励磁系统原理图
发电机励磁系统原理
发电机励磁系统原理及运行1.(发电机励磁系统图:)励磁系统构成及优缺点:励磁电源由励磁变引自发电机机端,通过可控硅整流元件直接控制发电机的励磁,这种励磁方式即为自并励可控硅整流励磁,其特点如下:(1)因采用可控硅整流器和无需考虑同轴励磁机时间常数的影响,故可获得较高的电压响应速度。
(2) 励磁变压器接到发电机端不受厂用电压的影响,但需起励电源。
(3)缺点:其一整流输出的直流顶值电压受发电机或电力系统短路故障形式和故障点远近的影响,缺乏足够的强励能力。
其二由于自并励可控硅整流励磁系统的发电机短路电流衰减较快,对发电机带延时的后备保护可靠动作不利。
为此,过流保护可采用电流启动记忆,由复合电压或低电压闭锁的延时保护。
2. 发电机励磁装置:(1) 励磁装置组成:并联励磁变、可控整流装置、励磁调节器、灭磁及转子过电压保护、起励回路。
(2) 并联励磁变压器:型号:SCLLB-1800KVA / 容量:1800kVA一次电压15.75KV 二次电压:0.6kv接线Y/△ -11••••• 自并励励磁系统的励磁变压器不设自动开关,只设有隔离刀闸。
励磁变装设过流保护,该保护动作引跳出口油开关及灭磁开关。
励磁变接在主变底压侧,不受系统及厂用电影响。
•(3) 可控硅整流回路:(整流回路原理图:)以单相半波整流电路为例说明可控硅整流电路的工作原理。
要使可控硅导通,必须在可控硅的阳极及控制极同时加正向电压,并且使流过可控硅的阳极电流大于它的维持电流。
当阳极加反响电压,或流过可控硅阳极的电流小于维持电流时,可控硅截止。
从可控硅承受正向电压开始,到可控硅导通为止,这一段区间为控制角。
改变控制角的大小,可调整可控硅输出电压的大小。
可控硅整流电路可输出连续可调的直流电压。
主整流器采用三相全控桥,2个功率柜并列运行。
整流元件采用晶闸管整流,•每个功率柜额定功率输出2000A。
整流柜为强迫风冷式。
风机设有主、备用电源,互为备用(•主、备用电源:均用机旁I II段电源)。
图解发电机励磁原理共4文档
可根据发电机负载的变化自动调节励磁电流,保持发电机输出电 压的稳定。
直流发电机励磁特点分析
励磁方式多样
直流发电机可采用他励、并励、 串励和复励等多种励磁方式,可
根据实际需求选择。
磁场可控性强
通过调节励磁电流的大小和方向, 可以灵活控制发电机的磁场强度 和方向。
输出特性稳定
在负载变化时,通过自动调节励 磁电流可以保持发电机输出电压 和电流的稳定。
作用
励磁系统的主要作用是维持发电机端电压在给定水平,同时控制并列运行各发 电机间无功功率的合理分配,以满足电力系统正常运行和发电机安全运行的要 求。
励磁系统组成部分
励磁功率单元
向同步发电机转子提供直流励磁电流,主要包括交流励磁机、整流器 等部分。
励磁调节器
根据发电机端电压、无功功率等信号,自动调节励磁功率单元输出的 励磁电流,以维持发电机端电压稳定并控制无功功率分配。
经验总结
总结故障排除过程中的经验教训,完 善维护流程,提高设备维护水平。
THANKS
感谢您的观看
对比法
将故障设备与正常设备进行对比, 分析差异,找出故障原因。
03
02
测量法
使用万用表、示波器等工具测量电 路参数,判断故障点。
替换法
用正常元件替换疑似故障元件,观 察设备是否恢复正常。
04
预防性维护策略制定
定期检查
制定详细的检查计划,对发电机励磁系统进行定期检查。
清洁保养
保持设备清洁,定期清理灰尘和杂物,确保散热良好。
紧固接线
检查所有接线端子是否松动,及时紧固。
预防性试验
定期进行预防性试验,检测设备的绝缘性能、电气性能等。
故障排除后性能恢复验证
图解发电机励磁原理课件
E=4.44fNΦ
F:励磁条件与影响 N:机端电压影响
Φ:与励磁电流关系
对于发电机来说,励磁就是产生磁通Φ
学习交流PPT
4
励磁的基本任务
Governor调速
Frequency(f) Active Power(P)
功角δ
Reactive Power(Q) Terminal Voltage(Ug)
Excitation励磁
高起始励磁系统
学习交流PPT
11
三峡电厂右岸励磁系统
THYRIP OL
完全柔性制动系统
调 辅助 整流柜(功率柜) 直流灭磁 灭磁
节 控制 制动整流柜
开关柜 电阻柜
器柜
(柔性制动)
学习交S流1PP0T 1
S106+S107
12
直流励磁机系统(开关励磁)
FMK
*
FLQ
F
CT
L
PT
Rc LLQ
同轴
自动励磁调节器
发电机励磁系统原理(1)
学习交流PPT
1
水轮发电厂原理
大坝、水电厂、水轮 机、发电机定子、转 子、励磁系统
学习交流PPT
2
水轮发电厂转子
学习交流PPT
n=60f/P 励磁绕组(d轴) 阻尼绕组(d轴、 q轴)
3
励磁的基本概念
什么是励磁?
