高中数学函数的单调性与导数测试题(附答案)

合集下载

高考数学必考点专项第8练 导数与函数的单调性(练习及答案)(全国通用)(新高考专用)

高考数学必考点专项第8练 导数与函数的单调性(练习及答案)(全国通用)(新高考专用)

高考数学必考点专项第8练 导数与函数的单调性习题精选一、单选题1. 函数21()9ln 2f x x x =-在区间上单调递减,则实数m 的取值范围是( )A.B. C.D.2. 若函数()sin()sin(2)cos()2f x x x a x πππ=+---在区间(0,]2π上单调递增,则实数a 的取值范围是( )A. (,1]-∞-B. (-∞C. D. [1,)+∞3. 若函数在其定义域上不单调,则实数a 的取值范围为( )A. 1a <或4a >B. 4aC. 14a <<D. 14a4. 若函数2()ln 2f x x ax =+-在区间1(,2)2内存在单调递增区间,则实数a 的取值范围是( )A. (-,-2]∞B. 1(-,+)8∞C. 1(-2,-)8D. (-2,+)∞5. 已知函数()f x 是定义在R 上的偶函数,设函数()f x 的导函数为()f x ',若对任意0x >都有2()()0f x xf x +'>成立,则( )A. 4(2)9(3)f f -<B. 4(2)9(3)f f ->C. 2(3)3(2)f f >-D. 3(3)2(2)f f -<-(2,1)m m +(0,1)(0,2)6. 定义在(0,)+∞上的函数()f x 满足()10xf x '+>,(3)=-ln 3f ,则不等式()+0x f e x >的解集为( )A. 3(,+)e ∞B. 3(0,)eC. (ln 3,)+∞D. 3(ln 3,)e7. 已知函数,若存在1[,2]2x ∈,使得()()0f x xf x +'>,则实数b 的取值范围是( )A.B. 9(,)4-∞C. (,3)-∞D. (,2)-∞8. 已知4ln 3a π=,3ln 4b π=,34ln c π=,则a ,b ,c 的大小关系是( ) A. c b a <<B. b c a <<C. b a c <<D. a b c <<9. 已知是函数的导数,且,当0x 时,,则不等式的解集是( )A.B.C.D.10. 设函数()f x 在R 上存在导函数()f x ',对任意的实数x 都有()()2f x f x x =-+,当0x >时,()2 1.f x x '>+若(1)()21f a f a a +-++,则实数a 的取值范围是( )A. 1[,)2-+∞B. 3[,)2-+∞C. [1,)-+∞D. [2,)-+∞二、填空题11. 函数2()24ln f x x x x =--,则()f x 的单调递增区间为__________12. 设函数()x x f x e ae -=+ (a 为常数),若()f x 为奇函数,则a =__________;若()f x 是R 上的增函数,则a 的取值范围是__________.13. 写出一个同时具有下列性质①②③的函数__________.()f x '()f x①;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.三、解答题14. 已知函数2()sin sin 2.f x x x =(1)讨论()f x 在区间(0,)π的单调性; (2)证明:33|()|8f x ; (3)设*n N ∈,证明:222sin sin 2sin 4x x x (2)3sin 2.4nnn x15. 已知0a >且1a ≠,函数()(0).ax x f x x a =>(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围.16. 已知函数()2ln 1af x x x x=--+,()(2ln ).x g x e x x =- (1)若函数()f x 在定义域上是增函数,求a 的取值范围; (2)求()g x 的单调区间.17. 已知函数21()ln (1)(0).2f x a x a x x a =-++->(1)讨论()f x 的单调性; (2)若21()2f x x ax b -++恒成立,求实数ab 的最大值.18. (本小题12.0分)已知函数2().xf x e ax x =+-(1)当1a =时,讨论()f x 的单调性; (2)当0x 时,31()12f x x +,求a 的取值范围.19. 已知函数(1)令,讨论的单调区间;(2)若2a =-,正实数12,x x 满足,证明1251.2x x -+()g x 1212()()0f x f x x x ++=20. 已知函数2()(2)x x f x ae a e x =+--,().a R ∈(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.答案和解析1.【答案】A解:()f x 的定义域是(0,)+∞,9(3)(3)()x x f x x x x+-'=-=, 令()0f x '>,解得:3x >,令()0f x '<,解得:03x <<, 故()f x 在(0,3)递减,在(3,)+∞递增, 若函数21()9ln 2f x x x =-在区间(2,1)m m +上单调递减, 则20m 且013m <+且21m m <+,解得:01m <, 故选:.A2.【答案】A解:因为1()sin()sin(2)cos()cos sin cos sin 2cos 22f x x x a x x x a x x a x πππ=+---=+=+在(0,]2π上是增函数,所以当(0,]2x π∈时,,即212sin sin 0x a x --,因为当(0,]2x π∈时,sin (0,1],x ∈所以12sin sin a x x-+, 令1()2sin sin g x x x =-+,(0,],2x π∈则22cos 1()2cos cos (2)0sin sin x g x x x x x '=--=--<,所以()g x 在(0,]2π单调递减,所以,即(,1],a ∈-∞-故选.A3.【答案】A解:求导可得,()f x ∴在其定义域上不单调等价于方程有两个解,,解得1a <或 4.a >故选.A4.【答案】D解:根据题意得1()2f x ax x'=+, ()f x 在区间1(,2)2内存在单调递增区间,则()0f x '在内有解,,故min 21()2a x-,,令21()=-2g x x ,,则()g x 在1(,2)2单调递增,1()(2,)8g x ∈--, 故-2.a > 故选.D5. 【答案】A解:1()||f x x =时,3(3)1f -=,2(2)1f -=,可以排除D ; ()||f x x =时,2(3)6f =,3(2)3(2)6f f -==,可排除C ;设2()()g x x f x =,22()(())2()()(2()())g x x f x xf x x f x x f x xf x '='=+'=+',0x >时,2()()0f x xf x +'>,0x ∴>时()0g x '>,()g x 为(0,)+∞上的单调增函数;(2)(3)g g ∴<,4(2)9(3)f f ∴<,又()f x 为偶函数,4(2)9(3)f f ∴-<,A ∴对,A ,B 矛盾,故B 错,故选.A6.【答案】C解:令()()ln g x f x x =+,(0,).x ∈+∞ 在(0,)+∞上的函数()f x 满足()10xf x '+>,1()1()()0xf x g x f x x x'''+∴=+=>,∴函数()g x 在(0,)+∞上单调递增,(3)(3)ln 30g f =+=,而不等式,所以3x e >,即ln3x >,∴不等式()0x f e x +>的解集为(ln3,).+∞故选.C7.【答案】B解:,,∴,∴,存在,使得,即,∴,设,∴.而,当时,解得:,当时,即时,函数单调递增,当时,即时,函数单调递减,因为,所以,∴,故选:.B8.【答案】B解: 令ln ()xf x x=,0x >, 则21ln (),0xf x x x-'=>, 令()0f x '>,得0x e <<,令()0f x '<,得x e >, 所以()f x 在(0,)e 单调递增,在(,)e +∞单调递减, 又3e π>>, 所以()(3)f f π<,即ln ln 33ππ<, 所以3ln ln 3ππ<, 又4ln 3a π=,34ln c π=, 所以a c >, 又由()f x 的单调性得ln 4ln 4ππ<,即4ln 4ln ππ<, 因为343ln 4,4ln 3ln b c πππ===, 所以b c <, 综合得.b c a << 故选.B9.【答案】D解:设,则因为当0x 时,,所以当0x 时,,即在上单调递增. 因为,所以,所以是偶函数. 因为,所以,即,,则,解得1.2x <故选.D10.【答案】A解:设()()g x f x x =-,则()()()[()]0g x g x f x x f x x --=---+=,()()g x g x ∴=-,()g x ∴是偶函数,当0x >时,()()1g x f x '='-,而()21f x x '>+,则()()120g x f x x '='->>,()g x ∴在(0,)+∞上是增函数, (1)()21f a f a a +-++, (1)(1)()()f a a f a a ∴+-+---,即(1)()g a g a +-,|1|||a a ∴+-,()g x ()g x即12a -, 故选:.A11.【答案】(2,)+∞解:()f x 定义域为(0,)+∞,242(2)2(2)(1)()22x x x x f x x x x x---+'=--==,故当02x <<时,()0f x '<,()f x 单调递减, 当2x >时,()0f x '>,()f x 单调递增, 故()f x 的单调递增区间为(2,).+∞ 故答案为(2,).+∞12.【答案】1-(,0]-∞解:根据题意,函数()xxf x e ae-=+,若()f x 为奇函数,则()()f x f x -=-, 即()xx x x eae e ae --+=-+,变形可得1a =-,经检验,1a =-满足()f x 为奇函数,()f x 是R 上的增函数,()0f x '∴对x R ∀∈恒成立,即0x xae e -对x R ∀∈恒成立,2()x a e ∴恒成立. 2()0x e >,0.a ∴故答案为1-;(,0].-∞13.【答案】2()(f x x =答案不唯一,均满足)解:取2()f x x =,则22212121212()()()()f x x x x x x f x f x ===,满足①,()2f x x '=,0x >时有,满足②,()2f x x '=的定义域为R ,又()2()f x x f x ''-=-=-,故是奇函数,满足③. 故答案为:2()(f x x =答案不唯一,均满足)14.【答案】解:23(1)()sin sin 22sin cos f x x x x x ==,222222()2sin (3cos sin )2sin (34sin )2sin [32(1cos 2)]f x x x x x x x x ∴'=-=-=--22sin (12cos 2)x x =+,令()0f x '=,解得,3x π=,或23x π=, 当(0,)3x π∈或2(,)3ππ时,()0f x '>,当2(,)33x ππ∈时,()0f x '<, ()f x ∴在(0,)3π,2(,)3ππ上单调递增,在2(,)33ππ上单调递减.证明:(2)(0)()0f f π==,由(1)可知2()()3f x f π==极小值()()3f x f π==极大值()0f x '>()f x 'max 33()8f x ∴=,min 33()8f x =-, ,()f x 为周期函数,33|()|8f x ∴; (3)由(2)可知322333sin sin 2()84x x =,322333sin 2sin 4()84x x =,32232333sin 2sin 2()84x x =,…,3212333sin 2sin 2()84n nx x -=, 334sin sin 2sin 4x x x ∴……313233sin 2sin 2sin (sin sin 2sin 4n n x x x x x x -=……331223sin 2sin 2)sin 2()4nn nnx x x -,222sin sin 2sin 4x x x ∴……23sin 2.4nnn x15.【答案】解:(1)2a =时,2()2x x f x =,222ln 2()222ln 2(2ln 2)ln 2()(2)22x x x xxx x x x x x f x ⋅-⋅-⋅-'===, 当2(0,)ln 2x ∈时,()0f x '>,当2(,)ln 2x ∈+∞时,()0f x '<, 故()f x 在2(0,)ln 2上单调递增,在2(,)ln 2+∞上单调递减. (2)由题知()1f x =在(0,)+∞有两个不等实根,ln ln ()1ln ln a x x af x x a a x x a x a=⇔=⇔=⇔=, 令ln ()x g x x =,21ln ()xg x x-'=,()g x 在(0,)e 上单调递增,在(,)e +∞上单调递减,所以max 1()()g x g e e==, 又(1)0g =,当x 趋近于+∞时,()g x 趋近于0,所以曲线()y f x =与直线1y =有且仅有两个交点,即曲线()y g x =与直线ln ay a=有两个交点的充分必要条件是ln 10a a e<<,即0()()g a g e <<,解得1a >且a e ≠, 所以a 的取值范围是(1,)(,).e e ⋃+∞16.【答案】解:(1)由题意得0x >,22()1af x x x'=-+,由函数()f x 在定义域上是增函数得,()0f x ', 即222(1)1(0)a x x x x -=--+>恒成立, 因为2(1)11(x --+当1x =时,取等号), 所以a 的取值范围是[1,).+∞2(2)()(2ln 1)x g x e x x x'=---+,由(1)得2a =时,2()2ln 1f x x x x=--+, 此时()f x 在定义域上是增函数,又(1)0f =, 所以,当(0,1)x ∈时,()0f x <, 当(1,)x ∈+∞时,()0.f x > 所以,当(0,1)x ∈时,()0g x '>, 当(1,)x ∈+∞时,()0.g x '< 所以()g x 的单调递增区间是(0,1),()g x 的单调递减区间是(1,).+∞17.【答案】解:,(0,0)a x >>,①1a =时,,()f x ∴在(0,)+∞上单调递减;②01a <<时,由()0f x '>,解得:1a x <<,()f x ∴在(,1)a 上单调递增,在(0,)a ,(1,)+∞上单调递减;③1a >时,同理()f x 在(1,)a 上单调递增,在(0,1),(,)a +∞上单调递减;21(2)()2f x x ax b -++恒成立,ln 0a x x b ∴-+恒成立,令()ln g x a x x b =-+,则()a xg x x-'=, ()g x ∴在(0,)a 上单调递增,在(,)a +∞上单调递减.max ()()ln 0g x g a a a a b ∴==-+,ln b a a a ∴-,22ln ab a a a ∴-,令22()ln (0)h x x x x x =->,则()(12ln )h x x x '=-,()h x ∴在上单调递增,在)+∞上单调递减,max ()2e h x h e e ∴==-=, .2e ab∴ 即ab 的最大值为.2e18.【答案】解:(1)当1a =时,2()x f x e x x =+-,()21x f x e x '=+-,记()()g x f x =',因为()20xg x e '=+>,所以()()21xg x f x e x ='=+-在R 上单调递增, 又(0)0f '=,得当0x >时()0f x '>,即2()xf x e x x =+-在(0,)+∞上单调递增; 当0x <时()0f x '<,即2()xf x e x x =+-在(,0)-∞上单调递减. 所以2()xf x e x x =+-在(,0)-∞上单调递减,在(0,)+∞上单调递增.(2)①当0x =时,a ∈R ;②当0x >时,31()12f x x +即32112xx x e a x++-, 令32112()x x x e h x x++-=,231(2)(1)2()x x e x x h x x ----'= 记21()12x m x e x x =---,()1x m x e x '=-- 令()1xq x e x =--,因为0x >,所以()10xq x e '=->,所以()()1xm x q x e x '==--在(0,)+∞上单调递增,即()1(0)0xm x e x m ''=-->=所以21()12x m x e x x =---在(0,)+∞上单调递增,即21()1(0)02x m x e x x m =--->=, 故当(0,2)x ∈时,()0h x '>,32112()xx x e h x x ++-=在(0,2)上单调递增; 当(2,)x ∈+∞时,()0h x '<,32112()xx x e h x x++-=在(2,)+∞上单调递减;所以2max7[()](2)4e h x h -==,所以274e a -,综上可知,实数a 的取值范围是27[,).4e -+∞19.【答案】(1)解:21()()(1)ln (1)12g x f x ax x ax a x =--=-+-+,所以21(1)1()(1)ax a x g x ax a x x-+-+'=-+-=,当0a 时,因为0x >,所以()0.g x '> 所以()g x 在(0,)+∞上是递增函数;当0a >时,1()(1)()a x x a g x x--+'=, 令()0g x '=,得1x a=, 所以当1(0,)x a∈时,()0g x '>;当1(,)x a∈+∞时,()0g x '<,因此函数()g x 在1(0,)a 是增函数,在1(,)a+∞是减函数,综上,当0a 时,()g x 的单调递增区间是(0,)+∞,无单调递减区间; 当0a >时,()g x 的单调递增区间是1(0,)a ,单调递减区间是1(,).a+∞(2)证明:当2a =-时,2()ln ,0f x x x x x =++>,由1212()()0f x f x x x ++=,即2211122212ln ln 0x x x x x x x x ++++++=,从而212121212()()ln()x x x x x x x x +++=-,令12t x x =,则由()ln t t t ϕ=-,得1()t t tϕ-'=,0t >, 可知,()t ϕ在区间(0,1)上单调递减,在区间(1,)+∞上单调递增, 所以()(1)1t ϕϕ=,所以21212()()1x x x x +++,解得12512x x -+或12512x x --+, 又因为10x >,20x >,因此12512x x -+成立.20.【答案】解:(1)()f x 的定义域为(,)-∞+∞,2()2(2)1(1)(21)x x x x f x ae a e ae e '=+--=-+,(i)若0a ,则在(,)x ∈-∞+∞时()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ii)若0a >,则由()0f x '=得ln .x a =-当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>, 所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增.(2)(i)若0a ,由(1)知,()f x 在(,)-∞+∞上单调递减,故()f x 至多有一个零点,不合题意.(ii)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln .f a a a-=-+①当1a =时,由于(ln )0,f a -=故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0.f a -< 又422(2)(2)2220f aea e e ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则0000()(2)n n f n e ae a n =+-- 000020.n n e n n >->-> 由于3ln(1)ln a a ->-,因此()f x 在(ln ,)a -+∞有一个零点. 综上,a 的取值范围为(0,1).。

高中数学 文科 导数 第1课时 导数与函数的单调性文科(含答案)

高中数学 文科 导数 第1课时 导数与函数的单调性文科(含答案)

第2节导数在研究函数中的应用一、选择题1.函数f(x)=x-ln x的单调递减区间为()A.(0,1)B.(0,+∞)C.(1,+∞)D.(-∞,0)∪(1,+∞)解析函数的定义域是(0,+∞),且f′(x)=1-1x=x-1x,令f′(x)<0,解得0<x<1,所以单调递减区间是(0,1).答案 A2.已知f(x)=1+x-sin x,则f(2),f(3),f(π)的大小关系正确的是()A.f(2)>f(3)>f(π)B.f(3)>f(2)>f(π)C.f(2)>f(π)>f(3)D.f(π)>f(3)>f(2)解析因为f(x)=1+x-sin x,所以f′(x)=1-cos x,当x∈(0,π]时,f′(x)>0,所以f(x)在(0,π]上是增函数,所以f(π)>f(3)>f(2).答案 D3.(2014·课标全国Ⅱ卷)若函数f(x)=kx-ln x在区间(1,+∞)单调递增,则k的取值范围是()A.(-∞,-2]B.(-∞,-1]C.[2,+∞)D.[1,+∞)解析∵f′(x)=k-1 x,依题意f′(x)≥0在(1,+∞)上恒成立,∴k≥1x在x∈(1,+∞)上恒成立,由x>1,得0<1x<1,所以k≥1.答案 D4.(2017·山东卷)若函数e x f(x)(e=2.718 28…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f (x )具有M 性质,下列函数中具有M 性质的是( )A.f (x )=2-xB.f (x )=x 2C.f (x )=3-xD.f (x )=cos x 解析 设函数g (x )=e x ·f (x ),对于A ,g (x )=e x ·2-x =⎝ ⎛⎭⎪⎫e 2x ,在定义域R 上为增函数,A 正确;对于B ,g (x )=e x ·x 2,则g ′(x )=x (x +2)e x ,由g ′(x )>0得x <-2或x >0,∴g (x )在定义域R 上不是增函数,B 不正确;对于C ,g (x )=e x ·3-x=⎝ ⎛⎭⎪⎫e 3x 在定义域R 上是减函数,C 不正确;对于D ,g (x )=e x ·cos x ,则g ′(x )=2e xcos ⎝ ⎛⎭⎪⎫x +π4,g ′(x )>0在定义域R 上不恒成立,D 不正确.答案 A5.(2018·保定一中模拟)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A.(-1,1)B.(-1,+∞)C.(-∞,-1)D.(-∞,+∞) 解析 由f (x )>2x +4,得f (x )-2x -4>0,设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2, 因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上单调递增.又F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1.答案 B二、填空题6.已知函数f (x )=(-x 2+2x )e x (x ∈R ,e 为自然对数的底数),则函数f (x )的单调递增区间为________.解析 因为f (x )=(-x 2+2x )e x ,所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x=(-x 2+2)e x .令f ′(x )>0,即(-x 2+2)e x >0,因为e x >0,所以-x 2+2>0,解得-2<x <2,所以函数f (x )的单调递增区间为(-2,2).答案 (-2,2)7.(2018·安徽江南十校联考)设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是________.解析 易知f (x )的定义域为(0,+∞),且f ′(x )=x -9x .由f ′(x )=x -9x <0,解得0<x <3.因为f (x )=12x 2-9ln x 在[a -1,a +1]上单调递减,∴⎩⎨⎧a -1>0,a +1≤3,解得1<a ≤2. 答案 (1,2]8.(2018·银川诊断)若函数f (x )=ax 3+3x 2-x 恰好有三个单调区间,则实数a 的取值范围是________.解析 由题意知f ′(x )=3ax 2+6x -1,由函数f (x )恰好有三个单调区间,得f ′(x )有两个不相等的零点,所以3ax 2+6x -1=0需满足a ≠0,且Δ=36+12a >0,解得a >-3,所以实数a 的取值范围是(-3,0)∪(0,+∞).答案 (-3,0)∪(0,+∞)三、解答题9.已知函数f (x )=x 3+ax 2-x +c ,且a =f ′⎝ ⎛⎭⎪⎫23. (1)求a 的值;(2)求函数f (x )的单调区间.解 (1)由f (x )=x 3+ax 2-x +c ,得f ′(x )=3x 2+2ax -1.当x =23时,得a =f ′⎝ ⎛⎭⎪⎫23=3×⎝ ⎛⎭⎪⎫232+2a ×23-1, 解得a =-1.(2)由(1)可知f (x )=x 3-x 2-x +c ,则f ′(x )=3x 2-2x -1=3⎝ ⎛⎭⎪⎫x +13(x -1), 令f ′(x )>0,解得x >1或x <-13;令f ′(x )<0,解得-13<x <1.所以f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-∞,-13和(1,+∞); f (x )的单调递减区间是⎝ ⎛⎭⎪⎫-13,1. 10.已知a ∈R ,若函数f (x )=(-x 2+ax )e x (x ∈R ,e 为自然对数的底数)在(-1,1)上单调递增,求a 的取值范围.解 因为函数f (x )在(-1,1)上单调递增,所以f ′(x )≥0对x ∈(-1,1)都成立.因为f ′(x )=(-2x +a )e x +(-x 2+ax )e x =[-x 2+(a -2)x +a ]e x ,所以[-x 2+(a -2)x +a ]e x ≥0对x ∈(-1,1)都成立.因为e x >0,所以-x 2+(a -2)x +a ≥0,则a ≥x 2+2x x +1=(x +1)2-1x +1=(x +1)-1x +1对x ∈(-1,1)都成立. 令g (x )=(x +1)-1x +1,则g ′(x )=1+1(x +1)2>0, 所以g (x )=(x +1)-1x +1在(-1,1)上单调递增, 所以g (x )<g (1)=(1+1)-11+1=32, 所以a ≥32,又当a =32时,当且仅当x =0时,f ′(x )=0,所以a 的取值范围是⎣⎢⎡⎭⎪⎫32,+∞. 能力提升题组(建议用时:20分钟)11.(2016·全国Ⅰ卷)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a的取值范围是( )A.[-1,1]B.⎣⎢⎡⎦⎥⎤-1,13 C.⎣⎢⎡⎦⎥⎤-13,13 D.⎣⎢⎡⎦⎥⎤-1,-13 解析 ∵f (x )=x -13sin 2x +a sin x ,∴f ′(x )=1-23cos 2x +a cos x =1-23(2cos 2x -1)+a cos x =-43cos 2 x +a cos x +53,由f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立.令t =cos x ,t ∈[-1,1],则-43t 2+at +53≥0.在t ∈[-1,1]上恒成立.∴4t 2-3at -5≤0在t ∈[-1,1]上恒成立.令g (t )=4t 2-3at -5,则⎩⎨⎧g (1)=-3a -1≤0,g (-1)=3a -1≤0.解之得-13≤a ≤13. 答案 C12.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝ ⎛⎭⎪⎫12,c =f (3),则a ,b ,c 的大小关系是________(由小到大). 解析 依题意得,当x <1时,f ′(x )>0,则f (x )在(-∞,1)上为增函数;又f (3)=f (-1),且-1<0<12<1,因此有f (-1)<f (0)<f ⎝ ⎛⎭⎪⎫12, 即有f (3)<f (0)<f ⎝ ⎛⎭⎪⎫12,c <a <b . 答案 c <a <b13.(2016·四川卷节选)设函数f (x )=ax 2-a -ln x ,g (x )=1x -e e x ,其中a ∈R ,e =2.718…为自然对数的底数.(1)讨论f (x )的单调性;(2)证明:当x >1时,g (x )>0.(1)解 由题意得f ′(x )=2ax -1x =2ax 2-1x (x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减.当a >0时,由f ′(x )=0有x =12a, 当x ∈⎝⎛⎭⎪⎫0,12a 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,f (x )单调递增. (2)证明 令s (x )=e x -1-x ,则s ′(x )=e x -1-1.当x >1时,s ′(x )>0,所以s (x )>s (1),即e x -1>x ,1 x-ee x=e(e x-1-x)x e x>0.从而g(x)=。

