二元一次方程组的概念及解法
二元一次方程组格式_概述说明以及解释
二元一次方程组格式概述说明以及解释1. 引言1.1 概述二元一次方程组是数学中常见的基本代数方程组之一。
它由两个未知数和两个等式组成,其中每个等式都是未知数的一次项与常数项的和。
解决二元一次方程组可以帮助我们在现实生活、商业领域以及工程问题中找到解决方案。
1.2 二元一次方程组定义二元一次方程组通常表示为:```ax + by = cdx + ey = f```其中a、b、c、d、e和f分别代表系数,x和y代表未知数。
此类方程组有两个未知数x和y,并且每个方程的最高次幂为1,因此称为一次方程组。
1.3 解法方法介绍解决二元一次方程组可以使用多种解法方法,例如消元法、代入法和矩阵法等。
消元法通过逐步变换原方程组,将其转化为更简单的形式来求解。
代入法则先求得一个未知数的值,再将其代入另一个方程中求得第二个未知数的值。
矩阵法则通过矩阵运算来求得未知数的值。
在接下来的文章中,我们将详细介绍二元一次方程组的格式说明、解题步骤以及在实际问题中的应用场景分析。
同时,我们也会总结要点回顾,并探讨学习启示、拓展延伸思考以及未来发展趋势的展望。
通过本文的阅读,相信您将对二元一次方程组有更加深入的理解,并能够灵活运用于各种问题的求解中。
2. 二元一次方程组格式说明2.1 标准形式与一般形式对比二元一次方程组可以有不同的表示形式,其中最常见的是标准形式和一般形式。
标准形式的方程组可以写为:```ax + by = cdx + ey = f```其中,a、b、c、d、e、f是已知的实数系数,x和y是未知数。
一般形式的方程组可以写为:```Ax + By + C = 0Dx + Ey + F = 0其中,A、B、C、D、E、F是已知的实数系数。
标准形式和一般形式之间存在着对应关系。
通过对标准形式适当变换,我们可以得到等价的一般形式方程组,反之亦然。
2.2 系数与未知数的关系解析二元一次方程组中的未知数通常用x和y表示。
在标准形式中,每个未知数都会带上一个系数。
(word完整版)二元一次方程组的概念和解法-教师版
(word 完整版)二元一次方程组的概念和解法-教师版二元一次方程的基本概念1。
含有两个未知数,并且含未知数项的最高次数是1的方程叫二元一次方程。
判定一个方程是二元一次方程必须同时满足三个条件: ①方程两边的代数式都是整式——整式方程; ②含有两个未知数——“二元”;③含有未知数的项的次数为1——“一次”。
2。
二元一次方程的一般形式:0ax by c ++=(0a ≠,0b ≠)3。
二元一次方程的解:使二元一次方程左、右两边的值相等的两个未知数的值,叫做二元一次方程的解。
一般情况下,一个二元一次方程有无数个解。
【例1】 下列各式是二元一次方程的是( )A 。
30x y z -+=B 。
30xy y x -+=C 。
12023x y -= D 。
210y x+-=【解析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别. 【答案】故本题选C .【巩固】下列方程是二元一次方程的是( )A.31x xy -= B 。
2430x x += C.23y += D.3x y =【答案】D .【例2】 若32125m n x y ---=是二元一次方程,则求m 、n 的值.【答案】由定义知:321m -=,11n -=,所以:1m =,2n =.【巩固】已知方程11(2)2m n m x y m ---+=是关于x 、y 的二元一次方程,求m 、n 的值。
【答案】根据题意可得:20m -≠,11n -=,11m -=,所以2n =,0m =.二元一次方程组的概念和解法同步练习知识讲解(word 完整版)二元一次方程组的概念和解法-教师版【例3】 若32125m n x y ---=是二元一次方程,则求m 、n 的值。
【答案】由定义知:321m -=,11n -=,所以:1m =,2n =。
【巩固】已知方程11(2)2m n m x y m ---+=是关于x 、y 的二元一次方程,求m 、n 的值。
七年级下-二元一次方程组的定义及解法
二元一次方程组的定义及解法知识集结知识元二元一次方程(组)的定义知识讲解1. 二元一次方程的定义:含有两个未知数,且含有未知数的项的次数为1的整式方程叫二元一次方程。
所以满足三个条件:①方程中有且只有两个未知数;②方程中含有未知数的项的次数为1;③方程为整式方程,就是二元一次方程。
注意:主要考查未知数的项的次数为1,方程必须为整式,不能为分式。
例:x=2y.2.二元一次方程组的定义:由几个一次方程组成并且含有两个未知数的方程组,叫二元一次方程组。
注意三条:①方程组中有且只有两个未知数。
②方程组中含有未知数的项的次数为1。
③方程组中每个方程均为整式方程。
注意:二元一次方程组不一定由两个二元一次方程合在一起:①方程可以超过两个;②有的方程可以只有一元。
例题精讲二元一次方程(组)的定义例1.下列方程中,是二元一次方程的是().A.8x2+1=y B.y=8x+1C.y=D.xy=1例2.下列方程组中,是二元一次方程组的是().C.D.A.B.例3.有下列方程组:(1)(2)(3)(4),其中说法正确的是().A.只有(1)、(3)是二元一次方程组B.只有(3)、(4)是二元一次方程组C.只有(4)是二元一次方程组D.只有(2)不是二元一次方程组根据定义求字母的值知识讲解含有参数的二元一次方程组,根据二元一次方程的定义:1.二元的系数不为零。
2.未知数的次数为1。
注意:出现在选择填空题时,可以不用解出方程,可以直接将m,n的值代入验证即可。
例题精讲根据定义求字母的值例1.已知3 =y是二元一次方程,那么k的值是().A.2B.3C.1D.0例2.若﹣8 =10是关于x,y的二元一次方程,则m+n=.例3.'若(a-3)x+=9是关于x,y的二元一次方程,求a的值。
'由实际问题抽象出二元一次方程组知识讲解分析实际问题,找出等量关系,列出实际问题.例题精讲由实际问题抽象出二元一次方程组例1.4辆板车和5辆卡车一次能运27吨货,10辆板车和3车卡车一次能运货20吨,设每辆板车每次可运x吨货,每辆卡车每次能运y吨货,则可列方程组().A.B.C.D.例2.元旦期间,某服装商场按标价打折销售,小王去该商场买了两件衣服,第一件打6折,第二件打5折,共记230元,付款后,收银员发现两件衣服的标价牌换错了,又找给小王20元,请问两件衣服的原标价各是多少?解:设第一件衣服的原标价为x元,第二件衣服的原标价为y元;由题意可得方程组__________。
消元法解二元一次方程组的概念、步骤与方法
消元法解二元一次方程组的概念、步骤与方法湖南李琳高明生一、概念步骤与方法:1.由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.2.用代入消元法解二元一次方程组的步骤:(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.(2)把(1)中所得的方程代入另一个方程,消去一个未知数.(3)解所得到的一元一次方程,求得一个未知数的值.(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.注意:⑴运用代入法时,将一个方程变形后,必须代入另一个方程,否则就会得出“0=0”的形式,求不出未知数的值.⑵当方程组中有一个方程的一个未知数的系数是1或-1时,用代入法较简便.3.两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
用加减消元法解二元一次方程组的基本思路仍然是“消元”.4.用加减法解二元一次方程组的一般步骤:第一步:在所解的方程组中的两个方程,如果某个未知数的系数互为相反数,•可以把这两个方程的两边分别相加,消去这个未知数;如果未知数的系数相等,•可以直接把两个方程的两边相减,消去这个未知数.第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公倍数),再加减消元.第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,•合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,•常数项在方程的右边的形式,再作如上加减消元的考虑.注意:⑴当两个方程中同一未知数的系数的绝对值相等或成整数倍时,用加减法较简便.⑵如果所给(列)方程组较复杂,不易观察,就先变形(去分母、去括号、移项、合并等),再判断用哪种方法消元好.5.列方程组解简单的实际问题.解实际问题的关键在于理解题意,找出数量之间的相等关系,这里的相等关系应是两个或三个,正确的列出一个(或几个)方程,再组成方程组.6.列二元一次方程组解应用题的一般步骤:⑴设出题中的两个未知数;⑵找出题中的两个等量关系;⑶根据等量关系列出需要的代数式,进而列出两个方程,并组成方程组;⑷解这个方程组,求出未知数的值.⑸检验所得结果的正确性及合理性并写出答案.注意:对于可解的应用题,一般来说,有几个未知数,就应找出几个等量关系,从而列出几个方程.即未知数的个数应与方程组中方程的个数相等. 二、化归思想 所谓转化思想一般是指将新问题向旧问题转化、复杂问题向简单问题转化、未知问题向已知问题转化等等.在解二元一次方程中主要体现在运用“加减”和“代入”等消元的方法,把新问题“二元”或“三元”通过消去一个未知数转化为旧问题“一元”,化“未知”为“已知”,化“复杂”为“简单”,从而实现问题的解决,它也是解二元一次方程最基本的思想.三、典型例题解析:类型一:基本概念:例1、(2005年盐城大纲)若一个二元一次方程的一个解为则21x y =⎧⎨=-⎩,,这个方程可以是________.(只要写出一个)分析:本题是一道开放型问题,考查方程的概念,满足题意的答案不惟一,解此类题目时,可以先设出系数在代入算出另一边的值。
二元一次方程组及其解法(培优)
二元一次方程组及其解法(培优)二元一次方程组及其解法在研究二元一次方程组之前,需要先了解二元一次方程的概念。
二元一次方程必须同时具备三个条件:(1)这个方程中有且只有两个未知数;(2)含未知数的次数是1;(3)对未知数而言,构成方程的代数式是整式。
解二元一次方程的解和二元一次方程组的解的意义是相同的,都是指方程的解集。
熟练掌握二元一次方程组的解法,可以用来解决许多实际问题。
例如,已知下列方程2xm1+3yn3=5是二元一次方程,则m+n=0.根据二元一次方程的概念可知:m-1=1,n+3=1,解得m=2,n=-2,故m+n=0.除了解二元一次方程组的基本方法外,还有加减消元法、代入法等解法。
在解题时需要根据具体情况选择最合适的方法。
变式题组:01.请判断下列各方程中,哪些是二元一次方程,哪些不是,并说明理由。
⑴2x+5y=16 - 是二元一次方程,符合三个条件。
⑵2x+y+z=3 - 不是二元一次方程,因为含有三个未知数z。
02.若方程2xa1+3=y2b+(-5/1)+y=21(4)x2+2x+1=(5)2x+10xy=5x是二元一次方程,则a=,b=。
根据二元一次方程的定义,2xa1+3=y2b+(-5/1)+y=21(4)x2+2x+1=(5)2x+10xy=5x不是二元一次方程,因为含有x的二次项。