场B
4.44:有效值系数
I2=0.816Id
学习交流PPT
22
三相全控桥实际电路波形
因电感引起换弧角 带来的过电压尖峰, 逆变颠覆
实际电路器件介绍: 快熔、阻容、分流器、 表记、均流、开关、 脉冲变等
学习交流PPT
23
2024版图解发电机励磁原理
高可靠性设计
提高发电机励磁系统的可靠性是未 来的重要发展方向,通过采用冗余 设计、故障预测与健康管理等技术
手段降低系统故障率。
绿色环保
随着环保意识的提高,未来发电机 励磁系统将更加注重绿色环保,采 用低能耗、低污染的材料和技术,
降低系统对环境的影响。
对未来学习和工作的建议
深入学习专业知识
继续深入学习电力电子、控制理 论等相关专业知识,为从事发电 机励磁相关领域的工作打下坚实
案例分析:某大型水电站励磁调节器设计
• 设计背景:某大型水电站采用水轮发电机组,装机容量大、运行工况复杂,对励磁调节器性能要求高。 • 设计目标:设计一款高性能、高可靠性的励磁调节器,满足水电站运行要求。 • 设计方案:采用基于DSP的数字式励磁调节器设计方案,实现快速、精确的电压调节和功率分配功能;同时采
基础。
关注前沿技术动态
关注发电机励磁技术的最新发展 动态,了解新技术、新方法的应 用情况,不断提升自己的专业素 养。
加强实践动手能力
通过参与实验、项目等方式加强 实践动手能力,培养解决实际问 题的能力。
拓展跨学科知识
学习与发电机励磁相关的跨学科 知识,如电力系统分析、电机学 等,提升综合分析和解决问题的
如失磁、励磁不稳、励磁过流等故障,通过 案例分析学习相应的处理方法和预防措施。
发电机励磁技术发展趋势预测
数字化与智能化
随着电力电子技术和控制理论的发 展,未来发电机励磁系统将更加数 字化和智能化,实现更精确的控制 和优化。
多功能集成化
为满足不同应用场景的需求,发电 机励磁系统将向多功能集成化方向 发展,如集成无功补偿、谐波治理 等功能。
提高发电机并列运行的稳定性。
功能
励磁系统的构成与工作原理_图文
电力系统非正常运行状况的影响要注意分析。
3
§1.1 励磁控制系统的构成形式
一. 直流励磁机系统
直流励磁机系统的接线有自励式和他励式[由图1—1(a)、(b)]。在自励 式接线中,应用并激直流发电机作为励磁机,利用剩磁自励;在他励式接 线中,除主励磁机外,还有副励磁机,副励磁机供给主励磁机的励磁。励 磁机、副励磁机大多与主机同轴旋转。自励和他励接线中(图1—1),励磁 回路部装有调节电阻R,改变R 大小,即可改变直流励磁机的电压,从而 改变发电机的励磁电流。有的接线图中,在励磁回路中加入旋转放大器或 者引入附加控制电流,改变放大器电势或控制电流大小,也可调节励磁。
同步电机用同轴旋转的交流发电机作为励磁电源,经过静止的二极管
成可控硅整流,向主发电机供给励磁电流,这种型式称为交流励磁机系统 ,
也称为他励静止半导体励磁系统。根据整流器是二报管还是可控硅又可分 为:他励静止不可控励磁系统和他励静止可控励磁系统。
图1-6表示他励静止半导体励磁系统原理图。交流励磁机JZ主发电机 同轴旋转,交流电经可控桥KZ或二极管桥 GZ整流,然后送至主发电机转 子绕组。交流励磁机JL的励磁采用自励[图1-6(a)],或由副励磁机 JFL供 给[图1-6(b)],副励磁机可采用永磁机或采用自动恒压装置[图1-6(b)]。
图解发电机励磁原理
开关励磁
可控硅励磁原理
三相全控桥电路 α=00:强励状态,AC变DC α=α0:整流状态,AC变DC α=1500:逆变状态,D电C力变工程A技C术(china-dianli)
全控桥与半控桥
全控桥:
整流与逆变 整流特征相同 能够逆变也能续流 Uf反相恒定
If线性衰减 灭磁快
半控桥:
整流与续流 整流特征相同 不能逆变只能续流
性的振荡)(稳定余度好极限功率问题、安稳切机问题); ❖ 暂态稳定是大扰动后系统在随后的1-2个周波的稳定性;
(周期性振荡)(安稳切机问题、继电保护问题); ❖ 动态稳定是微小扰动或者是大扰动1-2周波后(暂稳后期),
因自动调节作用产生的电力稳工定程技性术(稳chi定na-d(ianli励) 磁PSS问题)。
整流器输入开关
的定义:灭磁开关 &隔离开关:按是 否投灭磁电阻而定 电力工程技术(china-dianli)
现代励磁基础
同轴直流发电机(体积大、效率低、容量小)
电力电子器件:二极管、晶闸管(可控硅)、IGBT等
PN结、单相导通特性、可控硅伏安特性
可控硅导通条件:正向电压、正向脉冲
可控硅关断条件:反向电压 同步电压、触发脉电冲力工、程技脉术宽(ch调ina-制dianli)
2. 从电力系统角度研究励磁(励磁技术高级)
提高系统的静态稳定性(小扰动稳定) 提高系统的动态稳定性(小扰动失稳) 提高系统的暂态稳定性(大扰动稳定)