高三复习:导数与函数的单调性、极值最值(含解析答案)

高三复习:导数与函数的单调性、极值最值(含解析答案)

3.2导数与函数的单调性、极值、最值知识梳理:1.函数的单调性在某个区间(a,b)内,如果f′(x) _____0,那么函数y=f(x)在这个区间内单调递增;如果f′(x) _____0,那么函数y=f(x)在这个区间内单调递减.2.函数的极值(1)判断f(x0)是极值的方法:一般地,当函数f(x)在点x0处连续时,①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.(2)求可导函数极值的步骤:3.函数的最值试一试:1.函数f(x)=x2-2ln x的单调减区间是________.2.函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为________.考点一利用导数研究函数的单调性例1已知函数f(x)=e x-ax-1.(1)求f(x)的单调增区间;(2)是否存在a,使f(x)在(-2,3)上为减函数,若存在,求出a的取值范围,若不存在,请说明理由.考点二 利用导数求函数的极值例2 设f (x )=e x 1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点; (2)若f (x )为R 上的单调函数,求a 的取值范围.考点三 利用导数求函数的最值例3已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.71828…为自然对数的底数. 设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值.变式1 已知函数f (x )=(x -k )e x . (1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值.考点4 含有参数的分类讨论例4:已知函数f (x )=ln x -ax (a ∈R ).(1)求函数f (x )的单调区间; (2)当a >0时,求函数f (x )在[1,2]上的最小值.课堂练习:1.函数f (x )=e x -x 的单调递增区间是________.2.(2014·扬州期末)已知函数f (x )=ln x -mx (m ∈R )在区间[1,e]上取得最小值4,则m =________.3.若函数f (x )=x 3+x 2+mx +1是R 上的单调增函数,则m 的取值范围是________. 4.已知函数f (x )=x 3+ax 2-x +c ,且a =f ′⎝⎛⎭⎫23.(1)求a 的值;(2)求函数f (x )的单调区间; (3)设函数g (x )=(f (x )-x 3)·e x ,若函数g (x )在x ∈[-3,2]上单调递增,求实数c 的取值范围.导数与函数的单调性、极值、最值后作业1.函数y =(3-x 2)e x 的单调递增区间是________.2.若函数f (x )=x 2+ax +1在x =1处取得极值,则a =________.3.设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是________.4.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m 、n ∈[-1,1],则f (m )+f ′(n )的最小值是________.5.函数y =12x 2-ln x 的单调递减区间为________.6.已知函数f (x )=1x +ln x ,求函数f (x )的极值和单调区间.7.函数f (x )的定义域是R ,f (0)=2,对任意的x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集是________.8.设函数f (x )=12x 2+e x -x e x .(1)求f (x )的单调区间;(2)若x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.9.已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.10.设函数f (x )=e x x 2-k (2x +ln x )(k 为常数,e =2.71828…是自然对数的底数).(1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围.导数与函数的单调性、极值、最值教师版知识梳理 1.函数的单调性在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间内单调递减. 2.函数的极值(1)判断f (x 0)是极值的方法:一般地,当函数f (x )在点x 0处连续时,①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值; ②如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值. (2)求可导函数极值的步骤: ①求f ′(x );②求方程f ′(x )=0的根;③检查f ′(x )在方程f ′(x )=0的根附近的左右两侧导数值的符号.如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值. 3.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.(3)设函数f (x )在[a ,b ]上连续,在(a ,b )内可导,求f (x )在[a ,b ]上的最大值和最小值的步骤如下: ①求f (x )在(a ,b )内的极值;②将f (x )的各极值与f (a ),f (b )进行比较,其中最大的一个是最大值,最小的一个是最小值. 试一试1.函数f (x )=x 2-2ln x 的单调减区间是________. 答案 (0,1)解析 ∵f ′(x )=2x -2x =2(x +1)(x -1)x (x >0).∴当x ∈(0,1)时,f ′(x )<0,f (x )为减函数; 当x ∈(1,+∞)时,f ′(x )>0,f (x )为增函数.答案(-1,+∞)解析设m(x)=f(x)-(2x+4),∵m′(x)=f′(x)-2>0,∴m(x)在R上是增函数.∵m(-1)=f(-1)-(-2+4)=0,∴m(x)>0的解集为{x|x>-1},即f(x)>2x+4的解集为(-1,+∞).考点一利用导数研究函数的单调性例1已知函数f(x)=e x-ax-1.(1)求f(x)的单调增区间;(2)是否存在a,使f(x)在(-2,3)上为减函数,若存在,求出a的取值范围,若不存在,请说明理由.思维点拨函数的单调性和函数中的参数有关,要注意对参数的讨论.解f′(x)=e x-a,(1)若a≤0,则f′(x)=e x-a≥0,即f(x)在R上单调递增,若a>0,令e x-a≥0,则e x≥a,x≥ln a.因此当a≤0时,f(x)的单调增区间为R,当a>0时,f(x)的单调增区间为[ln a,+∞).(2)∵f′(x)=e x-a≤0在(-2,3)上恒成立.∴a≥e x在x∈(-2,3)上恒成立.∴e-2<e x<e3,只需a≥e3.当a=e3时,f′(x)=e x-e3<0在x∈(-2,3)上恒成立,即f(x)在(-2,3)上为减函数,∴a≥e3.故存在实数a ≥e 3,使f (x )在(-2,3)上为减函数. 思维升华 (1)利用导数的符号来判断函数的单调性;(2)已知函数的单调性求参数范围可以转化为不等式恒成立问题;(3)f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )不恒为零.应注意此时式子中的等号不能省略,否则漏解. 考点二 利用导数求函数的极值 例2设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围. 解 对f (x )求导得f ′(x )=e x ·1+ax 2-2ax(1+ax 2)2.①(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0,解得x 1=32,x 2=12.结合①,可知所以x 1=32是极小值点,x 2=12是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0,知ax 2-2ax +1≥0在R 上恒成立,即Δ=4a 2-4a =4a (a -1)≤0,由此并结合a >0,知0<a ≤1.所以a 的取值范围为{a |0<a ≤1}.(2014·福建三 利用导数求函数的最值例3已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.71828…为自然对数的底数. 设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值.解 由f (x )=e x -ax 2-bx -1, 有g (x )=f ′(x )=e x -2ax -b . 所以g ′(x )=e x -2a .因此,当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ]. 当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ; 当12<a <e2时,令g ′(x )=0得x =ln(2a )∈(0,1), 所以函数g (x )在区间[0,ln(2a )]上单调递减, 在区间[ln(2a ),1]上单调递增. 于是,g (x )在[0,1]上的最小值是 g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是 g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .思维升华 (1)求解函数的最值时,要先求函数y =f (x )在(a ,b )内所有使f ′(x )=0的点,再计算(2)可以利用列表法研究函数在一个区间上的变化情况.变式已知函数f(x)=(x-k)e x.(1)求f(x)的单调区间;(2)求f(x)在区间[0,1]上的最小值.解(1)由题意知f′(x)=(x-k+1)e x.令f′(x)=0,得x=k-1.f(x)与f′(x)的情况如下:所以,f(x)的单调递减区间是(-∞,k-1);单调递增区间是(k-1,+∞).(2)当k-1≤0,即k≤1时,f(x)在[0,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(0)=-k;当0<k-1<1,即1<k<2时,f(x)在[0,k-1]上单调递减,在[k-1,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(k-1)=-e k-1;当k-1≥1,即k≥2时,f(x)在[0,1]上单调递减,所以f(x)在区间[0,1]上的最小值为f(1)=(1-k)e.综上,当k≤1时,f(x)在[0,1]上的最小值为f(0)=-k;当1<k<2时,f(x)在[0,1]上的最小值为f(k-1)=-e k-1;当k≥2时,f(x)在[0,1]上的最小值为f(1)=(1-k)e.例4:已知函数f(x)=ln x-ax (a∈R).(2)当a >0时,求函数f (x )在[1,2]上的最小值.思维点拨 (1)已知函数解析式求单调区间,实质上是求f ′(x )>0,f ′(x )<0的解区间,并注意定义域.(2)先研究f (x )在[1,2]上的单调性,再确定最值是端点值还是极值.(3)由于解析式中含有参数a ,要对参数a 进行分类讨论. 规范解答解 (1)f ′(x )=1x-a (x >0),[2分]①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )的单调增区间为(0,+∞).[4分]②当a >0时,令f ′(x )=1x -a =0,可得x =1a ,当0<x <1a 时,f ′(x )=1-ax x >0;当x >1a 时,f ′(x )=1-ax x <0,故函数f (x )的单调递增区间为⎝⎛⎦⎤0,1a , 单调递减区间为⎣⎡⎭⎫1a ,+∞.[6分] (2)①当1a ≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,所以f (x )的最小值是f (2)=ln2-2a .[8分]②当1a ≥2,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )的最小值是f (1)=-a .[10分]③当1<1a <2,即12<a <1时,函数f (x )在⎣⎡⎦⎤1,1a 上是增函数,在⎣⎡⎦⎤1a ,2上是减函数.[12分] 又f (2)-f (1)=ln2-a ,所以当12<a <ln2时,最小值是f (1)=-a ;当ln2≤a <1时,最小值为f (2)=ln2-2a .[14分] 综上可知,当0<a <ln2时,函数f (x )的最小值是-a ;当a ≥ln2时,函数f (x )的最小值是ln2-2a .[16分]1.函数f (x )=e x -x 的单调递增区间是________. 解析:∵f (x )=e x -x ,∴f ′(x )=e x -1, 由f ′(x )>0,得e x -1>0,即x >0. 答案:(0,+∞)2.(2014·扬州期末)已知函数f (x )=ln x -mx (m ∈R )在区间[1,e]上取得最小值4,则m =________.解析:因为f (x )在区间[1,e]上取得最小值4,所以至少满足f (1)≥4,f (e)≥4,解得m ≤-3e.又f ′(x )=x +mx 2,且x ∈[1,e],所以f ′(x )<0, 即f (x )在[1,e]上单调递减,所以f (x )min =f (e)=1-me=4,即m =-3e. 答案:-3e3.若函数f (x )=x 3+x 2+mx +1是R 上的单调增函数,则m 的取值范围是________. 解析:∵f (x )=x 3+x 2+mx +1, ∴f ′(x )=3x 2+2x +m .又∵f (x )在R 上是单调增函数, ∴Δ=4-12 m ≤0,即m ≥13.答案:⎣⎡⎭⎫13,+∞ 4.(创新题)已知函数f (x )=x 3+ax 2-x +c ,且a =f ′⎝⎛⎭⎫23. (1)求a 的值;(2)求函数f (x )的单调区间;(3)设函数g (x )=(f (x )-x 3)·e x ,若函数g (x )在x ∈[-3,2]上单调递增,求实数c 的取值范围. 解:(1)由f (x )=x 3+ax 2-x +c , 得f ′(x )=3x 2+2ax -1.当x =23时,得a =f ′⎝⎛⎭⎫23=3×⎝⎛⎭⎫232+2a ×⎝⎛⎭⎫23-1,解之,得a =-1.(2)由(1)可知f (x )=x 3-x 2-x +c . 则f ′(x )=3x 2-2x -1=3⎝⎛⎭⎫x +13(x -1), 列表如下:所以f (x )的单调递增区间是⎝⎛⎭⎫-∞,-13和(1,+∞); f (x )的单调递减区间是⎝⎛⎭⎫-13,1. (3)函数g (x )=(f (x )-x 3)·e x =(-x 2-x +c )·e x有g ′(x )=(-2x -1)e x +(-x 2-x +c )e x =(-x 2-3x +c -1)e x ,因为函数g (x )在x ∈[-3,2]上单调递增,所以h (x )=-x 2-3x +c -1≥0在x ∈[-3,2]上恒成立. 只要h (2)≥0,解得c ≥11,所以c 的取值范围是[11,+∞). 作业1.函数y =(3-x 2)e x 的单调递增区间是________. 答案 (-3,1)解析 y ′=-2x e x +(3-x 2)e x =e x (-x 2-2x +3), 由y ′>0⇒x 2+2x -3<0⇒-3<x <1,故函数y =(3-x 2)e x 的单调递增区间是(-3,1).2.若函数f (x )=x 2+ax +1在x =1处取得极值,则a =________.答案 3解析 因为f ′(x )=2x (x +1)-(x 2+a )(x +1)2,因为函数f (x )在x =1处取得极大值,所以f ′(1)=3-a4=0,所以a =3.3.设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是________.答案 1<a ≤2解析 ∵f (x )=12x 2-9ln x ,∴f ′(x )=x -9x(x >0),当x -9x ≤0时,有0<x ≤3,即在(0,3]上原函数是减函数,∴a -1>0且a +1≤3,解得1<a ≤2.4.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m 、n ∈[-1,1],则f (m )+f ′(n )的最小值是________. 答案 -13解析 对函数f (x )求导得f ′(x )=-3x 2+2ax , 由函数f (x )在x =2处取得极值知f ′(2)=0, 即-3×4+2a ×2=0,∴a =3.由此可得f (x )=-x 3+3x 2-4,f ′(x )=-3x 2+6x , 易知f (x )在[-1,0)上单调递减,在(0,1]上单调递增, ∴当m ∈[-1,1]时,f (m )min =f (0)=-4. 又∵f ′(x )=-3x 2+6x 的图象开口向下, 且对称轴为x =1,∴当n ∈[-1,1]时, f ′(n )min =f ′(-1)=-9. 故f (m )+f ′(n )的最小值为-13.5.函数y =12x 2-ln x 的单调递减区间为________.答案 (0,1]解析 y ′=x -1x =x 2-1x =(x -1)(x +1)x(x >0).令y ′≤0,得0<x ≤1.∴函数的单调递减区间为(0,1].6.已知函数f (x )=1x +ln x ,求函数f (x )的极值和单调区间.解 因为f ′(x )=-1x 2+1x =x -1x2,令f ′(x )=0,得x =1,又f (x )的定义域为(0,+∞), f ′(x ),f (x )随x 的变化情况如下表:所以x =1时,f (x )的极小值为1,无极大值. f (x )的单调递增区间为(1,+∞), 单调递减区间为(0,1).7.函数f (x )的定义域是R ,f (0)=2,对任意的x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集是________. 答案 {x |x >0}解析 构造函数g (x )=e x ·f (x )-e x -1,求导得到g ′(x )=e x ·f (x )+e x ·f ′(x )-e x =e x [f (x )+f ′(x )-1]. 由已知f (x )+f ′(x )>1,可得到g ′(x )>0, 所以g (x )为R 上的增函数; 又g (0)=e 0·f (0)-e 0-1=0, 所以e x ·f (x )>e x +1, 即g (x )>0的解集为{x |x >0}.8.设函数f (x )=12x 2+e x -x e x .(1)求f (x )的单调区间;(2)若x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.解 (1)函数f (x )的定义域为(-∞,+∞),f ′(x )=x +e x -(e x +x e x )=x (1-e x ). 若x <0,则1-e x >0,∴f ′(x )<0; 若x >0,则1-e x <0,∴f ′(x )<0; 若x =0,则f ′(x )=0.∴f (x )在(-∞,+∞)上为减函数, 即f (x )的单调减区间为(-∞,+∞). (2)由(1)知f (x )在[-2,2]上单调递减, ∴[f (x )]min =f (2)=2-e 2.∴当m <2-e 2时,不等式f (x )>m 恒成立. 即实数m 的取值范围为(-∞,2-e 2).)9.(2013·福建)已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.解 函数f (x )的定义域为(0,+∞),f ′(x )=1-a x .(1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x (x >0),因而f (1)=1,f ′(1)=-1,所以曲线y =f (x )在点A (1,f (1))处的切线方程为 y -1=-(x -1), 即x +y -2=0.(2)由f ′(x )=1-a x =x -ax,x >0知:①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; ②当a >0时,由f ′(x )=0,解得x =a . 又当x ∈(0,a )时,f ′(x )<0, 当x ∈(a ,+∞)时,f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值. 综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值.10.(2014·山东)设函数f (x )=e x x 2-k (2x +ln x )(k 为常数,e =2.71828…是自然对数的底数).(1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围. 解 (1)函数y =f (x )的定义域为(0,+∞). f ′(x )=x 2e x -2x e x x 4-k (-2x 2+1x ) =x e x -2e x x 3-k (x -2)x 2=(x -2)(e x -kx )x 3.由k ≤0可得e x -kx >0,所以当x ∈(0,2)时,f ′(x )<0,函数y =f (x )单调递减; 当x ∈(2,+∞)时,f ′(x )>0,函数y =f (x )单调递增. 所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞). (2)由(1)知,k ≤0时,函数f (x )在(0,2)内单调递减, 故f (x )在(0,2)内不存在极值点;当k >0时,设函数g (x )=e x -kx ,x ∈(0,+∞). 所以g ′(x )=e x -k =e x -e ln k ,当0<k ≤1时,当x ∈(0,2)时,g ′(x )=e x -k >0,y =g (x )单调递增. 故f (x )在(0,2)内不存在两个极值点. 当k >1时,得x ∈(0,ln k )时,g ′(x )<0,函数y =g (x )单调递减; x ∈(ln k ,+∞)时,g ′(x )>0,函数y =g (x )单调递增. 所以函数y =g (x )的最小值为g (ln k )=k (1-ln k ). 函数f (x )在(0,2)内存在两个极值点,当且仅当⎩⎪⎨⎪⎧g (0)>0,g (ln k )<0,g (2)>0,0<ln k <2.解得e<k <e 22.。

2020高考数学(理数)题海集训35函数的单调性与导数(30题含答案)

2020高考数学(理数)题海集训35函数的单调性与导数(30题含答案)

