高中数学-任意角与弧度制

合集下载

角的概念与弧度制

角的概念与弧度制
角的概念与弧度制
1、任意角的概念:设角的顶点在坐标原点,始边与 x 轴正半 轴重合,终边在坐标平面内, (1)从运动的角度看,可分为正角、负角和零角. (2)从终边位置来看,可分为象限角和轴线角. 象限角:若角 的终边落在第 k 象限,则称 为第 k 象限角; 注:若角 的终边在坐标轴上,则角 不属于任何象限角; (3)若 α 与 β 角的终边相同, 则 β 用 α 表示为 β=α+2kπ(k ∈Z).
)
练习 1: (1)给出下列四个命题: ①-
5 12
是第四象限角;
② 5 是第三象限角;
4
③475°是第二象限角; 其中正确的命题有
④- 7 是第一象限角;
4
9π (2)下列与 的终边相同的角的表达式中正确的是( 4 A.2kπ+45° (k∈Z) C.k· 360° -315° (k∈Z) 9π B.k· 360° + (k∈Z) 4 9π D.kπ+ (k∈Z) 4
)
例 2、分别写出终边在四个象限的角的集合
练习 2、已知角 是第二象限角,求: (1)角 是第几象限的角;
2
(2)角 2 终边的位置。
例 3、已知扇形的圆心角是 α,半径为 R,弧长为 l. (1)若 α=60° ,R=10 cm,求扇形的弧长 l 及该弧所在弓形的 面积; ; (2)若扇形的周长为 20 cm, 当扇形的圆心角 α 为多少弧度时, 这个扇形的面积最大;
弧长 l=|α|r 1 1 S= lr= |α|r21)锐角是第一象限角,反之亦然.( (2)终边在 x )
.(
π 轴上的角的集合是 αα=kπ+2,k∈Z
)
π (3)将分针拨快 10 分钟,则分针转过的角度是 .( 3 (4)第一象限的角一定不是负角.( )

高中数学教案《任意角和弧度制》

高中数学教案《任意角和弧度制》

教学计划:《任意角和弧度制》一、教学目标1.知识与技能:学生能够理解并掌握任意角的概念,熟悉角度制与弧度制的转换方法,掌握利用弧度制进行简单三角函数的计算。

2.过程与方法:通过直观演示和抽象概括,引导学生自主探究任意角与弧度制的定义及性质;通过例题解析和课堂练习,提高学生的逻辑思维能力和数学运算能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生严谨的科学态度和探究精神;通过学习任意角和弧度制,让学生体会到数学知识的连续性和统一性。

二、教学重点和难点●教学重点:任意角的概念,角度制与弧度制的转换,弧度制下三角函数的基本性质。

●教学难点:理解并接受弧度制作为角的另一种度量方式,以及利用弧度制进行三角函数的计算。

三、教学过程1. 引入新课(约5分钟)●情境导入:以生活中的实例(如钟表指针的转动、体操运动员的旋转动作)为例,引导学生思考角的度量不仅仅局限于0°到360°之间,从而引出任意角的概念。

