为
机动
目录
上页
下页
返回
结束
定理1.1.4 设映射f :A→B是可逆的,则f 的逆 映射 f 1 是唯一的。
实数集合
R x x 为有理数或无理数
机动 目录 上页 下页 返回 结束
2. 集合之间的关系及运算
定义2 . 设有集合 A , B , 若 x A 必有 x B , 则称 A 是 B 的子集 , 或称 B 包含 A , 记作 A B
若 A B 且 B A 则称 A 与 B 相等, 记作 A B . 例如 , , ,

【矩阵理论课件】第1讲:线性空间及分解

【矩阵理论课件】第1讲:线性空间及分解

6) k(l ) (kl) 7) (k l) k l 8) k( ) k l
返回
2 判断下列集合是否构成线性空间.
1) 空间中不平行于一已知向量的全体向量所构
成的集合, 2) 数域P上次数等于定数n(n 1)的多项式全体所
构成的集合,是否构成复数域上的线性空间?
返回
3. 线性空间的基和维数
存在向量 V1 如果 V2,则结论成立
如果: V2 , V2是非平凡子空间
返回
存在向量 V2 如果 V1,则结论成立 如果 V1,就有
V1, V1; V2, V2
V1, V2
返回
§1.2 空间分解与维数定理
定义1 设V1,V2是线性空间V 的子空间,则V1与V2的和为
且是唯一的,这个和 V1 V2 就称为直和,记为V1 V2
返回
定理2:设 V1 , V2是线性空间V的子空间,则下列命题等价 (1) V1 V2 是直和; (2) 零向量表示法唯一;
(3) V1 I V2 {0}.
例 1:设, 线性无关,则L() L( )是直和,
而L( , ) L()不是直和.
0 0 1
1 1 0
0 1 1
100
0 1 0
0 1 1
1 1 0
0 1 1
100
0 1 1
0 1 0
返回
1 1 0
0 1 1
100
1 0 0
1 1 0
1 1 0
0 1 1
100
1 0 1
1 1 1
1 1 0
0 1 1
100
1 1 0
1 0 1
定义: 在V中有n个线性无关的向量1,L ,n , 而 V中任意n 1个向量都线性相关,则称1,L ,n是V

