高频电子线路 第四讲

合集下载

高频电子线路4章17节201310精品文档

高频电子线路4章17节201310精品文档

Av

-
p1 p 2 y fe Y
-
p1 p 2 y fe
G p

j( C

1) L1
Y
A vop1G p2pyfeGpp 1g po 21y fegi2
+ Vo

G′ p
L1
-
为了获取最大功率增益,应适当地选取p1和p2的值,使负 载导纳YL能与晶体管电路的输出导纳相匹配。匹配条件是:
C
Gp L1 C′i2 g′i2
+ Vo
-
-
yo1 p12yoe
YL p12YL
Y

G′ p
L1
p 1 N N 1 p 2 N N 2G p G p g o 1 g i2C C C o 1 C i 2
Yp1 2(yoeYL )
A v V V oi11
yfe yoeYL
p12yfe Y
20
晶体管
a
+
N
负载YL
Io1 yfeVi1
+ Vo1
1 go1 Co1 Y′L Vo C Gp
N1
-
-
L1
+
N2 Vi2 L2 -
Ci2 gi2
2
b
从上图可知,本级的实际电压增益是:
Av V Vii12
(N NV12i)1Vo1
N1
-
-
L1
+
N2 Vi2 L2 -
2
b
(b) 等效电路
Ci2 gi2
图4.3.1 单调谐回路谐振放大器的原理性电路与等效电路
18
4.3.1 电压增益Av

高频电子线路第4章1-7节201310

高频电子线路第4章1-7节201310

Cb c
b'
rb' c
c
rce
Cb' c Cb' e gmVb' e
Cce
c
13
4.2.3 混合π等效电路参数与形式等效电路y 参数的转换
Cb c
根据π等效电路, 写出节点电流方程。
b
rb b '
r b' e Cb e
b +
V1 I1
-
c +
I2 V2
e
I1
+
V1 yi
-
b'
rb' c
c
rce
Cb' c Cb' e gmVb' e

I1
I2
yr

I1 V2
输入短路反向传输导纳
V1 0
+
V1
yi
yr V2
+ yo V2
yf

I2 V1
V2
输出短路正向传输导纳
0
-
yf V1 图4.2.2 y 参数等效电路
-
c
+
yo

I2 V2
输入短路时输出导纳
V1 0
b +
V1 I1
I2 V2
-
-8
e
图4.2.3是晶体管 放大器的基本电路。
17
图4.3.1为单调谐回路
谐振放大器原理性电路与
等效电路,图中为了突出
输入
+
所要讨论的中心问题,故 信号 Vi1
-
略去实际电路中的附属电
路等。
晶体管
a

高频电子线路课件第四章ppt课件

高频电子线路课件第四章ppt课件
相对较低 可到达甚高频段
运用较少
4.3.3 LC三端式振荡器相位平衡条件的判别准那么
C
1、XCE与XBE的电抗性质一样;
X1
2、XBC与XCE、XBE的电抗性质相反;
3、对于振荡频率fo,应满足:
E
X3
XCE+XBE+XBC=0
X2 B
集基一样余相反
C
C1
E
L
C2
B
考毕兹电路
C
L1
E
C
L2
B
哈脱莱电路
gn
1 rn
uD
适用中,隧道二极管具有电压控制型负阻器件特性; 单结晶体管、雪崩管具有电流控制型负阻器件特性。
iD
iD
Q
IQ
Im
uUmcost
0
UQ
uD0
t
0
设将负阻特性直线化,并在任务点
电压UQ上叠加一正弦电压u
Um
iurnUm crnotsImcots
t
u D U Q u U Q U m cot s
0.01uF
200pF 100pF C3 C4
C2 200pF
L 8uH
C55.1pF
C1 51pF
4.5 石英晶体振荡器
频率稳定度可到达10-6~10-11。 石英晶体振荡器的优点: 石英晶体的等效谐振回路有很高的规范性; 石英晶体的Q值可高达数百万量级; 在串并联谐振频率之间很窄的任务频带内,
4.3.1 电感反响式三端振荡器〔哈脱莱电路〕
一、电路方式
C
B E
C E
B
二、交流等效电路
三、起振条件 四、振荡频率
hfe L1M 1 hiehoe L2 M hfe