●定义揭示:明确任意角的定义,包括正角、负角和零角,强调角的旋转方向和度量范围。

●激发兴趣:简述历史上角度制与弧度制的发展过程,引起学生对弧度制的好奇心。

2. 讲授新知(约15分钟)●弧度制介绍:详细介绍弧度制的定义,即弧长与半径的比值,强调弧度制在三角学和微积分中的重要性。

●转换方法:讲解角度制与弧度制之间的转换公式,并通过具体例子演示转换过程。

●性质探讨:引导学生探讨弧度制下三角函数的基本性质,如正弦、余弦和正切函数的周期性、奇偶性等。

3. 直观演示与操作(约10分钟)●单位圆与弧度制:利用多媒体或实物教具展示单位圆上的角度与弧度的对应关系,加深学生对弧度制的理解。

●互动操作:让学生在纸上绘制单位圆,并尝试用尺子量取特定弧长,计算对应的弧度值,以增强感性认识。

●小组讨论:组织学生讨论角度制与弧度制的优缺点,促进知识的内化和吸收。

4. 例题解析与练习(约15分钟)●例题解析:选取典型例题,如角度制与弧度制的转换、利用弧度制计算三角函数值等,进行详细解析,展示解题步骤和思路。

2025届高考数学一轮复习教案:三角函数-任意角和弧度制及三角函数的概念

2025届高考数学一轮复习教案:三角函数-任意角和弧度制及三角函数的概念

第一节任意角和弧度制及三角函数的概念【课程标准】1.了解任意角的概念和弧度制;2.能进行弧度与角度的互化;3.借助单位圆理解三角函数(正弦、余弦、正切)的定义.【考情分析】考点考法:高考命题常以角为载体,考查扇形的弧长、面积、三角函数的定义;三角函数求值是高考热点,常以选择题或填空题的形式出现.核心素养:数学抽象、数学运算【必备知识·逐点夯实】【知识梳理·归纳】1.角的概念的推广(1)定义:角可以看成一条射线绕着它的端点旋转所成的图形.(2)分类按旋转方向正角、负角、零角按终边位置象限角和轴线角(3)相反角:我们把射线OA绕端点O按不同方向旋转相同的量所成的两个角叫做互为相反角.角α的相反角记为__-α__.(4)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z}.2.弧度制的定义和公式(1)定义:把长度等于半径长的圆弧所对的圆心角叫做1弧度的角,弧度单位用符号rad表示.(2)公式角α的弧度数公式|α|=l r(弧长用l表示)角度与弧度的换算1°=180rad;1rad=(180)°弧长公式弧长l=|α|r扇形面积公式S=12lr=12|α|r23.任意角的三角函数(1)任意角的三角函数的定义(推广):设P(x,y)是角α终边上异于原点的任意一点,其到原点O的距离为r,则sinα=, cosα=,tanα=(x≠0).(2)三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦.(3)三角函数的定义域三角函数sinαcosαtanα定义域R R{α|α≠kπ+π2,k∈Z}【基础小题·自测】类型辨析改编易错题号12,341.(多维辨析)(多选题)下列说法正确的是()A.-π3是第三象限角B.若角α的终边过点P(-3,4),则cosα=-35C.若sinα>0,则α是第一或第二象限角D.若圆心角为π3的扇形的弧长为π,则该扇形面积为3π2【解析】选BD.因为-π3是第四象限角,所以选项A错误;由三角函数的定义可知,选项B正确;由sinα>0可知,α是第一或第二象限角或终边在y轴的非负半轴上,所以选项C错误;由扇形的面积公式可知,选项D正确.2.(必修第一册P175练习T1改题型)-660°等于()A.-133πB.-256πC.-113πD.-236π【解析】选C.-660°=-660×π180=-113π.3.(必修第一册P176习题T2改条件)下列与角11π4的终边相同的角的表达式中正确的是()A.2kπ+135°(k∈Z)B.k·360°+11π4(k∈Z)C.k·360°+135°(k∈Z)D.kπ+3π4(k∈Z)【解析】选C.与11π4的终边相同的角可以写成2kπ+3π4(k∈Z)或k·360°+135°(k∈Z),但是角度制与弧度制不能混用,排除A,B,易知D错误,C正确.4.(忽视隐含条件)设α是第二象限角,P(x,8)为其终边上的一点,且sinα=45,则x=()A.-3B.-4C.-6D.-10【解析】选C.因为P(x,8)为其终边上的一点,且sinα=45,所以sinα=45,解得x=±6,因为α是第二象限角,所以x=-6.【巧记结论·速算】α所在象限与2所在象限的关系α所在象限一二三四α2所在象限一、三一、三二、四二、四【即时练】设θ是第三象限角,且|cos2|=-cos2,则2是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角【解析】选B.因为θ是第三象限角,所以2的终边落在第二、四象限,又|cos2|= -cos2,所以cos2<0,所以2是第二象限角.【核心考点·分类突破】考点一象限角及终边相同的角[例1](1)(2023·宁波模拟)若α是第二象限角,则()A.-α是第一象限角B.2是第三象限角C.3π2+α是第二象限角D.2α是第三或第四象限角或在y轴负半轴上【解析】选D.因为α是第二象限角,可得π2+2kπ<α<π+2kπ,k∈Z,对于A,可得-π-2kπ<-α<-π2-2kπ,k∈Z,此时-α位于第三象限,所以A错误;对于B,可得π4+kπ<2<π2+kπ,k∈Z,当k为偶数时,2位于第一象限;当k为奇数时,2位于第三象限,所以B错误;对于C,可得2π+2kπ<3π2+α<5π2+2kπ,k∈Z,即2(k+1)π<3π2+α<π2+2(k+1)π,k∈Z,所以3π2+α位于第一象限,所以C错误;对于D,可得π+4kπ<2α<2π+4kπ,k∈Z,所以2α是第三或第四象限角或在y轴负半轴上,所以D正确.(2)在-720°~0°内所有与45°终边相同的角为-675°和-315°.【解析】所有与45°终边相同的角可表示为β=45°+k×360°(k∈Z),当k=-1时,β=45°-360°=-315°,当k=-2时,β=45°-2×360°=-675°.【解题技法】1.知α确定kα,(k∈N*)的终边位置的步骤(1)写出kα或的范围;(2)根据k的可能取值确定kα或的终边所在位置.2.求适合某些条件的角的方法(1)写出与这个角的终边相同的角的集合;(2)依据题设条件,确定参数k的值,得出结论.【对点训练】已知角θ在第二象限,且|sin2|=-sin2,则角2在()A.第一象限或第三象限B.第二象限或第四象限C.第三象限D.第四象限【解析】选C.因为角θ是第二象限角,所以θ∈(π2+2kπ,π+2kπ),k∈Z,所以2∈(π4+kπ,π2+kπ),k∈Z,所以角2在第一或第三象限.又|sin2|=-sin2,所以sin2<0,所以角2在第三象限.考点二弧度制及其应用[例2]已知扇形的圆心角是α,半径为R,弧长为l.(1)若α=π3,R=10cm,求扇形的弧长l.(2)(一题多法)若扇形的周长是16cm,当扇形的圆心角为多少弧度时,这个扇形的面积最大?(3)若α=π3,R=2cm,求扇形的弧所在的弓形的面积.【解析】(1)因为α=π3,R=10cm,所以l=|α|R=π3×10=10π3(cm).(2)方法一:由题意知2R+l=16,所以l=16-2R(0<R<8),则S=12lR=12(16-2R)R=-R2+8R=-(R-4)2+16,当R=4cm时,S max=16cm2,l=16-2×4=8(cm),α==2,所以S的最大值是16cm2,此时扇形的半径是4cm,圆心角α=2rad.方法二:S=12lR=14l·2R≤14·(r22)2=16,当且仅当l=2R,即R=4cm时,S的最大值是16cm2.此时扇形的圆心角α=2rad.(3)设弓形面积为S弓形,由题意知l=2π3cm,所以S弓形=12×2π3×2-12×22×sinπ3=(2π3-3)cm2.【解题技法】应用弧度制解决问题时的注意事项(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为基本不等式或二次函数的最值问题.(3)在解决弧长和扇形面积问题时,要合理地利用圆心角所在的三角形.【对点训练】若扇形的周长是16cm,圆心角是360π度,则扇形的面积(单位cm2)是16.【解析】设扇形的半径为r cm,圆心角弧度数为α=360π·π180=2,所以αr+2r=16即4r=16,所以r=4,所以S=12αr2=12×2×16=16.答案:【加练备选】已知弧长为60cm的扇形面积是240cm2,求:(1)扇形的半径;(2)扇形圆心角的弧度数.【解析】设扇形的弧长为l,半径为r,面积为S,圆心角为α.(1)由题意得S=12lr=12×60r=240,解得r=8(cm),即扇形的半径为8cm.(2)α==608=152,所以扇形圆心角的弧度数为152rad.考点三三角函数的定义及应用【考情提示】三角函数的定义主要考查利用定义求三角函数值及三角函数值符号的应用,常与三角函数求值相结合命题,题目多以选择题、填空题形式出现.角度1利用定义求三角函数值[例3](1)已知角α的终边经过点P(2,-3),则sinα=-31313,tanα=-32.【解析】因为x=2,y=-3,所以点P到原点的距离r=22+(-3)2=13.则sinα===-31313,tanα==-32.(2)若角60°的终边上有一点A(4,a),则a=43.【解析】由题设知:tan60°=4=3,即a=43.角度2三角函数值的符号[例4](1)若sinαtanα<0,且cos tan>0,则角α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角【解析】选B.由sinαtanα<0,知α是第二象限或第三象限角,由cos tan>0,知α是第一象限或第二象限角,所以角α是第二象限角.(2)sin2cos3tan4的值()A.小于0B.大于0C.等于0D.不存在【解析】选A.因为π2<2<3<π<4<3π2,所以sin2>0,cos3<0,tan4>0.所以sin2cos3tan4<0.【解题技法】与三角函数定义有关的解题策略(1)利用三角函数的定义,已知角α终边上一点P的坐标,可以求出α的三角函数值;已知角α的三角函数值,也可以求出点P的坐标.(2)利用角所在的象限判定角的三角函数值的符号时,特别要注意不要忽略角的终边在坐标轴上的情况.【对点训练】1.(多选题)设△ABC的三个内角分别为A,B,C,则下列各组数中有意义且均为正值的是()A.tan A与cos BB.cos B与sin CC.tan2与cos2D.tan2与sin C【解析】选CD.因为A,B的范围不确定,所以A选项不满足条件;cos B与sin C都有意义,但cos B不一定为正值,故B选项不满足条件;因为B,C∈(0,π),所以2,2∈(0,π2),所以C选项满足条件;因为0<A<π,所以0<2<π2,所以tan2>0,又因为0<C<π,所以sin C>0,故D选项满足条件.2.已知角θ的终边经过点(2a+1,a-2),且cosθ=35,则实数a的值是()A.-2B.211C.-2或211D.1【解析】选B.由题设可知=35且2a+1>0,即a>-12,所以42+4r152+5=925,则11a2+20a-4=0,解得a=-2或a=211,又a>-12,所以a=211.【加练备选】已知角α的终边上一点P的坐标为(sin5π6,cos5π6),则角α的最小正值为5π3.【解析】因为sin5π6>0,cos5π6<0,所以角α的终边在第四象限,根据三角函数的定义,可知sinα=cos5π6=-32,故角α的最小正值为α=2π-π3=5π3.。

高中数学任意角和弧度制复习要点

高中数学任意角和弧度制复习要点

高中数学任意角和弧度制复习要点
梳理
1.任意角
1角的分类:
①按旋转方向不同分为正角、负角、零角.
②按终边位置不同分为象限角和轴线角.
2终边相同的角:
终边与角α相同的角可写成α+k·360°k∈Z.
3弧度制:
①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.
②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=,l 是以角α作为圆心角时所对圆弧的长,r为半径.
③用“弧度”做单位来度量角的制度叫做弧度制.比值与所取的r的大小无关,仅与角的大小有关.
④弧度与角度的换算:360°=2π弧度;180°=π弧度.
⑤弧长公式:l=|α|r,扇形面积公式:S扇形=lr=|α|r2.
2.任意角的三角函数
1任意角的三角函数定义:
设α是一个任意角,角α的终边与单位圆交于点Px,y,那么角α的正弦、余弦、正切分别是:sin α=y,cos α=x,tan α=,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.
2三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦.
3.三角函数线
设角α的顶点在坐标原点,始边与x轴非负半轴重合,终边与单位圆相交于点P,过P作PM垂直于x轴于M.由三角函数的定义知,点P的坐标为cos_α,sin_α,即
Pcos_α,sin_α,其中cos α=OM,sin α=MP,单位圆与x轴的正半轴交于点A,单位
圆在A点的切线与α的终边或其反向延长线相交于点T,则tan α=AT.我们把有向线段OM、MP、AT叫做α的余弦线、正弦线、正切线.
感谢您的阅读,祝您生活愉快。

高中数学:三角函数 1.1任意角和弧度制 (3)

高中数学:三角函数 1.1任意角和弧度制 (3)

1.1.2 弧度制一、知识点1.角的度量:(1)角度制:把 规定为1度的角,记作1 ,这种用度做单位来度量角的单位制叫做角度制。

(2)弧度制: 叫做1弧度角,记作1rad ,或1弧度,或1(单位可以省略不写)。

这种用弧度做单位来度量角的单位制叫做弧度制。

2.正角的弧度数是一个 ,负角的弧度数是一个 .零角的弧度数是 .3.若半径为r 的圆的圆心角α所对弧的长为l ,则=α 。

这里α的正负由角α的终边的旋转方向决定。

4.角度和弧度的互化:=0180 rad =01 rad ≈ rad =rad 1 ≈5.角与实数的对应关系:在弧度制下, 与 之间建立起一一对应的关系:每个角都有唯一的实数(即 )与它对应;反过来,每一个实数也都有(即 )与它对应。

6.扇形弧长公式:=l =扇形面积公式:=S = 。

二、例题知识点一 : 弧度制定义1.下列各命题中,真命题是( )A.一弧度就是一度的圆心角所对的弧 B .一弧度是长度为半径的弧C.一弧度是一度的弧与一度的角之和D .一弧度是长度等于半径的弧岁对的圆心角,它是角的一种度量单位2. 在半径不等的两个圆内,1弧度的圆心角( )A.所对的弧长相等B.所对的弦长相等C.所对的弧长等于各自的半径D.以上都不对知识点二: 角度制与弧度制的互化3.把下列角表示为另一种形式:(1)0300- (2)π58 (3)031120' (4)π125- (5) '15564. 把π411-表示成)(2Z k k ∈+πθ的形式,使θ最小的θ的值是( ) A.43π- B.4π- C.4π D.43π 5. 把下列各角化成),20(2Z k k ∈<≤+πααπ的形式,并指出它们是第几象限角(1)01500- (2)01485- (3)π2004 (4)6-6. 将分针拨慢十分钟,则分针所转过的弧度数是 ( ) A.3π B.3π- C.5π D.5π-7. 经过5小时25分钟,时钟的时针和分针各转过 度, 弧度。