答案解析
1. 答案为: A. 解析:函数的定义域是
1 x-1 (0 ,+∞ ) ,且 f ′(x) =1- x= x ,
令 f ′(x) < 0,解得 0<x< 1,所以函数 f(x) 的单调递减区间是
(0 , 1) .
2. 答案为: B; 解析: B 中, y ′ =(xe x) ′ =ex+ xex=ex(x + 1)>0 在 (0 ,+∞ ) 上恒成立,∴ y=xex 在 (0 ,+∞ )
10. 答案为: D. 解析:不妨设导函数 y=f ′(x) 的零点依次为 x 1, x 2, x 3,其中 x1< 0<x 2< x 3, 由导函数图象可知, y=f(x) 在 (- ∞, x 1) 上为减函数,在 (x 1, x 2) 上为增函数, 在 (x 2, x 3) 上为减函数,在 (x 3,+∞ ) 上为增函数,从而排除 A, C. y=f(x) 在 x=x 1,x=x3 处取到极小值,在 x=x 2 处取到极大值,又 x2> 0,排除 B,故选 D.
上为增函数 .
对于 A、 C、 D 都存在 x>0,使 y′<0 的情况 .
3. 答案为: B;
解析:由题意知,函数的定义域为
1 (0 ,+∞ ) ,由 y′=x- ≤0,得 0<x≤1,
x
所以函数的单调递减区间为 (0,1] .
4. 答案为: B; 解析:∵ f(x)=x 3-ax ,∴ f ′(x) =3x2-a. 又 f(x) 在 (-1,1) 上单调递减, ∴ 3x2- a≤0在 (-1,1) 上恒成立,∴ a≥3,故选 B.
函数 f(x) 的单调递增区间是 ( )
A. (-1 , 1) , (3 ,+∞ )
B . (- ∞, -1) , (1 , 3)

高中数学选择性必修二 5 3 1函数的单调性(含答案)同步培优专练

高中数学选择性必修二 5 3 1函数的单调性(含答案)同步培优专练

专题5.3.1 函数的单调性知识储备1.函数的单调性与导数的关系 函数y =f (x )在区间(a ,b )内可导,(1)若f ′(x )>0,则f (x )在区间(a ,b )内是单调递增函数; (2)若f ′(x )<0,则f (x )在区间(a ,b )内是单调递减函数; (3)若恒有f ′(x )=0,则f (x )在区间(a ,b )内是常数函数.讨论函数的单调性或求函数的单调区间的实质是解不等式,求解时,要坚持“定义域优先”原则.2.常用结论汇总——规律多一点(1)在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件.(2)可导函数f (x )在(a ,b )上是增(减)函数的充要条件是对∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0)且f ′(x )在(a ,b )上的任何子区间内都不恒为零.能力检测注意事项:本试卷满分100分,考试时间45分钟,试题共16题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一、单选题1.(2020·全国高二课时练习)设函数()f x 的图象如图所示,则导函数()f x 的图象可能为( )A .B .C .D .【答案】C【解析】∵()f x 在(,1)-∞,(4,)+∞上为减函数,在(1,4)上为增函数, ∴当1x <或4x >时,()0f x '<;当14x <<时,()0f x '>.故选:C .2.(2020·全国高二专题练习)设奇函数()f x 在R 上存在导函数()'f x ,且在(0,)+∞上2()f x x '<,若331(1)()(1)3f m f m m m ⎡⎤--≥--⎣⎦,则实数m 的取值范围为( ) A .11,22⎡⎤-⎢⎥⎣⎦B .11,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭C .1,2⎛⎤-∞- ⎥⎝⎦D .1,2⎡⎫+∞⎪⎢⎣⎭【答案】D【解析】331(1)()(1)3f m f m m m ⎡⎤--≥--⎣⎦, 即3311(1)(1)()33f m m f m m ≥----,构造函数31()()3g x f x x =-,由题意知:在(0,)+∞上,2()()0g x f x x '=-<', 故()g x 在(0,)+∞上单调递减,()f x 为奇函数,()()()3311()33g x f x x f x x g x ∴-=-+=-+=-,即()g x 为奇函数, 故()g x 在R 上单调递减,因此原不等式可化为:()()1g m g m -≥,即1m m -≤,解得12m ≥.故选:D .3.(2020·全国高二课时练习)函数()sin 2,()3f x x xf f x π''⎛⎫=+⎪⎝⎭为()f x 的导函数,令31,log 22a b ==,则下列关系正确的是( )A .()()f a f b <B .()()f a f b >C .()()f a f b =D .()()f a f b ≤【答案】B【解析】由题意得,()cos 23f x x f π''⎛⎫=+⎪⎝⎭,cos 2333f f πππ''⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,解得132f π⎛⎫'=-⎪⎝⎭,所以()sin f x x x =-. 所以()cos 10f x x '=-≤,所以()f x 为减函数.因为331log 2log 2b a =>==,所以()()f a f b >,故选:B . 4.(2020·全国高二课时练习)若函数()y f x =的导函数()y f x '=的图象如图所示,则函数()y f x =的图象可能是( )A .B .C .D .【答案】D【解析】设导函数()y f x '=的图象与x 轴交点的横坐标从左到右依次为123,,x x x ,其中1320,0x x x <>>,故()y f x =在()1,x -∞上单调递减,在()12,x x 上单调递增,在()23,x x 上单调递减,在()3,x +∞单调递增.故选:D .5.(2020·全国高二课时练习)若函数()()3230,f x ax x x b a b =+++>∈R 恰好有三个不同的单调区间,则实数a 的取值范围是( ) A .()()0,33,+∞ B .[)3,+∞ C .(]0,3 D .()0,3【答案】D【解析】由题意得()()23610f x ax x a '=++>,函数()f x 恰好有三个不同的单调区间,()f x '∴有两个不同的零点,所以,361200a a ∆=->⎧⎨>⎩,解得0<<3a .因此,实数a 的取值范围是()0,3.故选:D.6.(2020·全国高二课时练习)函数2()ln f x x x =的单调递减区间为( )A .B .⎫+∞⎪⎪⎝⎭C .)+∞D .0,e ⎛ ⎝⎭【答案】D【解析】由题意得,函数()f x 的定义域为(0,)+∞,21()2ln 2ln (2ln 1)f x x x x x x x x x x=⋅+⋅=+=+'.令()0f x '<,得2ln 10x ,解得0x <<,故函数2()ln f x x x =的单调递减区间为0,e ⎛ ⎝⎭.故选:D 7.(2020·江苏南通市·高三期中)设()f x 是定义在R 上的函数,其导函数为()f x ',若()()1f x f x '+>,()02020f =,则不等式()20191x f x e ->+(其中e 为自然对数的底数)的解集为( ) A .()(),00,-∞⋃+∞ B .()(),02019,-∞+∞C .()0,∞+D .()2019,+∞【答案】C【解析】因为()f x 满足()()1f x f x '+>,, 令()()1xg x e f x =-⎡⎤⎣⎦,则()()()10xg x e f x f x ''=+->⎡⎤⎣⎦,所以()g x 在R 上是增函数, 又()02020f =,则()02019g =,不等式()20191xf x e ->+可化为()12019x e f x ->⎡⎤⎣⎦,即()()0g x g >, 所以0x >,所不等式的解集是()0,∞+,故选:C8.(2020·洛阳理工学院附属中学高三月考(理))已知奇函数()f x 的定义域为ππ,22⎛⎫- ⎪⎝⎭,其图象是一段连续不断的曲线,当π02x -<<时,有()()cos sin 0f x x f x x '+>成立,则关于x 的不等式()π2cos 3f x f x ⎛⎫<⎪⎝⎭的解集为( ) A .ππ23⎛⎫-⎪⎝⎭, B .ππ23⎛⎫-- ⎪⎝⎭,C .ππππ2332⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,, D .πππ0332⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,, 【答案】A【解析】设()()cos f x g x x= ,则()()()2cos sin cos f x x f x xg x x'+'=当π02x -<<时,有()()cos sin 0f x x f x x '+>成立,此时()0g x '> 所以()()cos f x g x x=在02π⎛⎫-⎪⎝⎭,上单调递增. 又()f x 为奇函数,则()00f =,则()()cos f x g x x=为奇函数,又()00g =则()()cos f x g x x=在02,上单调递增,所以()g x 在ππ,22⎛⎫-⎪⎝⎭上单调递增.当ππ,22x ⎛⎫∈-⎪⎝⎭,恒有cos 0x >()π2cos 3f x f x ⎛⎫< ⎪⎝⎭可化为()π3πcos cos 3f f x x ⎛⎫⎪⎝⎭<,即()3g x g π⎛⎫< ⎪⎝⎭,由()()cos f x g x x=在ππ,22⎛⎫-⎪⎝⎭上单调递增,所以23x ππ-<<故选:A二、多选题9.(2020·全国高二课时练习)(多选)已知函数()f x 的定义域为R ,其导函数()'f x 的图象如图所示,则对于任意()1212,x x x x ∈≠R ,下列结论正确的是( )A .()()()12120x x f x f x --<⎡⎤⎣⎦B .()()()12120x x f x f x -->⎡⎤⎣⎦C .()()121222f x f x x x f ++⎛⎫>⎪⎝⎭D .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭【答案】AD【解析】由题中图象可知,导函数()'f x 的图象在x 轴下方,即()0f x '<,且其绝对值越来越小,因此过函数()f x 图象上任一点的切线的斜率为负,并且从左到右切线的倾斜角是越来越大的钝角,由此可得()f x 的大致图象如图所示.A 选项表示12x x -与()()12f x f x -异号,即()f x 图象的割线斜率()()1212f x f x x x --为负,故A 正确;B 选项表示12x x -与()()12f x f x -同号,即()f x 图象的割线斜率()()1212f x f x x x --为正,故B 不正确;122x x f +⎛⎫⎪⎝⎭表示122x x +对应的函数值,即图中点B 的纵坐标,()()122f x f x +表示当1x x =和2x x =时所对应的函数值的平均值,即图中点A 的纵坐标,显然有()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭,故C 不正确,D 正确.故选:AD .10.(2020·全国高二课时练习)(多选)如图是函数()y f x =的导函数()'f x 的图象,则下面判断正确的是( )A .()f x 在(3,1)-上是增函数B .()f x 在(1,3)上是减函数C .()f x 在(1,2)上是增函数D .当4x =时,()f x 取得极小值【答案】CD【解析】()'f x 的图象在(3,1)-上先小于0,后大于0,故()f x 在(3,1)-上先减后增,因此A 错误;()'f x 的图象在(1,3)上先大于0,后小于0,故()f x 在(1,3)上先增后减,因此B 错误;由图可知,当(1,2)x ∈时,()0f x '>,所以()f x 在(1,2)上单调递增,因此C 正确;当(2,4)x ∈时,()0f x '<,当(4,5)x ∈时,()0f x '>,所以当4x =时,()f x 取得极小值,因此D 正确.故选:CD .11.(2020·全国高二课时练习)(多选)已知函数2()(ln )f x x x a a =-+,则下列结论正确的是( )A .0,0,()0a x f x ∃>∀>B .0,0,()0a x f x ∃>∃>C .0,0,()0a x f x ∀>∀>D .0,0,()0a x f x ∀>∃>【答案】ABD 【解析】当12a =时,211()ln 22f x x x ⎛⎫=-+ ⎪⎝⎭,函数的定义域为(0,)+∞,211()2ln 2ln 2ln 2f x x x x x x x x x x x ⎛⎫=-+⋅=-+= ⎪⎝'⎭,令()0f x '=,得1x =,当1x >时,()0f x '>,此时函数单调递增, 当01x <<时,()0f x '<,此时函数单调递减,故当1x =时,函数()f x 取得极小值,也是最小值,11(1)022f =-+=, 则0,()(1)0x f x f ∀>=,故选项A 正确; 当5a =时,2()(ln 5)5f x x x =-+, 则22()(ln 5)5450f e e e e =-+=-+<,故0,0,()0a x f x ∃>∃>,故选项B 正确,选项C 错误;因为2(1)1(ln1)0f a a a a =-+=-+=,所以0,10a x ∀>∃=>,使()0f x 成立,因此选项D正确.故选:ABD.12.(2020·广东揭阳市·高三期中)下列函数在其定义域上既是奇函数又是减函数的是( ) A .()2x f x = B .()sin f x x x =- C .()x x f x e e -=- D .()||f x x x =-【答案】BCD【解析】对于A ,()2x f x =既不是奇函数也不是偶函数,且单调递增,故A 错误;对于B ,()f x 的定义域为R ,且()()()()sin sin f x x x x x f x -=-+=--=-,()f x ∴是奇函数,又()cos 10f x x '=-≤恒成立,故()f x 是减函数,故B 正确; 对于C ,()f x 的定义域为R ,且()()xxf x e f x e--=-=-,()f x ∴是奇函数,)0(x x f x e e -'--<=,故()f x 是减函数,故C 正确;对于D ,()f x 的定义域为R ,且()()||||f x x x x x f x -=-==-,()f x ∴是奇函数,又22,0(),0x x f x x x x x ⎧<=-=⎨-≥⎩是减函数,故D 正确.故选:BCD.三、填空题13.(2020·全国高二课时练习)已知函数()f x 与()f x '的图象如图所示,则函数()()xf xg x e =的单调递减区间为___________.【答案】()0,1、()4,+∞【解析】由图象可知,不等式()()0f x f x '-<的解集为()()0,14,+∞,()()x f x g x e =,()()()()()()()2x x x x f x e f x e f x f x g x e e ''-⋅'-==', 由()0g x '<,可得()()0f x f x '-<,解得()()0,14,x ∈+∞.因此,函数()()x f x g x e=的单调递减区间为()0,1、()4,+∞. 故答案为:()0,1、()4,+∞.14.(2020·山西高三期中(理))已知()3216132m f x x x x =-++在()1,1-单调递减,则m 的取值范围为______. 【答案】[]5,5- 【解析】()f x 在()1,1-单调递减,∴2()60f x x mx '=+-≤在()1,1-恒成立,又2()6f x x mx '=+-是开口向上的二次函数,为使()0f x '≤在()1,1-恒成立,只需(1)0(1)0f f ''-≤⎧⎨≤⎩,即160160m m --≤⎧⎨+-≤⎩,则[]5,5m ∈-.故答案为:[]5,5-.15.(2020·全国高二单元测试)设()'f x 是函数()f x 在R 的导函数,对x R ∀∈,2()()f x f x x -+=,且[0x ∀∈,)+∞,()f x x '>.若()()2f a f a --22a -,则实数a 的取值范围为__.【答案】(-∞,1] 【解析】2()()f x f x x -+=,2211()()022f x x f x x ∴-+--=,令21()()2g x f x x =-, 2211()()()()022g x g x f x x f x x -+=--+-=, ∴函数()g x 为奇函数.(0,)x ∈+∞时,()f x x '>.(0,)x ∴∈+∞时,()()0g x f x x '='->,故函数()g x 在(0,)+∞上是增函数, 故函数()g x 在(,0)-∞上也是增函数, 由(0)0f =,可得()g x 在R 上是增函数.()()2f a f a --22a -,等价于()()()2222a f a f a ---22a -,即()()2g a g a -,2a a ∴-,解得1a .故答案为:(-∞,1]. 四、双空题16.(2020·江苏省太湖高级中学高二期中)已知函数()(0)bf x ax b x=+>的图象在点()()1,1P f 处的切线与直线210x y +-=垂直,则a 与b 的关系为_______(用b 表示),若函数()y f x =在区间1[,)2+∞上单调递增,则b 的最大值等于______. 【答案】2b + 23【解析】由题意,函数()(0)b f x ax b x=+>,可得2()b f x a x '=-,所以(1)f a b '=-, 即函数()f x 的图象在点()()1,1P f 处的切线的斜率为k a b =-又由函数()f x 的图象在点()()1,1P f 处的切线与直线210x y +-=垂直, 所以()1()12a b -⨯-=-,可得2a b -=,即a 与b 的关系为2a b -=;又由函数()y f x =在区间1[,)2+∞上单调递增, 可得2()0b f x a x '=-≥在区间1[,)2+∞上恒成立, 即22b b x +≥在区间1[,)2+∞上恒成立,整理得22b x b ≤+在区间1[,)2+∞上恒成立, 又由2min 1()4x =,所以124b b ≤+,解得203b <≤, 所以b 的最大值等于23.故答案为:2a b -=,23.。

高二数学利用导数研究函数的单调性试题答案及解析

高二数学利用导数研究函数的单调性试题答案及解析

高二数学利用导数研究函数的单调性试题答案及解析1.已知(1)如果函数的单调递减区间为,求函数的解析式;(2)对一切的,恒成立,求实数的取值范围.【答案】(1);(2).【解析】(1)三个二次间的关系,其实质是抓住二次函数的图像与横坐标的交点、二次不等式解集的端点值、二次方程的根是同一个问题.解决与之相关的问题时,可利用函数与方程的思想、化归的思想将问题转化,结合二次函数的图象来解决;(2)若可导函数在指定的区间上单调递增(减),求参数问题,可转化为恒成立,从而构建不等式,要注意“=”是否可以取到;(3)(3)对于恒成立的问题,常用到两个结论:(1)(2)试题解析:解:(1)由题意的解集是即的两根分别是.将或代入方程得..……4分(2)由题意:在上恒成立即可得设,则令,得(舍)当时,;当时,当时,取得最大值, =-2.的取值范围是.【考点】(1)利用函数的单调性求函数解析式;(2)利用导数解决横成立的问题.2.函数的单调递增区间是().A.B.C.D.【答案】C【解析】,;令,得,即函数的单调递增区间是.【考点】利用导数研究函数的单调性.3.已知为定义在(0,+∞)上的可导函数,且恒成立,则不等式的解集为.【答案】【解析】因为为定义在(0,+∞)上的可导函数,且恒成立,所以在上恒成立,即在上为减函数;可化为,所以,解得.【考点】解抽象不等式.4.已知函数f(x)是偶函数,在上导数>0恒成立,则下列不等式成立的是( ).A.f(-3)<f(-1)<f(2)B.f(-1)<f(2)<f(-3)C.f(2)<f(-3)<f(-1)D.f(2)<f(-1)<f(-3)【答案】B【解析】因为函数在上,所以函数在上为增函数;又因为为偶函数,所以,,所以,即.【考点】函数的奇偶性.5.函数有极值点,则的取值范围是()A.B.C.D.【答案】D【解析】∵函数有极值点,∴f(x)的导数 f′(x)=x2-2x+a=0有两个实数根,∴,故选D.【考点】函数存在极值的条件.6.若定义在R上的函数f(x)的导函数为,且满足,则与的大小关系为().A.<B.=C.>D.不能确定【答案】C【解析】构造函数,则,因为,所以;即函数在上为增函数,则,即.【考点】利用导数研究函数的单调性.7.函数是定义在上的奇函数,且.(1)求函数的解析式;(2)证明函数在上是增函数;(3)解不等式:.【答案】(1)(2)证明见解析(3)【解析】(1)(由是定义在上的奇函数,利用可求得,再由可求得,即可求得;(2)由(1)可得,即得函数在上是增函数;(3)由,再利用为奇函数,可得,即可求得结果.试题解析:(1)是定义在上的奇函数,;又,,;(2),,即,∴函数在上是增函数.(3),又是奇函数,,在上是增函数,,解得,即不等式的解集为.【考点】函数的奇偶性;利用导数判断函数单调性.8.已知定义域为R的函数,且对任意实数x,总有/(x)<3则不等式<3x-15的解集为()A.(﹣∞,4)B.(﹣∞,﹣4)C.(﹣∞,﹣4)∪(4,﹢∞)D.(4,﹢∞)【答案】【解析】设,则所求的不等式解集可理解为使的解集.的导函数为,根据题意可知对任意实数恒成立,所以在上单调递减.则,令,则根据单调递减可知:.【考点】导数法判断单调性;根据单调性解不等式.9.在区间内不是增函数的是()A.B.C.D.【答案】D【解析】选项中,时都有,所以在上为单调递增函数,所以在是增函数;选项在,而在上为增函数,所以在是增函数;选项,令得或,所以在为增函数,而,所以在上增函数;选项,令,得。

2020人教版高二数学下学期重点练专题03 函数的单调性与导数(含答案解析)

2020人教版高二数学下学期重点练专题03 函数的单调性与导数(含答案解析)