03.在下列四个方程组①{4x+3y=10.2x-4y=9},②{4x+y=12.7xy=29},③{1/x-2y=-45.2x+3y=4},④{7x+8y=5.x-4y=1}中,是二元一次方程组的有()只有①和③是二元一次方程组,因为它们都符合三个条件。
例2:(十堰中考)二元一次方程组{3x-2y=7.x+2y=5}的解是()解法:二元一次方程组的解,就是它的两个方程的公共解。
根据此概念,此类题有两种解法:(1)若方程组较难解,则将每个解中的两未知数分别带入方程组,若使方程组都成立,则为该方程组的解,若使其中任一方程不成立,则不是该方程组的解;(2)若方程组较易解,则直接解方程组可得答案。
二元一次方程组的概念及解法
第四讲 二元一次方程组的概念及解法考点梳理考点一 二元一次方程组的概念含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程。
把两个二元一次方程合在一起就组成了一个方程组,像这样的方程组叫做二元一次方程组。
使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
典例分析 例1、在方程组、、、、、中,是二元一次方程组的有 个;例2、已知二元一次方程2x -y =1,若x =2,则y = ;若y =0,则x = . 练习:1、方程x +y =2的正整数解是__________. 2、在方程3x -ay =8中,如果是它的一个解,那么a 的值为例3、方程组⎩⎨⎧=+=-521y x y x 的解是( )A 、 ⎩⎨⎧=-=21y xB 、⎩⎨⎧-==12y x C 、⎩⎨⎧==21y x D 、⎩⎨⎧==12y x例4、有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为,十位数字为,则用代数式表示原两位数为 ,根据题意得方程组。
例5、我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十头,下有九十四足。
问鸡兔各几何。
”你能用二元一次方程组表示题中的数量关系吗?使找出问题的解。
考点二 解二元一次方程⎩⎨⎧==13y x(一)消元解二元一次方程⎧⎨⎩代入消元法加减消元法典例分析例1、把方程2x -y -5=0化成含y 的代数式表示x 的形式:x = , 化成含x 的代数式表示y 的形式:y = . 练习:用含一个未知数的代数式表示另一未知数 (1)5x-3y=x+2y (2)2(3y-3)=6x+4 (3)1223=+y x (4)24741=+y x例2、用代入消元法解下列方程 (1)⎩⎨⎧-=-=+54032y x y x (2)⎩⎨⎧=-=+15234932y x y x(3)23328x y x y -=-⎧⎨+=⎩(4)25342x y x y -=⎧⎨+=⎩例3、用加减消元法解下列方程 (1)⎩⎨⎧-=-=+54032y x y x (2)⎩⎨⎧=-=+15234932y x y x(3)23328x y x y -=-⎧⎨+=⎩ (4)25342x y x y -=⎧⎨+=⎩(二)二元一次方程组的特殊解法 1、整体代入法例4、解方程组y x x y +=+-=⎧⎨⎪⎩⎪14232313、设参代入法例6、解方程组⎩⎨⎧==-3:4:23y x y x2、先消常数法 例5、解方程组⎩⎨⎧=-=+1523334y x y x4、换元法例7、解方程组()()x y x yx y x y +--=+=-⎧⎨⎪⎩⎪236345、简化系数法 例8、解方程组⎩⎨⎧=-=-443334y x y x练习:解下列方程(1)⎩⎨⎧-=-+=-85)1(21)2(3y x x y (2)⎪⎩⎪⎨⎧=+=184332y x y x(3)⎩⎨⎧=--=--023256017154y x y x (4)⎪⎩⎪⎨⎧=-=+234321332y x y x(5)⎪⎩⎪⎨⎧=-+=+1323241y x x y (6)⎩⎨⎧=+=+24121232432321y x y x考点三 二元一次方程组解的应用 例1、若,则= ,= 。
第4讲 二元一次方程(组)的概念与解法(学生版)
第4讲 二元一次方程(组)的概念与解法一、知识回顾:一、二元一次方程组的相关概念 1. 二元一次方程的定义定义:方程中含有两个未知数(一般用x 和y ),并且未知数的次数都是1,像这样的方程叫做二元一次方程. 2.二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 特别说明:二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为⎩⎨⎧ba==y x 的形式.3. 二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组3452x y x +=⎧⎨=⎩.4. 二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.二、二元一次方程组的解法 1.解二元一次方程组的思想2.解二元一次方程组的基本方法:代入消元法和加减消元法 (1)用代入消元法解二元一次方程组的一般过程:①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成b ax y +=(或b ay x +=)的形式;②将b ax y +=(或b ay x +=)代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程;③解这个一元一次方程,求出x (或y )的值;转化消元一元一次方程二元一次方程组④把x (或y )的值代入b ax y +=(或b ay x +=)中,求y (或x )的值; ⑤用“{”联立两个未知数的值,就是方程组的解. (2)用加减消元法解二元一次方程组的一般过程:①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式;②根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程; ③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值; ⑤将两个未知数的值用“{”联立在一起即可.二、经典例题:知识点一、二元一次方程(组)的概念【例1】若(a −2)x |a−1|−3y =5是关于x 、y 的二元一次方程,则a 的值为( ) A .0 B .2 C .0或2 D .1或2 【例2】下列各组数中,是二元一次方程3x −5y =8的解的是( )A .{x =1y =1B .{x =−1y =1C .{x =−1y =−1D .{x =1y =−1【例3】若{x =−1y =2是关于x ,y 的二元一次方程3x+ay=5的一个解,则a 的值为 【例4】如果{x =1,y =2是关于x ,y 的方程mx +2y =6的解,那么m 的值为() A .−2 B .−1 C .1 D .2【例5】下列方程中:①xy =1 ;②3x +2y =4 ;③2x +3y =0 ;④x 4+y3=7 ,二元一次方程有( ) A .1个 B .2个 C .3个 D .4个 【例6】下列方程组是二元一次方程组的是( )A .{mn =2m +n =3 B .{5m −2n =01m+n =3C .{m +n =03m +2a =16D .{m =8m 3−n 2=1知识点二、二元一次方程组的解法【例7】用代入消元法解方程组 {y =x −13x −2y =5正确的化简结果是( ) A .3x −2x −2=5 B .3x −2x +2=5 C .3x −2x −1=5 D .3x −2x +1=5【例8】用代入法解方程组使得代入后化简比较容易的变形是( )A .由(1),得x=2−4y 3B .由(1),得y=2−3x 4C .由(2),得x=y+52D .由(2),得y=2x ﹣5【例9】解方程组。
二元一次方程组及其解法
二元一次方程组及其解法
二元一次方程组是由两个含有两个未知数的等式组成的方程组,通常的一般式表示为:
ax + by = c
dx + ey = f
其中,a、b、c、d、e、f 都是已知数,x、y 都是未知数。
解法有以下几种:
1. 消元法:通过变换方程式将一个未知数消去,再代入另一个方程求解。
2. 代入法:选择其中一个方程,将其中一个未知数表示成另一个未知数的函数,代入另一个方程中求解。
3. 公式法:利用二元一次方程组的公式解法求解。
4. 矩阵法:用矩阵运算的方法求解方程组。
以上四种方法都可以求得二元一次方程组的解,一般解的形式为一个有序二元组 (x, y)。
第8讲 二元一次方程(组)的概念和解法
第8讲二元一次方程(组)的概念和解法【学习目标】1.二元一方程(组)的概念2.二元一次方程组的基本解法3.复杂的多元一次方程组【模块一】二元一次方程组的概念在本模块我们的学习目标是:1、掌握二元一次方程概念2、掌握二元一次方程组概念3、理解方程组的解(公共解)一、二元一次方程1、定义:含有两个未知数,并且含未知数的项的最高次数是1的整式方程叫二元一次方程. 【例】x+2y=5,2x=3y,3x=y-2对于二元一次方程的定义可以用“三个条件一个前提”来理解:①含有两个未知数一一“二元②含有未知数的项的最高次数为1一“一次③未知数的系数不能为0前提:方程两边的代数式都是整式一一整式方程2、一般形式:二元一次方程的一般形式:ax+by+c=0(a=0,b=0)【课堂建议】类比一元一次方程:标准式:ax+b=0(a≠0)3、判定:先看前提,再化一般形式易错总结(1)二元:x+y+z=1,x-2=1(2)一次:x2-x+y=1,xy+x+y=1【袁华燕录入】(3) 系数不为0:x+y-1=x-y+1,x2-x+y-1=x2+x-y+1(4) 整式方程:1x+y=1,1x+x+y=1x【易错】x+y-1=x-y+1,x2-x+y-1=x2+x-y+1,1x+x+y=1x【例1】下列方程中,是二元一次方程的有哪些?①x+3=7;②a+b=0;③3a+4t=9;④xy-1=0;⑤1x-y=0;⑥x+y+z=4;⑦2x2+x+1=2x2+y+5;⑧x2+y-6=2x.【练1】方程2x-3y=5,xy=3,x+3y-1,3x-y+2z=0,x2+y=6中是二元一次方程的有()A. 1个B. 2个C. 3个D. 4个【例2】⑴己知方程x n-1+2y|m-1|=m关于x,y的二元—次方程,求m、n的值.⑵己知方程(a-2)x|a|-1-(b+5)y|b|-4=3是关于x、少的一元一次方程,求a、b的值.【练2】(1)若方程2x m-1+y n+m=12是二元一次方程.则mn=_____(2)若己知方程(k2-1)x2+(k+1)x+(k-7)y=k+2,当k=_______时,方程为一元一次方程,当k=_____时,方程为二元一次方程.4、二元一次方程的解:二元一次方程的解:使二元一次方程左、右两边的值相等的两个未知数的值,叫做二元一次方程的解.任何一个二元一次方程都有无数个解.【例3】⑴己知21xy=⎧⎨=⎩是方程3x+ay=5的解,则a的值为()A.