高中数学必修四任意角与弧度制知识点汇总

高中数学必修四任意角与弧度制知识点汇总

任意角与弧度制 知识梳理:一、任意角和弧度制 1、角的概念的推广定义:一条射线OA 由原来的位置,绕着它的端点O 按一定的方向旋转到另一位置OB ,就形成了角α,记作:角α或α∠ 可以简记成α。

注意:(1)“旋转”形成角,突出“旋转”(2)“顶点”“始边”“终边”“始边”往往合于x 轴正半轴 (3)“正角”与“负角”——这是由旋转的方向所决定的。

例1、若13590<<<αβ,求βα-和βα+的范围。

(0,45) (180,270)2、角的分类:由于用“旋转”定义角之后,角的范围大大地扩大了。

可以将角分为正角、零角和负角。

正角:按照逆时针方向转定的角。

零角:没有发生任何旋转的角。

负角:按照顺时针方向旋转的角。

例2、(1)时针走过2小时40分,则分针转过的角度是 -960(2)将分针拨快10分钟,则分针转过的弧度数是 3π .3、 “象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x 轴的正半轴。

角的终边落在第几象限,我们就说这个角是第几象限的角角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。

例1、30? ;390? ;?330?是第 象限角 300? ; ?60?是第 象限角585? ; 1180?是第 象限角 ?2000?是第 象限角。

例2、(1)A={小于90°的角},B={第一象限的角},则A∩B= ④ (填序号).①{小于90°的角} ②{0°~90°的角}③ {第一象限的角}④以上都不对(2)已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是(B )A .B=A∩CB .B∪C=CC .A ⊂CD .A=B=C例3、写出各个象限角的集合:例4、若α是第二象限的角,试分别确定2α,2α 的终边所在位置.解 ∵α是第二象限的角,∴k ·360°+90°<α<k ·360°+180°(k ∈Z ).(1)∵2k ·360°+180°<2α<2k ·360°+360°(k ∈Z ), ∴2α是第三或第四象限的角,或角的终边在y 轴的非正半轴上. (2)∵k ·180°+45°<2α<k ·180°+90°(k ∈Z ), 当k=2n (n ∈Z )时, n ·360°+45°<2α<n ·360°+90°; 当k=2n+1(n ∈Z )时, n ·360°+225°<2α<n ·360°+270°. ∴2α是第一或第三象限的角. 拓展:已知α是第三象限角,问3α是哪个象限的角∵α是第三象限角,∴180°+k ·360°<α<270°+k ·360°(k ∈Z ), 60°+k ·120°<3α<90°+k ·120°. ①当k=3m(m ∈Z )时,可得 60°+m ·360°<3α<90°+m ·360°(m ∈Z ). 故3α的终边在第一象限. ②当k=3m+1 (m ∈Z )时,可得 180°+m ·360°<3α<210°+m ·360°(m ∈Z ). 故3α的终边在第三象限. ③当k=3m+2 (m ∈Z )时,可得 300°+m ·360°<3α<330°+m ·360°(m ∈Z ).故3α的终边在第四象限. 综上可知,3α是第一、第三或第四象限的角. 4、常用的角的集合表示方法 1、终边相同的角:(1)终边相同的角都可以表示成一个0?到360?的角与)(Z k k ∈个周角的和。

高中数学总复习练习题---任意角和弧度制(解析版)

高中数学总复习练习题---任意角和弧度制(解析版)

高中数学总复习练习题专题47 任意角和弧度制一、选择题1.(2019·广西高一期末(文))150o 化成弧度制为( ) A.56πB.4π C.23π D.3π 【答案】A【解析】由题意可得51501501806ππ=⨯=o,故选:A. 2.把85π-化为角度是( ) A.96-o B.144-oC.288-oD.576-o【答案】C【解析】由题意,根据角度制和弧度制的互化,可得8818028855π-=-⨯=-o o . 故选:C.3.下列角的终边与37o 角的终边在同一直线上的是( ) A.37-o B.143oC.379oD.143-o【答案】D【解析】与37o 角的终边在同一直线上的角可表示为37180k +⋅o o ,k Z ∈,当1k =-时,37180143-=-o o o ,所以,143-o 角的终边与37o 角的终边在同一直线上. 故选:D .4.与468-o 角的终边相同的角的集合是( )A.{}360456,k k Z αα=⋅+∈ooB.{}360252,k k Z αα=⋅+∈ooC.{}36096,k k Z αα=⋅+∈ooD.{}360252,k k Z αα=⋅-∈oo【答案】B【解析】因为4682360252-=-⨯+o o o ,所以252o 角与468-o 角的终边相同,所以与468-o 角的终边相同的角的集合为{}360252,k k Z αα=⋅+∈o o. 故选:B .5.如果角α的终边上有一点()0,3P -,那么α( )A.是第三象限角B.是第四象限角C.是第三或第四象限角D.不是象限角【答案】D【解析】因为点P 在y 轴的负半轴上,即角α的终边落在y 轴的非正半轴上,所以α不是象限角. 故选:D.6.已知角α的终边落在x 轴的非负半轴上,则角2α的终边落在( ) A.x 轴的非负半轴上 B.x 轴上 C.y 轴的非负半轴上 D.y 轴上【答案】B【解析】由题意,知()360k k Z α=⋅∈o,则()1802k k Z α=⋅∈o .当k 为偶数时,设()2k n n Z =∈,则3602n α=⋅o ,此时,角2α的终边在x 轴的非负半轴上; 当k 为奇函数时,设()21k n n Z =+∈,则()()211801803602n n n Z α=+⋅=+⋅∈o o o ,此时,角2α的终边在x 轴的非正半轴上. 综上所述,角2α的终边在x 轴上.故选:B .7.(2019·河南高一期末)已知一个扇形的圆心角为56π,半径为3.则它的弧长为( ) A.53πB.23π C.52πD.2π 【答案】C【解析】由扇形弧长公式得:55362L r ππα==⨯= 本题正确选项:C8.(2019·山东高一期末)下列各角中,与角6π终边相同的角是( ) A.136π-B.116π-C.116πD.196π【答案】B 【解析】角6π终边相同的角可以表示为2,()6a k k Z ππ=+∈,当1k =-时,6a 11π=-,所以答案选择B 9.若角α的顶点与原点重合,始边与x 轴的非负半轴重合,则集合{}1804518090,k k k Z αα⋅+≤≤⋅+∈oooo中的角α的终边在图中的位置(阴影部分)是( )A. B. C. D.【答案】C【解析】当k 为偶数时,设()2k n n Z =∈,则有3604536090n n α⋅+≤≤⋅+o o o o ,角α的终边在介于4590o o :角终边所在的区域;当k 为奇数时,设()21k n n Z =+∈,则有360225360270n n α⋅+≤≤⋅+o o o o ,角α的终边在介于225270o o :角终边所在的区域.故选:C.10.若2弧度的圆心角所对的弧长为4,则这个圆心角所在的扇形的面积为( ) A .4 B .2C .4πD .2π【答案】A【解析】由已知得,=24l θ=,,又因为弧长l R θ=,所以扇形的半径=2R ,所以面积11=42=422S lR =⋅⋅.选A .11.(2019·安徽高三月考(文))已知某扇形的面积为22.5cm ,若该扇形的半径r ,弧长l 满足27cm r l +=,则该扇形圆心角大小的弧度数是( )A.45B.5C.12D.45或5 【答案】D【解析】据题意,得27,1 2.5,2l r lr +=⎧⎪⎨=⎪⎩解得5,22r l ⎧=⎪⎨⎪=⎩或1,5,r l =⎧⎨=⎩所以45l r =或5.故选D . 12.(2019·湖北高三月考(文))《九章算术》是我国古代的数学巨著,其中《方田》章给出了计算弧田面积所用的经验公式为:弧田面积12=⨯(弦×矢+矢2),弧田(如图阴影部分所示)是由圆弧和弦围成,公式中的“弦”指圆弧所对的弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为23π,矢为2的弧田,按照上述方法计算出其面积是( )A.2+43B.13+2C.2+83D.4+83【答案】A 【解析】如图,由题意可得23AOB π∠=, 在Rt AOD ∆中,,36AOD DAO ππ∠=∠=,所以2OB OD =,结合题意可知矢2OB OD OD =-==,半径4OB =, 弦2216443AB AD ==-= 所以弧田面积12=(弦⨯矢+矢2)21(4322)4322=+=, 故选A. 二、填空题13.(2019·上海交大附中高一开学考试)2018°是第________象限角. 【答案】三【解析】20185360218=⨯+o o o Q ,又218o 是第三象限角,所以2018o 也是第三象限角. 故答案为:三.14.(2019·上海市吴淞中学高一期末)圆心角为60︒的扇形,它的弧长为2π,则该扇形所在圆的半径为______. 【答案】6 【解析】263l r r r παπ===∴=故答案为:615.(2018·江西高一期末)扇形的半径为1cm ,圆心角为30°,则该扇形的弧长为________cm 【答案】6π【解析】圆弧所对的圆心角为30°即为6π弧度,半径为1cm 弧长为l =|α|•r 6π=⨯16π=(cm ).故答案为:6π. 16.(2019·上海市复兴高级中学高一月考)若角α与角3-2π终边相同(始边相同且为x 轴正半轴),且302πα≤<,则=α______. 【答案】2π 【解析】因为角α与角32π-终边相同(始边相同且为x 轴正半轴), 所以322k παπ=-,k ∈Z , 又因302πα≤<, 所以当1k =时,2πα=.故答案为:2π 三、解答题17.如图所示,用弧度制表示顶点在原点,始边重合于x 轴的非负半轴,终边落在阴影部分的角的集合.【答案】(1) {α|+2k π<α<+2k π,k ∈Z};(2) {α|-+2k π<α≤+2k π,k ∈Z};(3){α|k π≤α≤+k π,k ∈Z};(4) {α|+k π<α<+k π,k ∈Z}. 【解析】 (1)将阴影部分看成是由OA 逆时针转到OB 所形成, 故满足条件的角的集合为{α|+2kπ<α<+2kπ,k∈Z}.(2)若将终边为OA 的一个角改写为-,此时阴影部分可以看成是OA 逆时针旋转到OB 所形成,故满足条件的角的集合为{α|-+2kπ<α≤+2kπ,k∈Z}.(3)将图中x 轴下方的阴影部分看成是由x 轴上方的阴影部分旋转πrad 而得到,所以满足条件的角的集合为{α|kπ≤α≤+kπ,k∈Z}.(4)与第(3)小题的解法类似,将第二象限阴影部分旋转πrad 后可得到第四象限的阴影部分.所以满足条件的角的集合为{α|+kπ<α<+kπ,k∈Z}.18.已知1570α=-o ,2750α=o,135βπ=,23βπ=-. (1)将12,αα用弧度制表示出来,并指出它们各自的终边所在的象限;(2)将12,ββ用角度制表示出来,并在720,180⎡⎤--⎣⎦o o内找出与它们终边相同的所有角.【答案】(1)1196πα=-终边位于第二象限,2256πα=终边位于第一象限; (2)12108,60ββ==-o o,与1β终边相同的角为252-o 和612-o ,与2β终边相同的角为420-o .【解析】(1)由题意,根据角度制与弧度制的互化公式,可得:1195705701806ππα=-=-⨯=-o oo, 2257507501806ππα==⨯=o o o, 又由1195466ππαπ=-=-+,所以1α与角56π的终边相同,所以1α终边位于第二象限;225466ππαπ==+,所以2α与角6π的终边相同,所以2α终边位于第第一象限.(2)根据角度制与弧度制的互化公式,可得131085βπ==o ,2603βπ=-=-o , 根据终边相同角的表示,可得与1β终边相同的角为1360108,k k Z θ=⨯+∈o o,当1k =-时,1360108252θ=-+=-o o o ;当2k =-时,12360108612θ=-⨯+=-o o o. 与2β终边相同的角为236060,k k Z θ=⨯-∈o o ,当1k =-时,136060420θ=--=-o o o.19.在角的集合{}|9045,k k αα︒︒=+∈Z g, (1)有几种终边不同的角?(2)写出区间(180,180)︒︒-内的角? (3)写出第二象限的角的一般表示法.【答案】(1) 4种.(2) 135,45,45,135︒︒︒︒--.(3) 360135,k k ︒︒+∈Z g .【解析】(1)由题知9045,k k α︒︒=+∈Z g ,令0,1,2,3k =,则45,135,225,315α︒︒︒︒=, ∴在给定的角的集各中,终边不同的角共有4种. (2)由1809045180,k k ︒︒︒︒-<+<∈Z g ,得53,22k k -<<∈Z ,∴2,1,0,1k =--, ∴在区间(180,180)︒︒-内的角有135,45,45,135︒︒︒︒--. (3)由(1)知,第二象限的角可表示为360135,k k ︒︒+∈Z g .20.已知扇形面积为225cm ,当扇形的圆心角为多大时,扇形的周长取得最小值? 【答案】当扇形的圆心角为2时,扇形的周长取得最小值.【解析】设扇形的半径为R ,弧长为l ,扇形的周长为y ,则2y l R =+. 由题意,得1252lR =,则50l R =,故502522(0)y R R R R R ⎛⎫=+=+> ⎪⎝⎭. 利用函数单调性的定义,可得当05R <…时,函数502y R R=+是减函数; 当5R >时,函数502y R R=+是增函数. 所以当5R =时,y 取得最小值20,此时10l =,2lRα==, 即当扇形的圆心角为2时,扇形的周长取得最小值.21.(2019·宁夏银川一中高一期中)已知在半径为的圆中,弦的长为.(1)求弦所对的圆心角的大小;(2)求圆心角所在的扇形弧长及弧所在的弓形的面积. 【答案】(1)(2)【解析】(1)由于圆的半径为,弦的长为,所以为等边三角形,所以.(2)因为,所以.,又,所以.22.已知一扇形的中心角为α,所在圆的半径为R .(1)若,6cm 3R απ== ,求该扇形的弧长l . (2)若扇形的周长为12cm ,问当α多大时,该扇形有最大面积?并求出这个最大面积.【答案】(1)2π; (2)2α=,扇形的最大面积为29cm . 【解析】(1)由扇形的弧长公式,可得该扇形的弧长为623l R παπ==⨯=;(2)由题意,扇形的周长为12cm ,所以212R l +=,可得122l R =-, 又由扇形的面积公式,可得2211(122)6(3)922S lR R R R R R ==-=-+=--+, 当3R =时,扇形的面积取得最大值,此时最大面积为29S cm =, 此时1226l R =-=,即36R αα=⨯=,解得2α=.。