高频电子线路正弦波振荡器.ppt

高频电子线路正弦波振荡器.ppt

单调谐放大器
高频电子线路——第4章 正弦波振荡器
3.相位(频率)稳定条件
相位稳定条件和频率稳定条件实质上是一回事
正弦信号相位φ和频率ω的关系:
d
dt
dt
振荡器的角频率 增大导致相位不断超前 相位 的不断超前表明角频率 增大
高频电子线路——第4章 正弦波振荡器
(1)相位(频率)稳定过程
原平衡态: L (0 ) f F 0
4.1.2 起振条件
1.起振过程分析
单调谐放大器
刚通电:电路中存在很宽的频谱的电的扰动,幅值很小
通电后:
1)谐振回路的选频功能,从扰动中选出 osc 分量(osc 0)
2)放大器工作在线性放大区, |T (josc)|>1 ,形成增幅振荡
3)忽略晶体管内部相移: f =0
回路谐振: L=0
T (josc) =0,相移为零
起振 过程
平衡 状态
起振 过程
平衡 状态
输出波形:
高频电子线路——第4章 正弦波振荡器
4.1.4 稳定条件
1.平衡状态稳定分析:
(1)振荡电路中存在干扰
单调谐放大器
① 外部:电源电压、温度、湿度的变化,引起管子和回 路参数的变化。
② 内部:存在固有噪声(起振时的原始输入电压,进入平 衡后与输入电压叠加引起波动)。
单调谐放大器
外界干扰后: L (0 ) f F 0
Ub 相位超前 Ub 相位
升高
振荡回路相频特性 L 下降
L () f F 下降
L () f F 0
达到新的平衡 > 0
外界干扰消失后: L () f F 0
Ub 相位滞后 Ub 相位
降低

高频电子线路_张肃文_4版课件(全)ch2.2

高频电子线路_张肃文_4版课件(全)ch2.2

因此,表示谐振曲线的函数为
Is
1 Gp j(C ) . Gp V ( ) L N ( ) 1 V (0 ) Is Gp j(C ) L Gp
《 高 频 电 子 线 路 》 ( 第 四 版 ) 张 肃 文 主 编
Is . V ( ) N ( ) ( ) V 0 Gp j(C Is Gp 1 ) L Gp Gp j(C 1 ) L
I Lp I sm 1 Q p Qp Ism
3.并联谐振时,流经电感和电容的电流模值大小相近, 方向相反,且约等于外加电流的Q倍; LCR回路的状态 与串联谐振回路相似。 V I R jQ I R Is jp L Rp Lp p s p L 1 Qp I j L VCp ICp 1 VLp Lp p R pCR jpC
3.并联谐振时,流经电感和电容的电流模值大小相近, 方向相反,且约等于外加电流的Q倍。
End
《 高 频 电 子 Is Z Y 线 路 》 ( L 1/G 第 Is C 四 G 版 O ) 张 p 选频特性曲线 肃 回路中电压幅值与外加电流频率之间的关系曲线 文 主 称为谐振曲线。 编 高 等 教 育 出 版 社
R 1 j L L Z 1 CR L 1 j R CR
L Is
损 耗 电 阻
C
R

R 即 1 j L R L 1 1 1 L 1 j L R CR R CR
R 2 L 1 L R CR


高 1 p p 等 Rs RL 教 育 由于QL值低于Qp,因此考虑信号源内阻及负载电阻后,并 出 联谐振回路的选择性变坏,通频带加宽。 版 社

高频电子线路课件4-1剖析

高频电子线路课件4-1剖析

振幅平衡的稳定条件表示放大器的电压增
益随振幅增大而减小,它能保证电路参数发生 变化引起的A、F变化时,电路能在新的条件下 建立新的平衡,即振幅产生变化来保证AF=1。
相位平衡的稳定条件表示振荡回路的相移
随频率增大而减小。它能保证振荡电路的参数 发生变化时,能自动通过频率的变化来调整
A F 2n ,保证振荡电路处于正反馈。
用瞬时极性法判断图4-6能否振荡(是否为正反馈)
3⊕
5○
2○
6⊕ 1⊕
4⊕
5○
6⊕ 1⊕
2⊕
3⊕
4○
答案:都是正反馈
总结:互感耦合反馈振荡器通过互感(变 压器)进行反馈,用同名端来保证正反馈。
第三节 反馈型LC振荡器
二 、电容反馈振荡电路
Rb1、Rb 2、Re直流偏压;Ce、Cb直流开路, 交流短路; Lc直流短路,交流开路。从b, c, e三极分析得图(b)
Q点是稳定平衡点
B点是不稳定平衡点
振幅稳定条件:A U c
U c U cQ
0
(2)相位稳定条件为 :Z 0 (4 ─ 16)
分析外因的影响:
当若外输因入使电U压bU的b和相位反超馈前电于压UUbb(相差为L )2则平衡
则相差 2 ,即T ,f ( )
即 L , L
外因的影响是
Z
0
显然,上述三个条件均与电路参数有关,
A由放大器的参数决定,除与工作点有关外, 还与晶体管的参数有关,而反馈系数F是与反馈 元件的参数值有关。
第三节 反馈型LC振荡器
一 、互感耦合振荡电路
5⊕ 1⊕
2⊕ 3⊕
4⊕
振荡条件:用瞬时极 性法判断是否为正反 馈。
振荡频率:0