-1B.1C.2D.3⑵判断下列数值是否是二元一次方程3t+2s=24的解.①29ts=⎧⎨=⎩②21ts=⎧⎨=⎩③89ts=⎧⎨=⎩④46ts=⎧⎨=⎩【练3】⑴若23x ky k=⎧⎨=-⎩是二元—次方程2x-y=14的解,则k的值是()A.2B.-2C.3D.-3⑵已知12xy=⎧⎨=⎩与3xy m=⎧⎨=⎩都是方程x+y-=n的解,求m与n的值.二.二元_次方程组:1、二元一次方程组.由几个一次方程组成并且含有两个未知数的方程组叫二元—次力程组.(1)二元:总共有两个未知数如:+12 22 xx=⎧⎨=⎩,21x y yx+=⎧⎨=⎩,12x yx y+=⎧⎨+=⎩,121x yx+=⎧⎨=⎩,12xy=⎧⎨=⎩,12x y zx y z+-=⎧⎨-+=⎩,11x yy z+=⎧⎨+=⎩(2) —次:每个都是一次方程如:22x yy x⎧=⎪⎨=⎪⎩,2222+x x xy y y⎧=⎪⎨+=⎪⎩,11x yxy+=⎧⎨=⎩,1111xy⎧=⎪⎪⎨⎪=⎪⎩(3)方程组:方程个数大于等于2如:x+y=l,112 xyz=⎧⎪=⎨⎪=⎩① 二元—次方程组一定是由两个或多个二元一次方程组成(错)② 两个或多个二元一次方程一定可以组成二元一次方程组(错)【例4】下列方程组中,属于二元一次方程组的是()A.527x yxy+=⎧⎨=⎩B.121340xyx y⎧+=⎪⎨⎪-=⎩C.354433x yx y=⎧⎪⎨+=⎪⎩D.28312x zx y-=⎧⎨+=⎩【练4】下列方程组中,是二元一次方程组的是()A.4119x yx y+=⎧⎪⎨+=⎪⎩B.57x yy z+=⎧⎨+=⎩C.1x y xyx y-=⎧⎨-=⎩D.1326xx y=⎧⎨-=⎩2、二元一次方程组的解:使二元一次方程组的两个方程左右两边都相等的两个未知数的值(即两个方程的公共解),叫做二元一次方程组的解,同时它也必须是-个数对.而不能是一个数.【例5】⑴己知43xy=-⎧⎨=⎩是方程组12ax yx by+=-⎧⎨-=⎩的解,则(a+b)b=_______,(2)己知21xy=⎧⎨=⎩是二元一次方程组12ax bybx ay+=⎧⎨+=⎩的解,则a-b的值为( )A.1B.-1C.2D.3【练5】(1)下列四个解中是方程组16223111x yx y⎧-=⎪⎨⎪+=-⎩的解是()A.810xy=⎧⎨=-⎩B.101xy=⎧⎨=-⎩C.6xy=⎧⎨=-⎩D.112xy⎧=-⎪⎨⎪=⎩⑵关于x,y的二元一次方程组331ax yx by-=⎧⎨-=-⎩解中的两个未知数的值互为相反数,其中x=l,求a,b的值.模块二二元一次方程组的基本解法一.会解基本二元一次方程组(体会消元过程)2、熟练应用代入与加减的方法,养成严格书写的习惯二元一次方程方程组最根本的思路就是将二元方程消元变成一元方程,代入消元法和加减消元法是最常用的方法.1.代入消元:why:等量代换when:(未知数系数为1时优先)how:用一个字母表示另一个字母直接代入(1)12xx y=⎧⎨+=⎩(2)2x yx y=⎧⎨+=⎩⑶23x yx y=⎧⎨+=⎩⑷13x yx y+=⎧⎨+=⎩变形代入(5)13x yx y-=⎧⎨+=⎩(6)2127x yx y-=⎧⎨+=⎩(7)2+38321x yx y=⎧⎨-=-⎩1.代入消元法代入消元法是解二元一次方程组的基本方法之一.“消元”体现了数学研究中转化的重要思想, 代入法不仅在解二元一次方程组中适用,也是今后解其他方程(组)经常用到的方法. 用代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数,例如y,用另一个未知数如x的代数式表示出来,即写成y=ax+b的形式:②把y=ax+b代入另一个方程中,消去y,得到一个关于x的一元一次方程:③解这个一元一次方程,求出x的值:④回代求解:把求得的x的值代入y=ax+b中求出y的值从而得出方程组的解.⑤把这个方程组的解写成x ay b=⎧⎨=⎩的形式.【例】解方程组2 239 x yx y-=⎧⎨+=⎩②①解:由①得y=x—2 ③把③代入②,得2x+3(x-2)=9 解得x=3把x=3代入③得,y=l所以方程组的解是31 xy=⎧⎨=⎩2、加减消元:Why:等式性质When:系数绝对值相同优先How:系数统一后相加减直接加减;⑴31x yx y+=⎧⎨-=⎩⑵521327x yx y-=⎧⎨+=⎩⑶24234x yx y+=⎧⎨-=-⎩系数统一(4)23124x yx y-=⎧⎨+=⎩(5)237324x yx y+=⎧⎨-=⎩2.加减消元法加减法是消元法的一种,也是解二元一次方程组的基本方法之一,也是今后解其他方程(组)经常用到的方法用加减法解二元一次方程组的-般步骤:①变换系数:把一个方程或者两个方程的两边都乘以适当的数.使两个方程里的某―个未知数互为相反数或相等.②加减消元:把两个方程的两边分别相加或相减.消去一个未知教,得到一个一个―次方程:③解这个一元一次方程,求得一个未知数的值:④回代:将求出的未知数的值代入原方程组中,求出另一个未知数的值:⑤把这个方程组的解写成x ay b=⎧⎨=⎩的形式例:解方程组32 12 3 x yx y-=⎧⎨+=⎩②①解:①×2 得4x+2y=6 ③①+③得7x=7解得x=l把x=l代入①得y=l所以方程组的解是11 xy=⎧⎨=⎩代入消元与加减消元的对比:代入消元方法的选择:①运用代入法时,将一个方程变形后,必须代入另一个方程,否则就会得出“0=0” 的形式.求不出未知数的值.②当方程组中有一个方程的一个未知数的系数是1或-1时,用代入法较简便.加减消元方法的选择:① 一般选择系数绝对值最小的未知数消元;② 当某一未知数的系数互为相反数时,用加法消元;当某一未知数的系数相等时,用减法消元;③某一未知数系数成倍数关系时,直接使其系数互为相反数或相等,再用加减消元求解.④当未知数的系数都不相同时,找出某一个未知数的系数的最小公倍数,同时方程进行变形,转化为系数的绝对值相同,再用加减消元求解.【例6】⑴方程组233x yx y-=⎧⎨+=⎩的解是( )A.12xy=⎧⎨=⎩B.21xy=⎧⎨=⎩C.11xy=⎧⎨=⎩D.23xy=⎧⎨=⎩⑵方程组535213x yx y+=⎧⎨-=⎩的解是()A.12xy=⎧⎨=⎩B.45xy=-⎧⎨=⎩C.53xy=⎧⎨=⎩D.45xy=⎧⎨=-⎩⑶用代入消元法解方程组:3 3814 x yx y-=⎧⎨-=⎩⑷用加减消元法解方程组:49 351 x yx y+=-=⑸二元一次方程ax+by=6有两组解是22xy=⎧⎨=-⎩与18xy=-⎧⎨=-⎩,求a,b的值.【练6】⑴二元―次方程组2x yx y+=⎧⎨-=⎩的解是()A.2xy=⎧⎨=⎩B.2xy=⎧⎨=⎩C.11xy=⎧⎨=⎩D.11xy=-⎧⎨=-⎩⑵方程组25342x yx y-=⎧⎨+=⎩的解是____________.⑶己知方程组2421mx y nx ny m+=⎧⎨-=-⎩的解是11xy=⎧⎨=-⎩,那么m,n的值为()A.11mn=⎧⎨=-⎩B.21mn=⎧⎨=⎩C.32mn=⎧⎨=⎩D.31mn=⎧⎨=⎩三元:【例7】0 423 9328 a b ca b ca b c++=⎧⎪++=⎨⎪-+=⎩【练7】解方程组0.5320 322 x y zx y zx y z+-=⎧⎪-+=⎨⎪+-=⎩模块三二元一次方程组的基本解法本模块中,我们主要学习复杂二元一次方程组化简,同时,对换元,轮换,连等式等量代信思想的建议认识理解.复杂方程组化简为基本二元一次方程组消元求解【例8】解下列方程组:⑴3(1)4(4)5(1)3(5)y xx y-=-⎧⎨-=+⎩⑵134723m nm n⎧-=-⎪⎪⎨⎪+=⎪⎩【练8】解方程组:⑴2344143m n n mnm+-⎧-=⎪⎪⎨⎪+=⎪⎩⑵3221245323145x yx y--⎧+=⎪⎪⎨++⎪-=⎪⎩2、轮换对称:二元对称:【例9】解方程组:⑴231763172357x yx y+=⎧⎨+=⎩⑵201120134023201320114025x yx y+=⎧⎨+=⎩【曾伟录入】【练9】(1)解关于x、y的方程组301120722 150271571x yx y+=⎧⎨+=⎩(2)解关于x、y的方程组331512 173588x yx y+=⎧⎨+=⎩三元轮换【例10】解方程组(1)222426x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩;(2)1131x y zy z xz x y+-=⎧⎪+-=⎨⎪+-=⎩.【练10】(1)解方程组12323434545151212345x x xx x xx x xx x xx x x++=⎧⎪++=⎪⎪++=⎨⎪++=⎪⎪++=⎩;(2)已知1467245735674757671234567394941131499x x x x x x x x x x x x x x x x x x x x x x x x x +++=⎧⎪+++=⎪⎪+++=⎪+=⎨⎪+=⎪⎪+=⎪++++++=⎩,求7x .3、换元:【例11】(1)解方程组23237432323832x y x y x y x y +-⎧+=⎪⎪⎨+-⎪+=⎪⎩【练11】(第七届“华罗庚杯”邀请赛试题) 解方程组1211631102221x y x y ⎧+=⎪--⎪⎨⎪+=⎪--⎩【例12】解方程组(1)1513pq p q pq p q ⎧=⎪+⎪⎨⎪=⎪-⎩;(2)1321312312mn m n mn m n ⎧=⎪⎪+⎨⎪=⎪+⎩.【练12】(1)已知1,2,3xy yz zx x y y z z x===+++,求x y z ++的值.(2)解关于x 、y 的方程组1111(0,)x y abx a b x y aby ab ab b aa b ⎧+=+⎪⎪⎨⎪+=+≠±≠⎪⎩.4、连等比例【例13】解方程组:(1):::1:2:3:49732200x y z u x y z u =⎧⎨+++=⎩;(2)解方程组:2345238x y z x y z ⎧==⎪⎨⎪+-=⎩【练13】已知a b c k b c a c a b===+++,求k 的值.第8讲[尖端课后作业二元一次方程(的)念和解法【习1】下列各方程中,是二元一次方程的是( )A. 312x xy +=B. x y =C. 2115x y =+ D. 253x y x y -=+ 【习2】下列各方程是二元一次方程的是( )A. 23x y z +=B. 45y x +=C. 2102x y +=D. 1(8)2y x =+【习3】若关于x 、y 的方程2(3)0a a x y --+=是二元一次方程,那么a 的取值为( )A. 3a =-B. 3a =C. 3a >D. 3a <【习4】若方程22(4)(23)(2)0k x k x k y -+-+-=为二元一次方程,则k 的值为( )A. 2B. -2C. 2或-2D. 以上均不对【习5】若方程2(3)25m m x y -+-=为关于x 、y 的二元一次方程,则2012(2)m -= .