高考数学一轮复习---任意角和弧度制及任意角的三角函数

高考数学一轮复习---任意角和弧度制及任意角的三角函数

高考数学一轮复习---任意角和弧度制及任意角的三角函数一、基础知识 1.角的概念的推广(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+2k π,k ∈Z }. 终边相同的角不一定相等,但相等的角其终边一定相同. 2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式:有关角度与弧度的两个注意点(1)角度与弧度的换算的关键是π=180°,在同一个式子中,采用的度量制度必须一致,不可混用. (2)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度. 3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx (x ≠0). (2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线、余弦线和正切线.二、常用结论汇总 (1)一个口诀三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦. (2)三角函数定义的推广设点P (x ,y )是角α终边上任意一点且不与原点重合,r =|OP |,则sin α=y r ,cos α=x r ,tan α=yx (x ≠0).(3)象限角(4)轴线角三、考点解析考点一 象限角及终边相同的角 例、(1)若角α是第二象限角,则α2是( )A .第一象限角B .第二象限角C .第一或第三象限角D .第二或第四象限角 (2)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________. 跟踪训练1.集合},4{Z k k k ∈+≤≤ππαπα中的角所表示的范围(阴影部分)是( )2.在-720°~0°范围内所有与45°终边相同的角为________.考点二 三角函数的定义典例、已知角α的终边经过点P (-x ,-6),且cos α=-513,则1sin α+1tan α=________.[解题技法]用定义法求三角函数值的2种类型及解题方法:(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解. (2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求解.跟踪训练1.已知角α的终边经过点(3,-4),则sin α+1cos α=( )A .-15 B.3715 C.3720 D.13152.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( ) A .-45 B .-35 C .35 D .45考点三 三角函数值符号的判定例、若sin αtan α<0,且cos αtan α<0,则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角[解题技法]三角函数值符号及角所在象限的判断:三角函数在各个象限的符号与角的终边上的点的坐标密切相关.sin θ在一、二象限为正,cos θ在一、四象限为正,tan θ在一、三象限为正.学习时首先把取正值的象限记清楚,其余的象限就是负的,如sin θ在一、二象限为正,那么在三、四象限就是负的.值得一提的是:三角函数的正负有时还要考虑坐标轴上的角,如sin π2=1>0,cos π=-1<0. 跟踪训练1.下列各选项中正确的是( )A .sin 300°>0B .cos(-305°)<0C .tan ⎪⎭⎫⎝⎛-322π>0 D .sin 10<0 2.已知点P (cos α,tan α)在第三象限,则角α的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限课后作业1.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( ) A .2 B .4 C .6 D .82.已知角α(0°≤α<360°)终边上一点的坐标为(sin 150°,cos 150°),则α=( ) A .150° B .135° C .300° D .60°3.若角α的顶点为坐标原点,始边在x 轴的非负半轴上,终边在直线y =-3x 上,则角α的取值集合是( )A.},32{Z k k ∈-=ππαα B.},322{Z k k ∈+=ππαα C.},32{Z k k ∈-=ππαα D.},3{Z k k ∈-=ππαα4.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( ) A .(-2,3] B .(-2,3) C .[-2,3) D .[-2,3]5.在平面直角坐标系xOy 中,α为第二象限角,P (-3,y )为其终边上一点,且sin α=2y4,则y 的值为( )A.3 B .-5 C.5 D.3或56.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3 7.已知一个扇形的圆心角为3π4,面积为3π2,则此扇形的半径为________.8.在平面直角坐标系xOy 中,60°角终边上一点P 的坐标为(1,m ),则实数m 的值为________. 9.若α=1 560°,角θ与α终边相同,且-360°<θ<360°,则θ=________.10.在直角坐标系xOy 中,O 为坐标原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.11.已知1|sin α|=-1sin α,且lg(cos α)有意义.(1)试判断角α所在的象限;(2)若角α的终边上一点M ⎪⎭⎫ ⎝⎛m ,53,且|OM |=1(O 为坐标原点),求m 的值及sin α的值.12.已知α为第三象限角.(1)求角α2终边所在的象限;(2)试判断 tan α2sin α2cos α2的符号.提高训练1.若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小是( )A .sin α<tan α<cos αB .cos α<sin α<tan αC .sin α<cos α<tan αD .tan α<sin α<cos α 2.已知角θ的终边过点P (-4a,3a )(a ≠0).(1)求sin θ+cos θ的值;(2)试判断cos(sin θ)·sin(cos θ)的符号.。