励磁是发电机励磁,也是电系力统工程的技术励(磁chin,a-dia但nli)更重要的还是发电机励磁
励磁控制系统的主要任务
1、同步发电机励磁控制系统的最基本和最主要的任务是 维持发电机电压在给定水平上
图解发电机励磁原理
提高系统的静态稳定性(小扰动稳定) 提高系统的动态稳定性(小扰动失稳) 提高系统的暂态稳定性(大扰动稳定)
励磁是发电机励磁,也是系统的精励品课磁件 ,但更重要的还是发电机励磁
灭磁慢 续流二极管
精品课件
三相全控桥电路要点
SCR导通顺序:
1234561234561234……
整流状态
•交流变直流,能量供给 •00<a<900 •Ud>0
逆变状态
•直流变交流,能量反送
•900<a<1500 (1800-0)
•Ud<0
Ud=1.35U2cosa
I2=0.816Id
精品课件
三相全控桥实际电路波形
F:励磁条件与影响 N:机端电压影响
Φ:与励磁电流关系
对于发电机来说,励磁就是产生磁通Φ
精品课件
励磁的基本任务
Governor调速 Frequency(f) Active Power(P)
功角δ
Reactive Power(Q) Terminal Voltage(Ug)
G Excitation励磁
Uf, I f
<
UE , I E AVR
自并励励磁系统 IGBT
For Exa4m00pVleAC
110 V DC
Generat or
Main Exciter Voltage Regulator
他励:励磁电源取自励磁机或厂用电等;
自励:励磁电源取自发电机本身,可靠性高,但需采取措
施保证强励能力。
精品课件
精品课件
三峡电厂右岸励磁系统
THYRIPO L
完全柔性制动系统
(2024年)图解发电机励磁原理
非线性系统的优化问题,但计算量较大。
02
粒子群优化算法
通过模拟鸟群觅食行为,实现全局寻优。该方法收敛速度快,易于实现
并行计算,但可能陷入局部最优解。
2024/3/26
03
模糊控制
基于模糊数学理论,将人的经验知识转化为控制规则,实现对发电机励
磁系统的智能控制。该方法不依赖于精确的数学模型,具有较强的鲁棒
8
02
发电机励磁方式及特点
2024/3/26
9
直流励磁方式
直流发电机供电
维护成本高
采用直流发电机作为励磁电源,通过 调节发电机励磁电流的大小,实现对 发电机输出电压和频率的控制。
由于直流发电机结构复杂,维护成本 相对较高。
可靠性高
直流励磁方式具有较高的可靠性和稳 定性,适用于大型发电机组和重要电 力系统。
替换法
在怀疑某个元器件损坏时,可以用正 常的元器件替换后观察故障是否消除 ,以验证故障部位和原因。
2024/3/26
测量法
使用万用表、示波器等工具测量励磁 系统各点的电压、电流、波形等参数 ,与正常值进行比较分析,进一步确 定故障原因。
专家系统诊断
利用专家系统或故障诊断软件对励磁 系统故障进行自动诊断和分析,提高 故障诊断的准确性和效率。
通过调整发电机励磁电流,使功率因数保持恒定。该策略 有助于提高发电机的运行效率,但可能增加系统振荡的风 险。
最优励磁控制策略
基于现代控制理论,通过优化算法实时调整发电机励磁电 流,实现系统性能的最优化。该策略具有自适应能力强、 控制精度高等优点,但实现难度较大。
19
优化方法介绍
01
遗传算法
通过模拟自然选择和遗传机制,寻找最优控制参数。该方法适用于复杂
励磁 系统
3.2励磁调节器
c.最小磁场电流限制器 • 主要任务是防止失磁。
• 这个功能通常用于水轮发电机组,它有可能在较深的进相状态下运行,对应 的励磁电流有可能接近于零。在这种情况下,最小磁场电流限制器确保励磁 场电流不小于最小限制值。该限制值对于维持正常的可控硅整流是有必要的, 此外,它可防止转子极靴过热。 d.定子电流限制器 • 这个限制器在过励和欠励运行范围内防止发电机定子绕组过热。 e.P/Q 限制器 • 本质上是一个欠励限制器,用于防止发电机进入不稳定运行区域。 (2)控制方式 • 恒机端电压方式(电压闭环) • 恒励磁电流方式(电流闭环) • 恒无功功率方式(无功闭环) • 恒触发角开环方式(定角度,它励时可用) • 恒功率因数方式
3.2励磁调节器
(4)故障检测 • PT 断线 • 电源故障 • 调节器故障 • 脉冲故障 • 整流桥故障报警 • 转子过热报警 • 通讯故障报警 (5)保护 • 过流保护:反时限特性的过流保护、瞬时过流保护 • 失磁保护:其目的是在发电机在超出其稳定极限之外工作的情况下,跳开同 步发电机。 • 过磁通保护(V/Hz 保护):该保护目的是防止同步发电机和变压器的磁通密 度过于饱和。 • 变压器温度测量 • 调节器自检功能:通过软件看门狗实现自检功能,还有相应的电路监测调节 器的工作电源,指示电源故障。