【习6】下列方程组中,是二元一次方程组的是( )A. 4119x y x y +=⎧⎪⎨+=⎪⎩B. 57x y y z +=⎧⎨+=⎩C. 1x y xy x y -=⎧⎨-=⎩D.1326x x y =⎧⎨-=⎩【习7】下列不是二元一次方程组的是( )A. 23x y y z +=⎧⎨+=⎩B. 2334m n n m =+⎧⎨-=⎩ C. 21x y =⎧⎨=-⎩D. 4252()12()3a a b a b +=⎧⎨-+=+-⎩ 【习8】解下列二元一次方程组:(1)527341x y x y -=⎧⎨+=-⎩ ;(2)327238x y x y +=⎧⎨+=⎩ ;(3)34165633x y x y +=⎧⎨-=⎩【习9】若方程组23133530.9a b a b -=⎧⎨+=⎩的解是8.31.2a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩的解是( ) A. 6.32.2x y =⎧⎨=⎩ B. 8.31.2x y =⎧⎨=⎩ C. 10.32.2x y =⎧⎨=⎩ D. 10.30.2x y =⎧⎨=⎩【习10】若实数x 、y 满足2142y x ⎛⎫= ⎪⎝⎭,求关于x 、y 的方程组12x y a x y a +=-⎧⎨-=-⎩的解.【习11】已知211(3)02a b -++=,解方程组315ax y x by -=⎧⎨+=⎩. 【习12】解方程组2(1)5(2)1101217102x y x y --++=⎧⎪-+⎨-=⎪⎩【习13】解方程组3()4()4126x y x y x y x y +--=⎧⎪+-⎨+=⎪⎩ 【习14】解方程组2320235297x y x y y --=⎧⎪-+⎨+=⎪⎩【习15】解方程组9()18523()2032m n m m n ⎧+=⎪⎪⎨⎪++=⎪⎩【习16】解方程组1232(1)11x y x y +⎧=⎪⎨⎪+-=⎩【习17】解方程组37043225x y y z x z -+=⎧⎪+=⎨⎪-=-⎩【习18】解方程组23162125x y z x y z x y z ++=⎧⎪-+=-⎨⎪+-=⎩【习19】解方程组56812412345x y z x y z x y z +-=⎧⎪+-=-⎨⎪+-=⎩【玉勇录入】【习20】已知方程组361463102463361102x y x y +=-⎧⎨+=⎩的解是x p y q =⎧⎨=⎩,方程组345113435113991332x y z x y z x y z ++=⎧⎪++=⎨⎪+-=⎩的解是x m y n z t =⎧⎪=⎨⎪=⎩,则(p -q )(m -n +t )等于 .【习21】(武汉市“CASIO ”竞赛题)已知正数a ,b ,c ,d ,e ,f 满足becdf a =4,acdef b =9,abdef c =16,abcef d =14,abcdf e =19, abcde f =116,求(a +c +e )-(b +d +f )的值.【习22】(第二十三届“希望杯”全国数学邀请赛初二第1试)已知实数x 1,x 2,x 3,x 4满足条件1231234234134124x x x a x x x a x x x a x x x a ++=⎧⎪++=⎪⎨++=⎪⎪++=⎩,其中a 1<a 2<a 3<a 4,则x 1,x 2,x 3,x 4的大小关系是( ) A . x 1<x 2<x 3<x 4 B . x 2<x 3<x 4<x 1 C . x 3<x 2<x 1<x 4 D . x 4<x 3<x 2<x 1【习23】若x1,x2,x3,x4,x5满足方程组12323434545151212345x x xx x xx x xx x xx x x-+=⎧⎪-+=⎪⎪-+=⎨⎪-+=⎪⎪-+=⎩①②③④⑤,求x2x3x4的值.【习24】解方程组::3:2:5:466 x yy zx y z=⎧⎪=⎨⎪++=⎩【张来录入】。
二元一次方程组的概念和解法要点精析
二元一次方程组的概念和解法要点精析二元一次方程组是初中代数的重要内容之一,它的应用很广泛.一方面在进一步学习高中数学如平面解析几何时要用它们;另一方面在国防、科技、工、农、商业和生活的实际问题中也要用到它们.同学们必须把它学好,在学习时要注意以下几个问题:一、正确理解四个概念1. 二元一次方程 含有两个未知数,并且未知项的次数是1的方程叫做二元一次方程.如x + y =6.必须注意:同时具备下列三个条件的方程才能叫做二元一次方程.(1)二元一次方程必须是整式方程.即等号两边的代数式必须是整式(单项式,多项式).如x+ 1y =1, 14x+ 2y = 6都不是二元一次方程,而是分式方程(分母中含有未知数). (2)二元一次方程中必须含有两个未知数.如2x+3=0含有一个未知数,x+4y+z=5含有三个未知数,因而,它们都不是二元一次方程.(3)二元一次方程中的“一次”指的是含未知数的项的次数,而不是指某个未知数的次数.即未知项的次数必须是“一次”.如xy+3=0就不是二元一次方程,尽管x 、y 的次数都是一次,但单项式xy 的次数为二,所以,它不是二元一次方程,而是二元二次方程. 例1.下列方程中,二元一次方程是( ).(A)xy=1 (B)y=3x - 1 (C)x+1y=2 (D)x 2+y -3=0 (上海市中考题)解析:本题可利用二元一次方程的概念进行检验.显然,方程xy=1,x 2+y -3=0都不满足“未知项的次数是1的条件”,而方程 x +1y =2的左边 x +1y 不是整式.故只有方程y=3x -1符合二元一次方程的概念.选(B).例2.若220a b a b x y -+--=是二元一次方程,那么a 、b 的值分别是( ).(A)1,0 (B)0,-1 (C) (D)2,-3(陕西省中考题)解析:根据二元一次方程的意义,即含未知数的项的次数是1,得12 1.a b a b -=⎧⎨+-=⎩, 即 13.a b a b -=⎧⎨+=⎩, 解得21.a b =⎧⎨=⎩,故选(C). 2. 二元一次方程的解 能使二元一次方程左右两边的值相等的未知数的值,叫做二元一次方程的解.如11.x y =⎧⎨=⎩, 能使方程x+y=2的左右两边的值相等,所以11.x y =⎧⎨=⎩,就叫做方程x+y=2的一个解.但是,能使该方程的左右两边的值相等的未知数的值有无数对,如20.xy=⎧⎨=⎩,31.xy=⎧⎨=-⎩,……所以,任何一个二元一次方程都有无数个解.例3.二元一次方程x -2y=1有______个解.(上海市中考题)解:无数.例4.已知12.xy=⎧⎨=⎩,是方程ax-3y=5的一个解,则a=___.(苏州市中考题)解析:根据二元一次方程的解的意义,将12.xy=⎧⎨=⎩,代入方程,解关于a的一元一次方程.得a=11.3. 二元一次方程组两个含有相同未知数的二元一次方程合在一起,就组成了一个二元一次方程组.二元一次方程组必须具备以下三个条件:(1)有两个或两个以上的整式方程组成,常用“{”把这些方程联合在一起.(2)方程组中含有两个不同未知数,且方程组中,同一未知数代表同一数量.(3)方程组中每个方程经过整理后,都是一次方程.但要注意:二元一次方程组里一共含有两个未知数,而不是一定要每个方程都含有两个未知数.例如,211.x yy+=⎧⎨=⎩,也是二元一次方程组.同样,方程组21062.x yx yy x+=⎧⎪+=⎨⎪-=⎩,,,虽然是由三个二元一次方程组成,但整个方程组中只有两个未知数,所以它仍然是二元一次方程组,而方程组3050.x zx y+=⎧⎨+=⎩,中,虽然,每个方程中都只含有两个未知数,但整个方程组中却有三个未知数,因此它不是二元一次方程组,而是三元一次方程组.4. 二元一次方程组的解使二元一次方程组的两个方程的左、右两边的值都相等的两个未知数的值,即方程组中各个方程的公共解,叫做二元一次方程组的解.如12.xy=-⎧⎨=⎩,是方程组31.y xx y-=⎧⎨+=⎩,的一个解(其实是一对数),但不能叫两个解.要注意:解方程组时,原方程组中每个方程都至少要用到一次.方程组的解满足方程组中的每个方程,反之,方程组中任何一个方程的解不一定是方程组的解.例5.已知12xy=⎧⎨=⎩是方程组120.ax yx by+=-⎧⎨-=⎩,的解,则a+b=( ).(A)2 (B)-2 (C)4 (D) - 4(浙江省绍兴市中考题)解析:根据二元一次方程组的解的概念.12xy=⎧⎨=⎩满足方程组120.ax yx by+=-⎧⎨-=⎩,于是代入得21,220.ab+=-⎧⎨-=⎩解得3,1ab=-⎧⎨=⎩所以a+b=-3+1=-2.故选(B).二、注意领会一个思想有一位著名数学家曾经指出:“解题就是把习题归结为已经解过的问题”.由此可知,解数学题时,要自觉地把题目变型转化,归结为“已经解过的问题”来处理,这种关于解题的思想称为“化归”,它体现了“在一定条件下,不同的事物可以互相转化”的唯物辨证观点,是解数学题的一盏指路名灯.在本章内容中,蕴涵的一个重要化归思想就是“消元”.即把“三元”通过消去一个未知数转化为“二元”,“二元”再通过消去一个未知数转化为“一元”.转化为一元一次方程就会解了,化“未知”为“已知”,化“复杂”为“简单”,充满了辨证思维,希望同学们好好领会.三、熟练掌握两种方法代入消元法和加减消元法是二元一次方程组的常规解法.1.代入消元法的主要步骤;(1)求表达式从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数,例如y,用含另一个未知数(x)的代数式表示出来,写成y=ax+b的形式;(2)代入消元将表达式y=ax+b代入另一个方程中,消去y,得到一个关于x一元一次方程;(3)解方程解这个一元一次方程,求出x的值;(4)回代得解把求得的x的值代入y=ax+b中,求出y的值,从而得到方程组的解.2.加减消元法的主要步骤:(1)变换系数方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;(2)加减消元把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解方程解这个一元一次方程;(4)回代得解将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.在解方程组时,应根据题中的系数构成情况灵活选用两种方法,一般说来:①当方程组中有一个方程的某一个未知数的系数绝对值是1;②当方程组中有一个方程的常数项是0,此时用代入法较简捷.又,①当方程组中两个方程的某一个未知数的系数绝对值相等;②当方程组中两个方程的某一个未知数的系数成整数倍,此时用加减法较简捷.。
(完整版)二元一次方程基本概念及基本解法讲解