1.若函数y =f ′(x )在区间(x 1,x 2)内是单调递减函数,则函数y =f (x )在区间(x 1,x 2)内的图象可以是( )【答案】B【解析】选项A 中,f ′(x )>0且为常数函数;选项C 中,f ′(x )>0且f ′(x )在(x 1,x 2)内单调递增;选项D 中,f ′(x )>0且f ′(x )在(x 1,x 2)内先增后减.故选B.2.函数f (x )=2x 2-ln x 的递增区间是( )A.⎝⎛⎭⎫0,12 B.⎝⎛⎭⎫-12,0和⎝⎛⎭⎫12,+∞ C.⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫-∞,-12和⎝⎛⎭⎫0,12 【答案】C【解析】由题意得,函数的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x =(2x +1)(2x -1)x,令f ′(x )=(2x +1)(2x -1)x >0,解得x >12,故函数f (x )=2x 2-ln x 的递增区间是⎝⎛⎭⎫12,+∞.故选C. 3.函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2.则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)【答案】B【解析】构造函数g (x )=f (x )-(2x +4),则g (-1)=2-(-2+4)=0,又f ′(x )>2.∴g ′(x )=f ′(x )-2>0,∴g (x )是R 上的增函数.∴f (x )>2x +4⇔g (x )>0⇔g (x )>g (-1),∴x >-1.4.若函数f (x )=x -a x 在[1,4]上单调递减,则实数a 的最小值为( )A .1B .2C .4D .5【答案】C【解析】函数f (x )=x -a x 在[1,4]上单调递减,只需f ′(x )≤0在[1,4]上恒成立即可,令f ′(x )=1-12ax -12≤0,解得a ≥2x ,则a ≥4.∴a min =4. 5.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时有专题03 函数的单调性与导数 第一章 导数及其应用( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )【答案】C 【解析】因为⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )g 2(x ).又因为f ′(x )g (x )-f (x )g ′(x )<0,所以f (x )g (x )在R 上为减函数.又因为a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ),又因为f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ).因此选C. 6.若函数e x f (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( )A .f (x )=2-xB .f (x )=x 2C .f (x )=3-xD .f (x )=cos x【答案】A【解析】对于选项A ,f (x )=2-x =⎝⎛⎭⎫12x ,则e x f (x )=e x ·⎝⎛⎭⎫12x =⎝⎛⎭⎫e 2x ,∵e 2>1,∴e x f (x )在R 上单调递增,∴f (x )=2-x 具有M 性质.对于选项B ,f (x )=x 2,e x f (x )=e x x 2,[e x f (x )]′=e x (x 2+2x ),令e x (x 2+2x )>0,得x >0或x <-2; 令e x (x 2+2x )<0,得-2<x <0,∴函数e x f (x )在(-∞,-2)和(0,+∞)上单调递增,在(-2,0)上单调递减,∴f (x )=x 2不具有M 性质.对于选项C ,f (x )=3-x =⎝⎛⎭⎫13x ,则e x f (x )=e x ·⎝⎛⎭⎫13x =⎝⎛⎭⎫e 3x ,∵e 3<1,∴y =⎝⎛⎭⎫e 3x 在R 上单调递减,∴f (x )=3-x 不具有M 性质.对于选项D ,f (x )=cos x ,e x f (x )=e x cos x ,则[e x f (x )]′=e x (cos x -sin x )≥0在R 上不恒成立,故e x f (x )=e x cos x 在R 上不是单调递增的,∴f (x )=cos x 不具有M 性质.故选A.7.如图所示的是函数y =f (x )的导函数y =f ′(x )的图象,则在[-2,5]上函数f (x )的递增区间为________.【答案】(-1,2)和(4,5]【解析】因为在(-1,2)和(4,5]上f ′(x )>0,所以f (x )在[-2,5]上的单调递增区间为(-1,2)和(4,5].8.若函数y =-43x 3+bx 有三个单调区间,则b 的取值范围是__________. 【答案】(0,+∞)【解析】若函数y =-43x 3+bx 有三个单调区间,则y ′=-4x 2+b =0有两个不相等的实数根,所以b >0.9.若函数f (x )=2x 2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.【答案】⎣⎡⎭⎫1,32 【解析】显然函数f (x )的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x.由f ′(x )>0,得函数f (x )的单调递增区间为⎝⎛⎭⎫12,+∞;由f ′(x )<0,得函数f (x )单调递减区间为⎝⎛⎭⎫0,12.因为函数在区间(k -1,k +1)上不是单调函数,所以k -1<12<k +1,解得-12<k <32,又因为(k -1,k +1)为定义域内的一个子区间,所以k -1≥0,即k ≥1.综上可知,1≤k <32. 10.(1)已知函数f (x )=ax e kx -1,g (x )=ln x +kx .当a =1时,若f (x )在(1,+∞)上为减函数,g (x )在(0,1)上为增函数,求实数k 的值;(2)已知函数f (x )=x +a x-2ln x ,a ∈R ,讨论函数f (x )的单调区间. 【解析】(1)当a =1时,f (x )=x e kx -1,∴f ′(x )=(kx +1)e kx ,g ′(x )=1x+k . ∵f (x )在(1,+∞)上为减函数, 则∀x >1,f ′(x )≤0⇔k ≤-1x, ∴k ≤-1.∵g (x )在(0,1)上为增函数,则∀x ∈(0,1),g ′(x )≥0⇔k ≥-1x, ∴k ≥-1.综上所述,k =-1.(2)函数f (x )的定义域为(0,+∞),∴f ′(x )=1-a x 2-2x =x 2-2x -a x 2. ①当Δ=4+4a ≤0,即a ≤-1时,得x 2-2x -a ≥0,则f ′(x )≥0.∴函数f (x )在(0,+∞)上单调递增.②当Δ=4+4a >0,即a >-1时,令f ′(x )=0,得x 2-2x -a =0,解得x 1=1-1+a ,x 2=1+1+a >0.(ⅰ)若-1<a ≤0,则x 1=1-1+a ≥0,∵x ∈(0,+∞),∴f (x )在(0,1-1+a ),(1+1+a ,+∞)上单调递增,在(1-1+a ,1+1+a )上单调递减.(ⅱ)若a >0,则x 1<0,当x ∈(0,1+1+a )时,f ′(x )<0,当x ∈(1+1+a ,+∞)时,f ′(x )>0,∴函数f (x )在区间(0,1+1+a )上单调递减,在区间(1+1+a ,+∞)上单调递增.。

高中数学 2-2导数与函数的单调性练习(一) 试题

高中数学 2-2导数与函数的单调性练习(一) 试题

某某省毫州市蒙城县坛城镇芮集高中数学 2-2导数与函数的单调性练习(一)1.若函数y =f(x)在R 上可导,且满足不等式xf ′(x)>-f(x)恒成立,且常数a ,b 满足a>b ,则下列不等式一定成立的是________.①af(b)>bf(a); ②af(a)>bf(b); ③af(a)<bf(b); ④af(b)<bf(a)2.函数f(x)的定义域为(0,π2),f ′(x)是它的导函数,且f(x)<f ′(x)tan x 恒成立,则下列结论正确的是________. ①3f(π4)>2f(π3); ②f(1)<2f(π6)sin 1; ③2f(π6)>f(π4); ④3f(π6)<f(π3).3.函数f(x)在定义域R 内可导,若f(x)=f(2-x),且当x ∈(-∞,1)时,(x -1)f′(x)<0,设a =f(0),b =f ⎝⎛⎭⎫12,c =f(3),则( )A .a<b<cB .c<b<aC .c<a<bD .b<c<a4.若函数f(x)=x2+ax +1x 在⎝⎛⎭⎫12,+∞上是增函数,则a 的取值X 围是( ) A .[-1,0] B .[-1,+∞)C .[0,3] D .[3,+∞)5.已知函数f(x)=x2+mx +ln x 是单调递增函数,则m 的取值X 围是________.6.若函数f(x)=13x3-32x2+ax +4恰在[-1,4]上单调递减,则实数a 的值为________. 7.已知函数f(x)=ln x +k ex(k 为常数,e 是自然对数的底数),曲线y =f(x)在点(1,f(1))处的切线与x 轴平行.(1)求k 的值;(2)求f(x)的单调区间.8.函数f(x)=ax3+3x2+3x(a ≠0).(1)讨论f(x)的单调性;(2)若f(x)在区间(1,2)是增函数,求a 的取值X 围.9.已知a∈R,函数f(x)=(-x2+ax)ex(x∈R,e为自然对数的底数).(1)当a=2时,求函数f(x)的单调递增区间;(2)函数f(x)是否为R上的单调函数?若是,求出a的取值X围;若不是,请说明理由.10.已知函数f(x)=ax+x2-xln a-b(a,b∈R,a>1),e是自然对数的底数.(1)试判断函数f(x)在区间(0,+∞)上的单调性;(2)当a=e,b=4时,求整数k的值,使得函数f(x)在区间(k,k+1)上存在零点.11.已知函数f(x)=ln x+mx2(m∈R).(1)求函数f(x)的单调区间;(2)若A,B是函数f(x)图像上不同的两点,且直线AB的斜率恒大于1,某某数m的取值X 围.1.答案 ②解析 令F(x)=xf(x),则F ′(x)=xf ′(x)+f(x),由xf ′(x)>-f(x),得xf ′(x)+f(x)>0 即F ′(x)>0,所以F(x)在R 上为递增函数.因为a>b ,所以af(a)>bf(b).2.答案 ④解析 f(x)<f ′(x)tan x ⇔f(x)cos x<f ′(x)sin x ,构造函数g(x)=f(x)sin x, 则g ′(x)=f ′(x)sin x -f(x)cos x sin2x, 根据已知f(x)cos x<f ′(x)sin x ,5.答案 [-22,+∞)解析 依题意知,x>0,f ′(x)=2x2+mx +1x, 令g(x)=2x2+mx +1,x ∈(0,+∞),当-m 4≤0时,g(0)=1>0恒成立,∴m ≥0成立, 当-m 4>0时,则Δ=m2-8≤0,∴-22≤m<0, 综上,m 的取值X 围是m ≥-2 2. 6.解析:∵f(x)=13x3-32x2+ax +4, ∴f′(x)=x2-3x +a ,又函数f(x)恰在[-1,4]上单调递减,∴-1,4是f′(x)=0的两根,∴a =(-1)×4=-4.7.解:(1)由题意得f′(x)=1x -ln x -k ex 又f′(1)=1-k e =0,故k =1.(2)由(1)知,f′(x)=1x -ln x -1ex.设h(x)=1x -ln x -1(x>0),则h′(x)=-1x2-1x<0,即h(x)在(0,+∞)上是减函数.由h(1)=0知,当0<x<1时,h(x)>0,从而f′(x)>0;当x>1时,h(x)<0,从而f′(x)<0. 综上可知,f(x)的单调递增区间是(0,1),单调递减区间是(1,+∞).8.解 (1)f ′(x)=3ax2+6x +3,f ′(x)=0的判别式Δ=36(1-a).①若a ≥1,则f ′(x)≥0,且f ′(x)=0当且仅当a =1,x =-1,故此时f(x)在R 上是增函数. ②由于a ≠0,故当a<1时,f ′(x)=0有两个根x1=-1+1-a a ,x2=-1-1-a a. 若0<a<1,则当x ∈(-∞,x2)或x ∈(x1,+∞)时,f ′(x)>0,故f(x)分别在(-∞,x2),(x1,+∞)是增函数;当x ∈(x2,x1)时,f ′(x)<0,故f(x)在(x2,x1)是减函数;若a<0,则当x ∈(-∞,x1)或x ∈(x2,+∞)时,f ′(x)<0,故f(x)分别在(-∞,x1),(x2,+∞)是减函数;当x ∈(x1,x2)时,f ′(x)>0,故f(x)在(x1,x2)是增函数.(2)当a>0,x>0时,f ′(x)=3ax2+6x +3>0,故当a>0时,f(x)在区间(1,2)是增函数.当a<0时,f(x)在区间(1,2)是增函数当且仅当f ′(1)≥0且f ′(2)≥0,解得-54≤a<0. 综上,a 的取值X 围是[-54,0)∪(0,+∞).9.解:(1)当a =2时,f(x)=(-x2+2x)ex ,∴f′(x)=(-2x +2)ex +(-x2+2x)ex =(-x2+2)ex.令f′(x)>0,即(-x2+2)ex>0, ∵ex>0,∴-x2+2>0,解得-2<x<2, ∴函数f(x)的单调递增区间是(-2,2).(2)若函数f(x)在R 上单调递减,则f′(x)≤0对任意x ∈R 都成立.即[-x2+(a -2)x +a]ex≤0对任意x ∈R 都成立.∵ex>0,∴x2-(a -2)x -a≥0对任意x ∈R 都成立.∴Δ=(a -2)2+4a≤0,即a2+4≤0,这是不可能的.故函数f(x)不可能在R 上单调递减.若函数f(x)在R 上单调递增,则f′(x)≥0对任意x ∈R 都成立,即[-x2+(a -2)x +a]ex≥0对任意x ∈R 都成立.∵ex>0,∴x2-(a -2)x -a≤0对任意x ∈R 都成立.而Δ=(a -2)2+4a =a2+4>0, 故函数f(x)不可能在R 上单调递增.综上可知函数f(x)不是R 上的单调函数.10.解:(1)f′(x)=axln a +2x -ln a =2x +(ax -1)ln a.∵a>1,∴当x ∈(0,+∞)时, ln a>0,ax -1>0,∴f′(x)>0,∴函数f(x)在(0,+∞)上单调递增.(2)∵f(x)=ex +x2-x -4,∴f′(x)=ex +2x -1,∴f′(0)=0,当x>0时,ex>1,∴f′(x)>0,∴f(x)是(0,+∞)上的增函数;同理,f(x)是(-∞,0)上的减函数.又f(0)=-3<0,f(1)=e -4<0,f(2)=e2-2>0,当x>2时,f(x)>0,∴当x>0时,函数f(x)的零点在(1,2)内,∴k =1满足条件;f(0)=-3<0,f(-1)=1e -2<0,f(-2)=1e2+2>0, 当x<-2时,f(x)>0,∴当x<0时,函数f(x)的零点在(-2,-1)内,∴k =-2满足条件.综上所述,k =1或-2.11.解:(1)f(x)的定义域为(0,+∞),。

高中数学必修1函数单调性和奇偶性专项练习(含答案)

高中数学必修1函数单调性和奇偶性专项练习(含答案)

高中数学必修1函数单调性和奇偶性专项练习(含答案)高中数学必修1 第二章函数单调性和奇偶性专项练一、函数单调性相关练题1、(1)函数f(x)=x-2,x∈{1,2,4}的最大值为3.在区间[1,5]上的最大值为9,最小值为-1.2、利用单调性的定义证明函数f(x)=(2/x)在(-∞,0)上是减函数。

证明:对于x1<x2.由于x1和x2都小于0,所以有x1<x2<0,因此有f(x2)-f(x1)=2/x1-2/x2=2(x2-x1)/x1x2<0.因此,f(x)在(-∞,0)上是减函数.3、函数f(x)=|x|+1的图像是一条V型曲线,单调区间为(-∞,0]和[0,∞).4、函数y=-x+2的图像是一条斜率为-1的直线,单调区间为(-∞,+∞).5、已知二次函数y=f(x)(x∈R)的图像是一条开口向下且对称轴为x=3的抛物线,比较大小:(1)f(6)与f(4);(2)f(2)与f(15).1) 因为f(x)是开口向下的抛物线,所以对于x>3,f(x)是减函数,对于x<3,f(x)是增函数。

因此,f(6)<f(4).2) 因为f(x)是开口向下的抛物线,所以对于x3,f(x)是增函数。

因此,f(2)>f(15).6、已知y=f(x)在定义域(-1,1)上是减函数,且f(1-a)<f(3a-2),求实数a的取值范围.因为f(x)在(-1,1)上是减函数,所以对于0f(3a-2)。

因此,实数a的取值范围为0<a<1.7、求下列函数的增区间与减区间:1) y=|x^2+2x-3|的图像是一条开口向上的抛物线,单调区间为(-∞,-3]和[1,+∞).2) y=1-|x-1|的图像是一条V型曲线,单调区间为(-∞,1]和[1,+∞).3) y=-x^2-2x+3的图像是一条开口向下的抛物线,单调区间为(-∞,-1]和[1,+∞).4) y=1/(x^2-x-20)的图像是一条双曲线,单调区间为(-∞,-4]和[-1,1]和[5,+∞).8、函数f(x)=ax^2-(3a-1)x+a^2在[1,+∞)上是增函数,求实数a的取值范围.因为f(x)在[1,+∞)上是增函数,所以对于x>1,有f(x)>f(1)。

(完整版)导数与函数的单调性练习题

(完整版)导数与函数的单调性练习题

2.2.1导数与函数的单调性基础巩固题:1.函数f(x)=21++x ax 在区间(-2,+∞)上为增函数,那么实数a 的取值范围为( ) A.0<a<21 B.a<-1或a>21 C.a>21D.a>-2答案:C 解析:∵f(x)=a+221+-x a 在(-2,+∞)递增,∴1-2a<0,即a>21.2.已知函数f (x )=x 2+2x +a ln x ,若函数f (x )在(0,1)上单调,则实数a 的取值范围是( )A .a ≥0B .a <-4C .a ≥0或a ≤-4D .a >0或a <-4答案:C 解析:∵f ′(x )=2x +2+ax ,f (x )在(0,1)上单调, ∴f ′(x )≥0或f ′(x )≤0在(0,1)上恒成立,即2x 2+2x +a ≥0或2x 2+2x +a ≤0在(0,1)上恒成立, 所以a ≥-(2x 2+2x )或a ≤-(2x 2+2x )在(0,1)上恒成立.记g (x )=-(2x 2+2x ),0<x <1,可知-4<g (x )<0, ∴a ≥0或a ≤-4,故选C.3.函数f (x )=x +9x 的单调区间为________.答案:(-3,0),(0,3) 解析:f ′(x )=1-9x 2=x 2-9x2,令f ′(x )<0,解得-3<x <0或0<x <3,故单调减区间为(-3,0)和(0,3).4 函数32x x y -=的单调增区间为 ,单调减区间为___________________答案:2(0,)3 ; 2(,0),(,)3-∞+∞ 解析: '22320,0,3y x x x x =-+===或 5.确定下列函数的单调区间:(1)y =x 3-9x 2+24x (2)y =3x -x 3 (1)解:y ′=(x 3-9x 2+24x )′=3x 2-18x +24=3(x -2)(x -4) 令3(x -2)(x -4)>0,解得x >4或x <2.∴y =x 3-9x 2+24x 的单调增区间是(4,+∞)和(-∞,2) 令3(x -2)(x -4)<0,解得2<x <4.∴y =x 3-9x 2+24x 的单调减区间是(2,4)(2)解:y ′=(3x -x 3)′=3-3x 2=-3(x 2-1)=-3(x +1)(x -1) 令-3(x +1)(x -1)>0,解得-1<x <1. ∴y =3x -x 3的单调增区间是(-1,1).令-3(x +1)(x -1)<0,解得x >1或x <-1.∴y =3x -x 3的单调减区间是(-∞,-1)和(1,+∞) 6.函数y =ln(x 2-x -2)的单调递减区间为__________.[答案] (-∞,-1) [解析] 函数y =ln(x 2-x -2)的定义域为(2,+∞)∪(-∞,-1),令f (x )=x 2-x -2,f ′(x )=2x -1<0,得x <12,∴函数y =ln(x 2-x -2)的单调减区间为(-∞,-1)7.已知y =13x 3+bx 2+(b +2)x +3在R 上不是单调增函数,则b 的范围为________.[答案] b <-1或b >2 [解析] 若y ′=x 2+2bx +b +2≥0恒成立,则Δ=4b 2-4(b +2)≤0,∴-1≤b ≤2,由题意b <-1或b >2.8.已知x ∈R,求证:e x ≥x +1.证明:设f (x )=e x -x -1,则f ′(x )=e x -1.∴当x =0时,f ′(x )=0,f (x )=0.当x >0时,f ′(x )>0,∴f (x )在(0,+∞)上是增函数.∴f (x )>f (0)=0. 当x <0时,f ′(x )<0,f (x )在(-∞,0)上是减函数,∴f (x )>f (0)=0.9.已知函数y =x +x1,试讨论出此函数的单调区间. 解:y ′=(x +x 1)′=1-1·x -2=222)1)(1(1x x x x x -+=- 令2)1)(1(xx x -+>0. 解得x >1或x <-1.∴y =x +x 1的单调增区间;是(-∞,-1)和(1,+∞).令2)1)(1(xx x -+<0,解得-1<x <0或0<x <1. ∴y =x +x1的单调减区间是(-1,0)和(0,1)10.已知函数32()f x x bx cx d =+++的图象过点P (0,2),且在点M (-1,f (-1))处的切线方程为076=+-y x .(Ⅰ)求函数y=f(x)的解析式;(Ⅱ)求函数y=f(x)的单调区间. 解:(Ⅰ)由f(x)的图象经过P (0,2),知d=2, 所以,2)(23+++=cx bx x x f .23)(2c bx x x f ++=' 由在M(-1,f(-1))处的切线方程是76=+-y x , 知.6)1(,1)1(,07)1(6=-'=-=+---f f f 即{{326,23,12 1.0,3.b c b c b c b c b c -+=-=-∴-+-+=-===-即解得 故所求的解析式是 .233)(23+--=x x x x f (Ⅱ)22()36 3.3630,f x x x x x '=----=令2210.x x --=即 解得 .21,2121+=-=x x当;0)(,21,21>'+>-<x f x x 时或 当.0)(,2121<'+<<-x f x 时故)21,()(--∞在x f 内是增函数,在)21,21(+-内是减函数,在),21(+∞+内是增函数. 点拨:本题考查函数的单调性、导数的应用等知识,考查运用数学知识分析问题和解决问题的能力.11.已知函数f(x)=x 3-21x 2+bx+c.(1)若f(x)在(-∞,+∞)上是增函数,求b 的取值范围;解 (1))(x f '=3x 2-x+b,因f(x)在(-∞,+∞)上是增函数,则)(x f '≥0.即3x 2-x+b≥0,∴b≥x -3x 2在(-∞,+∞)恒成立.设g(x)=x-3x 2.当x=61时,g(x)max =121,∴b≥121. 12.已知函数f(x)=x(x-1)(x-a)在(2,+∞)上是增函数,试确定实数a 的取值范围.解 f(x)=x(x-1)(x-a)=x 3-(a+1)x 2+ax ∴)(x f '=3x 2-2(a+1)x+a 要使函数f(x)=x(x-1)(x-a)在(2,+∞)上是增函数,只需)(x f '=3x 2-2(a+1)x+a 在(2,+∞)上满足)(x f '≥0即可.∵)(x f '=3x 2-2(a+1)x+a 的对称轴是x=31+a ,∴a 的取值应满足:⎪⎩⎪⎨⎧≥'≤+0(2)231f a 或⎪⎪⎩⎪⎪⎨⎧≥+'>+0)31(231a f a 解得:a≤38.∴a 的取值范围是a≤38.13.已知函数 232()4()3f x x ax x x R =+-∈在区间[]1,1-上是增函数,求实数a 的取值范围.解:'2()422f x ax x =+-,因为()f x 在区间[]1,1-上是增函数,所以'()0f x ≥对[]1,1x ∈-恒成立,即220x ax --≤对[]1,1x ∈-恒成立,解之得:11a -≤≤所以实数a 的取值范围为[]1,1-.点拨:已知函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“若函数单调递增,则'()0f x ≥;若函数单调递减,则'()0f x ≤”来求解,注意此时公式中的等号不能省略,否则漏解.14.已知函数d ax bx x x f +++=23)(的图象过点P (0,2),且在点M (-1,)1(-f )处的切线方程076=+-y x ,(1)求函数)(x f y =的解析式;(2)求函数)(x f y =的单调区间。