研究生矩阵论第1讲 线性空间

研究生矩阵论第1讲 线性空间

矩阵论1、意义随着科学技术的发展,古典的线性代数知识己不能满足现代科技的需要,矩阵的理论和方法业巳成为现代科技领域必不可少的工具.有人认为:“科学计算实质就是矩阵的计算”.这句话概括了矩阵理论和方法的重要性及其使用的广泛性.因此,学习和掌握矩阵的基本理论和方法,对于理、工科研究生来说是必不可少的数学工具.2、内容《矩阵论》和工科《线性代数》课程在研究矩阵的内容上有较大的差异:线性代数:研究行列式、矩阵的四则运算(加、减、乘、求逆 ) 以及第一类初等变换 (非正交的)、对角标准形 (含二次型) 以及n阶线性方程组的解等基本内容.矩阵论:研究矩阵的几何理论(线性空间、线性算子、内积空间等)、第二和第三类初等变换(正交的)、分析运算(矩阵微积分和级数)、矩阵的范数和条件数、广义逆和分解、若尔当标准形以及几类特殊矩阵和特殊运算等,内容十分丰富.3、方法在研究的方法上,矩阵论和线性代数也有很大的不同:线性代数:引入概念直观,着重计算.矩阵论:着重从几何理论的角度引入矩阵的许多概念和运算,把矩阵看成是线性空间上线性算子的一种数量表示.深刻理解它们对将来正确处理实际问题有很大的作用.第1讲 线性空间内容: 1.线性空间的概念;2.基变换和坐标变换;3.子空间和维数定理;4.线性空间的同构线性空间和线性变换是矩阵分析中经常用到的两个极其重要的概念,也是通常几何空间概念的推广和抽象,线性空间是某类客观事物从量的方面的一个抽象.§1 线性空间的概念1. 群,环,域代数学是用符号代替数(或其它)来研究数(或其它)的运算性质和规律的学科,简称代数.代数运算:假定对于集A 中的任意元素a 和集B 中的任意元素b ,按某一法则和集C 中唯一确定的元素c 对应,则称这个对应为A 、B 的一个(二元)代数运算.代数系统:指一个集A 满足某些代数运算的系统.1.1群定义1.1 设V 是一个非空集合,在集合V 的元素之间定义了一种代数运算,叫做加法,记为“+”.即,对V 中给定的一个法则,对于V 中任意元素βα,,在V 中都有惟一的一个元ν和他们对应,称ν为βα,的和,记为βαν+=.若在“+”下,满足下列四个条件,则称V 为一个群.1)V 在“+”下是封闭的.即,若,,V ∈βα有 V ∈+βα;2) V 在“+”下是可结合的.即,)()(γβαγβα++=++ ,V ∈γ;3)在V 中有一个元e ,若,V ∈β有 βββ=+=+e e ;e 称为单位元;4)对于,V ∈β有 e =+=+αββα.称α为β的逆元.注:对V 任意元素βα,,都有αββα+=+,则称V 为交换群或阿贝尔群.1.2 环定义1.2 设V 是一个非空集合,在集合V 的元素之间定义了两种代数运算,分别叫做加法、乘法,记为“+”和“*”.即,对V 中给定的一个法则,对于V 中任意元素α,β,在V 中都有惟一的一个元ν和他们对应,称ν为α,β的和和积,记为βαν+=(βαν*=).满足下列三个条件,则称V 为一个环. 1)V 在“+”下是阿贝尔群;2) V 在“*”下是可结合的.即,)()(νβανβα**=**;3)乘法对加法满足左、右分配律,即对于V 中任意元素α,β,ν,有 βνανβαν**)(*+=+,νβνανβα*+*=*+)(.注:对V 任意元素βα,,都有αββα*=*,则称V 为交换环.1.3 域定义 1.3 设V 满足环的条件,且在对“加法”群中去除单位元的集合对于“乘法”满足交换群的条件,则称V 为域.例:有理数集对于通常的数的加法和乘法运算构成域,称之为有理数域.最常见的数域有有理数域Q 、实数域R 、复数域C .实数域和复数域是工程上较常用的两个数域.此外,还有其它很多数域.如{}.,2)2(Q b a b a Q ∈+=,不难验证,)2(Q 对实数四则运算封闭的,所以)2(Q 也是一个数域.而整数集合Z 就不是数域. 数域有一个简单性质,即所有的数域都包含有理数域作为它的一部分.特别,每个数域都包含整数0和1. 2. 线性空间定义 1.4 设V 是一个非空集合,P 是一个数域.在集合V 的元素之间定义了一种代数运算,叫做加法,记为“+”:即,给出了一个法则对于V 中任意元素βα,,在V 中都有惟一的一个元ν和他们对应,称ν为βα,的和,记为βαν+=.在数域P 和集合V 的元素之间还定义了一种代数运算,称为数量乘法(数乘),记为“∙”:即,对于数域P 中任一数k 和V 中任一元α,在V 中都有惟一的一个元δ和它们对应,称δ为k 和α的数乘,记为αδ∙=k .如果加法和数乘这两种运算在V 中是封闭的,且满足如下八条规则:⑴ 交换律αββα+=+;⑵ 结合律)()(γβαγβα++=++ ,V ∈γ;⑶ V V ∈∃∈∀0,α,有αα=+0,(0称为零元素);⑷ V V ∈∃∈∀βα,,有 0=+βα,(β称为的α负元素,记为α-); ⑸ P V ∈∈∀1,α,有 αα=∙1;⑹ αα∙=∙∙)()(kl l k ,P l k ∈,;⑺ ααα∙+∙=∙+l k l k )(;⑻ βαβα∙+∙=+∙k k k )(,则称集合V 为数域P 上的线性空间.当数域P 为实数域时,V 就称为实线性空间;P 为复数域,V 就称为复线性空间.例 1.按通常向量的加法和数乘运算,由全体实n 维向量组成的集合,在实数域R 上构成一个实线性空间,记为n R ;由全体复n 维向量组成的集合,在复数域C 上构成—个复线性空间,记为n C .例 2.按照矩阵的加法及数和矩阵的乘法,由数域P 上的元素构成的全体n m ⨯矩阵所成的集合,在数域P 上构成一个线性空间,记为n m P ⨯.而其中秩为)0(>r r 的全体矩阵所成的集合rR 则不构成线性空间,为什么?(事实上,零矩阵r R O ∉).例3.按通常意义的函数加法和数乘函数,闭区间[]b a ,上的连续函数的全体所成的集合,构成线性空间[]b a C ,.例4. 设+R ={全体正实数},其“加法”及“数乘”运算定义为xy y x =+, k x x k = 。