高频电子线路4

高频电子线路4

–VBB
理想化
+c
o VBZ
eb
o
–c
vc
t +c o –c
Vbm
然是脉冲状,但由于谐振回路的
Vbm
t
这种滤波作用,仍然能得到正弦 谐振功率放大器转移特性曲线 波形的输出。
谐振功率放大器各部分的电压与电 流的波形图如下页的图所示
eb vb
ib
ic
V BZ t
–VBB t
t ec
V cm
V cm
V CC
功率、效率等随Rp而变 化的特性,就叫做放大
器的负载特性。
t 0 180°
半导通角
<90°
BA
eb=eb max
1
2
C3
Rp 负载增大
D
VCC
Q
Vcm
1.欠压状态
ec min
Vcm
2.临界状态
Vcm
电压、电流随负载变化波形
3.过压状态
1) vc、ic随负载变化的波形vc、ic随负载变化的波形如图所 示,放大器的输入电压是一定的,其最大值为Vbemax,在 负载电阻RP由小至大变化时,负载线的斜率由小变大, 如图中123。不同的负载,放大器的工作状态是不同 的,所得的ic波形、输出交流电压幅值、功率、效率也是 不一样的。
消去cost可得, eb=
–VBB+Vbm
VCC Vcm
ec
另一方面,晶体管的折线化方程为 ic = gc(eb–VBZ)
得出在ic–ec坐标平面上的动态特性曲线(负载线或工作路) 方程: icgcV BB V bm (V C V cC m ec)V BZ
gc V V b cm m ecV bV m C CV B V b V Z c m m V BV B cm

高频电子线路Class04

高频电子线路Class04
. I 1 2 RL 3 . I (a) 4 + RS . U2 - ES - 2 (b) 4 + . U1 3 +
+ RS ES - . U1
1 ZC
RL
UL -
图 2 — 18 传输线变压器的工作方式 (a) 传输线方式; (b) 变压器方式
▲传输线变压器的一般应用
◆1:1倒相器
+ RS . ES + - . U1 - 3 (a) . U2 + . I2 4 1 . I1 + 2 + . U2 - RL . UL - RS . ES + -
石英晶体滤波器(SiO2)
陶瓷滤波器 薄膜体声(FBAR)滤波器 利用机械谐振来达到滤波目的
同频率谐振,机 械波波长小于电 磁波波长
声表面滤波器等(Surface Acoustic Wave)。
在获得好的滤波效果的同时缩小滤波器体 积
(1)石英晶体滤波器
▲石英晶体的物理特性 压电效应
(a)
(b)
(c)
S L L
+ . UL
- (d)
ES - - 3 (a) . I .
. I2
ES 4 - - - -
3
◆1:4和4:1阻抗变换器
- RS . ES + - + . U1 - 1 . U2 + 2 + . U2 - . I RL 1 + . UL - RS . ES + + . U1 -
. + U1/2 (b) . I1
普通LC滤波器可以实现高性能的滤波,只不过不利于集成化、小型化或微型化; 不利于在特别高频段工作。
2.2.3其它形式的滤波器 随着无线电技术的飞速发展,在高频电子线路,特别是高频 集成模块中,对滤波器性能的要求越来越高,比如要求非常高 的频率稳定度,阻带衰减特性陡峭;因此采用普通的LC滤波 器的性能不可能满足要求(Why?)。在高频电路系统中除了使用 LC谐振电路外,目前还经常使用一些集中参数滤波器作为选 频电路,以改善电路的稳定性,及其系统性能以及电路的微型 化。目前常用的集中参数滤波器有:

《高频电子线路》教材

《高频电子线路》教材

滤波器的性能指标
带宽与阻带
滤波器的带宽是指允许通过信号的频率范围,阻带是指不允许通过信 号的频率范围。
通带与阻带边缘衰减
通带边缘衰减是指滤波器在通带边缘的信号衰减程度,阻带边缘衰减 是指滤波器在阻带边缘的信号衰减程度。
插入损耗
滤波器对信号的衰减程度称为插入损耗,理想的滤波器应具有零插入 损耗。
群时延
振荡器的性能指标
噪声性能
指振荡器的噪声水平,包括相 位噪声和幅度噪声。
调谐范围
指振荡器能够调谐的频率范围 大小。
响应时间
指振荡器从启动到达到稳定状 态所需的时间。
功耗
指振荡器在工作过程中消耗的 功率大小。
振荡器的应用实例
测量仪器
用于产生标准频率 信号,如示波器、 频谱分析仪等。
电子对抗系统
用于产生干扰信号 和测向信号等。
信号传输的调制方式
调频(FM)
通过改变高频载波信号的频率来调制低频信 息信号,具有抗干扰能力强、信噪比高等优 点。
调相(PM)
通过改变高频载波信号的相位来调制低频信息信号 ,具有抗干扰能力强、信噪比高等优点。
调相调频(PM/FM)
同时使用调相和调频技术对低频信息信号进 行调制,具有更高的信息传输速率和更好的 抗干扰能力。
带宽
带宽是衡量集成电路处理信号能力的 指标,通常指电路能够处理的最高频 率。
精度
精度是衡量集成电路输出信号与理想 信号接近程度的指标,通常用误差范 围或分辨率来表示。
功耗
集成电路的功耗是指其正常工作时所 消耗的能量,通常用电流和电压的乘 积来表示。
可靠性
可靠性是指集成电路在正常工作条件 下能够保持稳定性能的指标,通常用 平均无故障时间来表示。

高频电子线路(非线性电路分析法和混频器)资料课件

高频电子线路(非线性电路分析法和混频器)资料课件

THANKS
感谢您的观看

STEP 03
高频电子线路与数字信号 处理技术的结合将进一步 提高信号处理能力和系统 智能化水平。
随着新材料和新工艺的应 用,高频电子线路的性能 将得到进一步提升。
Part
02
非线性电路分析法
非线性电路的基本概念
总结词
非线性电路的基本概念包括非线性元件、非线性电阻、非线性电容、非线性电感等。
详细描述
混频器的基本概念
混频器是一种用于将 信号从一种频率转换 为另一种频率的电子 设备。
混频器在通信、雷达 、电子战和测量等领 域有广泛应用。
它通常由非线性元件 构成,能够将输入信 号的频率进行上变频 或下变频。
混频器的工作原理
混频器利用非线性元件的特性, 将输入信号的频率与本地振荡信 号进行混频,从而产生输出信号
Part
05
高频电子线路的未来展望
高频电子线路的发展趋势
5G/6G通信技术
随着5G/6G通信技术的快速发展,高频电子线路在天线、滤波器 、功率放大器等方面的应用将更加广泛。
物联网与智能家居
物联网与智能家居的普及将推动高频电子线路在传感器、无线通信 和数据处理等方面的应用。
雷达与卫星通信
高频电子线路在雷达、卫星通信、导航系统等领域的应用也将得到 进一步发展。
详细描述
图解法是通过图形直观地表示电路的特性和元件参数之间的关系,适用于简单电路的分 析。解析法是通过代数方程或微分方程来描述电路的特性和元件参数之间的关系,适用 于复杂电路的分析。数值法是通过迭代或搜索的方法求解电路的特性和元件参数之间的
关系,适用于无法用解析法求解的复杂电路。
非线性电路的应用实例
总结词

《高频电子线路》课件

《高频电子线路》课件

高频电子线路实验设备与器材
01
02
03
04
信号发生器
用于产生各种频率的正弦波信 号,作为实验输入信号。
示波器
用于观察信号波形,测量信号 的幅度、频率等参数。
高频放大器
用于放大高频信号,提高信号 的幅度。
滤波器
用于滤除不需要的频率成分, 提取特定频率的信号。
高频电子线路实验方法与步骤
实验准备
根据实验内容准备相应的设备 与器材,连接好线路。
02
高频电子线路基础知识
信号与系统
信号的分类
信号可以根据不同的特性进行 分类,如连续信号和离散信号 、确定性信号和随机信号等。
系统的基本概念
系统是一组相互关联和相互作 用的元素,它们共同完成某种 功能或目标。
线性时不变系统
线性时不变系统是信号处理中 最常见的系统类型,其特点是 系统的输出与输入成正比,且 比例系数是常数。
频率的信号。
04
高频电子线路系统分析
调谐电路分析
调谐电路的基本原理
调谐电路是一种通过改变电路的频率特性来选择信号或滤 波噪声的电路。它通过改变电路的电感或电容来实现频率 的调节。
调谐电路的分类
调谐电路可以分为串联调谐和并联调谐两种类型。串联调 谐电路的电抗与频率成正比,而并联调谐电路的电抗与频 率成反比。
振荡器的应用
振荡器在通信、测量、控制、电子仪器等领域有着广泛的应用,用于产生一定频率和幅度 的信号,作为信息传输、处理和测量的基础。
调制解调分析
调制解调的基本原