高中数学--函数的单调性与导数-Word版含答案

高中数学--函数的单调性与导数-Word版含答案

函数的单调性与导数选择题1、函数f(x)=xlnx的单调递增区间是( )A(01) B(1+∞)C D【解析】选D因为f(x)=xlnx(x>0)所以f′(x)=lnx+1令f′(x)>0得lnx+1>0即x>所以函数f(x)的单调递增区间是2、下列函数中在(0+∞)内为增函数的是( )Ay=sinx By=xe2Cy=x3-x Dy=lnx-x【解析】选B对于Ay=sinx在(0+∞)内有增有减对于By′=(xe2)′=e2>0故y=xe2在(0+∞)内是增函数;对于Cy′=3x2-1=3当x∈时y′<0;故y=x3-x在上是减函数对于Dy′=-1=当x∈(1+∞)时y′<0故y=lnx-x在(1+∞)上是减函数3、(2016·临沂高二检测)已知函数y=f(x)的图象是如图四个图象之一且其导函数y=f′(x)的图象如图所示则该函数的图象是( )【解析】选B由函数y=f(x)的导函数y=f′(x)的图象知f(x)的图象是上升的且先由“平缓”变“陡峭”再由“陡峭”变“平缓”观察图象可得B正确4、若f(x)=e<a<b则( )Af(a)>f(b) Bf(a)=f(b)Cf(a)<f(b) Df(a)f(b)>1【解题指南】先判断f(x)的单调性再比较f(a)与f(b)的大小【解析】选A因为f′(x)==当x∈(e+∞)时1-lnx<0所以f′(x)<0所以f(x)在(e+∞)内为单调递减函数故f(a)>f(b)5、(2016·烟台高二检测)若a>0且f(x)=x3-ax在B(-11]C(-11) D上是单调函数求a的取值范围【解析】f′(x)=(2x-2a)e x+(x2-2ax)e x=e x令f′(x)=0即x2+2(1-a)x-2a=0解得x1=a-1-x2=a-1+其中x1<x2当x变化时f′(x)f(x)的变化情况见下表:x (-∞x1) x1(x1x2) x2(x2+∞) f′(x) + 0 - 0 +f(x) ↗↘↗因为a≥0所以x1<-1x2≥0f(x)在(x1x2)上单调递减由此可得f(x)在上是单调函数的充要条件为x2≥1即a-1+≥1解得a≥故所求a的取值范围为10(2016·青岛高二检测)已知函数y=f(x)=x3+bx2+cx+d的图象经过点P(02)且在点M(-1f(-1))处的切线方程为6x-y+7=0(1)求函数y=f(x)的解析式(2)求函数y=f(x)的单调区间【解析】(1)由y=f(x)的图象经过点P(02)知d=2所以f(x)=x3+bx2+cx+2f′(x)=3x2+2bx+c由在点M(-1f(-1))处的切线方程为6x-y+7=0知-6-f(-1)+7=0即f(-1)=1f′(-1)=6所以即解得b=c=-3故所求的解析式是y=f(x)=x3-3x2-3x+2(2)f′(x)=3x2-6x-3令f′(x)>0得x<1-或x>1+;令f′(x)<0得1-<x<1+故f(x)=x3-3x2-3x+2的单调递增区间为(-∞1-)和(1++∞)单调递减区间为(1-1+)1已知对任意实数x有f(-x)=-f(x)g(-x)=g(x)且当x>0时有f′(x)>0g′(x)>0则当x<0时有( )Af′(x)>0g′(x)>0 Bf′(x)>0g′(x)<0Cf′(x)<0g′(x)>0 Df′(x)<0g′(x)<0【解析】选B由题知f(x)是奇函数g(x)是偶函数根据奇偶函数图象特点知当x<0时f(x)的单调性与x>0时相同g(x)的单调性与x>0时恰好相反因此当x<0时有f′(x)>0g′(x)<0 2(2016·南昌高二检测)设f(x)g(x)分别是定义在R上的奇函数和偶函数当x<0时f′(x)g(x)+f(x)g′(x)>0且g(-3)=0则不等式f(x)g(x)<0的解集是( )A(-30)∪(3+∞) B(-30)∪(03)C(-∞-3)∪(3+∞) D(-∞-3)∪(03)【解析】选D因为′=f′(x)g(x)+f(x)g′(x)所以当x<0时′>0所以f(x)·g(x)在(-∞0)上是增函数又g(-3)=0所以f(-3)g(-3)=0所以当x∈(-∞-3)时f(x)g(x)<0;当x∈(-30)时f(x)g(x)>0又因为f(x)g(x)分别是定义在R上的奇函数和偶函数所以f(x)g(x)在R上是奇函数其图象关于原点对称所以当x∈(03)时f(x)g(x)<0综上选D【补偿训练】(2015·全国卷Ⅱ)设函数f′(x)是奇函数f(x)(x∈R)的导函数f(-1)=0当x>0时xf′(x)-f(x)<0则使得f(x)>0成立的x的取值范围是( )A(-∞-1)∪(01) B(-10)∪(1+∞)C(-∞-1)∪(-10) D(01)∪(1+∞)【解析】选A记函数g(x)=则g′(x)=因为当x>0时xf′(x)-f(x)<0故当x>0时g′(x)<0所以g(x)在(0+∞)上单调递减;又因为函数f(x)(x∈R)是奇函数故函数g(x)是偶函数所以g(x)在(-∞0)上单调递增且g(-1)=g(1)=0当0<x<1时g(x)>0则f(x)>0;当x<-1时g(x)<0则f(x)>0综上所述使得f(x)>0成立的x的取值范围是(-∞-1)∪ (01)二、填空题(每小题5分共10分)3(2016·泰安模拟)如果函数f(x)=2x2-lnx在定义域内的一个子区间(k-1k+1)上不是单调函数那么实数k的取值范围是【解析】显然函数f(x)的定义域为(0+∞)y′=4x-=由y′>0得函数f(x)的单调递增区间为;由y′<0得函数f(x)的单调递减区间为由于函数在区间(k-1k+1)上不是单调函数所以解得1≤k<答案:4(2016·盐城高二检测)若函数f(x)=(mx-1)e x在(0+∞)上单调递增则实数m的取值范围是【解析】因为f′(x)=(mx+m-1)e x由题意得f′(x)≥0在(0+∞)上恒成立令g(x)=mx+m-1则解得m≥1答案:令f′(x)=0得x1=1x2=a-1因为f(x)在(14)内为减函数所以当x∈(14)时f′(x)≤0;因为f(x)在(6+∞)内为增函数所以当x∈(6+∞)时f′(x)≥0所以4≤a-1≤6解得5≤a≤7所以实数a的取值范围为方法二:f′(x)=x2-ax+a-1因为f(x)在(14)内为减函数所以当x∈(14)时f′(x)≤0;因为f(x)在(6+∞)内为增函数所以当x∈(6+∞)时f′(x)≥0所以即解得5≤a≤7所以实数a的取值范围为6(2015·驻马店高二检测)已知函数f(x)=(ax2+x-1)e x其中e是自然对数的底数a∈R(1)若a=1求曲线f(x)在点(1f(1))处的切线方程(2)若a=-1求f(x)的单调区间【解析】(1)因为f(x)=(x2+x-1)e x所以f′(x)=(2x+1)e x+(x2+x-1)e x=(x2+3x)e x所以曲线f(x)在点(1f(1))处的切线斜率为k=f′(1)=4e又因为f(1)=e所以所求切线方程为y-e=4e(x-1)即4ex-y-3e=0(2)f(x)=(-x2+x-1)e x因为f′(x)=-x(x+1)e x令f′(x)<0得x<-1或x>0f′(x)>0得-1<x<0所以f(x)的减区间为(-∞-1)(0+∞)增区间为(-10)关闭Word文档返回原板块。