北邮矩阵论 1. 第一讲 线性空间与线性变换

北邮矩阵论 1. 第一讲 线性空间与线性变换

矩阵分析与应用
v
参考书:
›《矩阵论》第二版 程云鹏主编 西北工业大学
出版社 2004年8月 ›《矩阵分析与应用》 张贤达 清华大学出版社 2004年9月 ›“Matrix Analysis”, Roger A. Horn 机械工业出版 社影印版 ›《矩阵计算》,G.H.戈卢布等,科学出版社
v
编程工具
就是二维的,数1 与i 就是一组基.
基变换与坐标变换
n
设 x1 , x2 ,L , xn 是Vn 的旧基, y1 , y2 ,L , yn 是新基。新基可以用旧基表示出来
cn1 xc y1 = c11 x1 + c21 x2 + L+ n c11 L c1n 12 y = c x + c x + L+ c x 2 12 1 22 2 2 n n c c L c 21 22 2n , x ( y1 , y2 ,L , yn ) = ( x1 , x2 ,L n) M M M M + c x y x x L c c = + + n 1n 1 2 n 2 cn1 nn cnn 2 L cnn ( x1 , x2 ,L, xn ) C
线性空间
n
线性空间 线性变换与矩阵 线性子空间指一些对象的总体 元素:这些对象称为集合的元素
n整数集 n线性方程组的解集 n由某个平面上所有的点构成的点集
用S表示集合,a是S的元素
a∈S
a不是S的元素
a∉S
集合的表示
1.列举全部元素
如 N = {1,3,5, 7,9}
2.给出集合中的元素的性质
›Matlab、C
矩阵分析与应用

矩阵理论课件 第一章 线性空间与线性变换

矩阵理论课件  第一章 线性空间与线性变换

a1n
a2n
ann
前述关系可以表示为 AT 或 T T A
则称矩阵 A 为基 到基 的过渡矩阵(唯一且可逆)
定义2 (坐标变换)
设x V L(P) ,向量 x 在 基 和基 下的
坐标之间的关系,称之为坐标变换。
坐标变换与过渡矩阵的关系:
设 x k1x1 k2 x2 kn xn 和 x t1 y1 t2 y2 tn yn
和 W W1 W2 为直和,记为 W W1 W2 。
例6 设 R4的3个子空间:
① V1 (a, b, 0, 0)T a, b R ② V2 (0,0,c, 0)T c R ③ V3 (0,d,e, 0)T d,e R
容易验证V1 是V2直和, V1 V3不,V是2 直 V和3。
事实上 不妨设简单基为 (III )e1, e2 , , en ( x1, x2 , , xn ) (e1, e2 , , en )C1 ( y1, y2 , , yn ) (e1, e2 , , en )C2
( x1, x2 , , xn )C11C2
C C11C2
例4 设线性空间P3[t] 的两个基为: (I ) f1(t) 1, f2(t) 1 t, f3(t) 1 t t 2,
表示,不妨记
y1 a11x1 a21x2
y2
a12 x1
a22 x2
yn a1n x1 a2n x2
称上述关系为两组基的基变换。
an1xn an2 xn
ann xn
x1
y1
a11 a12
若记
x2
,
y2
A
a21
a22
xn
yn
an1 an2

矩阵论及其应用-1 chapter1

矩阵论及其应用-1 chapter1
线性代数预备知识复习第一章线性空间线性空间是线性代数的中心内容它是几何空间的抽象和推广在线性代数中定义了n维向量的加法和数量乘法运算讨论了向量空间中的向量关于线性运算的线性相关性完满地阐明了线性方程组的解的理论现在把n维向量抽象成集合中的元素撇开向量及其运算的具体含义把集合对加法和数量乘法的封闭性及运算满足的规则抽象出来就形成了抽象的线性空间的概念这种抽象将使我们进一步研究的线性空间的
例2
次数不超过n的多项式的全体, 记作P [ x] ,即
n
n Pn [ x] { p an x a1 x a0 an ,, a1 , a0 R},
组实数k1,k 2, , km,向量 k1 1 k 2 2 k m m 称为向量组的一个线性组合,k1,k2, , km 称为这
个线性组合的系数.
(2) 给定向量组A : 1 , 2 ,, m 和向量b, 如果存在
一组数1, 2, , m,使
b 1 1 2 2 m m
(1)一个集合,如果定义的加法和数乘运算是通常的 实数间的加乘运算,则只需检验对运算的封闭性.
例1 实数域上的全体 m n 矩阵,对矩阵的加法 和数乘运算构成实数域上的线性空间,记作 R mn
Amn Bmn C mn ,

Amn Dmn ,
R mn是一个线性空间.
( 3) 在V中存在零元素 0, 对任何 V , 都有
0 ;
(4)对任何 V , 都有的负元素 V , 使
0;
(5) 1 ;
(6) ; (7) ; (8) .
1ri rj ci c j ; 1.初等行(列)变换 2r k c k ; i i 3 ri krj ci kc j .