3.2励磁调节器
3.2.3调节器概述 • 核心是PAC控制器,由PAC控制器组成独立的AVR通道和FCR通道。由双网络完 成系统各个通道的通讯。 • 两套独立的AVR控制器,完成励磁系统对发电机机端电压的控制和无功功率 的控制,并完成一系列的限制和保护功能。每套AVR控制器从输入到输出都 是相互独立的。 • AVR的输出信号为触发脉冲,经过整流柜的可控硅控制器,对脉冲智能均流 后,经放大触发可控硅,完成对励磁电流的控制,从而达到对机端电压的控 制。 • 每套AVR还完成励磁电流控制器的功能,即内部含有FCR控制器、同时含有功 率因数控制和无功功率控制。 • 两套AVR控制器的信号通过HMI显示。HMI显示修改发电机控制参数、发电机 状态、励磁系统状态和故障记录。为了防止两套AVR均同时发生故障,又在 上述冗余的基础上,提供独立手动控制器。在AVR双通道故障时,独立手动 控制器开始控制,完成对励磁电流的FCR控制。 • 同时,还完成过电流和瞬时过电流的限制保护功能。独立手动控制器的输出 脉冲直接到脉冲放大模块的接口,经放大后,控制可控硅。每个通道可以控 制多个并联的整流桥,保证系统的高度可靠。
第十三章 励磁系统
第十三章励磁系统第一节概述同步发电机的励磁控制系统是由励磁调节器、励磁功率单元和发电机组成的系统。
其构成如图13-1所示。
励磁功率单元是指向同步发电机转子绕组提供直流励磁电流的励磁电源部分,而励磁调节器则是根据控制要求和给定调节准则控制励磁功率单元输出的装置。
图13-1发电机励磁系统基本原理框图随着电力工业的发展,电力系统开始进入了大容量、大电网、高自动化时期。
对于大电网而言,电力系统的稳定性显得尤为重要,而大容量发电机短路比的减小及瞬变电抗的增大,均给系统稳定带来了不利影响。
因此,350MW机组对发电机励磁系统的顶值电压倍数和响应速度提出了更高要求。
目前,国内外350MW及以上容量发电机组主要采用无刷励磁方式和自并励励磁方式。
近年来,由于自并励励磁系统具有固有的高起始快速响应特性,而且接线简单,维护方便,加之电力系统稳定器(PSS)的配合使用,较好地解决了系统稳定性的问题,从而使自并励励磁系统得到了更为广泛的应用。
一、励磁系统的作用和要求励磁系统是发电机的重要组成部分,它对电力系统及发电机本身的安全稳定运行有很大的影响。
励磁系统的主要作用有:1)在电力系统正常运行情况下,维持发电机或系统某点电压水平。
2)合理分配发电机间的无功负荷。
3)提高电力系统的静态稳定。
4)提高电力系统的动态稳定。
在大容量长距离输电的电网中,采用自动调节励磁装置来提高系统的稳定性是方便和经济的,因此大型发电机上的励磁调节器的作用已超出调节电压的范围,所以称为励磁调节器,而不称为电压调节器。
5)提高带时限继电保护装置动作的灵敏度。
6)在暂态过程中(如故障切除后、个别发电机失磁时),能加速电网电压的恢复,提高电能质量,改善系统的工作条件。
励磁系统的要求:1)在正常运行时,能按照负荷电流和电压的变化,自动地改变励磁电流,以维持电压在给定值水平,并能稳定分配机组间的无功负荷。
2)应有足够的功率输出,在电力系统发生事故,电压降低时,能迅速地将发电机的励磁加大到最大值,以实现强行励磁的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r i g h t 2002 A B B .t s r e s e r v e d . -1-5Close look of UNITROL ®5000 componentsABB (China) LtdMartin Affolterig ht202 AB B -2-UNITROL ®5000 –Content⏹Overview about components used in UNITROL ®5000⏹System in plant can be different from this presentationi g h t 2002 A B B -3-UNITROL ®5000 –Single line Diagrami g h t 2002 A B B -4-ig ht202 AB B -5-⏹Co ntroller B oard ⏹Central processor unit of UNITROL ®5000⏹Firmware and applicationi g h t 2002 A B B -6-ig ht202 AB B -7-⏹M easuring U nit B oard ⏹Measuring Ug and Ig ⏹Diode monitoring ⏹PSS (according IEEE)⏹PT-fail and other monitoring functionsi g h t 2002 A B B -8-ig ht202 AB B -9-⏹E xtended G ate C ontroller ⏹Backup current regulator ⏹Backup overcurrent relay Inverse time and instantaneous ⏹Backup thyristor branch monitoringi g h t 2002 A B B -10ig ht202 AB B -11⏹P ower S ignal I nterface ⏹Pre-processing of:⏹Synchronous voltage ⏹Field voltage ⏹AC field current ⏹DC field current (optional)i g h t 2002 A B B -12ig ht202 AB B -13⏹F ast I nput/O utput ⏹Interface between process signals and COB ⏹16 digital inputs ⏹18 digital outputs ⏹4 analog outputs ⏹3 analog inputs ⏹Input for crowbar current measurement ⏹3 amplifier inputs for current, voltage or resistance measurementi g h t 2002 A B B -14ig ht202 AB B -15⏹S ervice Pa nel ⏹Used for maintenance and servicei g h t 2002 A B B -16ig ht202 AB B -17⏹L ocal C ontrol P anel ⏹Display of analog values ⏹8 signals with name, value and unit ⏹4 signals with bar display ⏹Display of 8 error messages ⏹Plant specific keys with LEDig ht202 AB B -18⏹E xcitation C ontrol T erminal ⏹Different Screens ⏹Operation menu ⏹Power chart ⏹Single line diagram ⏹Trending ⏹Fault and event recorderi g h t 2002 A B B -19i g h t 2002 A B B -20⏹Pow er Supply and input filter ⏹Convert AC or DC power to 24Vdci g h t 2002 A B B -21i g h t 2002 A B B -22⏹F ield b us C oupler ⏹I/O interface via ARCnet ⏹32 digital inputs ⏹32 digital outputsi g h t 2002 A B B -23i g h t 2002 A B B -24⏹D igital I nput I nterface ⏹Used together with FBC ⏹16 galvanically isolated binary inputsi g h t 2002 A B B -25i g h t 2002 A B B -26⏹R elay O utput I nterface ⏹Used together with FBC ⏹16 relay outputsi g h t 2002 A B B -27ig ht202 AB B -28⏹D igital I nput / O utput ⏹Used together with FBC ⏹16 Digital inputs ⏹16 Digital outputs ⏹Input signals can be linked onto 2 trip channelsi g h t 2002 A B B -29ig ht202 AB B -30⏹A nalog I nput O utput ⏹I/O Interface via ARCnet ⏹8 analog inputs ⏹8 analog outputsi g h t 2002 A B B -31UNITROL ®5000 –Converterig ht202 AB B -32UNITROL ®5000 –Converter Bridge Thyristorsig ht202 AB B -33UNITROL ®5000 –Thyristor⏹3“ Flat Thyristors⏹1 Thyristor per branch→6 per converter bridge⏹Mounted between heatsinksig ht202 AB B -34UNITROL ®5000 –Converter Bridge ⏹Thyristors ⏹Branch fusesig ht202 AB B -35UNITROL ®5000 –Branch Fuse ⏹Disconnect branch in case of thyristor short circuit ⏹Enables redundancy, only faulty converter will be blocked ⏹Indication of blown fuseig ht202 AB B -36UNITROL ®5000 –Converter Bridge ⏹Thyristors ⏹Branch fuses ⏹Overvoltage protectionig ht202 AB B -37UNITROL ®5000 –Overvoltage protection ⏹AC voltage is connected via rectifier to R-C-filter ⏹Protect Thyristors from overvoltage ⏹Reduce commutation peaks ⏹Prevent self-firing of thyristors ⏹Capacitor ⏹Rectifier ⏹Resistors ⏹Fuseig ht202 AB B -38UNITROL ®5000 –Converter Bridge ⏹Thyristors ⏹Branch fuses ⏹Overvoltage protection ⏹Converter Isolatorig ht202 AB B -39UNITROL ®5000 –Convertor Isolator Disconnect bridge from power circuit (AC and DC) for maintenanceig ht202 AB B -40UNITROL ®5000 –Converter Bridge ⏹Thyristors ⏹Branch fuses ⏹Overvoltage protection ⏹Converter Isolator ⏹Cooling systemi g h t 2002 A B B -41UNITROL ®5000 –Fan box ⏹Cooling of converter ⏹Possibility of redundant fan ⏹Airflow monitoring with flaps ⏹Possibility of replacing single fani g h t 2002 A B B -42ig ht202 AB B -43⏹C onverter In terface ⏹Link between COB and GDI ⏹Current equalisation ⏹Conduction Monitoring ⏹Monitoring functions ⏹Branch current ⏹Temperature ⏹Status messages from Isolator ⏹Status messages from snubberi g h t 2002 A B B -44i g h t 2002 A B B -45⏹G ate D river I nterface ⏹Final pulse stage for thyristor bridgei g h t 2002 A B B -46ig ht202 AB B -47⏹C onverterD isplay P anel ⏹Display instantaneous converter current ⏹LED display for converter operating statusi g h t 2002 A B B -48ig ht202 AB B -49⏹Cu rrent S ensor ⏹Single-phase differential current measurement by means of a hall sensor ⏹Nominal current I N =2000Ai g h t 2002 A B B -50UNITROL ®5000 –Fieldbreaker。