调制解调是实现信号传输的关键 技术之一。调制是将低频信号转 换为高频信号的过程,而解调是 将高频信号还原为低频信号的过 程。

高频电子线路-全部课程讲义

高频电子线路-全部课程讲义

Z 0 P 并联谐振频率 :令 的虚部为零,求解可 得: 1 1 Q 1 1 0 L 1 0 1 2 (Q ) r Q r 0Cr LC LC R0 回路在谐振时的阻抗 最 大,为: L Q R0 Q 0 L Cr 0 C
L
C

由于有 R0
第二节 高频电路中的基本电路 L Q
第一节 高频电路中的元器件

二、高频电路中的器件 高频电路中的有源器件主要是二极管、晶 体管和集成电路(IC),完成信号的放大、非 线性变换等功能。
第二节 高频电路中的基本电路
一、高频振荡回路
高频振荡回路包括并联谐振回路和串联 谐振回路。
振荡回路的谐振特性
简单振荡回路的阻抗在某一特定频率上具 有最大或最小值的特性称为谐振特性,这个特 定频率称为谐振频率。
Cr Q 0 L
0 C
得到:r 0时 R0 ,图2-4(a)的并联谐振回 路可用图2-4(b)所示的等效电路来表示。
L
C
C
R0
L
r
图2-4(a)并联谐振回路
图2-4(b)并联谐振回路等效电路
在高 Q 条件下,有:
第二节 高频电路中的基本电路
r jL
L
1 L L r L j C C Cr Zp 1 j L 1 1 r j L 1 r j L j C r jCr j C L L L 1 Cr Cr (Q0 0 ) Q jQ0 0Cr r 0 1 0 0 1 jQ j 0
2 2
R2
En 2
2
4kTBR1 4kTBR2
两个电阻串联的噪声分析模型

②热噪声通过线性网络。 H ( j ) 为电路的传输函数,如
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四讲 LC调谐小信号谐振放大器及集中选频放大器
图2.2.1 单调谐放大器
(a) 电路 (b)交流通路
将晶体管用小信号电路模型代入图2.2.1(b)则得图2.2.2(a)所示电路。

保证晶体管工
作在甲类状态 晶体管的输出及负载电阻
均通过阻抗变换电路接入。

自耦变压器匝比
n 变压器初次级匝比
G ie C ie ∙
i m U g G oe C oe
13112N n N =
g m ≈I EQ mA /26mV
图2.2.3 单调谐放大器的增益频率特性曲线
图2.2.2 单调谐放大电路小信号电路模型 (a) 小信号电路模型 (b) 变换后的电路模型并联谐振回路的有载电导等于 2212
o L
T p G G G G n n =++ 故单调谐放大器的选择性比较差。

为了减小内反馈的影响,提高谐振放大器工作稳定性,常采用共发-共基2.2.4所示。

图2.2.4 共发-共基组合电路谐振放大器
图中,V1接成共发组态,V2接成共基组态,由于共基组态输入阻抗很小,使放大器输出电路通过内反馈对输入端的影响很小,故放大器的稳定性得到
很大提高。

二、多级单谐振回路谐振放大器 若单级调谐放大器的增益不能满足要求时,可采用多级单调谐放大器级若每级谐振回路均调谐在同一频率上,称为同步调谐,若各级谐振回路
C i G ie ..'0
o
2
U n U
=oe 21
G n
oe 21
C
n
C P
G 13L i L 21
G n
(a) (b)
图2.2.7 双差调谐放大器幅频特性曲线
(a) 单级幅频特性 (b) 合成幅频特性
第三节集中调谐放大器
一、陶瓷滤波器
1、陶瓷滤波器的特性
陶瓷滤波器是利用某些陶瓷材料的压电效应构成的滤波器。

所谓压电效应,就是指当陶瓷片发生机械变形时,例如拉伸或压缩,一个是串联谐振频率f s,另一个是并联谐振频率。

相关文档
最新文档