第1讲-矩阵的秩与初等变换资料讲解

第1讲-矩阵的秩与初等变换资料讲解
在 B 中总能找到与D相对应的 r 阶子式 D1,且有 D1=D 或 D1 = -D 或 D1 = kD,
因此 D1≠0,从而 R(B) ≥ r = R(A)。 2) 把某行的倍数加到另一行的初等变换。
由于对交换两行的初等变换已经证明结论成立,故只需证明 把第二行的某个倍数加到第一行时,秩不减即可。
R(AT) = R(BT), 又 R(A)=R(AT), R(B)=R(BT),因此 R(A)=R(B)。
总之,若 A 经过有限次初等变换化为 B,则秩不变,即 R(B) = R(A)。
例:求矩阵 A 的秩: A=
R(A) = 4.
三 矩阵的标准形 对于m×n 矩阵 A,总可经过初等变换化成如下形式
分两种情形。 (a) A 的 r 阶非零子式 D 不包含 A 的第一行,这时 D 也是 B
的 r 阶非零子式,故 R(B) ≥r; (b) D 包含 A 的第1行,这时把 B 中与 D 对应的 r 阶子式 D1
记作
从而有 R(B) ≥r = R(A)。 以上证明了矩阵A经一次初等行变换化为B后秩不减,即
B 等价,记作

定理:任意一个矩阵可经过一系列初等行变换化为与之行等 价的行阶梯形与行最简形矩阵。 证明:由于只需对行阶梯形矩阵中的非零行乘以特定的非0常 数,即可变成行最简形。因此只需证初等行变换可化矩阵为 行阶梯形即可。

对第一列的元素a11, a21,…, as1,只要其中一个不为零,用交换 两行的初等行变换,总能使第一列的第一个元素不为零,然 后从第二行开始,每一行都加上第一行的一个适当的倍数, 于是第一列除去第一个元素外就全是零了。
行阶梯形矩阵特点:若第i行元素全为0,则i+1,…, m行的元 素全为0;否则从左数找到第一个不为0的元素,位于该元 素下及其左下的所有元素全为0。

矩阵论第一章

矩阵论第一章

二、基与维数
设X是数域K上的线性空间, { x1 , x2 ,L , xn } ⊂ X . 相关与无关 若存在不全为零的数 ai ∈ K , i = 1, 2,L , n, 使 则称 { x1 , x2 ,L , xn } 是线性相关的,否则称为线性无关的. 生成空间 设 E ⊂ X , 称
M中元素 的个数
当 A1 = A2 = L = An 时,记A = A1 × A2 ×L × An
n
习惯上:有理数集Q、实数集R、整数集Z、
{ } C = {α α = ( x , x ,L, x ) ,其中x ,L, x ∈ C} R = { A A = ( a ) , a ∈ R} C = { A A = ( a ) , a ∈ C}
矩阵论课件
2013.9
矩阵论简介 矩阵论是线性代数的深入,是用现代数学 的方法对有限维空间的描述与分析;对复杂矩 阵的分析、刻画与处理。 矩阵论不仅是学习数学理论的一个基本工 具,也是工程技术领域处理大量有限维空间形 式与数量关系的强有力工具。因此也是许多研 究方向的博士生入学考试的规定课程。
第一章
=0
故M为R
的子线性空间。
二、基与维数
1 0 0 1 0 0 取e1 = , e2 = , e3 = ∈ M. 0 −1 0 0 1 0 x1 x2 0 0 因为 x1e1 + x2e2 + x3e3 = = x − x 0 0 1 3
是Z到Z的双射;
x11 f4 x21
x12 x22
x13 = ( x11 , x12 , x13 , x21 , x22 , x23 ) x23
是R2×3到R6的双射。