高考数学复习点拨 任意角和弧度制知识梳理

高考数学复习点拨 任意角和弧度制知识梳理

1 / 10225图2图3《任意角和弧度制》知识梳理一、要点知识精析1.任意角是由角的终边按照一定方向旋转而定义的,由于旋转有逆时针和顺时针两个方向,因此旋转所得到的角也有正负之分.如果角的终边没有作任何旋转,则称该角为零角.注意:一般情况下,角的始边与x 轴的正半轴重合,定点在坐标原点.2.正确理解直角坐标系中的几种角象限角:是指始边与x 轴的正半轴重合,顶点在坐标原点,而终边落在某个象限内的角(注意:终边落在坐标轴上的角不属于任何象限的角);如:α是第一象限角,则2k πα<22k ππ<+()k Z ∈.轴线角:终边落在坐标轴上的角.如α的终边在x 轴的正半轴,则2k απ=;α的终边在x 轴,则k απ=;α的终边在坐标轴上,则2k πα=;(以上)k Z ∈.区间角:是指介于两个角之间的角的集合,如030150x <≤;区域角:是介于某两条终边之间的角集,如0030360k α+•<090360k <+•k Z ∈,显然区域角是无数个区间角的集合,而且象限角可以用区域角来表示.终边相同的角:具有同一终边的角的集合,与角α终边相同的角可用集合表示为{β∣0360,k k Z βα=+•∈}或{β∣2,k k Z βαπ=+∈}.在写与角α终边相同的角的集合时要注意单位统一,避免出现“0302()k k Z π+∈或0360,6k k Z π•+∈” 之类的错误;3.等于半径长的圆弧所对的圆心角叫1弧度的角.这一定义与圆的半径大小无关.由弧度制的定义,衍生出两个公式:弧长公式(l r α=)和扇形面积公式(212S r α=),应用这两个公式时,角的单位都必须用弧度制,这两个公式都比用角度制下的弧长公式和扇形面积公式简单.无论是角度制或是弧度制,都能在角的集合与实数集R之间建立一种一、一对应关系.4.弧度制和角度制可以相互转化:00/1801()5718rad π=≈,010.01745180rad rad π=≈.用弧度制表示角时,“弧度”二字可以省略不写,但用角度表示时,“度”(或“0”)不能省略.在同一个式子中,两种单位不能混用.二、解题方法指津1.判断角终边所在象限的方法角所在的象限的确定,是三角函数求值问题的关键环节,为此,要利用题中的若干条件准确地对角所在的象限进行判断.(1)利用终边相同的角的表示法判断判断一个角的终边所在位置,可先将此角化为α+•0360k 003600(<≤α,Z k ∈)或),20(2Z k k ∈<≤+πααπ的形式,找出与此角终边相同的角α,再由角α的象限来判断此角的位置.(2)确定角的范围判断 已知单角α的象限,求2α、3α、2α等角的范围问题,通常先把α角的范围用不等式表示出来,再利用不等式的性质得出所讨论的角的范围,对k 的取值进行讨论,确定出所在象限. (3).由α所在象限,确定nα所在象限的方法 求nα所在象限,可先将各个象限n 等分,从第一象限离x 轴最近的区域开始逆时针方向依次重复标注数码1,2,3,4,直到将所有区域标完为止.如果α在第几象限,则nα就在图中标号为几的区域内.如图2所示,将各象限2等分,若α在第一象限,则2α就在图中标号为1的区域内,即一、三象限的前半区域.如图3,若α在第三象限,则3α就在图中标号为3的区域内,即一、三、四象限.依次类推.。

高中数学5.1任意角和弧度制

高中数学5.1任意角和弧度制

高中数学5.1 任意角和弧度制一、概述高中数学中,三角函数是一个重要内容。

而在学习三角函数之前,我们需要先了解一些基本概念,比如任意角和弧度制。

本文将围绕着这两个概念展开讲解,帮助读者更好地理解和掌握这些内容。

二、任意角的概念1. 任意角是指不限制在0°到360°之间的角。

在平面直角坐标系中,任意角可以被表示为一个终边落在坐标轴上的角。

这意味着任意角可以包括整个360°的范围。

2. 我们通常用θ来表示任意角,其实任意角可以被表示为θ=360k +α,其中k是整数,α是小于360°的正角,它是唯一的。

三、弧度制的概念1. 弧度制是另一种角度的度量方式,它是以圆的半径长为单位进行度量的。

一个圆的全周长为2πr,所以一个圆的一周等于2π弧度。

2. 我们知道360°等于2π弧度,所以1°等于π/180弧度。

角度和弧度之间可以通过π进行转换。

3. 弧度制适合用于求解圆的性质问题,因为它更直接地与圆的半径有关,可以简化很多计算,并且更具有普适性。

四、任意角与弧度的转换1. 已知一个角的度数,求其对应的弧度。

我们可以根据1°等于π/180弧度的关系,进行计算转换。

30°对应的弧度是30°×π/180=π/6弧度。

2. 已知一个角的弧度,求其对应的度数。

同样可以根据π弧度等于180°进行转换计算。

π/3弧度对应的度数是π/3÷π×180°=60°。

五、扩展知识1. 在解决某些三角函数的问题时,可能会遇到弧度制和角度制混用的情况。

在这种情况下,我们需要先将角度统一转换为弧度,然后再进行计算。

2. 在高等数学中,弧度制被广泛应用于导数、积分和微分等计算中。

了解弧度制可以为后续高等数学的学习奠定坚实基础。

六、总结任意角和弧度制是高中数学中一个基础而重要的知识点,它为后续学习三角函数和高等数学打下了基础。

高中数学 必修四 1.1.1任意角和弧度制

高中数学  必修四 1.1.1任意角和弧度制
36
又k∈Z,故所求的最大负角为β=-50°. (2)由360°≤10 030°+k·360°<720°, 得-9670°≤k·360°<-9310°,又k∈Z,解得k=-26. 故所求的角为β=670°.
【方法技巧】 1.在0°到360°范围内找与给定角终边相同的角的方法 (1)一般地,可以将所给的角α 化成k·360°+β 的形式(其中 0°≤β <360°,k∈Z),其中的β 就是所求的角. (2)如果所给的角的绝对值不是很大,可以通过如下方法完成:当所 给角是负角时,采用连续加360°的方式;当所给角是正角时,采用 连续减360°的方式,直到所得结果达到要求为止.
4.将35°角的终边按顺时针方向旋转60°所得的角度数为_______, 将35°角的终边按逆时针方向旋转两周后的角度数________. 【解析】将35°角的终边按顺时针方向旋转60°所得的角为35°60°=-25°,将35°角的终边按逆时针方向旋转两周后的角为 35°+2×360°=755°. 答案:-25° 755°
【解析】(1)错误.终边与始边重合的角是k·360°(k∈Z),不一定 是零角. (2)错误.如-10°与350°终边相同,但是不相等. (3)错误.如-330°角是第一象限角,但它是负角. (4)错误.终边在x轴上的角不属于任何象限. 答案:(1)× (2)× (3)× (4)×
2.下列各组角中,终边不相同的是( )
2.判断角的概念问题的关键与技巧 (1)关键:正确理解象限角与锐角、直角、钝角、平角、周角等概念. (2)技巧:判断一种说法正确需要证明,而判断一种说法错误只要举 出反例即可.
【变式训练】射线OA绕端点O顺时针旋转80°到OB位置,接着逆时针 旋转250°到OC位置,然后再顺时针旋转270°到OD位置,则 ∠AOD=________.