高中数学导数练习题附答案

高中数学导数练习题附答案

高中数学导数练习题附答案一、解答题1.已知函数e ()(ln )=--+xf x a x x a x(a 为实数).(1)当1a =-时,求函数()f x 的单调区间;(2)若函数()f x 在(0,1)内存在唯一极值点,求实数a 的取值范围. 2.某学校组织数学,物理学科答题竞赛活动,该学校准备了100个相同的箱子,其中第()1,2,,100k k =个箱子中有k 个数学题,100k -个物理题.每一轮竞赛活动规则如下:任选一个箱子,依次抽取三个题目(每次取出不放回),并全部作答完毕,则该轮活动结束;若此轮活动中,三个题目全部答对获得一个奖品.(1)已知学生甲在每一轮活动中,都抽中了2个数学题,1个物理题,且甲答对每一个数学题的概率为p ,答对每一个物理题的概率为q . ①求学生甲第一轮活动获得一个奖品的概率;②已知1p q +=,学生甲理论上至少要进行多少轮活动才能获得四个奖品?并求此时p 、q 的值.(2)若学生乙只参加一轮活动,求乙第三次抽到物理题的概率. 3.已知函数1()2ln f x x x x=+-. (1)求函数的单调区间和极值;(2)若12x x ≠且()()12f x f x =,求证:121x x <. 4.已知函数2()ln (2)f x a x x a x =+-+,其中.a R ∈ (1)讨论函数()f x 的单调性;(2)若函数()f x 的导函数()'f x 在区间()1,e 上存在零点,证明:当()1,e x ∈时,()2e .f x >-5.函数()3e xf x ax =-,0a >.(1)讨论函数()f x 的极值点个数;(2)已知函数()g x 的定义域为[)0,∞+,且[)0,x ∞∀∈+满足()()()g x xg x xg x '+>.若[)00,x ∃∈+∞,满足不等式()()()22e 22e x x g x xg x --≤,且0x 是函数()f x 的极值点,求a 的取值范围.6.已知:()e xf x mx =+.(1)当1m =时,求曲线()y f x =的斜率为2的切线方程;(2)当0x ≥时,()2213222m f x x ≥+-成立,求实数m 的范围7.已知函数()()24e 1xf x x =-+.(1)求()f x 的极值.(2)设()()()f m f n m n =≠,证明:7m n +<.8.已知函数1()(1)(0)x f x x e x x=+->,()ln ()x g x xe a x a R =+∈,且1()0f x = (1)若1a =,且0()0g x =,试比较0x 与1x 的大小关系,并说明理由; (2)若1a =-,且222(1)()()x f x g x +=,证明: (i )25593x e <<; (ii )12213232x x x ex -->-.(参考数据:1ln3 1.098,ln5 1.609,0.368e≈≈≈) 9.已知函数()ln 2=-f x ax x x .(1)若()f x 在1x =处取得极值,求()f x 的单调区间; (2)若函数2()()2=-+f x h x x x有1个零点,求a 的取值范围. 10.已知函数()321623f x x ax x =+-+在2x =处取得极值. (1)求()f x 的单调区间;(2)求()f x 在[]4,3-上的最小值和最大值.【参考答案】一、解答题1.(1)单调递减区间为(0,1),递增区间为(1,)+∞ (2)(e,)+∞ 【解析】 【分析】(1)求导2(1)(e )()--'=x x ax f x x,易知1a =-时,e 0-=+>x x ax e x ,然后由()0f x '<和()0f x '>求解;(2)由(1)知,0a 时,不符合题意, 0a >时,根据函数()f x 在(0,1)内存在唯一极值点,得到()0f x '=在(0,1)内存在唯一变号零点,转化为ex a x=在(0,1)内存在唯一根求解. (1)解:函数()y f x =的定义域为(0,)+∞,22e (1)1(1)(e )()1---⎛⎫'=--= ⎪⎝⎭x x x x ax f x a x x x . 当1a =-时,e 0-=+>x x ax e x ,所以当(0,1)x ∈时,()0f x '<;当(1,)x ∈+∞时,()0f x '>. 所以()f x 的单调递减区间为(0,1),递增区间为(1,)+∞. (2)由(1)知,当0a 时,()f x 在(0,1)内单调递减, 所以()f x 在(0,1)内不存在极值点;当0a >时,要使函数()f x 在(0,1)内存在唯一极值点,则2(1)(e )()0--'==x x ax f x x 在(0,1)内存在唯一变号零点, 即方程e 0x ax -=在(0,1)内存在唯一根,所以e xa x=在(0,1)内存在唯一根,即y a =与()e xg x x =的图象在(0,1)内存在唯一交点,因为2(1)e ()0-'=<xx g x x , 所以()g x 在(0,1)内单调递减.又(1)e g =, 当0x →时,()g x ∞→+,所以e a >,即a 的取值范围为(e,)+∞.2.(1)①2p q ;②至少要进行27轮游戏,23p =,13q =. (2)99200【解析】 【分析】(1)①利用独立事件的概率乘法公式可求得所求事件的概率;②利用导数求出学生甲在每一轮活动中获得一个奖品的概率为2P p q =的最大值,可知学生甲在n 轮活动中获得奖品的个数()~,B n P ξ,由()max 4nP =可求得n 的值,即可得解;(2)设选出的是第k 个箱子,计算出在第k 个箱子中第三次取出的是物理题的概率为100100k kp -=,进而可求得所求概率为10011100kk P p ='=⋅∑,结合数列的求和公式可求得所求事件的概率.(1)解:①记“学生甲第一轮活动获得一个奖品”为事件A .则()2P A p q =;②学生甲在每一轮活动中获得一个奖品的概率为()22321P p q p p p p ==-=-+,令()32f x x x =-+,[]0,1x ∈,()223233f x x x x x ⎛⎫'=-+=-- ⎪⎝⎭,当203x <<时,()0f x '>,当213x <<时,()0f x '<,所以()f x 在20,3⎡⎤⎢⎥⎣⎦上单调递增,在2,13⎡⎤⎢⎥⎣⎦上单调递减,()max 24327f x f ⎛⎫== ⎪⎝⎭,即当23p =时,32max 2243327P ⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭.学生甲在n 轮活动中获得奖品的个数()~,B n P ξ,由()max 4nP =,知27n =. 故理论上至少要进行27轮游戏,此时23p =,13q =. (2)解:设选出的是第k 个箱子,连续三次取出题目的方法数为()()10010011002--. 设数学题为M ,物理题为W ,第三次取出的是物理题W 有如下四种情形:(),,W W W 取法数为()()()10010011002k k k -----,(),,W M W 取法数为()()1001001k k k ---, (),,M W W 取法数为()()1001001k k k ---, (),,M M W 取法数为()()1100k k k --,从而,第三次取出的是物理题的种数为()()()()()()()()()10010011002100100110010011100k k k k k k k k k k k k -----+---+---+--()()()10011002100k =---.则在第k 个箱子中第三次取出的是物理题的概率为100100k kp -=. 而选到第k 个箱子的概率为1100, 故所求的概率为()100100100992221111100111509999100100100100100100100200k k k k i k P p k i ====-⨯'=⋅=⋅=-===∑∑∑∑. 【点睛】关键点点睛:本题考查概率与数列的综合应用,在求解第三问时,关键要求出在第k 个箱子中第三次取出物理题的概率,那么就应该对前三次取出的题目所属科目进行列举,进而求解.3.(1)减区间()0,1,增区间()1,+∞,极小值3, (2)证明见解析 【解析】 【分析】(1)依据导函数与原函数的关系去求函数的单调区间和极值即可; (2)构造新函数利用函数单调性去证明121x x <即可. (1)1()2ln (0)f x x x x x =+->,则()()2221111()2(0)x x f x x x x x +-'=--=> 由()0f x '>得1x >,由()0f x '<得01x <<, 即()f x 减区间为()0,1,增区间为()1,+∞,在1x =时()f x 取得极小值(1)2103f =+-=,无极大值. (2)不妨设12x x <且()()12f x f x a ==,则101x <<,21>x ,3a >,2101x <<令1()()2ln (0)h x f x a x x a x x=-=+-->,则()()120h x h x ==()()2221111()2x x h x x x x +-'=--=, 则当1x >时()0h x '>,()h x 单调递增;当01x <<时()0h x '<,()h x 单调递减 由()222212ln 0x x h x a x +=--=,得22212ln a x x x =+-则2222222222211ln 2ln 2ln 1x x x x x h x x x x x ⎛⎫++-+-=-+ ⎪⎛⎫= ⎪⎝⎝⎭⎭ 令21t x =,则222112ln 2ln (01)x x t t t x t -+=--<< 令()12ln (01)t m t t t t --<=<,则()()22211210t t tt m t -'=+-=>即()12ln (01)t m t t t t--<=<为增函数,又()11100m =--=,则()12ln 0m t t tt --<=在(0,1)上恒成立. 则222212ln 10x x x h x ⎛⎫+⎪⎝⎭=-<恒成立,则()211h h x x ⎛⎫⎪< ⎝⎭, 又01x <<时()h x 单调递减,101x <<,2101x << 则211x x >,故121x x <4.(1)答案不唯一,具体见解析 (2)证明见解析 【解析】 【分析】(1)求出函数的导数,通过讨论a 的范围,解关于导函数的不等式,求出函数的单调区间即可;(2)根据导函数在()1,e 上存在零点,则()0f x '=在()1,e 上有解,则有1e 2a <<,即22e a <<,得到函数()f x 的最小值,构造函数2()ln (1ln 2)4x g x x x x =--+,22e <<x ,利用导数判断出其单调性,结合不等式传递性可证.(1)函数()f x 的定义域是(0,)+∞,(2)(1)()2(2)a x a x f x x a xx'--=+-+=, ①0a 时,20x a ->,令()0f x '>,解得:1x >,令()0f x '<, 解得:01x <<,故()f x 在(0,1)递减,在(1,)+∞递增; ②02a <<时,令()0f x '>,解得:1x >或02ax <<,令()0f x '<,解得:12a x <<, 故()f x 在0,2a ⎛⎫ ⎪⎝⎭递增,在,12⎛⎫⎪⎝⎭a 递减,在()1,+∞递增; ③2a =时,()0f x ',()f x 在(0,)+∞递增;④2a >时,令()0f x '>,解得:2ax >或01x <<,令()0f x '<,解得:12ax <<,故()f x 在(0,1)递增,在1,2⎛⎫ ⎪⎝⎭a 递减,在,2⎛⎫+∞ ⎪⎝⎭a 递增; 综上:0a 时,()f x 在(0,1)递减,在(1,)+∞递增,02a <<时,()f x 在0,2a ⎛⎫ ⎪⎝⎭递增,在,12⎛⎫⎪⎝⎭a 递减,在(1,)+∞递增;2a =时,()f x 在(0,)+∞递增;2a >时,()f x 在(0,1)递增,在1,2⎛⎫ ⎪⎝⎭a 递减,在,2⎛⎫+∞ ⎪⎝⎭a 递增;(2)因为(2)(1)()2(2)a x a x f x x a x x'--=+-+=, 又因为导函数()'f x 在(1,)e 上存在零点,所以()0f x '=在(1,e)上有解,则有1e 2a <<,即22e a <<,且当12a x <<时,()0f x '<,()f x 单调递减, 当e 2a x <<时,()0f x '>,()f x 单调递增,所以22()ln (2)ln (1ln 2)22424⎛⎫=+-+=--+ ⎪⎝⎭a a a a a f x f a a a a a ,设2()ln (1ln 2)4x g x x x x =--+,22e x <<,则()ln 1(1ln 2)ln ln 222x xg x x x '=+--+=--,则11()02g x x ''=-<,所以()g x '在(2,2e)上单调递减,所以()g x 在(2,2e)上单调递减,则()()()222e 22e e 2e 1ln 2e 2g eln g =--+=-<,所以()2e g x >-,则根据不等式的传递性可得,当()1,e x ∈时,()2e .f x >-【点睛】本题考查利用导数表示曲线上某点处的斜率,考查函数的单调性,考查导数的综合应用以及分类讨论思想,转化思想,属于难题. 5.(1)答案见解析(2)2e e ,123⎛⎤ ⎥⎝⎦【解析】 【分析】(1)求出()'f x ,由()0f x '=知0x ≠,分离参数得2e3xa x =,引入函数2e ()3x G x x=,由()G x 的导数确定单调性与极值,可作出函数的大致图象,结合图象分类讨论得出零点个数,根据极值定义得极值点个数; (2)令()()e xxg x h x =,求导后得()h x 是增函数,不等式()()()22e 22e x x g x xg x --≤,整理得()()()222eexxx g x xg x ---≤,即()()2h x h x -≤,由单调性得x 的范围,从而得出0x 的范围,结合极值点的要求得0[1,2)x ∈,然后由(1)的函数()G x 的性质得a 的范围. (1)()3e x f x ax =-,则()23e x f x ax '=-,函数的极值点为导函数的变号零点,显然0x =不是()0f x '=的解,当0x ≠时,令()2e 3xG x x=,则()2431e 2e e 233x x x x x x G x x x⋅-⋅-'=⋅=⋅, 故()G x 的单调性如表格所示:x(),0∞-()0,22()2,+∞()G x '0>0<0=0>()G x单调递增 单调递减 极小值 单调递增则极小值为()2e 212G =,可得函数()G x 的大致图象如图,故当2e 0,12a ⎛⎤∈ ⎥⎝⎦时,2e 3xa x =有两个解12,x x (120x x <<),在1x 两侧()'f x 的符号相等,在2x 两侧,()'f x 不变号,()f x 有1个极值点;当2e ,12a ⎛⎫∈+∞ ⎪⎝⎭时,2e 3x a x =有三个解123,,x x x ,在这三个解两侧()'f x 均变号,()f x 有3个极值点. (2) 令()()e x xg xh x =,则()()()()1e xx g x xg x h x '-+'=, 因为[)0,x ∞∀∈+满足()()()g x xg x xg x '+>,故()()()10x g x xg x '-+>, 则()0h x '>,故函数()h x 是一个在定义域上单调递增的函数;又[)00,x ∃∈+∞,满足不等式()()()22e 22e x x g x xg x --≤,整理得()()()222e e x x x g x xg x ---≤,即()()2h x h x -≤,结合定义域有0,20,2,x x x x ≥⎧⎪-≥⎨⎪-≤⎩故0x 的取值范围是[]1,2,又0x 是函数()f x 的极值点,即函数()f x 的变号零点,∴02x ≠,由(1)知,函数()G x 在区间[)1,2上单调递减,故2e e ,123a ⎛⎤∈ ⎥⎝⎦.【点睛】本题考查用导数确定函数的极值点,研究不等式恒成立问题,解题关系是问题的转化,极值点的个数问题转化为方程的根的个数,再转化为函数图象交点个数.不等式问题通过引入函数,利用函数单调性化简得出参数范围,本题属于困难题,对学生的逻辑思维能力,运算求解能力要求较高. 6.(1)21y x =+(2)ln 3m ⎡∈-⎣【解析】 【分析】(1)利用导数的几何意义直接可得切线方程;(2)()2213222m f x x ≥+-恒成立,可转化为()22130222xm g x e mx x =+--+≥恒成立,利用导数判断函数()g x 的单调性与最值情况. (1)当1m =时,()e xf x x =+, 则()e 1xf x '=+,设切点为()()00,x f x ,故()00e 12xk f x '==+=,解得00x =,故()000e e 01x f x x =+=+=,即切点坐标为()0,1,所以切线方程()120y x -=-,即21y x =+; (2)当0x ≥时,()2213222m f x x ≥+-成立,即2213e 0222xm mx x +--+≥恒成立,设()2213e 222xm g x mx x =+--+,()e x g x x m '=-+, ()e 1x g x ''=-,因为0x ≥,故()e 10xg x ''=-≥恒成立, 则()e xg x x m '=-+在()0,∞+上单调递增,所以()()01g x g m ''≥=+,当1m ≥-时,()()010g x g m ''≥=+≥恒成立, 故()g x 在()0,∞+上单调递增,即()()2235012222m m g x g ≥=-+=-,所以25022m -≥,解得m ≤≤故1m -≤≤当1m <-时,()010g m '=+<,()e 2m g m m -'-=+,设()e 2mh m m -=+,1m <-,()e 20m h m -'=-+<恒成立,则()h m 在(),1-∞-上单调递减,所以()()120h m h e >-=->,即()e 20mg m m -'-=+>,所以存在()00,x m ∈-,使()00g x '=,即000xe x m -+=,所以()g x 在()00,x 上单调递减,在()0,x +∞上单调递增, 故()()02200013e 222x m g x g x mx x ≥=+--+()()00000222000011313e e e e e 022222x x x x x x x x x =+----+=-++≥,解得0ln 3x ≤,即00ln 3x ≤≤, 设()e xx m x ϕ==-,0ln3x ≤≤,()1e 0x x ϕ'=-≤恒成立,故()x ϕ在()0,3上单调递减, 故()()3ln33x ϕϕ≥=-, 即ln33m ≥-, 所以ln331m -≤<-,综上所述,ln 3m ⎡∈-⎣.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用. 7.(1)极小值为71e 12-+,()f x 无极大值; (2)证明见解析﹒ 【解析】 【分析】(1)根据f (x )的导数判断f (x )的单调性,根据单调性即可求其极值; (2)由函数单调性指数函数性质可得x <72时,f (x )<1,设m <n ,则若()()()f m f n m n =≠,则m <72,n >72,由()()1f m f n =<可求742n <<﹒当m ≤3时,易证7m n +<;当732m <<时,构造函数()()()7p m f m f m =--,根据p (m )单调性即可证明7m n +<﹒ (1)()()227e x f x x =-',由()0f x '=,得72x =.当7,2x ⎛⎫∈-∞ ⎪⎝⎭时,()0f x '<;当7,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>.∴()f x 的单调递减区间为7,2⎛⎫-∞ ⎪⎝⎭,单调递增区间为7,2⎛⎫+∞ ⎪⎝⎭.故()f x 的极小值为771e 122f ⎛⎫=-+ ⎪⎝⎭,()f x 无极大值.(2)由(1)可知,()f x 的极值点为72,f (x )在7,2⎛⎫-∞ ⎪⎝⎭上单调递减,在7,2⎛⎫+∞ ⎪⎝⎭上单调递增,∵当x →-∞时,2e 0x →,∴f (x )→1, 故当x <72时,f (x )<1.设m n <,则若()()()f m f n m n =≠,则m <72,n >72, 则()()1f m f n =<,则()274e 1142n n n -+<⇒<<. ①当3m ≤时,7m n +<,显然成立.②当732m <<时,77,42m ⎛⎫-∈ ⎪⎝⎭,()()()()214274e 3e m m f m f m m m ---=---.设()()()7p m f m f m =--,则()()()214227e em mp m m -=--'. 设()2142e e x xh x -=-,73,2x ⎛⎫∈ ⎪⎝⎭,则()h x 为增函数,则()702h x h ⎛⎫<= ⎪⎝⎭.∵732m <<,∴270m -<,()0p m '>,则()p m 在73,2⎛⎫⎪⎝⎭上为增函数,∴()()()()77()()77022p m p f m f m f n f m p ⎛⎫<⇒--=--<= ⎪⎝⎭,∴()()7f n f m <-.又∵7,42n ⎛⎫∈ ⎪⎝⎭,77,42m ⎛⎫-∈ ⎪⎝⎭,且()f x 在7,42⎛⎫ ⎪⎝⎭上单调递增,∴7n m <-,即7m n +<. 综上,7m n +<. 8.(1)01x x >,理由见解析(2)(i )证明见解析;(ii )证明见解析 【解析】 【分析】(1)由0x →时,(),()0f x g x →,1()02f >,1()02>g 可得011,(0,)2x x ∈,构造1()ln (0)1m x x x x =+>+,求导分析单调性,由1112()()()ln 2023g x m x m =<=-<,故10()()g x g x <,分析即得解;(2)(i )由题意,22ln 222222(1)(1)(ln )0x x x x e x x x +++-++=,先证明1x e x ≥+,代入分析可得22ln 0x x +=,构造()ln (0)x x x x ϕ=+>,求导分析单调性,结合而5()09ϕ<,5()03eϕ>即得解; (ii )构造1()(1)(2)t x x x x e=---,可得21(1)()f x f x -<,再构造()(32)(0)x h x x e x =->,()()(1)H x h x h x =--,分析即得解(1)对函数()f x ,()g x 求导得:21()(2)0x f x x e x '=++>,1()(1)0x g x x e x'=++> 当0x →时,(),()0f x g x →.而1()22f,1()ln 22g . 由21.5e >,13ln 2ln1644=<知1()02f >,1()02>g因此0x ,1x 唯一且011,(0,)2x x ∈由1111(1)0xx e x +-=知1111(1)x e x x =+,1111()ln 1g x x x =++. 构造1()ln (0)1m x x x x =+>+,则221()0(1)x x m x x x ++'=>+. 故()m x 在(0,)+∞单调递增;因此1112()()()ln 223g x m x m =<=-,由12ln 2ln833=>知1()0g x <. 故10()()g x g x <,结合()g x 单调性知01x x >. (2)(i )证明:由题意得22ln 222222(1)(1)(ln )0x x x x e x x x +++-++=.构造()1x r x e x =--,则'()1x r x e =-,()(0)0r x r ≥=. 因此1x e x ≥+.因此22ln 22222222220(1)(1)(ln )(1)(ln )x x x x e x x x x x x +=++-++≥++.故22ln 0x x +≤.因此2222ln ln 2222222220(1)(1)(ln )(1)(1)x x x x x x e x x x x x e ++=++-++≥++-故22ln 0x x +≥. 因此22ln 0x x +=.构造()ln (0)x x x x ϕ=+>,则1()10x x ϕ'=+>. 而55()ln52ln3099ϕ=+-<,55()ln5ln31033e e ϕ=+-->,因此25593x e<<. (ii )由22ln 0x x +=知221xe x =. 因此222222221(1)(2)(2)1(1)1(1)xx x x e x e f x e x e x -----=-=--.构造1()(1)(2)t x x x x e=---,则2()362t x x x '=-+.因此()t x 在(1上单调递减. 因此251()()0.3609t x t e<<-<,故2(1)0f x -<.因此21(1)()f x f x -<,结合()f x 单调性知211x x -<,故211x x >-. 构造()(32)(0)x h x x e x =->,()()(1)H x h x h x =--,则()(12)x h x x e '=-. 因此()h x 在1(0,)2上单调增,1(,1)2上单调减.而当102x <≤时,1()(12)()0x x H x x e e -'=--≤,()H x 单调减. 因此11()()02H x H >>,11()(1)h x h x >-.而121112x x <-<<,因此21()(1)h x h x <-,因此12()()h x h x >. 因此12213232x x x ex --<-.9.(1)单调减区间为(0,1),单调增区间为(1,)+∞ (2)0a < 或2e a = 【解析】 【分析】(1)求导,因为函数()f x 再1x =处取得极值,所以f '(1)0=,解得a ,进而可得函数()f x 的解析式,再求导,分析函数()f x 的单调性.(2)分类讨论,利用导数判断函数的单调性,根据函数的零点个数,确定函数的最值情况,从而求得答案. (1)()ln 2,(0)f x ax x x x =->,()ln 2f x a x a '=+-,因为函数()f x 在1x =处取得极值, 所以(1)ln120f a a '=+-=, 所以2a =,所以()2ln 2f x x x x =-,()2ln f x x '=,故当01x <<时,所以()0f x '<,函数单调递减, 当 1x >时,()0f x '>,函数单调递增,所以函数()f x 在1x =处取得极小值,所以实数a 的值为2, 函数()f x 的单调减区间为(0,1),单调增区间为(1,)+∞. (2)当0a = 时,22()()2f x h x x x x=-+=-,而0x > ,此时函数无零点,不合题意;当0a <时,22()()2ln f x h x x a x x x =-+=-,()20,(0)ah x x x x'=-<> , 函数2()ln h x a x x =-单调递减,作出函数2ln ,y a x y x == 的大致图象如图:此时在2ln ,y a x y x ==的图象在(0,1) 内有一个交点,即2()ln h x a x x =-在(0,1)有一个零点;当0a >时,22()2,(0)a a x h x x x x x-'=-=>, 当02a x <<时,22()0a x h x x-'=>,函数2()ln h x a x x =-递增, 当2a x >时,22()0a x h x x-'=<,函数2()ln h x a x x =-递减, 故2max ()()ln ()222a a ah x h a ==- , 作出函数2()ln h x a x x =-的大致图象如图此时要使函数2()()2=-+f x h x x x 有1个零点,需使得2max ()()022a ah x a ==, 即022a aa =,解得2e a = , 综合上述,可知求a 的取值范围为0a < 或2e a = . 【点睛】本题考查了利用导数求函数的单调区间以及函数零点问题,解答时要明确函数的单调性以及极值和导数之间的关系,解答的关键是分类讨论,利用导数判断函数单调性,确定函数零点有一个的处理方法. 10.(1)增区间为(),3-∞-,()2,+∞,减区间为()3,2- (2)()max 312f x =,()min 163f x =- 【解析】 【分析】(1)根据题意得()20f '=,进而得12a =,再根据导数与单调性的关系求解即可;(2)由(1)知[]4,3x ∈-时,()f x 的增区间为[)4,3--,(]2,3,减区间为()3,2-,进而求解()4f -,()3f -,()2f ,()3f 的值即可得答案. (1)解:(1)()226f x x ax '=+-,因为()f x 在2x =处取得极值,所以()24460f a '=+-=,解得12a =. 检验得12a =时,()f x 在2x =处取得极小值,满足条件.所以()26f x x x '=+-,令()0f x '>,解得3x <-或2x >,令()0f x '<,解得32x -<<, 所以()f x 的增区间为(),3-∞-,()2,+∞,减区间为()3,2-; (2)解:令()260f x x x '=+-=,解得3x =-或2x =,由(1)知()f x 的增区间为(),3-∞-,()2,+∞,减区间为()3,2-; 当[]4,3x ∈-时,()f x 的增区间为[)4,3--,(]2,3,减区间为()3,2- 又()()()()321138444642323f -=⨯-+⨯--⨯-+=, ()()()()321131333632322f -=⨯-+⨯--⨯-+=,()321116222622323f =⨯+⨯-⨯+=-,()32115333632322f =⨯+⨯-⨯+=-,所以()max 312f x =,()min 163f x =-.。

高中数学函数的单调性与导数测试题(附答案)

高中数学函数的单调性与导数测试题(附答案)

高中数学函数的单一性与导数测试题(附答案)选修 2-21.3.1 函数的单一性与导数一、选择题1.设 f(x) =ax3+ bx2+ cx+d(a0),则 f(x) 为 R 上增函数的充要条件是 ()A .b2- 4ac0 B.b0, c0C.b=0,c D . b2- 3ac0[答案] D[ 分析 ]∵a0,f(x)为增函数,f(x) =3ax2+ 2bx+ c0 恒建立,=(2b)2- 43ac= 4b2- 12ac0, b2-3ac0.2.(2009 广东文, 8)函数 f(x) = (x- 3)ex 的单一递加区间是() A .(-, 2) B. (0,3)C.(1,4) D . (2,+ )[答案] D[ 分析 ]考察导数的简单应用.f(x) =(x- 3)ex+ (x- 3)(ex) = (x- 2)ex,令 f(x)0 ,解得 x2,应选 D.3.已知函数y= f(x)(xR) 上任一点 (x0, f(x0)) 处的切线斜率k =(x0 -2)(x0 + 1)2,则该函数的单一递减区间为 ()A .[-1,+ ) B.(-, 2]C.(-,- 1)和 (1,2) D . [2,+ )[答案]B[ 分析 ]令k0得x02,由导数的几何意义可知,函数的单一减区间为 (-, 2] .4.已知函数y=xf(x) 的图象如图 (1)所示 (此中 f(x) 是函数 f(x)的导函数 ),下边四个图象中,y= f(x) 的图象大概是 ()[答案] C[ 分析 ]当01时xf(x)0f(x)0 ,故 y=f(x) 在 (0,1)上为减函数当 x1 时 xf(x)0 ,f(x)0 ,故 y= f(x) 在(1,+ )上为增函数,所以否认 A、B、D 应选 C.5.函数 y=xsinx + cosx, x(-)的单一增区间是()A. -,- 2 和 0,2B.- 2, 0 和 0,2C.-,- 2,D.- 2,0 和[答案]A[ 分析 ] y=xcosx,当- x2 时,cosx0, y=xcosx0 ,当 02 时, cosx0,y= xcosx0.6.以下命题建立的是 ()A .若 f(x) 在 (a,b)内是增函数,则对任何 x(a,b),都有 f(x)0B.若在 (a, b)内对任何x 都有 f(x)0 ,则 f(x) 在 (a, b)上是增函数C.若 f(x) 在 (a, b)内是单一函数,则f(x) 必存在D .若 f(x) 在 (a, b)上都存在,则f(x) 必为单一函数[答案]B[ 分析 ]若f(x)在(a,b)内是增函数,则f(x)0 ,故 A 错; f(x)在(a,b)内是单一函数与 f(x) 能否存在无必定联系,故 C 错;f(x) =2 在 (a, b)上的导数为f(x) = 0 存在,但f(x) 无单一性,故D错.7. (2019 福建理, 11)已知对随意实数 x ,有 f( - x) =- f(x) ,g(-x) = g(x) ,且 x0 时, f(x)0 ,g(x)0 ,则 x0 时 () A .f(x)0 ,g(x) B . f(x)0 , g(x)0C.f(x)0 ,g(x) D . f(x)0 , g(x)0[答案 ]B[分析 ]f(x) 为奇函数, g(x) 为偶函数,奇 (偶 )函数在对于原点对称的两个区间上单一性同样(反 ),x0 时, f(x)0 ,g(x)0. 8. f(x) 是定义在 (0,+ )上的非负可导函数,且知足xf(x) +f(x)0 ,对随意正数 a、 b,若 ab,则必有 ()A .af(a)f(b)B . bf(b)f(a)C.af(b)bf(a) D .bf(a)af(b)[答案 ]C[分析 ]∵xf(x) + f(x)0 ,且 x0 ,f(x)0 ,f(x) -f(x)x ,即 f(x) 在(0,+ )上是减函数,又 0< a< b, af(b)bf(a) .9.对于 R 上可导的随意函数f(x) ,若知足 (x -1)f(x)0 ,则必有()A .f(0) + f(2)2f(1)B . f(0) + f(2)2f(1)C.f(0) + f(2)2f(1) D . f(0) + f(2)2f(1)[答案] C[ 分析 ]由(x-1)f(x)0得f(x)在[1,+)上单一递加,在(-,1] 上单一递减或f(x) 恒为常数,故 f(0) + f(2)2f(1) .故应选 C.10.(2019 江西理, 12)如图,一个正五角星薄片( 其对称轴与水面垂直 )匀速地升出水面,记t时辰五角星露出水面部分的图形面积为S(t)(S(0) =0),则导函数y= S(t)的图像大概为[答案]A[ 分析 ]由图象知,五角星露出水面的面积的变化率是增减增减,此中恰露出一个角时变化不连续,应选 A.二、填空题11.已知 y =13x3 + bx2+ (b+ 2)x+ 3 在 R 上不是单一增函数,则 b 的范围为 ________.[ 答案 ] b-1 或 b2[ 分析 ]若y=x2+2bx+b+20恒建立,则=4b2-4(b+2)0,-12,由题意 b<- 1 或 b>2.12.已知函数f(x) =ax- lnx ,若 f(x) > 1 在区间 (1,+ )内恒建立,实数 a 的取值范围为 ________.[ 答案 ] a1[ 分析 ]由已知a>1+lnxx在区间(1,+)内恒建立.设 g(x) = 1+ lnxx ,则 g(x) =- lnxx2 < 0(x> 1),g(x) = 1+ lnxx 在区间 (1,+ )内单一递减,g(x) < g(1),∵g(1)= 1,1+ lnxx < 1 在区间 (1,+ )内恒建立,a1.13.函数 y=ln(x2 - x-2)的单一递减区间为__________.[答案 ] (-,- 1)[ 分析 ]函数y=ln(x2-x-2)的定义域为(2,+)(-,-1),令 f(x) = x2-x - 2, f(x) = 2x-10,得 x12 ,函数 y= ln(x2 -x- 2)的单一减区间为 (-,- 1).14.若函数y= x3 - ax2+ 4 在 (0,2)内单一递减,则实数 a 的取值范围是 ____________ .[答案 ] [3,+ )[ 分析 ] y=3x2 - 2ax,由题意知3x2- 2ax0 在区间 (0,2) 内恒建立,即 a32x 在区间 (0,2)上恒建立, a3.三、解答题15.设函数 f(x) =x3- 3ax2+ 3bx 的图象与直线12x +y- 1=0 相切于点 (1,- 11).(1)求 a、 b 的值;(2)议论函数f(x) 的单一性.[ 分析 ] (1)求导得 f(x) = 3x2-6ax+3b.因为 f(x) 的图象与直线12x+y - 1=0 相切于点 (1,- 11),所以 f(1) =- 11,f(1) =- 12,即 1- 3a+3b=- 113-6a+3b=- 12,解得 a= 1,b=- 3.(2)由 a= 1, b=- 3 得f(x) =3x2- 6ax+3b= 3(x2- 2x- 3)=3(x +1)(x - 3).令 f(x)0 ,解得 x -1 或 x3;又令 f(x)0 ,解得- 13.所以当 x(-,- 1)时, f(x) 是增函数;当x(3 ,+)时,f(x) 也是增函数;当 x( - 1,3)时, f(x) 是减函数.16.求证:方程x- 12sinx= 0 只有一个根x= 0.[ 证明 ]设f(x)=x-12sinx,x(-,+),则 f(x) = 1-12cosx> 0,f(x) 在(-,+ )上是单一递加函数.而当 x= 0 时, f(x) = 0,方程 x- 12sinx =0 有独一的根x= 0.17.已知函数y= ax 与 y=- bx 在(0,+ )上都是减函数,试确立函数 y=ax3+ bx2+ 5 的单一区间.[ 剖析 ] 可先由函数 y=ax 与 y=- bx 的单一性确立 a、b 的取值范围,再依据 a、 b 的取值范围去确立 y= ax3+ bx2+ 5 的单一区间.[ 分析 ]∵函数y=ax与y=-bx在(0,+)上都是减函数,a <0,b<0.由 y= ax3+bx2+ 5 得 y= 3ax2+ 2bx.令 y> 0,得 3ax2+ 2bx>0,- 2b3a< x< 0.当 x- 2b3a, 0 时,函数为增函数.令 y< 0,即 3ax2+ 2bx<0,x<- 2b3a,或 x> 0.在-,- 2b3a,(0,+ )上时,函数为减函数.18. (2019 新课标全国文,21)设函数 f(x) =x(ex - 1)- ax2.(1)若 a= 12,求 f(x) 的单一区间;(2)若当 x0 时 f(x)0 ,求 a 的取值范围.[ 分析 ] (1)a=12 时, f(x) =x(ex - 1)-12x2,f(x) =ex- 1+ xex- x= (ex- 1)(x + 1).当 x( -,- 1)时, f(x)0 ;当 x(- 1,0)时, f(x)0 ;当 x(0 ,+ )时, f(x)0.故 f(x) 在 (-,- 1], [0,+ )上单一递加,在[ -1,0] 上单一递减.(2)f(x) = x(ex - 1- ax).令 g(x) = ex- 1- ax,则 g(x) =ex- a.若 a1,则当 x(0,+ )时, g(x)0 , g(x) 为增函数,而 g(0)= 0,进而当 x0 时 g(x)0 ,即 f(x)0.教师范读的是阅读教课中不行缺乏的部分,我常采纳范读,让少儿学习、模拟。