第一讲行列与矩阵

第一讲行列与矩阵

第一讲 行列式与矩阵一、内容提要(一)n 阶行列式的定义∑-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn j j j njn j j j j j nn n n n n a a a a a a a a a a a a D ΛΛΛΛΛΛΛΛΛ21212211)(212222111211)1(τ(二)行列式的性质1.行列式与它的转置行列式相等,即T D D =; 2.交换行列式的两行(列),行列式变号;3.行列式中某行(列)元素的公因子可提到行列式外面来; 4.行列式中有两行(列)元素相同,则此行列式的值为零;5.行列式中有两行(列)元素对应成比例,则此行列式的值为零; 6.若行列式中某行(列)的元素是两数之和,即nm n n in in i i i i na a ab a b a b a a a a D ΛΛΛΛΛΛΛΛΛ21221111211+++=, 则nnn n in i n nnn n in i n a a a b b b a a a a a a a a a a a a D ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ21121112112112111211+= 7.将行列式某行(列)的k 倍加到另一行(列)上去,行列式的值不变。

(三)行列式依行(列)展开 1.余子式与代数余子式(1)余子式的定义去掉n 阶行列式D 中元素ij a 所在的第i 行和第j 列元素,剩下的元素按原位置次序所构成的n-1阶行列式称为元素ij a 的余子式,记为ij M(2)代数余子式的定义ij a 的代数余子式的记为ij j i ij ij M A A +-=)1(, 2.n 阶行列式D 依行(列)展开 (1)按行展开公式∑=⎩⎨⎧≠==nj kj ij k i ki DA a 10 (2)按列展开公式∑=⎩⎨⎧≠==ni is ij sj sj DA a 10 (四)范德蒙行列式∏≤<≤----==nj i i jn nn n nnx xx x x x x x x x x D 1112112222121)(111ΛΛΛΛΛΛΛ(五)矩阵的概念1.矩阵的定义由m×n 个数),,2,1;,,2,1(n j m i a ij ΛΛ==组成的m 行n 列的矩形数表⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=mn m m n n a a a a a a a a a A ΛΛΛΛΛΛ212222111211 称为m×n 矩阵,记为n m ij a A ⨯=)(2.特殊的矩阵(1)方阵:行数与列数相等的矩阵;(2)上(下)三角阵:主对角线以下(上)的元素全为零的方阵称为上(下)三角阵;(3)对角阵:主对角线以外的元素全为零的方阵; (4)数量矩阵:主对角线上元素相同的对角阵;(5)单位矩阵:主对角线上元素全是1的对角阵,记为E ; (6)零矩阵:元素全为零的矩阵。

第三章第一讲矩阵的初等变换

第三章第一讲矩阵的初等变换

= 4, ① = 0, ② = −6, ③ = −3. ④
⎛1 ⎜ ⎜0 ⎜0 ⎜ ⎝0
1 −2 1 1 −1 1 0 0
4⎞ ⎟ 0⎟ = B3 0 2 −6 ⎟ ⎟ 0 1 −3 ⎠
通识教育必修课程——线性代数
⎧ x1 + x2 − 2 x3 + x4 ⎪ x 2 − x 3 + x4 ⎪ ⎨ 2 x4 ⎪ ⎪ x4 ⎩
① ② ③ ④
通识教育必修课程——线性代数
⎧ x1 + x2 − 2 x3 + x4 = 4, ⎪ 2 x − x − x + x = 2, ⎪ 1 2 3 4 ⎨ ⎪ 2 x1 − 3 x2 + x3 − x4 = 2, ⎪ 3 x1 + 6 x2 − 9 x3 + 7 x4 = 9. ⎩
②-③ ③-2×① ④-3×①
① ② ③ ④
⎛1 ⎜ ⎜0 ⎜0 ⎜ ⎝0
r1 − r2
1 −2 1 4 ⎞ ⎟ 1 −1 1 0 ⎟ = B4 0 0 1 −3 ⎟ ⎟ 0 0 0 0⎠
r2 − r3
⎛1 ⎜ ⎜0 ⎜0 ⎜ ⎝0
0 −1 0 1 −1 0 0 0
4⎞ ⎟ 3⎟ = B5 0 1 −3 ⎟ ⎟ 0 0 0⎠
通识教育必修课程——线性代数
③ ④
④-2×③
= 4, ① = 0, ② = −6, ③ = −3. ④
⎛1 ⎜ ⎜0 ⎜0 ⎜ ⎝0
r3 ↔ r4 r4 − 2r3
1 −2 1 4 ⎞ ⎟ 1 −1 1 0 ⎟ = B3 0 0 2 −6 ⎟ ⎟ 0 0 1 −3 ⎠
⎧ x1 + x2 − 2 x3 + x4 = 4, ⎪ x2 − x3 + x4 = 0, ⎪ ⎨ x4 = −3, ⎪ ⎪ 0 = 0. ⎩