高考数学复习任意角和弧度制及任意角的三角函数

高考数学复习任意角和弧度制及任意角的三角函数

第1讲任意角和弧度制及任意角的三角函数最新考纲考向预测1.了解任意角的概念和弧度制.2.能进行弧度与角度的互化,体会引入弧度制的必要性.3.借助单位圆理解任意角的三角函数(正弦、余弦、正切)的定义. 命题趋势本部分内容高考较少直接考查,而是与三角函数的恒等变换、三角函数的图象与性质结合考查,难度较小.核心素养数学建模、数学抽象1.任意角的概念(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)角的分类按旋转方向正角按逆时针方向旋转而成的角负角按顺时针方向旋转而成的角零角射线没有旋转按终边位置前提:角的顶点在原点,始边与x轴的非负半轴重合象限角角的终边在第几象限,这个角就是第几象限角其他角的终边落在坐标轴上集合S={β|β=α+k·360°,k∈Z}.2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式角α的弧度数公式|α|=l r角度与弧度的换算1°=π180rad,1 rad=⎝⎛⎭⎪⎫180π°≈57°18′弧长公式l=α·r扇形面积公式S=12l·r=12α·r23.任意角的三角函数三角函数正弦余弦正切定义设α是一个任意角,它的终边与单位圆交于点P(x,y),那么y叫做α的正弦,记作sin αx叫做α的余弦,记作cos αyx叫做α的正切,记作tan α各象限符号Ⅰ正正正Ⅱ正负负Ⅲ负负正Ⅳ负正负口诀一全正,二正弦,三正切,四余弦4.三角函数线用单位圆中的有向线段表示三角函数.如图:sin α=MP,cos α=OM,tan α=AT.常用结论 1.象限角2.轴线角3.三角函数定义的推广设点P (x ,y )是角α终边上任意一点且不与原点重合,r =|OP |,则sin α=yr ,cos α=x r ,tan α=yx .常见误区1.相等的角终边一定相同,但终边相同的角却不一定相等. 2.在同一个式子中,不能同时出现角度制与弧度制.3.已知三角函数值的符号求角的终边位置时,不要遗忘终边在坐标轴上的情况.4.利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.1.判断正误(正确的打“√”,错误的打“×”)(1)锐角是第一象限的角,第一象限的角也都是锐角.( ) (2)角α的三角函数值与其终边上点P 的位置无关.( ) (3)不相等的角终边一定不相同.( ) (4)终边相同的角的同一三角函数值相等.( ) (5)若α∈⎝ ⎛⎭⎪⎫0,π2,则tan α>sin α.( )(6)若α为第一象限角,则sin α+cos α>1.( ) 答案:(1)× (2)√ (3)× (4)√ (5)√ (6)√2.(多选)下列与角2π3的终边相同的角是()A.14π3B.2kπ-2π3(k∈Z)C.2kπ+2π3(k∈Z) D.(2k+1)π+2π3(k∈Z)解析:选AC.与角2π3的终边相同的角为2kπ+2π3(k∈Z),k=2时,4π+2π3=143π.3.若sin α<0,且tan α>0,则α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析:选C.由sin α<0知α的终边在第三、第四象限或y轴的非正半轴上;由tan α>0知α的终边在第一或第三象限,故α是第三象限角.故选C.4.一条弦长等于半径,则此弦所对圆心角的弧度数为________rad.解析:因为弦长等于半径,所以弦和与弦两端点相交的两条半径构成等边三角形,所以弦所对的圆心角为60°,即为π3rad.答案:π35.已知角α的终边过点P(-4,3),则2sin α+tan α的值为________.解析:因为角α的终边经过点P(-4,3),所以r=|OP|=5.所以sin α=35,cos α=-45,tan α=-34.所以2sin α+tan α=2×35+⎝⎛⎭⎪⎫-34=920.答案:920象限角及终边相同的角[题组练透]1.把-114π表示成θ+2k π(k ∈Z )的形式,使|θ|最小的θ值是( ) A .-3π4 B .-π4 C.π4 D.3π4解析:选 A.因为-11π4=-2π-3π4,所以-11π4与-3π4是终边相同的角,且此时⎪⎪⎪⎪⎪⎪-3π4=3π4是最小的.2.集合⎩⎨⎧⎭⎬⎫α⎪⎪⎪k π+π4≤α≤k π+π2,k ∈Z 中的角所表示的范围(阴影部分)是( )解析:选C.当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样,故选C.3.(多选)已知角2α的终边在x 轴的上方,那么角α可能是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角解析:选AC.因为角2α的终边在x 轴的上方,所以k ·360°<2α<k ·360°+180°,k ∈Z ,则有k ·180°<α<k ·180°+90°,k ∈Z .故当k =2n ,n ∈Z 时,n ·360°<α<n ·360°+90°,n ∈Z ,α为第一象限角; 当k =2n +1,n ∈Z 时,n ·360°+180°<α<n ·360°+270°,n ∈Z ,α为第三角限角.故选AC.4.在-720°~0°范围内所有与45°终边相同的角为________. 解析:所有与45°终边相同的角可表示为 β=45°+k ×360°(k ∈Z ).令-720°≤45°+k ×360°<0°(k ∈Z ), 得-765°≤k ×360°<-45°(k ∈Z ),解得-765360≤k<-45360(k∈Z),从而k=-2和k=-1,代入得β=-675°和β=-315°. 答案:-675°和-315°(1)象限角的2种判断方法图象法在平面直角坐标系中,作出已知角并根据象限角的定义直接判断已知角是第几象限角转化法先将已知角化为k·360°+α(0°≤α<360°,k∈Z)的形式,即找出与已知角终边相同的角α,再由角α终边所在的象限判断已知角是第几象限角(2)求θn或nθ(n∈N*)所在象限的步骤①将θ的范围用不等式(含有k,且k∈Z)表示;②两边同除以n或乘以n;③对k进行讨论,得到θn或nθ(n∈N*)所在的象限.[注意]注意“顺转减,逆转加”的应用,如角α的终边逆时针旋转180°可得角α+180°的终边,类推可知α+k·180°(k∈Z)表示终边落在角α的终边所在直线上的角.扇形的弧长及面积公式已知扇形的圆心角是α,半径为R,弧长为l.(1)若α=60°,R=10 cm,求扇形的弧长l;(2)若扇形的周长为20 cm,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?【解】(1)α=60°=π3,l=10×π3=10π3(cm).(2)由已知得,l+2R=20,则l=20-2R,0<R<10,所以扇形的面积S=12lR=12(20-2R)R=10R-R2=-(R-5)2+25,所以当R=5时,S取得最大值最大值为25 cm2,此时l=10 cm,α=2 rad.弧长、扇形面积问题的解题策略(1)明确弧度制下弧长公式l =|α|r ,扇形的面积公式是S =12lr =12|α|r 2(其中l 是扇形的弧长,α是扇形的圆心角).(2)求扇形面积的关键是求扇形的圆心角、半径、弧长三个量中的任意两个量.[提醒] 运用弧度制下有关弧长、扇形面积公式的前提是角的度量单位为弧度.1.(多选)已知扇形的周长是6 cm ,面积是2 cm 2,则下列选项正确的有( ) A .扇形的半径为2 B .扇形的半径为1 C .圆心角的弧度数是1D .圆心角的弧度数是2解析:选ABC.设扇形半径为r ,圆心角的弧度数为α,则由题意得⎩⎪⎨⎪⎧2r +αr =6,12αr 2=2,解得⎩⎨⎧r =1,α=4或⎩⎨⎧r =2,α=1,可得圆心角的弧度数是4或1,扇形的半径是1或2.2.一扇形是从一个圆中剪下的一部分,半径等于圆半径的23,面积等于圆面积的527,则扇形的弧长与圆周长之比为________.解析:设圆的半径为r ,则扇形的半径为2r3,记扇形的圆心角为α,则12α⎝ ⎛⎭⎪⎫2r 32πr 2=527,所以α=5π6.所以扇形的弧长与圆周长之比为l C =5π6·2r 32πr =518. 答案:518三角函数的定义 角度一 利用三角函数的定义求值(1)已知点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,且角θ的终边所在的直线过点M ,则tan θ=( )A .-13B .±13 C .-3 D .±3(2)若角α的终边落在直线y =3x 上,角β的终边与单位圆交于点⎝ ⎛⎭⎪⎫12,m ,且sin α cos β<0,则cos α cos β=________.【解析】 (1)因为点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,所以a =log 313=-1,即M ⎝ ⎛⎭⎪⎫13,-1,所以tan θ=-113=-3. (2)由角β的终边与单位圆交于点⎝ ⎛⎭⎪⎫12,m ,得cos β=12,又由sin α cos β<0知,sin α<0,因为角α的终边落在直线y =3x 上,所以角α只能是第三象限角.记P 为角α的终边与单位圆的交点,设P (x ,y )(x <0,y <0),则|OP |=1(O 为坐标原点),即x 2+y 2=1,又由y =3x 得x =-12,y =-32,所以cos α=x =-12,则cos αcos β=-14.【答案】 (1)C (2)-14三角函数定义问题的解题策略(1)已知角α终边上一点P 的坐标,可求角α的三角函数值.先求P 到原点的距离,再用三角函数的定义求解.