二元一次方程一、二元一次方程的概念:含有两个未知数,并且含有未知数的项的次数都是 1,像这样的方程叫做二元一次方程.注意:二元一次方程满足的三个条件:(1)在方程中“元”是指未知数, “二元”就是指方程中有且只有两个未知数 .(2) “未知数的次数为1”是指含有未知数的项(单项式)的次数是 1.(3)二元一次方程的左边和右边都必须是整式^练习1:已知下列方程,其中是二元一次方程的有 .(1)2x-5=y; (2)x-1 = 4; (3)xy = 3;(4)x+y = 6; (5)2x-4y=7;一 1- 2 1 _ 2__ x4y -(6) x - 0; (7)5x — 1; (8)x - y 3; (9) x 8y 0; (10) ---------------- 6.2 y 2 2【变式1 ]下列方程中,属于二元一次方程的有()2A. xy 7 1B. 2x 1 3y 1C. 4x 5y 3x 5yD. 3x — 1 y二、二元一次方程的解:一般地,使二元一次方程两边的值相等的两个未知数的值, 叫做二元一次方程的一组解.注意:如:x y 10的解可以是练习2:二元一次方程 x-2y= 1有无数多个解,下列四组值中不是该方程解的是x 1 x 1C. D.y 0 y 1.............................. x 2【变式2】若方程ax 2y 4的一个解是 ,则a= .y 1三、二元一次方程组把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组 注意:组成方程组的两个方程不必同时含有两个未知数,例如3x 1 0也是二元一次方x 2y 5(1)二元一次方程的解都是一对数值,而不是一个数值, 般用大括号联立起来, 如:x 2, y 5.(2) 一般情况下,二元一次方程有无数个解, 即有无数多对数适合这个二元一次方程.x 1 B.y 1程组.练习3:下列方程组中,是二元一次方程组的是( )四、二元一次方程组的解一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解^注意:(1)二元一次方程组的解是一组数对, 它必须同时满足方程组中的每一个方程, 一般x a , 写成的形式.y b〃, ,、…,…一“ ,一,/ , 2x y 5T (2)一般地,二元一次方程组的解只有一个, 但也有特殊情况,如方程组无2x y 6一 一、… x y 1 ,…,解,而方程组 "的解有无数个.2x 2y 2【巩固练习】 一、选择题1 .下列方程中,属于二元一次方程的是(A. xy-7=1B. 2x-1 = 3y+12 .下列方程组是二元一次方程组的是()x 3 _3 .以为解建立一个二兀一次万程,不正确的是()y 11 x 25 A. 3x- 4y= 5 B. —xy 0 C. x +2y = - 3 D.— — y —3 2 362x y 3 34 .方程组的解是()x y 3C.2x 2 3y 7 5(x 9) 1 y B.3- y 2 8 x 2x 3 7yx 13z 5(x y) 2x 3z 7yD.5(x y) (x y) 8 2x 3y 1) 7C. 4x-5y=3x-5y0 2D. 3x 一y x y 5A.z x 3x y xy 4 C.3x y 41-x 2y 13D.2-x - y 2(x 3 22y)x 1 x 2A. B.y 2 y 1C.y 1D.「 ,、… 6x 5y 11, ①……5 .已知二元一次方程组 7,下列说法正确的是()3y 2x 7,②A.适合②的x, y 的值 是方程组的解①②B.适合①的x, y 的值 是方程组的解C.同时适合①和②的x, y 的值 不一定是方程组的解D.同时适合①和②的 x, y 的值 是方程组的解 6 .关于m, n 的两个方程2m n 3与3m 2n二、填空题7 .由x+2y =4,得到用y 表示x 的式子为x= x y 4 ,, …8 .在二元一次方程组中,有x 6 ,则y _______ , m ______2x m 3y9 .若 |x 2 (3y 2x)2 0 ,则二的值是次方程"工+如二一2的一个解,则2a-b-6的值是11 .已知以一 1|+[2>+1),=0 ,且2工一仙=4 ,则太=一一 .一 x 2 ........... .12 .右方程ax-2y = 4的一个解是 ,则a 的值是 ___________ .y 1三、解答题x 213,已知是一个二元一次方程的解,试写出一个符合条件的二元一次方程组.y 314.根据下列语句,分别设适当的未知数,列出二元一次方程或方程组.(1)甲数的1比乙数的2倍少7;33 .、1的公共解是(A.m 0B .n 3m 1 C.n 1m 0 1 D.n -21m - 2 n 2;得到用x 表示y 的式子为 y=x = 210.若"是二兀〔A —(2)摩托车的时速是货车的一倍,它们的速度之和是200km/h;2(3)某种时装的价格是某种皮装价格的 1.4倍,5件皮装比3件时装贵700元解二元一次方程方法1.代入消元法解二元一次方程组代入消元法解二元一次方程组的步骤有四步:(1)变形:将方程组中系数较简单的方程变形,将系数较简单的未知数用另一个未知 数表示出来;(2)代入:将变形的方程代入另一个方程,这样便消去一元,求出一个未知数的值; (3)代入:将求得的未知数的值代入变形后的方程(这一点要特别注意),求出另一个未知数的值;(4)写出方程组的解.一般地,当方程组中某个方程的某未知数的系数绝对值是 1或常数项为0时,用代入法简便.3x 2y 7, ① x 2y 5. ② x 5 2y.③ 3(5 2y) 2y 7,15 6y 2y 7, 8y 8, y 1.把y 1代入③,得 x 3.点评:此题方程②的系数较简单,且方程②中未知数x 的系数是1,因此考虑将方程②变形,并用含y 的代数式表示x.用代入消元法解二元一次方程组, 需先观察方程组的系数特点,判断消去哪个未知数较为简单 .代入消元时,要注意所代代数式的整体性,必要时可添加括号,以避免符号错误 .x 3y 4, ①变式2:用代入法解方程组:1 1-x -y 0.② 4 2方法2.加减消元法解二元一次方程组 加减消元法解二元一次方程组的步骤有四步:(1)变形:使方程组中某未知数的绝对值相等;(2)加减:若某未知数的系数相等,两方程相减;若某未知数的系数互为相反数,两 方程相加;这样便消去一元,求出一个未知数的值;(3)代入:将求得的未知数的值代入系数较简单的方程,求出另一未知数的值; (4)写出方程组的解.进行加减消元时,要注意做到以下几点:(1)当方程组比较复杂时,应先整理变形,把方程组整理成形如:a1x b 1yc 1’的形a 2xb 2yc 2式,若此时两未知数的绝对值都不相等, 则先观察哪个未知数的系数较易化为绝对值 (系数的最小公倍数的绝对值)相等的形式,且计算简单,然后将其化为系数的绝对值相等的形式例2解方程组 解析:由②,得 将③代入①,得所以原方程组的解是x 3,y 1.(2)两个未知数的值都可采用加减消元法的方法求出^(3)当方程组中的某一个未知数的系数的绝对值相等或成整数倍关系时,用加减法简 便.③-④,得 29m=-29 , m=-1. 将 m=-1 代入①,得-5+2 n=1, n=3.③ +④,得 29n=87, n=3.把 n=3 代入①,得 5m+6=1 , m=-1. 点评:此题方程组中的两方程, 两未知数的系数分别既不相等也不互为相反数,即绝对值不相等.因此先将两方程分别变形, 使某个未知数的系数的绝对值相等 .比较题中的两种方法, 先消去系数比较简单的未知数 n,解法较为简捷.另外用加减消元法解二元一次方程组,需 注意两方程相减时,符号的正确处理 . 练习f9x+2y=20 l3x+4y=10例3解方程组:5m 2n 1, ①7m 3n 16.②解析:法①②X2,得15m 6n 3, ③14m 6n 32.④所以原方程组的解为m 1, n3.法二:①X 7,②X 5,得35m 14n 35m 15n7, 80.④所以原方程组的解为m 1, n 3.(1)j 2戈-3产- 5[3x+2y=12"2y=3⑸" x 一第F ;J- -2=10附加题C3 (s- t) - 2 ts+t) =10 13 fs-t) +2 (s+t) =26x 2 y 1--- --- - 2(8) 3 2x 2 1 y d1。
二元一次方程组解法详解
二元一次方程组解法详解一、二元一次方程组解法总结1、二元一次方程组解法的基本思想二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为一元一次方程,就可以先解出一个未知数,然后再设法求另一个未知数,这种将未知数的个数由多化少,逐一简化的思想方法,叫做消元思想.即二元一次方程组形如:ax=b(a,b为已知数)的方程.2、代入消元法由方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程的解,这种方法叫做代入消元法,简称代入法.3、用代入消元法解二元一次方程组的步骤(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的代数式表示出来.(2)把(1)中所得的方程代入另一个方程,消去一个未知数.(3)解所得到的一元一次方程,求得一个未知数的值.(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.4、加减消元法两个二元一次方程中同一个未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.5、加减消元法解二元一次方程组的一般步骤(1)把一个方程或者两个方程的两边乘以适当的数,使方程组的两个方程中一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)把求得的未知数的值代入到原方程组中的系数比较简单的一个方程中,求出另一个未知数的值;(5)把求出的未知数的值写成的形式.6、二元一次方程组解的情况若二元一次方程组(a1,a2,b1,b2,c1,c2均为不等于0的已知数),则(1)当时,这个方程组只有唯一解;(2)当时,这个方程组无解;(3)当时,这个方程组有无穷多个解.二、重难点知识归纳二元一次方程组的解的理解,二元一次方程组的解法,运用有关概念解决相关数学问题.三、典型例题讲解例1、(1)下列方程中是二元一次方程的有()①②③④mn+m=7 ⑤x+y=6A.1个B.2个C.3个D.4个(2)在方程(k2-4)x2+(2-k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k的值为()A.2 B.-2 C.±2 D.以上都不对分析:一个方程是否是二元一次方程,必须看它是否满足或使它满足三个条件:①含有两个未知数;②未知数项的次数为1;③整式方程.解答:(1)∵方程①③不是整式方程,∴它们不是二元一次方程.∵mn的次数为2,∴方程④不是二元一次方程.∵方程②⑤满足二元一次方程的三个条件,∴方程②⑤是二元一次方程.故此题应选择B.(2)∵方程(k2-4)x2+(2-k)x+(k+1)y+3k=0是二元一次方程,∴它应满足条件:k2-4=0且2-k≠0且k+1≠0,解得k=±2且k≠2且k≠-1.∴k=-2.例2、在方程3x-ay=0中,如果是它的一个解,那么a的值为_____..由于方程的解必使方程左右两边的值相等,晨旭教育培训中心所以只需将代入方程中,解关于a的一次方程即可.解答:∵是方程3x-ay=0的一个解,∴3×3-a·2=0,例3、甲、乙两人同时解方程组乙因抄错c,解得求a、b、c的值.将正确的解代入方程组中可直接求出c的值,但不能求a、b的值.错误解有什么作用呢?方程组的解应满足每一个方程,因此正确解满足ax+by=2,错误的解同样能满足方程ax+by=2,那么就可以建立a、b的方程组,于是a、b、c的值均可求出.解答:都是方程①的解.晨旭教育培训中心又∵是方程②的解,∴c+3=-2,∴c=-5.故a、b、c的值分别为例4、解下列方程组.(1)先将①化简为3y=4x+5,再代入②即可消去y,从而求出x 的值.(2)先将方程组进行化简,整理为标准的二元一次方程组的形式,再观察选择消去哪个未知数.解:(1)将①化简得:3y=4x+5③把③代入②得:2x-(4x+5)=1解得x=-3将x=-3代入③得:3y=4×(-3)+5∴∴原方程组的解为.(2)原方程组整理为由③×3-④×4,得7b=14,∴b=2.将b=2代入③,得a=2.∴原方程组的解为.例5、已知方程组与方程组有相同的解,求a、b的值.题设的已知条件是两个方程组有相同的解。