矩阵讲义 1-1

矩阵讲义 1-1
1
向量记为 0 。 1 × n 矩阵称为 n 维行向量,有时 R n 也表示 n 维实行向量的全体。 一、特征值与特征向量 1.定义 对于 A ∈ C n×n ,若存在 λ ∈ C 和非零列向量 x ∈ C n ,使得 Ax = λx 则称 λ 是 A 的特征值,称 x 为 A 的对应于特征值 λ 的特征向量。称 λ − a11 − a 21 λI − A = M −a n1 − a12 λ − a 22 M − an2 L L − a1n − a2n M L λ − a nn
λ1 + λ2 + L + λn = a11 +a 22 + L + a nn , λ − a11 − a 21 det(λI − A) = M − a n1 − a12 λ − a 22 M − an 2

L − a1n L − a2n = O M L λ − a nn
= (λ − a11 )(λ − a 22 ) L (λ − a nn ) + g1 ( λ ) (其中 g1 ( λ ) 是 λ 的 n − 2 次多项式)
2) A k 的特征值是 λk ,对应的特征向量仍是 x ; 证 由题设 Ax = λx ,于是 A k x = A k −1 ( Ax ) = A k −1 (λx ) = λA k −1 x = L = λ k x 3)若 A 可逆,则 A −1 的特征值是 证 1 ,对应的特征向量仍是 x ; λ 1 x。 λ 证毕 证毕
对于 λ1 = −2, 由 (−2 I − A) x = 0 得 ξ1 = −ξ 4 , ξ2 = ξ4 , ξ 3 = ξ 4 ,基础解系为 (−1, 1, 1, 1向量为 k (−1, 1, 1, 1) T ( k ≠ 0 ) 。 对于 λ2 = λ3 = λ4 = 2 ,由 (2 I − A) x = 0 得 ξ1 = ξ 2 + ξ 3 + ξ 4 ,即对应 λ = 2 有 3 个线性无关的特征向量 (1, 1, 0, 0) T , (1, 0, 1, 0) T , (1, 0, 0, 1) T 。 3.特征值与特征向量的性质 性质 1 向量,则 1≤ s ≤ r 性质 2 设 A = (aij ) ∈ C n×n , λ1 , λ 2 , L, λ n 是 A 的 n 个特征值,则 λ1λ 2 L λ n = det A 设 λ0 是方阵 A 的 r 重 (r ≥ 1) 特征值,对应 λ0 有 s 个线性无关的特征

第1讲 用矩阵消元法求解线性方程组

第1讲 用矩阵消元法求解线性方程组

a ____ , b ____ , c ____ ;
u 1 2 (2) 设 B x v 3 为反对称矩阵,则 y z w u ____ , v ____ , w ____ ; x ____ , y ____ , z ____ .
为(1)的一个解(向量). (1)的全体解向量形成的集合称为(1)的解(向量)集合. 在(1)中,将 n 个未知量 x1 , x2 , , xn 改为 y1 , y2 , , yn ,并不影响解向量集合. 所以
反映了(1)的所有本质特征. 说,增广矩阵 A
2、初等变换
-5-
定义 11
在线性方程组(1)中,
以 A [ aij ]mn 的第 j 列各元素次序不变排成新矩阵的第 j 行( j 1, 2, , n ),亦得
a11 a 12 T A a1n
显然,有
a21 am1 a22 am 2 . a2 n amn
ent ij A ent ji AT (i 1, 2, , m; j 1, 2, , n) ,
C A B .
数与矩阵可以相乘. 定义 6 设 A [ aij ]mn ,则称矩阵 [kaij ]mn [ aij k ]mn 为数 k 与矩阵 A 的数量乘积(或
A 的 k 倍),记作 kA 或 Ak .
加法与数量乘法统称为矩阵的线性运算. 2、 m n 矩阵空间 数域 上的全体 m n 矩阵形成的集合可以表示为
(加法交换律) (加法结合律) (加法右单位元) (加法右逆元) ( 1 倍) (数乘结合律) (第一分配律) (第二分配律)
mn 关于矩阵的加法与数量乘法,称为数域 上的 m n 矩阵空间. 减法是加法的派生运算: A B A ( B ) .