高二数学函数的单调性与导数试题答案及解析

高二数学函数的单调性与导数试题答案及解析

高二数学函数的单调性与导数试题答案及解析1.已知函数(Ⅰ)求的单调区间;(Ⅱ)求上的最值.【答案】解:(I)令得若则,故在上是增函数,在上是增函数若则,故在上是减函数。

3分(II)。

6分【解析】本试题主要是考查了导数在研究函数中的运用。

(1)求解导数,利用导数的正负来判定函数的单调增减区间(2)在第一问的基础上可知在上是增函数,在上是增函数因此在上先减后增,则可知函数的最值。

2.设函数,且为的极值点.(Ⅰ) 若为的极大值点,求的单调区间(用表示);(Ⅱ)若恰有两解,求实数的取值范围.【答案】解:,又所以且,。

2分(I)因为为的极大值点,所以当时,;当时,;当时,所以的递增区间为,;递减区间为.。

4分(II)①若,则在上递减,在上递增恰有两解,则,即,所以;②若,则,因为,则,从而只有一解;③若,则,, 则只有一解.综上,使恰有两解的的范围为.。

10分【解析】本试题主要是考查了导数在研究函数中的运用。

(1)因为为的极大值点,则可以得到参数b,c的关系式,并利用导数求解的单调区间,(2)因为的递增区间为,;递减区间为,那么对于参数c进行讨论,进而分析函数图像与x轴的位置关系。

3.(Ⅰ)设函数,证明:当时,;(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽得的20个号码互不相同的概率为。

证明:。

注:可用(Ⅰ)的结论。

【答案】解:(Ⅰ)。

1分当时,,所以为增函数,又,因此当时,。

3分(Ⅱ)。

5分又,,…,所以。

6分由(Ⅰ)知,当时,,因此。

7分在此式中令,则即。

8分所以。

9分【解析】本试题主要是考查了导数在研究函数中的运用。

利用导数的符号判定单调性得到最值证明不等式恒成立。

同时利用函数的最值结论来分析证明不等式的综合运用。

4.设函数,,则的最大值为____________,最小值为_________。

【答案】【解析】解:因为,利用导数符号与函数单调性关系可知道f(x)的最大值,最小值分别为5.设函数,其中。

《函数与导数》测试题(含标准答案)

《函数与导数》测试题(含标准答案)

《函数与导数》测试题一、选择题1.函数的单调递增区间是( )A. B.(0,3) C.(1,4) D 。

解析 ,令,解得,故选D2。

已知直线y=x+1与曲线相切,则α的值为 ( )A.1 B. 2 C 。

-1 D 。

-2 解:设切点,则,又。

故答案 选B 3。

已知函数在R 上满足,则曲线在点处的切线方程是( )A. B 。

C. D 。

解析 由得几何,即,∴∴,∴切线方程,即选A4。

存在过点的直线与曲线和都相切,则等于() A .或 B .或 C .或 D .或解析 设过的直线与相切于点,所以切线方程为即,又在切线上,则或,x e x x f )3()(-=)2,(-∞),2(+∞()()(3)(3)(2)x x x f x x e x e x e '''=-+-=-()0f x '>2x >y ln()x a =+00(,)P x y 0000ln 1,()y x a y x =+=+0'01|1x x y x a===+00010,12x a y x a ∴+=∴==-∴=()f x 2()2(2)88f x f x x x =--+-()y f x =(1,(1))f 21y x =-y x =32y x =-23y x =-+2()2(2)88f x f x x x =--+-2(2)2()(2)8(2)8f x f x x x -=--+--22()(2)44f x f x x x --=+-2()f x x =/()2f x x =12(1)y x -=-210x y --=(1,0)3y x =21594y ax x =+-a 1-25-641-21474-25-6474-7(1,0)3y x =300(,)x x 320003()y x x x x -=-230032y x x x =-(1,0)00x =032x =-当时,由与相切可得, 当时,由与相切可得,所以选. 5。

高考数学《函数的单调区间》基础知识与专项练习题(含答案解析)

高考数学《函数的单调区间》基础知识与专项练习题(含答案解析)

高考数学《函数的单调区间》基础知识与专项练习题(含答案解析)单调性是函数的一个重要性质,对函数作图起到决定性的作用,而导数是分析函数单调区间的一个便利工具。

求一个已知函数的单调区间是每一个学生的必备本领,在求解的过程中也要学会一些方法和技巧。

一、基础知识:1、函数的单调性:设()f x 的定义域为D ,区间I D ⊆,若对于1212,,x x I x x ∀∈<,有()()12f x f x <,则称()f x 在I 上单调递增,I 称为单调递增区间。

若对于1212,,x x I x x ∀∈<,有()()12f x f x >,则称()f x 在I 上单调递减,I 称为单调递减区间。

2、导数与单调区间的联系(1)函数()f x 在(),a b 可导,那么()f x 在(),a b 上单调递增()',()0x a b f x ⇒∀∈≥,此结论可以这样理解:对于递增的函数,其图像有三种类型: ,无论是哪种图形,其上面任意一点的切线斜率均大于零。

等号成立的情况:一是单调区间分界点导数有可能为零,例如:()2f x x =的单调递增区间为[)0+∞,,而()'00f =,另一种是位于单调区间内但导数值等于零的点,典型的一个例子为()3f x x =在0x =处的导数为0,但是()0,0位于单调区间内。

(2)函数()f x 在(),a b 可导,则()f x 在(),a b 上单调递减()',()0x a b f x ⇒∀∈≤,(3)前面我们发现了函数的单调性可以决定其导数的符号,那么由()',()x a b f x ∀∈,的符号能否推出()f x 在(),a b 的单调性呢?如果()f x 不是常值函数,那么便可由导数的符号对应推出函数的单调性。

(这也是求函数单调区间的理论基础) 3、利用导数求函数单调区间的步骤 (1)确定函数的定义域(2)求出()f x 的导函数'()f x(3)令'()0f x >(或0<),求出x 的解集,即为()f x 的单调增(或减)区间(4)列出表格4、求单调区间的一些技巧(1)强调先求定义域,一方面定义域对单调区间有限制作用(单调区间为定义域的子集)。

(完整版)导数与函数的单调性练习题(最新整理)

(完整版)导数与函数的单调性练习题(最新整理)

x
(-∞,b-1) b-1 (b-1,1) (1,+∞)
f ′(x)

0


当 b-1>1,即 b>2 时,f ′(x)的变化情况如下表:
x
(-∞,1) (1,b-1) b-1 (b-1,+∞)
f ′(x)


0

所以,当 b<2 时,函数 f(x)在(-∞,b-1)上单调递减,在(b-1,1)上单调递增,在(1,+∞)
2
2.已知函数 f(x)=x2+2x+alnx,若函数 f(x)在(0,1)上单调,则实数 a 的取值范围是( )
A.a≥0 B.a<-4
C.a≥0 或 a≤-4 D.a>0 或 a<-4
a 答案:C 解析:∵f′(x)=2x+2+ ,f(x)在(0,1)上单调, ∴f′(x)≥0 或 f′(x)≤0 在(0,1)
处的切线方程为 6x y 7 0 .(Ⅰ)求函数 y=f(x)的解析式;(Ⅱ)求函数 y=f(x)的单
调区间. 解:(Ⅰ)由 f(x)的图象经过 P(0,2),知 d=2,
所以 f (x) x3 bx 2 cx 2,
f (x) 3x2 2bx c.
由 在 M(-1,f(-1))处 的 切 线 方 程 是 6x y 7 0 ,
_______________
答 案 : a 0,且b2 3ac
解 析 : f ' (x) 3ax2 2bx c 0 恒 成 立 , 则
a
0 4b2
12ac
,a 0
0, 且b 2
3ac
21.若函数 y=- 4 x3+bx 有三个单调区间,则 b 的取值范围是________. 3