(2)已知角α的某三角函数值,可求角α终边上一点P 的坐标中的参数值,可根据定义中的两个量列方程求参数值.(3)已知角α的终边所在的直线方程或角α的大小,根据三角函数的定义可求角α终边上某特定点的坐标.角度二 判断三角函数值的符号(2020·高考全国卷Ⅱ)若α为第四象限角,则( ) A .cos 2α>0B .cos 2α<0C .sin 2α>0D .sin 2α<0【解析】 通解:由题意,知-π2+2k π<α<2k π(k ∈Z ),所以-π+4k π<2α<4k π(k ∈Z ),所以cos 2α≤0或cos 2α>0,sin 2α<0,故选D.优解:当α=-π4时,cos 2α=0,sin 2α=-1,排除A ,B ,C ,故选D. 【答案】 D三角函数值符号的判断方法要判定三角函数值的符号,关键是要搞清三角函数中的角是第几象限角,再根据正、余弦函数值在各象限的符号确定值的符号.如果不能确定角所在的象限,那就要进行分类讨论求解.角度三 三角函数线的应用函数y =lg(3-4sin 2 x )的定义域为________.【解析】 因为3-4sin 2x >0,所以sin 2x <34,所以-32<sin x <32.利用三角函数线画出x 满足条件的终边范围(如图中阴影部分所示),所以x ∈⎝ ⎛⎭⎪⎫k π-π3,k π+π3(k ∈Z ).【答案】 ⎝ ⎛⎭⎪⎫k π-π3,k π+π3(k ∈Z )三角函数线三角函数线是三角函数的几何表示,正弦线、正切线的方向同纵轴一致,向上为正,向下为负;余弦线的方向同横轴一致,向右为正,向左为负.1.下列各选项中正确的是( ) A .sin 300°>0B .cos(-305°)<0C .tan ⎝ ⎛⎭⎪⎫-22π3>0D .sin 10<0解析:选D.300°=360°-60°,则300°是第四象限角,故sin 300°<0;-305°=-360°+55°,则-305°是第一象限角,故cos(-305°)>0;-22π3=-8π+2π3,则-22π3是第二象限角,故tan ⎝ ⎛⎭⎪⎫-22π3<0;3π<10<7π2,则10是第三象限角,故sin10<0,故选D.2.已知角β的顶点与坐标原点重合,始边与x 轴的非负半轴重合,终边上有一点P (-4,a ),且sin β cos β=34,则a 的值为( )A .4 3B .±4 3C .-43或-43 3D . 3解析:选 C.因为点P (-4,a )在角β的终边上且sin βcos β=34,所以-4a (-4)2+a 2=34.解得a =-43或a =-43 3.故选C. 3.若角α的终边落在直线y =-x 上,则sin α|cos α|+|sin α|cos α=________. 解析:因为角α的终边落在直线y =-x 上,所以角α的终边位于第二或第四象限.当角α的终边位于第二象限时,sin α|cos α|+|sin α|cos α=sin α-cos α+sin αcos α=0;当角α的终边位于第四象限时,sin α|cos α|+|sin α|cos α=sin αcos α+-sin αcos α=0.所以sin α|cos α|+|sin α|cos α=0.答案:0[A 级 基础练]1.已知角α的始边与x 轴的正半轴重合,顶点在坐标原点,角α终边上的一点P 到原点的距离为2,若α=π4,则点P 的坐标为( )A .(1,2)B .(2,1)C .(2,2)D .(1,1)解析:选D.设点P 的坐标为(x ,y ), 则由三角函数的定义得⎩⎪⎨⎪⎧sin π4=y 2,cos π4=x 2,即⎩⎪⎨⎪⎧x =2cos π4=1,y =2sin π4=1.故点P 的坐标为(1,1).2.若角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边在直线y =-3x 上,则角α的取值集合是( )A.⎩⎨⎧⎭⎬⎫α|α=2k π-π3,k ∈ZB.⎩⎨⎧⎭⎬⎫α|α=2k π+2π3,k ∈ZC.⎩⎨⎧⎭⎬⎫α|α=k π-2π3,k ∈Z D.⎩⎨⎧⎭⎬⎫α|α=k π-π3,k ∈Z 解析:选D.因为直线y =-3x 的倾斜角是2π3,所以终边落在直线y =-3x 上的角的取值集合为{α|α=k π-π3,k ∈Z }.3.(多选)关于角度,下列说法正确的是( ) A .时钟经过两个小时,时针转过的角度是60° B .钝角大于锐角C .三角形的内角必是第一或第二象限角D .若α是第二象限角,则α2是第一或第三象限角解析:选BD.对于A ,时钟经过两个小时,时针转过的角是-60°,故错误; 对于B ,钝角一定大于锐角,显然正确;对于C ,若三角形的内角为90°,则是终边在y 轴正半轴上的角,故错误; 对于D ,因为角α的终边在第二象限,所以2k π+π2<α<2k π+π,k ∈Z , 所以k π+π4<α2<k π+π2,k ∈Z .当k =2n ,n ∈Z 时,2n π+π4<α2<2n π+π2,n ∈Z ,得α2是第一象限角; 当k =2n +1,n ∈Z 时,(2n +1)π+π4<α2<(2n +1)π+π2,n ∈Z ,得α2是第三角限角,故正确.4.(多选)(2020·山东师范大学附属中学第三次月考)在平面直角坐标系xOy 中,角α的顶点在原点O ,以x 正半轴为始边,终边经过点P (1,m )(m <0),则下列各式的值恒大于0的是( )A.sin αtan α B .cos α-sin α C .sin αcos αD .sin α+cos α解析:选AB.由题意知sin α<0,cos α>0,tan α<0. 选项A ,sin αtan α>0;选项B ,cos α-sin α>0;选项C ,sin αcos α<0;选项D ,sin α+cos α符号不确定.故选AB. 5.已知点P (sin x -cos x ,-3)在第三象限,则x 的可能区间是( ) A.⎝ ⎛⎭⎪⎫π2,π B.⎝ ⎛⎭⎪⎫-π4,3π4 C.⎝ ⎛⎭⎪⎫-π2,π2 D.⎝ ⎛⎭⎪⎫-3π4,π4 解析:选D.由点P (sin x -cos x ,-3)在第三象限,可得sin x -cos x <0,即sin x <cos x ,所以-3π4+2k π<x <π4+2k π,k ∈Z .当k =0时,x 所在的一个区间是⎝ ⎛⎭⎪⎫-3π4,π4. 6.已知扇形的圆心角为π6,面积为π3,则扇形的弧长等于________. 解析:设扇形半径为r ,弧长为l , 则⎩⎪⎨⎪⎧l r =π6,12lr =π3,解得⎩⎪⎨⎪⎧l =π3,r =2.答案:π37.函数y =2sin x -1的定义域为________. 解析:因为2sin x -1≥0,所以sin x ≥12.由三角函数线画出x 满足条件的终边范围(如图中阴影部分所示).所以x ∈⎣⎢⎡⎦⎥⎤2k π+π6,2k π+5π6(k ∈Z ).答案:⎣⎢⎡⎦⎥⎤2k π+π6,2k π+5π6(k ∈Z )8.已知点P (sin θ,cos θ)是角α终边上的一点,其中θ=2π3,则与角α终边相同的最小正角为________.解析:因为θ=2π3,故P ⎝ ⎛⎭⎪⎫32,-12,故α为第四象限角且cos α=32,所以α=2k π+11π6,k ∈Z ,所以与角α终边相同的最小正角为11π6.答案:11π69.已知角α是第三象限角,试判断:(1)π-α是第几象限角?(2)α2是第几象限角?(3)2α是第几象限角?解:(1)因为α是第三象限角, 所以2k π+π<α<2k π+3π2,k ∈Z . 所以-2k π-π2<π-α<-2k π,k ∈Z . 所以π-α是第四象限角. (2)因为k π+π2<α2<k π+3π4,k ∈Z . 所以α2是第二或第四象限角.(3)因为4k π+2π<2α<4k π+3π,k ∈Z ,所以2α是第一或第二象限角或y 轴非负半轴上的角.10.如图,在平面直角坐标系xOy 中,角α的始边与x 轴的非负半轴重合且与单位圆相交于A 点,它的终边与单位圆相交于x 轴上方一点B ,始边不动,终边在运动.(1)若点B 的横坐标为-45,求tan α的值;(2)若△AOB 为等边三角形,写出与角α终边相同的角β的集合. 解:(1)由题意可得B ⎝ ⎛⎭⎪⎫-45,35,根据三角函数的定义得tan α=y x =-34. (2)若△AOB 为等边三角形,则∠AOB =π3, 故与角α终边相同的角β的集合为⎩⎨⎧⎭⎬⎫β⎪⎪⎪β=π3+2k π,k ∈Z .[B 级 综合练]11.(多选)已知角α的终边过点P (-4m ,3m )(m ≠0),则2sin α+cos α的值可能是( )A .1B .25C .-25D .-1解析:选BC.因为角α的终边过点P (-4m ,3m )(m ≠0),所以r =(-4m )2+(3m )2=5|m |,所以sin α=y r =3m 5|m |,cos α=x r =-4m5|m |. ①当m >0时,sin α=3m 5m =35,cos α=-4m 5m =-45,2sin α+cos α=2×35-45=25; ②当m <0时,sin α=3m -5m =-35,cos α=-4m -5m=45,2sin α+cos α=2×⎝ ⎛⎭⎪⎫-35+45=-25.综上知,2sin α+cos α的值可能是25或-25.故答案为BC.12.(2020·四川乐山、峨眉山二模)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=12(弦×矢+矢2),弧田由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”指半径长与圆心到弦的距离之差.现有圆心角为2π3,半径长为4的弧田(如图所示),按照上述公式计算出弧田的面积为________.