第1讲 逆矩阵

第1讲 逆矩阵

|
A ,
其中A为方阵
A的伴随方阵.
证明 由前面伴随矩阵性质可知 AA AA A I.
因为
|A|≠0 ,所以有
A
1 A
A



1 A
A

A

I
根据逆矩阵的定义,则有 A1 1 A. A
结论:方阵 A 可逆的充要条件是 |A|≠0.
若方阵 A 的行列式|A|≠0,则称A 是非奇异的.否 则称A 是非奇异的,即|A|≠0.
若可逆,求A1 .
123
解 因为 A 2 2 1 2 0, 所以A可逆.
343
容易求得: A11 2, A21 6, A31 4,
A12 3, A22 6, A32 5, A13 2, A23 2, A33 2.
所以
A1
1 A
A
一、逆矩阵的概念
定义1 设A为 n 阶方阵,若存在 n 阶方阵B,使得
AB BA I
则称A是可逆矩阵,简称A可逆,并称B是A的逆矩阵.
注意:
如果方阵A可逆,则其逆矩阵是唯一的. 事实上, 设B、C 均为A的逆矩阵,则AB=BA=I,
AC=CA=I.
B BI B( AC ) (BA)C IC C.
|
1 A |
A11 A12 A13
A21 A22 A23
A31
A32

A33
2

1 2

-3 2
6 6 2
-4
5 -2

1


பைடு நூலகம்

3
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C u
R1 R2 R2 R2 C y(t ) R2 iC R2 Cu iL uC u(t ) R1 R2 R1 R2 R1 R2
动态系统的描述(Continue)
写成矩阵形式:
X
A
X
B
U
R1 R2 R1 R1 R2 L ( R R ) L ( R R ) L i L ( R R ) L i 1 2 1 2 2 1 u (t ) R R R 1 C 1 1 2 u C u ( R1 R2 )C ( R1 R2 )C ( R1 R2 ) L
– 掌握与泛函分析交叉或相关的一些内容
• 许多领域日益增多的文献中大量使用泛函分析的术语、符号 • sup(*)、inf()、

举例: 动态系统的描述
(1)电路系统
diL R1 (iC i L ) L u (t ) dt
(1) (2)
u(t)
R1 iL
C
R1 (iC iL ) uc R2ic u(t )
x(n)(a0 0 )
k 0 ak y(n k ) r 0 br x(n r )
N M
动态系统的描述(Continue)
m1 (n N ) 0 x(n N ) y(n N ) m1 (n N 1) m2 (n N ) 1 x(n N ) y(n N 1) 0 x(n N 1) m2 (n N 1) m3 (n N ) 2 x(n N ) y(n N 2) 0 x(n N 2) 1x(n M 1)
……
mN (n N 1) mN 1 (n N ) N x(n N ) y(n) 0 x(n) 1 x(n 1) N 1x(n N 1)
mN 1 (n N )
写成矩阵形式:
m1 (n) 0 m ( n) 0 2 aN m ( n ) a0 N
duc ic C dt
L
iC
R2 u(t)
代入(1) 代入(2)
L i
R1 R2 R1 R2 iL uC u(t ) ( R1 R2 ) L ( R1 R2 ) L ( R1 R2 ) L R1iL 1 1 iL uC u(t ) ( R1 R2 )C ( R1 R2 )C ( R1 R2 )C
=0
aN y(n N ) aN 1 y(n N 1) a0 y(n)
0
x(n N )(aN 0 aN 11 a0 N )
……
0
x(n M 1)(aM 10 aM 11 a0 M 1 ) bM x(n M )(aM 0 aM 11 a0 M ) …… b0
– 直积集的概念可被推广到两个以上给定的集合:
A1 A2 An ( x1 , x2 , xn ) : x1 A1 , x2 A2 ,, xn An
记为:
A
i 1
n
i
相关概念及定义(continue)
• 代数运算
– 如果通过法则, a A, b B ,得到唯一的 c C ,则 称为A与B的直积集到C的一个代数运算:
第一讲
矩阵的基础知识
目的和内容
• 矩阵理论是求解多元线性方程组的有力工具; • 现代工程中的一些问题,如果用矩阵表示,不但形式简洁, 更重要的是具有适合计算机处理的特点。由于计算机的发 展和普及,矩阵分析显得越来越重要;
– 举例
• 教学目的:
– 掌握主要的概念; – 能够看懂相关文献,尤其是各种术语和符号的含义;
• 对角阵(diagonal matrix)
除了主对角线元素以外,其余元素均为0的方阵,称之为对角阵。
• 单位阵(Identity matrix)
主对角线元素全为1的对角阵,称之为单位阵。简记为I。 N阶单位阵记为 I n
矩阵运算
• 矩阵加法:
设 A (aij ) F mxn , B (bij ) F mxn
aN a a m1 (n N ) N 1 m2 (n N ) 1 mN (n N ) a0 a0 a0
0 m1 (n 1) 2 m (n 1) 0 2 2 x(n 1) a1 a m ( n 1 ) N 0 N