高中数学利用导数研究函数的单调性精选题

高中数学利用导数研究函数的单调性精选题

利用导数研究函数的单调性精选题21道一.选择题(共6小题)1.设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)2.若函数f(x)=x﹣sin2x+a sin x在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣] 3.已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(﹣log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为()A.a<b<c B.c<b<a C.b<a<c D.b<c<a4.若函数f(x)=x2+ax+在是增函数,则a的取值范围是()A.[﹣1,0]B.[﹣1,+∞)C.[0,3]D.[3,+∞)5.若函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,则k的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,﹣1]C.[2,+∞)D.[1,+∞)6.已知f(x)=x2+sin,f′(x)为f(x)的导函数,则f′(x)的图象是()A.B.C.D.二.填空题(共9小题)7.已知函数f(x)=x3﹣2x+e x﹣,其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是.8.函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为.9.函数f(x)=x﹣lnx的单调减区间为.10.设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是.11.函数f(x)=(x﹣3)e x的单调递增区间是.12.已知函数f(x)=mx2+lnx﹣2x在定义域内是增函数,则实数m的取值范围为.13.函数y=x2﹣lnx的单调递减区间为.14.已知三次函数f(x)=x3+x2+cx+d(a<b)在R上单调递增,则的最小值为.15.设定义域为R的函数f(x)满足f'(x)>f(x),则不等式e x﹣1f(x)<f(2x﹣1)的解为.三.解答题(共6小题)16.已知函数f(x)=﹣x+alnx.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:<a﹣2.17.设函数f(x)=(1﹣x2)•e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求实数a的取值范围.18.已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.19.已知函数f(x)=x﹣1﹣alnx.(1)若f(x)≥0,求a的值;(2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值.20.已知函数f(x)=2sin x﹣x cos x﹣x,f′(x)为f(x)的导数.(1)证明:f′(x)在区间(0,π)存在唯一零点;(2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.21.已知函数f(x)=x3﹣a(x2+x+1).(1)若a=3,求f(x)的单调区间;(2)证明:f(x)只有一个零点.利用导数研究函数的单调性精选题21道参考答案与试题解析一.选择题(共6小题)1.设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)【分析】由已知当x>0时总有xf′(x)﹣f(x)<0成立,可判断函数g(x)=为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于x•g(x)>0,数形结合解不等式组即可.【解答】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数又∵g(﹣1)==0,∴函数g(x)的图象性质类似如图:数形结合可得,不等式f(x)>0⇔x•g(x)>0⇔或,⇔0<x<1或x<﹣1.故选:A.【点评】本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.2.若函数f(x)=x﹣sin2x+a sin x在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]【分析】求出f(x)的导数,由题意可得f′(x)≥0恒成立,设t=cos x(﹣1≤t≤1),即有5﹣4t2+3at≥0,对t讨论,分t=0,0<t≤1,﹣1≤t<0,分离参数,运用函数的单调性可得最值,解不等式即可得到所求范围.【解答】解:函数f(x)=x﹣sin2x+a sin x的导数为f′(x)=1﹣cos2x+a cos x,由题意可得f′(x)≥0恒成立,即为1﹣cos2x+a cos x≥0,即有﹣cos2x+a cos x≥0,设t=cos x(﹣1≤t≤1),即有5﹣4t2+3at≥0,当t=0时,不等式显然成立;当0<t≤1时,3a≥4t﹣,由4t﹣在(0,1]递增,可得t=1时,取得最大值﹣1,可得3a≥﹣1,即a≥﹣;当﹣1≤t<0时,3a≤4t﹣,由4t﹣在[﹣1,0)递增,可得t=﹣1时,取得最小值1,可得3a≤1,即a≤.综上可得a的范围是[﹣,].另解:设t=cos x(﹣1≤t≤1),即有5﹣4t2+3at≥0,由题意可得5﹣4+3a≥0,且5﹣4﹣3a≥0,解得a的范围是[﹣,].故选:C.【点评】本题考查导数的运用:求单调性,考查不等式恒成立问题的解法,注意运用参数分离和换元法,考查函数的单调性的运用,属于中档题.3.已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(﹣log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为()A.a<b<c B.c<b<a C.b<a<c D.b<c<a【分析】由奇函数f(x)在R上是增函数,则g(x)=xf(x)偶函数,且在(0,+∞)单调递增,则a=g(﹣log25.1)=g(log25.1),则2<log25.1<3,1<20.8<2,即可求得b<a<c【解答】解:奇函数f(x)在R上是增函数,当x>0,f(x)>f(0)=0,且f′(x)>0,∴g(x)=xf(x),则g′(x)=f(x)+xf′(x)>0,∴g(x)在(0,+∞)单调递增,且g(x)=xf(x)偶函数,∴a=g(﹣log25.1)=g(log25.1),则2<log25.1<3,1<20.8<2,由g(x)在(0,+∞)单调递增,则g(20.8)<g(log25.1)<g(3),∴b<a<c,故选:C.【点评】本题考查函数奇偶性,考查函数单调性的应用,考查转化思想,属于基础题.4.若函数f(x)=x2+ax+在是增函数,则a的取值范围是()A.[﹣1,0]B.[﹣1,+∞)C.[0,3]D.[3,+∞)【分析】由函数在(,+∞)上是增函数,可得≥0在(,+∞)上恒成立,进而可转化为a≥﹣2x在(,+∞)上恒成立,构造函数求出﹣2x在(,+∞)上的最值,可得a的取值范围.【解答】解:∵在(,+∞)上是增函数,故≥0在(,+∞)上恒成立,即a≥﹣2x在(,+∞)上恒成立,令h(x)=﹣2x,则h′(x)=﹣﹣2,当x∈(,+∞)时,h′(x)<0,则h(x)为减函数.∴h(x)<h()=3∴a≥3.故选:D.【点评】本题考查的知识点是利用导数研究函数的单调性,恒成立问题,是导数的综合应用,难度中档.5.若函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,则k的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,﹣1]C.[2,+∞)D.[1,+∞)【分析】求出导函数f′(x),由于函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,可得f′(x)≥0在区间(1,+∞)上恒成立.解出即可.【解答】解:f′(x)=k﹣,∵函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,∴f′(x)≥0在区间(1,+∞)上恒成立.∴k≥,而y=在区间(1,+∞)上单调递减,∴k≥1.∴k的取值范围是:[1,+∞).故选:D.【点评】本题考查了利用导数研究函数的单调性、恒成立问题的等价转化方法,属于中档题.6.已知f(x)=x2+sin,f′(x)为f(x)的导函数,则f′(x)的图象是()A.B.C.D.【分析】先化简f(x)=x2+sin=x2+cos x,再求其导数,得出导函数是奇函数,排除B,D.再根据导函数的导函数小于0的x的范围,确定导函数在(﹣,)上单调递减,从而排除C,即可得出正确答案.【解答】解:由f(x)=x2+sin=x2+cos x,∴f′(x)=x﹣sin x,它是一个奇函数,其图象关于原点对称,故排除B,D.又f″(x)=﹣cos x,当﹣<x<时,cos x>,∴f″(x)<0,故函数y=f′(x)在区间(﹣,)上单调递减,故排除C.故选:A.【点评】本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.二.填空题(共9小题)7.已知函数f(x)=x3﹣2x+e x﹣,其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是[﹣1,].【分析】求出f(x)的导数,由基本不等式和二次函数的性质,可得f(x)在R上递增;再由奇偶性的定义,可得f(x)为奇函数,原不等式即为2a2≤1﹣a,运用二次不等式的解法即可得到所求范围.【解答】解:函数f(x)=x3﹣2x+e x﹣的导数为:f′(x)=3x2﹣2+e x+≥﹣2+2=0,可得f(x)在R上递增;又f(﹣x)+f(x)=(﹣x)3+2x+e﹣x﹣e x+x3﹣2x+e x﹣=0,可得f(x)为奇函数,则f(a﹣1)+f(2a2)≤0,即有f(2a2)≤﹣f(a﹣1)由f(﹣(a﹣1))=﹣f(a﹣1),f(2a2)≤f(1﹣a),即有2a2≤1﹣a,解得﹣1≤a≤,故答案为:[﹣1,].【点评】本题考查函数的单调性和奇偶性的判断和应用,注意运用导数和定义法,考查转化思想的运用和二次不等式的解法,考查运算能力,属于中档题.8.函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为(﹣1,+∞).【分析】构建函数F(x)=f(x)﹣(2x+4),由f(﹣1)=2得出F(﹣1)的值,求出F(x)的导函数,根据f′(x)>2,得到F(x)在R上为增函数,根据函数的增减性即可得到F(x)大于0的解集,进而得到所求不等式的解集.【解答】解:设F(x)=f(x)﹣(2x+4),则F(﹣1)=f(﹣1)﹣(﹣2+4)=2﹣2=0,又对任意x∈R,f′(x)>2,所以F′(x)=f′(x)﹣2>0,即F(x)在R上单调递增,则F(x)>0的解集为(﹣1,+∞),即f(x)>2x+4的解集为(﹣1,+∞).故答案为:(﹣1,+∞)【点评】本题考查学生灵活运用函数思想求解不等式,解题的关键是构建函数,确定函数的单调性,属于中档题.9.函数f(x)=x﹣lnx的单调减区间为{x|0<x<1}.【分析】先求函数f(x)的导数,然后令导函数小于0求x的范围即可.【解答】解:∵f(x)=x﹣lnx∴f'(x)=1﹣=令<0,则0<x<1故答案为:{x|0<x<1}【点评】本题主要考查函数的单调性与其导函数的正负情况之间的关系.属基础题.10.设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是(﹣∞,﹣1)∪(0,1).【分析】构造函数g(x)=,利用g(x)的导数判断函数g(x)的单调性与奇偶性,画出函数g(x)的大致图象,结合图形求出不等式f(x)>0的解集.【解答】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数又∵g(﹣1)==0,∴函数g(x)的大致图象如图所示:数形结合可得,不等式f(x)>0⇔x•g(x)>0⇔或,⇔0<x<1或x<﹣1.∴f(x)>0成立的x的取值范围是(﹣∞,﹣1)∪(0,1).故答案为:(﹣∞,﹣1)∪(0,1).【点评】本题考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式的应用问题,是综合题目.11.函数f(x)=(x﹣3)e x的单调递增区间是(2,+∞).【分析】先求出函数的导数,令导函数大于0,解不等式求出即可.【解答】解:∵f′(x)=(x﹣2)e x,令f′(x)>0,解得:x>2,∴f(x)在(2,+∞)递增,故答案为:(2,+∞).【点评】本题考查了函数的单调性,导数的应用,是一道基础题.12.已知函数f(x)=mx2+lnx﹣2x在定义域内是增函数,则实数m的取值范围为[1,+∞).【分析】函数f(x)=mx2+lnx﹣2x在定义域(x>0)内是增函数⇔≥0⇔对于任意x>0.⇔.利用导数即可得出.【解答】解:∵函数f(x)=mx2+lnx﹣2x在定义域(x>0)内是增函数,∴≥0,化为.令g(x)=,=﹣,解g′(x)>0,得0<x<1;解g′(x)<0,得x>1.因此当x=1时,g(x)取得最大值,g(1)=1.∴m≥1.故答案为[1,+∞).【点评】正确把问题等价转化、利用导数研究函数的单调性、极值与最值是解题的关键.13.函数y=x2﹣lnx的单调递减区间为(0,1].【分析】根据题意,先求函数的定义域,进而求得其导数,即y′=x﹣=,令其导数小于等于0,可得≤0,结合函数的定义域,解可得答案.【解答】解:对于函数,易得其定义域为{x|x>0},y′=x﹣=,令≤0,又由x>0,则≤0⇔x2﹣1≤0,且x>0;解可得0<x≤1,即函数的单调递减区间为(0,1],故答案为(0,1]【点评】本题考查利用导数求函数的单调区间,注意首先应求函数的定义域.14.已知三次函数f(x)=x3+x2+cx+d(a<b)在R上单调递增,则的最小值为3.【分析】由题意得f'(x)=ax2+bx+c在R上恒大于或等于0,得a>0,Δ=b2﹣4ac≤0,将此代入,将式子进行放缩,以为单位建立函数关系式,最后构造出运用基本不等式的模型使问题得到解决.【解答】解:由题意f'(x)=ax2+bx+c≥0在R上恒成立,则a>0,Δ=b2﹣4ac≤0.∴≥令,≥≥3.(当且仅当t=4,即b=c=4a时取“=”)故答案为:3【点评】本题考查了利用导数工具研究三次函数的单调性以及函数与方程的综合应用问题,属于中档题.15.设定义域为R的函数f(x)满足f'(x)>f(x),则不等式e x﹣1f(x)<f(2x﹣1)的解为(1,+∞).【分析】令g(x)=,求出函数的导数,根据函数的单调性得到关于x的不等式,解出即可.【解答】解:令g(x)=,则g′(x)=>0,故g(x)在R递增,不等式e x﹣1f(x)<f(2x﹣1),即<,故g(x)<g(2x﹣1),故x<2x﹣1,解得:x>1,故答案为:(1,+∞)【点评】本题考查了函数的单调性问题,考查导数的应用以及转化思想,是一道常规题.三.解答题(共6小题)16.已知函数f(x)=﹣x+alnx.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:<a﹣2.【分析】(1)求出函数的定义域和导数,利用函数单调性和导数之间的关系进行求解即可.(2)将不等式进行等价转化,构造新函数,研究函数的单调性和最值即可得到结论.【解答】解:(1)函数的定义域为(0,+∞),函数的导数f′(x)=﹣﹣1+=﹣,设g(x)=x2﹣ax+1,当a≤0时,g(x)>0恒成立,即f′(x)<0恒成立,此时函数f(x)在(0,+∞)上是减函数,当a>0时,判别式Δ=a2﹣4,①当0<a≤2时,△≤0,即g(x)≥0,即f′(x)≤0恒成立,此时函数f(x)在(0,+∞)上是减函数,②当a>2时,x,f′(x),f(x)的变化如下表:)综上当a≤2时,f (x)在(0,+∞)上是减函数,当a>2时,在(0,)和(,+∞)上是减函数,则(,)上是增函数.(2)由(1)知a>2,不妨设x1<x2,则0<x 1<1<x2,x1x2=1,则f(x1)﹣f(x2)=(x 2﹣x1)(1+)+a(lnx1﹣lnx2)=2(x2﹣x1)+a(lnx1﹣lnx2),则=﹣2+,则问题转为证明<1即可,即证明lnx1﹣lnx2>x1﹣x2,则lnx1﹣ln>x1﹣,即lnx1+lnx1>x1﹣,即证2lnx1>x1﹣在(0,1)上恒成立,设h(x)=2lnx﹣x+,(0<x<1),其中h(1)=0,求导得h′(x)=﹣1﹣=﹣=﹣<0,则h(x)在(0,1)上单调递减,∴h(x)>h(1),即2lnx﹣x+>0,故2lnx>x﹣,则<a﹣2成立.(2)另解:注意到f()=x﹣﹣alnx=﹣f(x),即f(x)+f()=0,不妨设x1<x2,由韦达定理得x1x2=1,x1+x2=a>2,得0<x1<1<x2,x1=,可得f(x2)+f()=0,即f(x1)+f(x2)=0,要证<a﹣2,只要证<a﹣2,即证2alnx2﹣ax2+<0,(x2>1),构造函数h(x)=2alnx﹣ax+,(x>1),h′(x)=≤0,∴h(x)在(1,+∞)上单调递减,∴h(x)<h(1)=0,∴2alnx﹣ax+<0成立,即2alnx2﹣ax2+<0,(x2>1)成立.即<a﹣2成立.【点评】本题主要考查函数的单调性的判断,以及函数与不等式的综合,求函数的导数,利用导数的应用是解决本题的关键.综合性较强,难度较大.17.设函数f(x)=(1﹣x2)•e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求实数a的取值范围.【分析】(1)求出函数的导数,求出极值点,利用导函数的符号,判断函数的单调性即可.(2)化简f(x)=(1﹣x)(1+x)e x.f(x)≤ax+1,下面对a的范围进行讨论:①当a≥1时,②当0<a<1时,设函数g(x)=e x﹣x﹣1,则g′(x)=e x﹣1>0(x >0),推出结论;③当a≤0时,推出结果,然后得到a的取值范围.法二:x≥0时,g(x)=e x(x2﹣1)+ax+1≥0恒成立,推出g'(x),求解[g'(x)]',当g'(0)=a﹣1≥0时,判断函数的单调性,判断满足题意,当g'(0)=a﹣1<0时,推出g(m)<g(0)=0,不合题意,得到结果.【解答】解:(1)因为f(x)=(1﹣x2)e x,x∈R,所以f′(x)=(1﹣2x﹣x2)e x,令f′(x)=0可知x=﹣1±,当x<﹣1﹣或x>﹣1+时f′(x)<0,当﹣1﹣<x<﹣1+时f′(x)>0,所以f(x)在(﹣∞,﹣1﹣),(﹣1+,+∞)上单调递减,在(﹣1﹣,﹣1+)上单调递增;(2)由题可知f(x)=(1﹣x)(1+x)e x.下面对a的范围进行讨论:①当a≥1时,设函数h(x)=(1﹣x)e x,则h′(x)=﹣xe x<0(x>0),因此h(x)在[0,+∞)上单调递减,又因为h(0)=1,所以h(x)≤1,所以f(x)=(1+x)h(x)≤x+1≤ax+1;②当0<a<1时,设函数g(x)=e x﹣x﹣1,则g′(x)=e x﹣1>0(x>0),所以g(x)在[0,+∞)上单调递增,又g(0)=1﹣0﹣1=0,所以e x≥x+1.因为当0<x<1时f(x)>(1﹣x)(1+x)2,所以(1﹣x)(1+x)2﹣ax﹣1=x(1﹣a﹣x﹣x2),取x0=∈(0,1),则(1﹣x0)(1+x0)2﹣ax0﹣1=0,所以f(x0)>ax0+1,矛盾;③当a≤0时,取x0=∈(0,1),则f(x0)>(1﹣x0)(1+x0)2=1≥ax0+1,矛盾;综上所述,a的取值范围是[1,+∞).(2)法二:x≥0时,g(x)=e x(x2﹣1)+ax+1≥0恒成立,g'(x)=e x(x2+2x﹣1)+a,[g'(x)]'=e x(x2+4x+1)>0(x≥0),g'(x)在x≥0时单调递增,当g'(0)=a﹣1≥0时,x>0时g'(x)>0恒成立,g(x)单调递增,则x≥0时,g(x)≥g(0)=0,符合题意,当g'(0)=a﹣1<0时,g'(|a|)>0,于是存在m>0使得g'(m)=0,当0<x<m时,g'(x)<0,g(x)单调递减,有g(x)<g(0)=0,不合题意,所以a≥1.综上所述,a的取值范围是[1,+∞).【点评】本题考查函数的导数的应用,函数的单调性以及函数的最值的求法,考查转化思想以及计算能力.18.已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.【分析】(Ⅰ)求出f(x)的导数,讨论当a≥0时,a<﹣时,a=﹣时,﹣<a<0,由导数大于0,可得增区间;由导数小于0,可得减区间;(Ⅱ)由(Ⅰ)的单调区间,对a讨论,结合单调性和函数值的变化特点,即可得到所求范围.【解答】解:(Ⅰ)由f(x)=(x﹣2)e x+a(x﹣1)2,可得f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①当a≥0时,由f′(x)>0,可得x>1;由f′(x)<0,可得x<1,即有f(x)在(﹣∞,1)递减;在(1,+∞)递增(如右上图);②当a<0时,(如右下图),由e x+2a=0,可得x=ln(﹣2a),由ln(﹣2a)=1,解得a=﹣,若a=﹣,则f′(x)≥0恒成立,即有f(x)在R上递增;若a<﹣时,由f′(x)>0,可得x<1或x>ln(﹣2a);由f′(x)<0,可得1<x<ln(﹣2a).即有f(x)在(﹣∞,1),(ln(﹣2a),+∞)递增;在(1,ln(﹣2a))递减;若﹣<a<0,由f′(x)>0,可得x<ln(﹣2a)或x>1;由f′(x)<0,可得ln(﹣2a)<x<1.即有f(x)在(﹣∞,ln(﹣2a)),(1,+∞)递增;在(ln(﹣2a),1)递减;(Ⅱ)①由(Ⅰ)可得当a>0时,f(x)在(﹣∞,1)递减;在(1,+∞)递增,且f(1)=﹣e<0,x→+∞,f(x)→+∞;当x→﹣∞时f(x)>0或找到一个x<1使得f(x)>0对于a>0恒成立,f(x)有两个零点;②当a=0时,f(x)=(x﹣2)e x,所以f(x)只有一个零点x=2;③当a<0时,若a<﹣时,f(x)在(1,ln(﹣2a))递减,在(﹣∞,1),(ln(﹣2a),+∞)递增,又当x≤1时,f(x)<0,所以f(x)不存在两个零点;当a≥﹣时,在(﹣∞,ln(﹣2a))单调增,在(1,+∞)单调增,在(ln(﹣2a),1)单调减,只有f(ln(﹣2a))等于0才有两个零点,而当x≤1时,f(x)<0,所以只有一个零点不符题意.综上可得,f(x)有两个零点时,a的取值范围为(0,+∞).【点评】本题考查导数的运用:求单调区间,考查函数零点的判断,注意运用分类讨论的思想方法和函数方程的转化思想,考查化简整理的运算能力,属于难题.19.已知函数f(x)=x﹣1﹣alnx.(1)若f(x)≥0,求a的值;(2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值.【分析】(1)通过对函数f(x)=x﹣1﹣alnx(x>0)求导,分a≤0、a>0两种情况考虑导函数f′(x)与0的大小关系可得结论;(2)通过(1)可知lnx≤x﹣1,进而取特殊值可知ln(1+)<,k∈N*.一方面利用等比数列的求和公式放缩可知(1+)(1+)…(1+)<e,另一方面可知(1+)(1+)…(1+)>2,从而当n≥3时,(1+)(1+)…(1+)∈(2,e),比较可得结论.【解答】解:(1)因为函数f(x)=x﹣1﹣alnx,x>0,所以f′(x)=1﹣=,且f(1)=0.所以当a≤0时f′(x)>0恒成立,此时y=f(x)在(0,+∞)上单调递增,故当0<x<1时,f(x)<f(1)=0,这与f(x)≥0矛盾;当a>0时令f′(x)=0,解得x=a,所以y=f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,即f(x)min=f(a),若a≠1,则f(a)<f(1)=0,从而与f(x)≥0矛盾;所以a=1;(2)由(1)可知当a=1时f(x)=x﹣1﹣lnx≥0,即lnx≤x﹣1,所以ln(x+1)≤x当且仅当x=0时取等号,所以ln(1+)<,k∈N*.ln(1+)+ln(1+)+…+ln(1+)<++…+=1﹣<1,即(1+)(1+)…(1+)<e;因为m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m成立,当n=3时,(1+)(1+)(1+)=,所以m的最小值为3.【点评】本题是一道关于函数与不等式的综合题,考查分类讨论的思想,考查转化与化归思想,考查运算求解能力,考查等比数列的求和公式,考查放缩法,注意解题方法的积累,属于难题.20.已知函数f(x)=2sin x﹣x cos x﹣x,f′(x)为f(x)的导数.(1)证明:f′(x)在区间(0,π)存在唯一零点;(2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.【分析】(1)令g(x)=f′(x),对g(x)再求导,研究其在(0,π)上的单调性,结合极值点和端点值不难证明;(2)利用(1)的结论,可设f′(x)的零点为x0,并结合f′(x)的正负分析得到f (x)的情况,得出结论.【解答】解:(1)证明:∵f(x)=2sin x﹣x cos x﹣x,∴f′(x)=2cos x﹣cos x+x sin x﹣1=cos x+x sin x﹣1,令g(x)=cos x+x sin x﹣1,则g′(x)=﹣sin x+sin x+x cos x=x cos x,当x∈(0,)时,x cos x>0,当x时,x cos x<0,∴当x=时,极大值为g()=>0,又g(0)=0,g(π)=﹣2,∴g(x)在(0,π)上有唯一零点,即f′(x)在(0,π)上有唯一零点;(2)由题设知f(π)⩾aπ,f(π)=0,可得a⩽0.由(1)知,f′(x)在(0,π)上有唯一零点x0,使得f′(x0)=0,且f′(x)在(0,x0)为正,在(x0,π)为负,∴f(x)在[0,x0]递增,在[x0,π]递减,结合f(0)=0,f(π)=0,可知f(x)在[0,π]上非负,∴当x∈[0,π]时,f(x)≥0,又当a≤0,x∈[0,π]时,ax≤0,∴f(x)≥ax,∴a的取值范围是(﹣∞,0].【点评】此题考查了利用导数研究函数的单调性,零点等问题,和数形结合的思想方法,难度较大.21.已知函数f(x)=x3﹣a(x2+x+1).(1)若a=3,求f(x)的单调区间;(2)证明:f(x)只有一个零点.【分析】(1)利用导数,求出极值点,判断导函数的符号,即可得到结果.(2)分离参数后求导,先找点确定零点的存在性,再利用单调性确定唯一性.【解答】解:(1)当a=3时,f(x)=x3﹣3(x2+x+1),所以f′(x)=x2﹣6x﹣3时,令f′(x)=0解得x=3,当x∈(﹣∞,3﹣2),x∈(3+2,+∞)时,f′(x)>0,函数是增函数,当x∈(3﹣2时,f′(x)<0,函数是单调递减,综上,f(x)增区间(﹣∞,3﹣2),(3+2,+∞),减区间(3﹣2.(2)证明:因为x2+x+1=(x+)2+,所以f(x)=0等价于,令,则,仅当x=0时,g′(x)=0,所以g(x)在R上是增函数;g(x)至多有一个零点,从而f(x)至多有一个零点.又因为f(3a﹣1)=﹣6a2+2a﹣=﹣6(a﹣)2﹣<0,f(3a+1)=>0,故f(x)有一个零点,综上,f(x)只有一个零点.【点评】本题主要考查导数在研究函数中的应用.考查发现问题解决问题的能力,转化思想的应用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学函数的单调性与导数测试题(附答案)选修2-21.3.1函数的单调性与导数一、选择题1.设f(x)=ax3+bx2+cx+d(a0),则f(x)为R上增函数的充要条件是()A.b2-4ac0 B.b0,c0C.b=0,c D.b2-3ac0[答案] D[解析]∵a0,f(x)为增函数,f(x)=3ax2+2bx+c0恒成立,=(2b)2-43ac=4b2-12ac0,b2-3ac0.2.(2009广东文,8)函数f(x)=(x-3)ex的单调递增区间是() A.(-,2) B.(0,3)C.(1,4) D.(2,+)[答案] D[解析]考查导数的简单应用.f(x)=(x-3)ex+(x-3)(ex)=(x-2)ex,令f(x)0,解得x2,故选D.3.已知函数y=f(x)(xR)上任一点(x0,f(x0))处的切线斜率k =(x0-2)(x0+1)2,则该函数的单调递减区间为()A.[-1,+) B.(-,2]C.(-,-1)和(1,2) D.[2,+)[答案] B[解析]令k0得x02,由导数的几何意义可知,函数的单调减区间为(-,2].4.已知函数y=xf(x)的图象如图(1)所示(其中f(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象大致是()[答案] C[解析]当01时xf(x)0f(x)0,故y=f(x)在(0,1)上为减函数当x1时xf(x)0,f(x)0,故y=f(x)在(1,+)上为增函数,因此否定A、B、D故选C.5.函数y=xsinx+cosx,x(-)的单调增区间是()A.-,-2和0,2B.-2,0和0,2C.-,-2,D.-2,0和[答案] A[解析]y=xcosx,当-x2时,cosx0,y=xcosx0,当02时,cosx0,y=xcosx0.6.下列命题成立的是()A.若f(x)在(a,b)内是增函数,则对任何x(a,b),都有f(x)0B.若在(a,b)内对任何x都有f(x)0,则f(x)在(a,b)上是增函数C.若f(x)在(a,b)内是单调函数,则f(x)必存在D.若f(x)在(a,b)上都存在,则f(x)必为单调函数[答案] B[解析]若f(x)在(a,b)内是增函数,则f(x)0,故A错;f(x)在(a,b)内是单调函数与f(x)是否存在无必然联系,故C错;f(x)=2在(a,b)上的导数为f(x)=0存在,但f(x)无单调性,故D错.7.(2019福建理,11)已知对任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x0时,f(x)0,g(x)0,则x0时()A.f(x)0,g(x) B.f(x)0,g(x)0C.f(x)0,g(x) D.f(x)0,g(x)0[答案] B[解析]f(x)为奇函数,g(x)为偶函数,奇(偶)函数在关于原点对称的两个区间上单调性相同(反),x0时,f(x)0,g(x)0. 8.f(x)是定义在(0,+)上的非负可导函数,且满足xf(x)+f(x)0,对任意正数a、b,若ab,则必有()A.af(a)f(b) B.bf(b)f(a)C.af(b)bf(a) D.bf(a)af(b)[答案] C[解析]∵xf(x)+f(x)0,且x0,f(x)0,f(x)-f(x)x,即f(x)在(0,+)上是减函数,又0<a<b,af(b)bf(a).9.对于R上可导的任意函数f(x),若满足(x-1)f(x)0,则必有()A.f(0)+f(2)2f(1) B.f(0)+f(2)2f(1)C.f(0)+f(2)2f(1) D.f(0)+f(2)2f(1)[答案] C[解析]由(x-1)f(x)0得f(x)在[1,+)上单调递增,在(-,1]上单调递减或f(x)恒为常数,故f(0)+f(2)2f(1).故应选C.10.(2019江西理,12)如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t时刻五角星露出水面部分的图形面积为S(t)(S(0)=0),则导函数y=S(t)的图像大致为[答案] A[解析]由图象知,五角星露出水面的面积的变化率是增减增减,其中恰露出一个角时变化不连续,故选A.二、填空题11.已知y=13x3+bx2+(b+2)x+3在R上不是单调增函数,则b的范围为________.[答案]b-1或b2[解析]若y=x2+2bx+b+20恒成立,则=4b2-4(b+2)0,-12,由题意b<-1或b>2.12.已知函数f(x)=ax-lnx,若f(x)>1在区间(1,+)内恒成立,实数a的取值范围为________.[答案]a1[解析]由已知a>1+lnxx在区间(1,+)内恒成立.设g(x)=1+lnxx,则g(x)=-lnxx2<0(x>1),g(x)=1+lnxx在区间(1,+)内单调递减,g(x)<g(1),∵g(1)=1,1+lnxx<1在区间(1,+)内恒成立,a1.13.函数y=ln(x2-x-2)的单调递减区间为__________.[答案](-,-1)[解析]函数y=ln(x2-x-2)的定义域为(2,+)(-,-1),令f(x)=x2-x-2,f(x)=2x-10,得x12,函数y=ln(x2-x-2)的单调减区间为(-,-1).14.若函数y=x3-ax2+4在(0,2)内单调递减,则实数a的取值范围是____________.[答案][3,+)[解析]y=3x2-2ax,由题意知3x2-2ax0在区间(0,2)内恒成立,即a32x在区间(0,2)上恒成立,a3.三、解答题15.设函数f(x)=x3-3ax2+3bx的图象与直线12x+y-1=0相切于点(1,-11).(1)求a、b的值;(2)讨论函数f(x)的单调性.[解析](1)求导得f(x)=3x2-6ax+3b.由于f(x)的图象与直线12x+y-1=0相切于点(1,-11),所以f(1)=-11,f(1)=-12,即1-3a+3b=-113-6a+3b=-12,解得a=1,b=-3.(2)由a=1,b=-3得f(x)=3x2-6ax+3b=3(x2-2x-3)=3(x+1)(x-3).令f(x)0,解得x-1或x3;又令f(x)0,解得-13.所以当x(-,-1)时,f(x)是增函数;当x(3,+)时,f(x)也是增函数;当x(-1,3)时,f(x)是减函数.16.求证:方程x-12sinx=0只有一个根x=0.[证明]设f(x)=x-12sinx,x(-,+),则f(x)=1-12cosx>0,f(x)在(-,+)上是单调递增函数.而当x=0时,f(x)=0,方程x-12sinx=0有唯一的根x=0.17.已知函数y=ax与y=-bx在(0,+)上都是减函数,试确定函数y=ax3+bx2+5的单调区间.[分析]可先由函数y=ax与y=-bx的单调性确定a、b的取值范围,再根据a、b的取值范围去确定y=ax3+bx2+5的单调区间.[解析]∵函数y=ax与y=-bx在(0,+)上都是减函数,a <0,b<0.由y=ax3+bx2+5得y=3ax2+2bx.令y>0,得3ax2+2bx>0,-2b3a<x<0.当x-2b3a,0时,函数为增函数.令y<0,即3ax2+2bx<0,x<-2b3a,或x>0.在-,-2b3a,(0,+)上时,函数为减函数.18.(2019新课标全国文,21)设函数f(x)=x(ex-1)-ax2.(1)若a=12,求f(x)的单调区间;(2)若当x0时f(x)0,求a的取值范围.[解析](1)a=12时,f(x)=x(ex-1)-12x2,f(x)=ex-1+xex-x=(ex-1)(x+1).当x(-,-1)时,f(x)0;当x(-1,0)时,f(x)0;当x(0,+)时,f(x)0.故f(x)在(-,-1],[0,+)上单调递增,在[-1,0]上单调递减.(2)f(x)=x(ex-1-ax).令g(x)=ex-1-ax,则g(x)=ex-a.若a1,则当x(0,+)时,g(x)0,g(x)为增函数,而g(0)=0,从而当x0时g(x)0,即f(x)0.教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。

如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。

当a1,则当x(0,lna)时,g(x)0,g(x)为减函数,而g(0)=0,从而当x(0,lna)时g(x)0,即f(x)0.语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。

如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。

现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。

结果教师费劲,学生头疼。

分析完之后,学生收效甚微,没过几天便忘的一干二净。

造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。

常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。

久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和发展。

综合得a的取值范围为(-,1].。

相关文档
最新文档