消元法解二元一次方程组的概念、步骤与方法
消元法解二元一次方程组的概念、步骤与方法湖南李琳高明生一、概念步骤与方法:1.由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.2.用代入消元法解二元一次方程组的步骤:(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.(2)把(1)中所得的方程代入另一个方程,消去一个未知数.(3)解所得到的一元一次方程,求得一个未知数的值.(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.注意:⑴运用代入法时,将一个方程变形后,必须代入另一个方程,否则就会得出“0=0”的形式,求不出未知数的值.⑵当方程组中有一个方程的一个未知数的系数是1或-1时,用代入法较简便.3.两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
用加减消元法解二元一次方程组的基本思路仍然是“消元”.4.用加减法解二元一次方程组的一般步骤:第一步:在所解的方程组中的两个方程,如果某个未知数的系数互为相反数,•可以把这两个方程的两边分别相加,消去这个未知数;如果未知数的系数相等,•可以直接把两个方程的两边相减,消去这个未知数.第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公倍数),再加减消元.第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,•合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,•常数项在方程的右边的形式,再作如上加减消元的考虑.注意:⑴当两个方程中同一未知数的系数的绝对值相等或成整数倍时,用加减法较简便.⑵如果所给(列)方程组较复杂,不易观察,就先变形(去分母、去括号、移项、合并等),再判断用哪种方法消元好.5.列方程组解简单的实际问题.解实际问题的关键在于理解题意,找出数量之间的相等关系,这里的相等关系应是两个或三个,正确的列出一个(或几个)方程,再组成方程组.6.列二元一次方程组解应用题的一般步骤:⑴设出题中的两个未知数;⑵找出题中的两个等量关系;⑶根据等量关系列出需要的代数式,进而列出两个方程,并组成方程组;⑷解这个方程组,求出未知数的值.⑸检验所得结果的正确性及合理性并写出答案.注意:对于可解的应用题,一般来说,有几个未知数,就应找出几个等量关系,从而列出几个方程.即未知数的个数应与方程组中方程的个数相等.二、化归思想所谓转化思想一般是指将新问题向旧问题转化、复杂问题向简单问题转化、未知问题向已知问题转化等等.在解二元一次方程中主要体现在运用“加减”和“代入”等消元的方法,把新问题“二元”或“三元”通过消去一个未知数转化为旧问题“一元”,化“未知”为“已知”,化“复杂”为“简单”,从而实现问题的解决,它也是解二元一次方程最基本的思想.三、典型例题解析:类型一:基本概念:例1、(2005年盐城大纲)若一个二元一次方程的一个解为21xy=⎧⎨=-⎩,,则这个方程可以是________.(只要写出一个)分析:本题是一道开放型问题,考查方程的概念,满足题意的答案不惟一,解此类题目时,可以先设出系数在代入算出另一边的值。
二元一次方程组知识点归纳及解题技巧
二元一次方程组知识点归纳及解题技巧一、基本定义:二元一次方程定义:一个含有两个未知数,并且未知数的都指数是1的整式方程,叫二元一次方程。
二元一次方程组定义:两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。
二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。
二、解的情况:二元一次方程组的解有三种情况:1.有一组解如方程组x+y=5①6x+13y=89②x=-24/7 y=59/7 为方程组的解2.有无数组解如方程组x+y=6①2x+2y=12②因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。
3.无解如方程组x+y=4①2x+2y=10②,因为方程②化简后为x+y=5 这与方程①相矛盾,所以此类方程组无解。
三、二元一次方程的解法:1、一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。
消元的方法有两种:1、代入消元法2、加减消元法3、教科书中没有的几种解法(一)加减-代入混合使用的方法.例:13x+14y=41 (1)14x+13y=40 (2)解:(2)-(1)得x-y=-1 x=y-1 (3)把(3)代入(1)得13(y-1)+14y=41y=2把y=2代入(3)得x=1所以:x=1,y=2特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元.(二)换元法例3:x:y=1:45x+6y=29令x=t, y=4t 则方程2可写为:5t+6×4t=2929t=29t=1 所以x=1,y=4四、列方程(组)解应用题(一)、其具体步骤是:⑴审题。
理解题意。
弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
⑵设元(未知数)。
①直接未知数②间接未知数(往往二者兼用)。
一般来说,未知数越多,方程越易列,但越难解。
(完整版)二元一次方程组知识点归纳
t at i me an dAl l t h i ng si nt he i rb ei n ga re go od fo rs o m e t h i n二元一次方程组知识点归纳、解题技巧汇总、练习题及答案1、二元一次方程的定义:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。
2、二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。
注意 :二元一次方程组不一定都是由两个二元一次方程合在一起组成的! 也可以由一个或多个二元一次方程单独组成。
3、二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有无数个解。
4、二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
1.有一组解 如方程组x+y=5① 6x+13y=89② x=-24/7 y=59/7 为方程组的解 2.有无数组解 如方程组x+y=6① 2x+2y=12② 因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。
3.无解 如方程组x+y=4① 2x+2y=10②, 因为方程②化简后为 x+y=5 这与方程①相矛盾,所以此类方程组无解。
一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。
消元的方法有两种: 代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
这个方法叫做代入消元法,简称代入法。
例:解方程组x+y=5① 6x+13y=89② 解:由①得 x=5-y ③ t at i me an dAl l t h i ng si nt he i rb ei n ga re go od fo rs o m e t h i n把y=59/7带入③, x=5-59/7 即x=-24/7 ∴x=-24/7 y=59/7 为方程组的解 基本思路:未知数又多变少。
二元一次方程组的概念及解法
二元一次方程组的概念及解法二元一次方程一、二元一次方程组由几个一次方程组成并且一共..含有两个未知数的方程组叫做二元一次方程组.特别地,134xy x+=⎧⎨-=⎩和31xy=⎧⎨=-⎩也是二元一次方程组.二、二元一次方程组的解二元一次方程组中所有方程(一般为两个)的公共解...叫做二元一次方程组的解.注意:(1)二元一次方程组的解一定要写成联立的形式,如方程组2397x yx y-=⎧⎨+=⎩的解是61xy=⎧⎨=⎩.(2)二元一次方程组的解必须同时满足所有方程,即将解代入方程组的每一个方程时,等号两边的值都相等.例如:因为12xy=⎧⎨=⎩能同时满足方程3x y+=、1y x-=,所以12xy=⎧⎨=⎩是方程组31x yy x+=⎧⎨-=⎩的解.易错点1:代入法解二元一次方程组时,循环代入导致错误.辨析:在利用代入法解二元一次方程组时,需要将方程组中某一个方程进行变形,然后将变形后的方程代入到另一个方程中(注意不是变形前的方程).易错点2:方程变形时,忽略常数项而出现错误.辨析:在用加减法解二元一次方程组时,为了把两个方程中某一个未知数的系数化成相等或者互为相反数,需要在方程两边同乘一个不等于零的数,此时不要忘记常数项,造成漏乘导致出现错解.二元一次方程组的解法一、消元思想二元一次方程组中有两个未知数,如果能“消去”一个未知数,那么就能把二元一次方程组转化为我们熟悉的一元一次方程.这种将未知数的个数由多化少、逐一解决的思想,叫做“消元”.使用“消元法”减少未知数的个数,使多元方程组最终转化为一元方程,再逐步解出未知数的值.二、代入消元法1、代入消元法的概念将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解,这种解方程组的方法叫做代入消元法.2、用代入消元法解二元一次方程组的一般步骤:①等量代换:从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数(例如y),用另一个未知数(如x)的代数式表示出来,即将方程写成y ax b=+的形式;②代入消元:将y ax b=+代入另一个方程中,消去y,得到一个关于x的一元一次方程;③解这个一元一次方程,求出x的值;④回代:把求得的x 的值代入y ax b =+中求出y 的值,从而得出方程组的解; ⑤把这个方程组的解写成x ay b =⎧⎨=⎩的形式.三、加减消元法1、加减消元法的概念当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法.2、用加减消元法解二元一次方程组的一般步骤:①变换系数:利用等式的基本性质,把一个方程或者两个方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数互为相反数或相等;②加减消元:把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求得一个未知数的值; ④回代:将求出的未知数的值代入原方程组的任何一个方程中,求出另一个未知数的值;⑤把这个方程组的解写成x a y b =⎧⎨=⎩的形式.