N k 0
ak y (n k ) r 0 br x(n r )
M
动态系统的描述(Continue)
(4)引入中间变量,化高阶差分方程为一阶线性差分方程组
m1 (n N ) 0 x(n N ) y(n N ) m1 (n N 1) m2 (n N ) 1 x(n N ) y(n N 1) 0 x(n N 1) m2 (n N 1) m3 (n N ) 2 x(n N ) y(n N 2) 0 x(n N 2) 1x(n N 1)
Y
C
X
D
U
AX BU X
Y CX DU
R1 R2 R R i L R2 2 y (t ) 1 u (t ) R u 2 C R1 R2 R1 R2
举例: 动态系统的描述(Continue)
A B [a, b] [c, d ]
表示XOY平面上矩形中点的集合 – A×B中的元素被称为有序对,即当 x y 时,( x, y) ( y, x)
• R R R 表示XOY平面上所有点的集合
2
( x1 , y1 ) ( x2 , y2 ) x1 x2 , y1 y2
• 矩阵(Matrix)
– 矩阵是数域F上的m×n个数构成的数表:
a11 a21 a m1
a12 a22 am 2
a1n a2 n amn
称为F上m行、n列的矩阵,记为A
aij F
i = 1, …, m, j = 1, …, n
称为A的第i行、第j列元素,记为(A)ij
相关概念及定义(continue)
数域(Field)若数集Fቤተ መጻሕፍቲ ባይዱ有数1且对四则运算封闭,则 称F为数域
相关概念及定义(continue)
• 直积集
– 设A,B是给定的集合,称 A B 为A与B的直积集,简称积集、直积 – 举例:
( x, y) : x A, y B
• A [a, b] R , B [c, d ] R ,那么
(t ) v(t ) y
y( t )
写成矩阵形式:
(t ) 0 1 y (t ) 0 y f K 1 F (t ) v v(t ) (t ) m m m
AX BU X
称 A B(aij bij ) F mxn 为矩阵A与B之和。
矩阵加法是 F mxn F mxn F mxn 的代数运算,性质: 交换律:A + B = B +A
结合律:(A + B) + C = A + (B + C)
M (n) GM (n 1) Hx(n 1) y(n) CM (n) Dx(n)
1 0
a N 1 a0
m1 (n) m ( n) y (n) [1 0 0 0] 2 0 x(n) m ( n ) N
相关概念及定义
aN
aN 1
aN 2
……
… +
a0
mN (n N 1) mN 1 (n N ) N x(n N ) y(n) 0 x(n) 1 x(n 1) N 1x(n N 1)
aN m1 (n N ) aN 1m2 (n N ) a0mN 1 (n N )
(2)机械系统的振动
F ma
F f fv f dy (t ) dt
F F (t) F
f
FK
FK Ky(t )
F(t)
m
d 2 y(t ) dy(t ) m f Ky (t ) F (t ) 2 dt dt K f F (t ) (t ) a(t ) y (t ) v(t ) v m m m
在矩阵的定义的基础上,可定义矩阵相等、负矩阵、零矩阵、 方阵、单位阵、对角阵、逆矩阵等
•矩阵相等
,i = 1, …, m, j = 1, …, n 设A F mn , B F mn ,若 ( A) ij ( B) ij
则称矩阵A与B相等,记为A = B
•负矩阵
对 A (aij ) F mn 称 -A
(aij ) F mn 为A的负矩阵
•零矩阵
元素全为零的矩阵,称为零矩阵,记为0
相关概念及定义(continue)
• 方阵(Square matrix)
行数和列数相同的矩阵称为方阵,行数为n的方阵称为n阶方阵。
对方阵,又定义了主对角线元素、副对角线元素等概念:
称 a11 , a22 ,, ann 为主对角线元素 称 a1n , a2,n1 ,, a1n 为副对角线元素
X
A
X
BU
举例: 动态系统的描述(Continue)
(3)离散系统
y(n) y(n) y(n 1) y(n) y(n 1) y(n)
x(n)
离散时间系统
相关文档
最新文档