例题讲解二元一次方程1.下列各方程是二元一次方程的是 ( ) A .2x+xy=3 B .m -n 2+2=0 C .302y x x y -= D .12S t = 2.已知方程:①3x -4y=10;②3y+2x=-1;③6y=4-5x ;④2y -7=4x+1,则21x y =⎧⎨=-⎩所满足的方程是 ( ) A .① B .①② C .①③ D .①②④ 3.关系式132x y-=,用 x 的代数式表示y 得 ( ) A .223x y -=B .2133x y =- C .223x y =- D .223xy =- 4.下列说法中正确的是 ( ) A .32x y =⎧⎨=⎩是方程3x -4y=1的一组解B .方程3x -4y=1有无数组解,即x 、y 可以取任何数值C.方程3x-4y=1只有两组解,两组解分别是:11112xxyy=⎧=-⎧⎪⎨⎨=-=⎩⎪⎩、D.方程3x-4y=1可能无解5. 把二元一次方程3x-2y+5=0化为y=kx+m的形式,写出k、m的值.6.如果4x-5y=0,且x≠0,那么125125x yx y-+的值是__________.7.把二元一次方程3x-2y+5=0化为y=kx+m的形式,写出k、m的值二元一次方程组1.下列方程组中,不是二元一次方程组的是 ( )A.320,41x yx y-=⎧⎨-=⎩B.5,3x yy z+=⎧⎨+=⎩C.222,20x x yx y⎧-=+⎨-=⎩D.21,x yy=+⎧⎨=⎩2.下列方程组:①4,3;x yxy-=⎧⎨=⎩②25,41;x yy x-=⎧⎨=+⎩③3,48;y xx z=⎧⎨+=⎩④53,1;324x yx y-=⎧⎪⎨-=⎪⎩⑤53,31.x yyx-=⎧⎪⎨+=⎪⎩其中,二元一次方程组的个数是 ( )A.1 B.2 C.3 D.43.如图,点O在直线AB上,OC为射线,∠1比∠2的3倍少10°,如果设∠1、∠2的度数分别为x、y,那么下列方程组正确的是 ( )A.180,10x yx y+=⎧⎨=-⎩B.180,310x yx y+=⎧⎨=-⎩C.180,10x yx y+=⎧⎨=+⎩D.3180,310yx y=⎧⎨=-⎩4.(2009.青海)如果代数式-3x m-1 y3与52x n y m+n是同类项,那么m、n的值分别是 ( )A.2,1mn=⎧⎨=-⎩B.2,1mn=-⎧⎨=-⎩C.2,1mn=⎧⎨=⎩D.2,1mn=-⎧⎨=⎩5.根据下面的条件列出二元一次方程组:(1)已知3223357m n m n x y +---=是关于x 、y 的二元一次方程,列出关于m 和n 的二元一次方程组. (2)已知522325m n x y ++与632134m n x y ---的和是单项式,列出关于m 和n 的二元一次方程组.解二元一次方程组 代入消元法1.方程组25328y x x y =-⎧⎨-=⎩,消去y 后所得的方程是 ( )A .3x -4x -10=8B .3x -4x+5=8C .3x -4x -5=8D .3x -4x+10=8 2.四名学生解二元一次方程组345(1)23(2)x y x y -=⎧⎨-=⎩提出四种不同的解法,其中解法不正确的是( ) A .由①得543y x +=,代入② B .由①得354x y -=,代入② C .由②得32x y -=,代入① D .由②得x=3+2y ,代入① 3.二元一次方程组32725x y x y -=⎧⎨+=⎩的解是 ( )A .32x y =⎧⎨=⎩ B .12x y =⎧⎨=⎩ C .42x y =⎧⎨=⎩ D .31x y =⎧⎨=⎩4.方程组 379475x y x y +=⎧⎨-=⎩的解是 ( )A .21x y =-⎧⎨=⎩B .237x y =-⎧⎪⎨=⎪⎩C .237x y =⎧⎪⎨=-⎪⎩D .237x y =⎧⎪⎨=⎪⎩5.用代入法解方程组(a)23(1)328(2)y x x y =-⎧⎨+=⎩ (b)23(1)325(2)s t s t =⎧⎨-=⎩ (c)37(1)8361(2)x x x y -=-⎧⎨-=⎩ (d)23(1)431(2)y x x y =-⎧⎨-=⎩将各方程组中的方程①代入方程②中,所得的方程正确的是 ( ) A .(a)3x+4x -3=8 B .(b)3t -2t=5 C .(c)40-3y=61 D .(d)4x -6x -9=1 6. 已知代数式1312a x y -与23b a b x y -+-是同类项,那么a ,b 的值分别是 ( ) A .21a b =⎧⎨=-⎩ B .21a b =⎧⎨=⎩ C .21a b =-⎧⎨=-⎩ D .21a b =-⎧⎨=⎩7.解二元一次方程组35821x y x y +=⎧⎨-=⎩8.解方程2215y x x y =+⎧⎨-=⎩9.已知方程组35223x y a x y a+=+⎧⎨+=⎩的解适合x+y=8,求a 的值.10.小明和小华同时解方程组5213mx y x ny +=⎧⎨-=⎩,小明看错了m ,解得722x y ⎧=⎪⎨⎪=-⎩,小华看错了n ,解得37xy=⎧⎨=-⎩,你能知道原方程组正确的解吗?解二元一次方程组加减消元法1.用加减消元法解方程231328x yx y+=⎧⎨-=⎩时,要使两个方程中同一未知数的系数相等或相反,有以下四种变形的结果:①691648x yx y+=⎧⎨-=⎩②461968x yx y+=⎧⎨-=⎩③6936416x yx y+=⎧⎨-+=-⎩④4629624x yx y+=⎧⎨-=⎩其中变形正确的是 ( ) A.①② B.③④ C.①③ D.②④2.已知二元一次方程组0.80.73(1)827(2)x yx y+=⎧⎨--=⎩,用加减消元法解该方程组时,将方程①两边同时乘以_________,再将得到的方程与方程②两边相_________,即可消去________.3.李老师用36元买了两种笔记本共40本,其中两种笔记本的价格分别为1元和0.8元,则李老师买了价格为1元的笔记本_________本,0.8元的笔记本________本.4.解方程组:235 3212 x yx y-=-⎧⎨+=⎩5.解方程组:1 23 x yx y+=⎧⎨+=⎩6.已知关x、y的方程组2331x yax by-=⎧⎨+=-⎩和3211233x yax by+=⎧⎨+=⎩的解相同,求a、b的值.练习1.下列各式:①12x +2x =3;②3x +2y ;③4x =3y ;④x 2-y 2;⑤1132x y =+;⑥x 2-2x=3;⑦4(x +y )=5(x -y )+1;⑧xy =x -y .其中,是二元一次方程的是 ( )A .①⑤B .③⑦C .⑥⑧D .②④ 2.方程m x -2y =x +5是二元一次方程时,m 的取值为 ( ) A .m ≠0 B .m ≠1 C .m ≠-1 D .m ≠2 3.方程2x +3y =6与3x +2y =-1的公共解是 ( )A .3,2x y =⎧⎨=-⎩B .3,4x y =-⎧⎨=⎩C .3,2x y =⎧⎨=⎩D .3,2x y =-⎧⎨=⎩4.(1)二元一次方程2x +y =5中,当x =2时,y =________.(2)把二元一次方程2x -3y =5写成用含x 的代数式表示y 的形式是________. (3)已知方程3241252m n x y +--=是二元一次方程,则m =________,n =________. (4)方程x +2y =-7的非正整数解有________组,解为________________________. (5)写出一个二元一次方程,使其满足x 的系数是大于2的自然数,y 的系数是小于-3的整数,且x =2,y =3是它的一个解,该方程为________________________.5.已知132x y x y-+-=. (1)用含x 的代数式表示y .(2)用含y 的代数式表示x .6.用代入法解下列方程组:(1)(2010.广州)21,3211x y x y +=⎧⎨-=⎩ (2) (2010.青岛) 3419,4x y x y +=⎧⎨-=⎩(3) (2010.南京) 24,25x y x y +=⎧⎨+=⎩ (4) (2010.吴洲) 4310,321x y x y +=⎧⎨-=-⎩7.用加减法解下列方程组:(1) 26,22x y x y -=⎧⎨+=-⎩ (2) 352,9223x y x y -=⎧⎨+=⎩(3) 237,328x y x y +=⎧⎨+=⎩ (4) 12,34231y x x y ++⎧=⎪⎨⎪-=⎩8.若2m n -++(2m +n +4)2=0,则m n的值是 ( )A .1B .0C .-1D .-29.(1)已知方程组5,28x y x y +=⎧⎨+=⎩的解也是方程4x +y +k =0的解,求k 的值.(2)已知方程4x -y =10中,x 与y 互为相反数,求x 、y 的值. 10.如果5312b ax y +和2243a b x y --是同类项,那么a 、b 的值是 ( ) A .1,2a b =-⎧⎨=⎩ B .7,0a b =⎧⎨=⎩ C .0,35a b =⎧⎪⎨=-⎪⎩D .2,1a b =⎧⎨=-⎩11.若关于x 、y 的方程组323,221x y m x y m +=+⎧⎨-=-⎩的解互为相反数,则m 的值为 ( )A .-7B .10C .-10D .-12检测题1.下列各对数值:①3,2x y =⎧⎨=⎩ ②1,1x y =⎧⎨=⎩ ③1,36x y ⎧=⎪⎨⎪=⎩④0,12x y =⎧⎪⎨=-⎪⎩⑤2,52x y =⎧⎪⎨=⎪⎩其中,满足方程3x-2y =1的有 ( )A .4组B .3组C .2组D .1组 2.下列方程:①327y x+=;②x =y ;③110x y -=-;④xy -3y =1;⑤x -π=1;⑥4x +3y .其中,二元一次方程有 ( )A .1个B .2个C .3个D .4个3.若214237m n x y --+=-是关于x 、y 的二元一次方程,则m ·n 的值为 ( ) A .2 B .32- C .32 D .524.二元一次方程2x +y =6的自然数解有 ( )A .1组B .2组C .3组D .4组 5.先阅读材料,再解方程组.解方程组()10,45x y x y y --=⎧⎪⎨--=⎪⎩时,可由①得x -y =1 ③,然后再将③代入②,得4×1-y =5,解得y =-1,从而可得0,1x y =⎧⎨=-⎩这种方法称为“整体代入”法.请用上面的方法解方程组2320,235297x y x y y --=⎧⎪-+⎨+=⎪⎩①②1.(1)方程x+y=5有________组解,有________组正整数解.(2)当方程m x-2y=x+5是二元一次方程时,m满足的条件为________.(3)已知2,3xy=-⎧⎨=⎩是方程2x-13y=5k的一个解,则k=________.(4)一个两位数,十位数字x比个位数字y的一半还少1,则可列出方程________,这样的两位数有________.2.解方程组:①21,758y xx y=-⎧⎨+=⎩②8625,17648s ts t+=⎧⎨-=⎩较为简便的是 ( )A.①②均用代入法 B.①②均用加减法C.①用代入法,②用加减法 D.①用加减法,②用代入法3.用加减消元法解方程组321,354x yx y+=⎧⎨-=-⎩由①-②得 ( )A.2y=1 B.5y=4 C.7y=5 D.-3y=-34.用加减消元法解方程组正确的方法是 ( )A.①+②得2x=5 B.①+②得3x=12C.①+②得3x+7=5 D.先将②变为x-3y=7③,再①-③得x=-2 ①5.(1)在方程组341,236x yx y+=⎧⎨-=⎩中,若要消去未知数x,则①式可乘______得______③;②式可乘得④;然后再将③、④两式即可.(2)在341,236x yx y+=⎧⎨-=⎩中,①×3得________③;②×4得________④,这种变形的目的是要消去未知数________.(3)已知二元一次方程组200920102008,201020092011x yx y+=⎧⎨+=⎩则x-y=______,x+y=______.①②①②①②。
二元一次方程组的概念及解法
二元一次方程组的概念及解法二元一次方程组是含有两个未知数,且未知数的指数都是1的方程。
当把两个二元一次方程合在一起时,就组成了一个二元一次方程组。
方程组的解是使得两个方程的未知数相等的值。
公共解是指两个方程的解都相同的值。
例如,在方程组中,是一个二元一次方程组的例子。
另外,已知二元一次方程2x-y=1,当x=2时,y=3;当y=1时,x=3.消元解法是解二元一次方程组的一种方法。
代入消元法是将一个方程中的一个未知数表示为另一个未知数的函数,然后代入另一个方程中进行消元。
加减消元法是将两个方程相加或相减,消去一个未知数,然后解出另一个未知数。
例如,方程2x-y-5=0可以表示为x=(y+5)/2,y=2x-5.另外,方程组可以用消元解法来解,例如,方程组(2x+3y=40.x-y=-5)可以用加减消元法解出x=11,y=6.举例来说,如果有一个两位数,其个位和十位数字之和为11,将其个位数字和十位数字对调后得到的数比原数大63,那么可以用代数式表示原数为(10y+x),对调后的数为(10x+y),则可以列出方程组(10y+x+63=10x+y。
x+y=11)。
解方程组可以得到x=8,y=3,因此原数为83.鸡兔同笼”问题是另一个例子,可以用二元一次方程组表示。
题目中给出了总共30个头和94只脚,因此可以列出方程组(2x+4y=30.2x+2y=94),其中x表示鸡的数量,y表示兔的数量。
解方程组可以得到x=12,y=9,因此鸡的数量为12,兔的数量为9.综上所述,二元一次方程组是含有两个未知数和未知数的指数都是1的方程组。
解二元一次方程组可以使用消元解法,包括代入消元法和加减消元法。
实际问题可以用二元一次方程组来表示,然后解方程组得出答案。
1.在方程y=-3x-2中,若x=2,则y=-8.若y=2,则x=-4.2.若方程2x-y=3写成用含x的式子表示y的形式:y=2x-3;写成用含y的式子表示x的形式:x=(y+3)/2.3.已知43=2x-3y+1,4x-15y-17=0,6x-25y-23=0,则x=3,y=-2.4.二元一次方程3x-my=4和mx+ny=3有一个公共解,则m=-4,n=3.5.已知|a-b+2|+(b-3)^2=1,那么ab=-1.6.对于方程组(1){xy= -10.x+y=-2},是二次方程组;(2){x-y=1.x/y=3/4},是一次方程组;(3){x+y=5.xy=3},是二次方程组;(4){x+y=3.x=2y},是一次方程组。
二元一次方程组知识点整理
二元一次方程组知识点整理第五章 二元一次方程组 知识点整理知识点1:二元一次方程(组)的定义1、二元一次方程的概念含有两个未知数,且所含未知数的项的次数都是1的方程叫做二元一次方程注意:1、(1)方程中的元指的是未知数,即二元一次方程有且只有两个未知数.(2)含有未知数的项的次数都是1.(3)二元一次方程的左右两边都必须是等式. (三个条件完全满足的就是二元一次方程)2.含有未知数的项的系数不等于零,且两未知数的次数为1。
即若ax m +by n =c 是二元一次方程,则a ≠0,b ≠0且m=1,n=1 例1:已知(a -2)x -by |a|-1=5是关于x 、y 的二元一次方程,则a =______,b =_____.例2:下列方程为二元一次方程的有_________①y x =-52,②14=-x ,③2=xy ,④3=+y x ,⑤22=-y x,⑥22=-+y x xy ,⑦71=+y x ⑧y x 23+,⑨1=++c b a【巩固练习】下列方程中是二元一次方程的是( )A .3x-y 2=0B .2x +1y=1 C .3x -52y=6 D .4xy=3 2、二元一次方程组的概念A 、 31x y =⎧⎨=-⎩B 、 31x y =⎧⎨=⎩C 、 31x y =-⎧⎨=⎩D 、 31x y =-⎧⎨=-⎩类型题2 已知方程组的解,而求待定系数。
此类题型只需将解代入到方程中,求出相应系数的值,从而求代数式的值例1:已知⎩⎨⎧==12y x -是方程组⎩⎨⎧=++=-274123ny x y mx 的解,则m 2-n 2的值为_________.例2: 若满足方程组⎩⎨⎧=-+=-6)12(423y k kx y x 的x 、y 的值相等,则k =_______.【巩固练习】1、若方程组⎩⎨⎧=++=-10)1(232y k kx y x 的解互为相反数,则k 的值为 。
2、若方程组⎪⎩⎪⎨⎧=+=+52243y b ax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a 有相同的解,则a= ,b= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程组的概念及解法
知识点梳理
知识点一二元一次方程组的概念
含有两个未知数,并且含有未知数的相的次数都是1,像这样的方程叫做二元一次方程。
把两个二元一次方程合在一起就组成了一个方程组,像这样的方程组叫做二元一次方程组。
使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
典例分析
例1、在方程组、、、、
、中,是二元一次方程组的有个;
例2、已知二元一次方程2x-y=1,若x=2,则y=;若y=0,则x=.
变式1:方程x+y=2的正整数解是__________.
变式2、在方程3x-ay=8中,如果是它的一个解,那
么a的值为⎩
⎨
⎧
=
=
1
3 y
x
例3 方程组⎩⎨⎧=+=-5
21
y x y x 的解是( )
A 、 ⎩⎨⎧=-=21y x
B 、⎩⎨⎧-==12
y x C 、⎩⎨⎧==21y x D 、⎩⎨⎧==12y x
例4、有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为,十位数字为,则用代数式表示原两位数为 ,根据题意得方程组。
例5、我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十头,下有九十四足。
问鸡兔各几何。
”你能用二元一次方程组表示题中的数量关系吗?使找出问题的解。
知识点二 解二元一次方程 消元解二元一次方程⎧⎨⎩代入消元法加减消元法
典例分析
例1、 把方程2x -y -5=0化成含y 的代数式表示x 的形式:x = .
化成含x 的代数式表示y 的形式:y = .
例2、用代入消元法解下列方程 (1)、⎩⎨⎧-=-=+54032y x y x (2)、⎩⎨⎧=-=+15
2349
32y x y x
(3)23
328x y x y -=-⎧⎨+=⎩
(4)25342x y x y -=⎧⎨+=⎩
例3、用加减消元法解下列方程 (1)、⎩⎨⎧-=-=+54032y x y x (2)、⎩⎨⎧=-=+152349
32y x y x
(3)23
328
x y x y -=-⎧⎨+=⎩ (4)25342x y x y -=⎧⎨+=⎩
例4、解下列方程
(1)⎩⎨
⎧-=-+=-8
5)1(21
)2(3y x x y (2)⎪⎩⎪⎨⎧=+=
18
433
2y x y
x
(3)⎩⎨⎧=--=--0
23256017154y x y x (4)⎪⎩⎪⎨⎧=-=+2
3432
1332y
x y x
(5)⎪⎩⎪⎨⎧=-+=
+1
323
2
41y x x y (6)⎩⎨
⎧=+=+241
2123243
2321y x y x
例5 、若,则= ,= 。
例6、 如果
是同类项,则、的值是( ) A 、=-3,=2 B 、=2,=-3 C 、=-2,=3 D 、=3,=-2
例7、已知方程组
与
有相同的解,则
= ,= 。
例8、二元一次方程组323
221
x y m x y m +=+⎧⎨-=-⎩ 的解互为相反数,求m 的值.
例9、已知等式(2A -7B)x+(3A -8B )=8x+10,对一切实数x 都成立,求A 、B 的值。
过关检测
1. 在方程32y x =--中,若2x =,则_____y =.若2y =,则______x =
2.若方程23x y -=写成用含x 的式子表示y 的形式:_________________;写成用含y 的式子表示x 的形式:___________________________;
3. 已知⎩⎨⎧==1
2y x 是方程2x +ay=5的解,则 a= .
4.二元一次方程343x my mx ny -=+=和有一个公共解1
1
x y =⎧⎨=-⎩,则
m=______,n=_____;
5.已知2|2|(3)0a b b -++-=,那么______ab =
6.对于方程组5
322(1),(2),(3),(4)16
1021x y x y x x y x xy x y x y y +=⎧+===⎧⎧⎧⎪
⎨⎨⎨⎨
-==-+=--=⎩⎩⎩⎪⎩
,是二元一次方程组的为( )
A.(1)和(2)
B.(3)和(4)
C.(1)和(3)
D.(2)和(4) 7.若2
5
x y =⎧⎨
=⎩是方程22kx y -=的一个解,则k 等于( ) 858..
.6.5
3
3
A B C D -
8.方程组341112
38x y x y =⎧⎪
⎨-=⎪⎩的解为( )
1
214
2 (43)
33
02
8
x x x x A B C D y y y y ⎧
==⎧⎧⎪==⎧⎪⎪⎪⎨
⎨⎨⎨==⎩⎪⎪⎪==⎩⎩
⎪⎩
9.已知,a b 满足方程组28
27a b a b +=⎧⎨
+=⎩
,则a b -的值为( )
A.-1
B.0
C.1
D.2 10、若3122
x m y m =+⎧⎨=-⎩,是方程组1034=-y x 的一组解,求m 的值。
11、用加减法解二元一次方程解方程组: (1)⎩⎨
⎧=+=-1
3
y x y x (2)⎩⎨
⎧=+=-8
312034y x y x
(3)⎩⎨⎧=+=-14
64534y x y x (4)⎩⎨
⎧=-=+1
2354y x y x
(5)⎩⎨⎧=+=+1
32645y x y x (6)⎩⎨
⎧=+=-17
32723y x y x
12、代入消元法解方程组:
(1)23
321
y x x y =-⎧⎨
+=⎩ (2)⎩⎨
⎧-=-=+4
23
57y x y x
(3) 23
3418
x y
x y ⎧=⎪
⎨⎪+=⎩ (4)56
3640
x y x y +=⎧⎨
--=⎩。