解析:由题意可得∠AOB =2π3,OA =4.在Rt △AOD 中,易得∠AOD =π3,∠DAO =π6,OD =12OA =12×4=2,可得矢=4-2=2.由AD =AO sin π3=4×32=23,可得弦AB =2AD =4 3.所以弧田面积=12(弦×矢+矢2)=12×(43×2+22)=43+2.答案:43+213.已知1|sin α|=-1sin α,且lg(cos α)有意义. (1)试判断角α所在的象限;(2)若角α的终边上一点M ⎝ ⎛⎭⎪⎫35,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值.解:(1)由1|sin α|=-1sin α,得sin α<0, 由lg(cos α)有意义,可知cos α>0,所以α是第四象限角.(2)因为|OM |=1,所以⎝ ⎛⎭⎪⎫352+m 2=1,解得m =±45. 又α为第四象限角,故m <0,从而m =-45, sin α=y r =m |OM |=-451=-45.14.若角θ的终边过点P (-4a ,3a )(a ≠0). (1)求sin θ+cos θ的值;(2)试判断cos(sin θ)·sin(cos θ)的符号.解:(1)因为角θ的终边过点P (-4a ,3a )(a ≠0), 所以x =-4a ,y =3a ,r =5|a |, 当a >0时,r =5a ,sin θ+cos θ=-15. 当a <0时,r =-5a ,sin θ+cos θ=15. (2)当a >0时,sin θ=35∈⎝ ⎛⎭⎪⎫0,π2,cos θ=-45∈⎝ ⎛⎭⎪⎫-π2,0,则cos(sin θ)·sin(cos θ) =cos 35·sin ⎝ ⎛⎭⎪⎫-45<0;当a <0时,sin θ=-35∈⎝ ⎛⎭⎪⎫-π2,0,cos θ=45∈⎝ ⎛⎭⎪⎫0,π2,则cos(sin θ)·sin(cos θ) =cos ⎝ ⎛⎭⎪⎫-35·sin 45>0.综上,当a >0时,cos(sin θ)·sin(cos θ)的符号为负;当a <0时,cos(sin θ)·sin (cos θ)的符号为正.[C 级 创新练]15.(2020·开封市模拟考试)在平面直角坐标系xOy 中,角α与角β均以Ox为始边,它们的终边关于y 轴对称.若sin α=13,则cos(α-β)=( )A .-1B .-79C .429D .79解析:选B.因为角α与角β均以Ox 为始边,且它们的终边关于y 轴对称,所以β=π-α+2k π,k ∈Z ,则cos(α-β)=cos(α-π+α-2k π)=cos(2α-π)=cos(π-2α)=-cos 2α,又sin α=13,所以cos 2α=1-2sin 2α=79,所以cos(α-β)=-79,故选B.16.已知圆O 与直线l 相切于点A ,点P ,Q 同时从A 点出发,P 沿着直线l 向右运动,Q 沿着圆周按逆时针方向以相同的速度运动,当Q 运动到点A 时,点P 也停止运动,连接OQ ,OP (如图),则阴影部分面积S 1,S 2的大小关系是________.解析:设运动速度为m ,运动时间为t ,圆O 的半径为r , 则AQ ︵=AP =tm ,根据切线的性质知OA ⊥AP , 所以S 1=12tm ·r -S 扇形AOB ,S 2=12tm ·r -S 扇形AOB , 所以S 1=S 2恒成立. 答案:S 1=S 2第1讲任意角和弧度制及任意角的三角函数最新考纲考向预测1.了解任意角的概念和弧度制.2.能进行弧度与角度的互化,体会引入弧度制的必要性.3.借助单位圆理解任意角的三角函数(正弦、余弦、正切)的定义. 命题趋势本部分内容高考较少直接考查,而是与三角函数的恒等变换、三角函数的图象与性质结合考查,难度较小.核心素养数学建模、数学抽象1.任意角的概念(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)角的分类按旋转方向正角按逆时针方向旋转而成的角负角按顺时针方向旋转而成的角零角射线没有旋转按终边位置前提:角的顶点在原点,始边与x轴的非负半轴重合象限角角的终边在第几象限,这个角就是第几象限角其他角的终边落在坐标轴上集合S={β|β=α+k·360°,k∈Z}.2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式角α的弧度数公式|α|=l r角度与弧度的换算1°=π180rad,1 rad=⎝⎛⎭⎪⎫180π°≈57°18′弧长公式l=α·r扇形面积公式S=12l·r=12α·r23.任意角的三角函数三角函数正弦余弦正切定义设α是一个任意角,它的终边与单位圆交于点P(x,y),那么y叫做α的正弦,记作sin αx叫做α的余弦,记作cos αyx叫做α的正切,记作tan α各象限符号Ⅰ正正正Ⅱ正负负Ⅲ负负正Ⅳ负正负口诀一全正,二正弦,三正切,四余弦4.三角函数线用单位圆中的有向线段表示三角函数.如图:sin α=MP,cos α=OM,tan α=AT.常用结论 1.象限角2.轴线角3.三角函数定义的推广设点P (x ,y )是角α终边上任意一点且不与原点重合,r =|OP |,则sin α=yr ,cos α=x r ,tan α=yx .常见误区1.相等的角终边一定相同,但终边相同的角却不一定相等. 2.在同一个式子中,不能同时出现角度制与弧度制.3.已知三角函数值的符号求角的终边位置时,不要遗忘终边在坐标轴上的情况.4.利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.1.判断正误(正确的打“√”,错误的打“×”)(1)锐角是第一象限的角,第一象限的角也都是锐角.( ) (2)角α的三角函数值与其终边上点P 的位置无关.( ) (3)不相等的角终边一定不相同.( ) (4)终边相同的角的同一三角函数值相等.( ) (5)若α∈⎝ ⎛⎭⎪⎫0,π2,则tan α>sin α.( )(6)若α为第一象限角,则sin α+cos α>1.( ) 答案:(1)× (2)√ (3)× (4)√ (5)√ (6)√2.(多选)下列与角2π3的终边相同的角是()A.14π3B.2kπ-2π3(k∈Z)C.2kπ+2π3(k∈Z) D.(2k+1)π+2π3(k∈Z)解析:选AC.与角2π3的终边相同的角为2kπ+2π3(k∈Z),k=2时,4π+2π3=143π.3.若sin α<0,且tan α>0,则α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析:选C.由sin α<0知α的终边在第三、第四象限或y轴的非正半轴上;由tan α>0知α的终边在第一或第三象限,故α是第三象限角.故选C.4.一条弦长等于半径,则此弦所对圆心角的弧度数为________rad.解析:因为弦长等于半径,所以弦和与弦两端点相交的两条半径构成等边三角形,所以弦所对的圆心角为60°,即为π3rad.答案:π35.已知角α的终边过点P(-4,3),则2sin α+tan α的值为________.解析:因为角α的终边经过点P(-4,3),所以r=|OP|=5.所以sin α=35,cos α=-45,tan α=-34.所以2sin α+tan α=2×35+⎝⎛⎭⎪⎫-34=920.答案:920象限角及终边相同的角[题组练透]1.把-114π表示成θ+2k π(k ∈Z )的形式,使|θ|最小的θ值是( ) A .-3π4 B .-π4 C.π4 D.3π4解析:选 A.因为-11π4=-2π-3π4,所以-11π4与-3π4是终边相同的角,且此时⎪⎪⎪⎪⎪⎪-3π4=3π4是最小的.2.集合⎩⎨⎧⎭⎬⎫α⎪⎪⎪k π+π4≤α≤k π+π2,k ∈Z 中的角所表示的范围(阴影部分)是( )解析:选C.当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样,故选C.3.(多选)已知角2α的终边在x 轴的上方,那么角α可能是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角解析:选AC.因为角2α的终边在x 轴的上方,所以k ·360°<2α<k ·360°+180°,k ∈Z ,则有k ·180°<α<k ·180°+90°,k ∈Z .故当k =2n ,n ∈Z 时,n ·360°<α<n ·360°+90°,n ∈Z ,α为第一象限角; 当k =2n +1,n ∈Z 时,n ·360°+180°<α<n ·360°+270°,n ∈Z ,α为第三角限角.故选AC.4.在-720°~0°范围内所有与45°终边相同的角为________. 解析:所有与45°终边相同的角可表示为 β=45°+k ×360°(k ∈Z ).令-720°≤45°+k ×360°<0°(k ∈Z ), 得-765°≤k ×360°<-45°(k ∈Z ),解得-765360≤k<-45360(k∈Z),从而k=-2和k=-1,代入得β=-675°和β=-315°. 答案:-675°和-315°(1)象限角的2种判断方法图象法在平面直角坐标系中,作出已知角并根据象限角的定义直接判断已知角是第几象限角转化法先将已知角化为k·360°+α(0°≤α<360°,k∈Z)的形式,即找出与已知角终边相同的角α,再由角α终边所在的象限判断已知角是第几象限角(2)求θn或nθ(n∈N*)所在象限的步骤①将θ的范围用不等式(含有k,且k∈Z)表示;②两边同除以n或乘以n;③对k进行讨论,得到θn或nθ(n∈N*)所在的象限.[注意]注意“顺转减,逆转加”的应用,如角α的终边逆时针旋转180°可得角α+180°的终边,类推可知α+k·180°(k∈Z)表示终边落在角α的终边所在直线上的角.扇形的弧长及面积公式已知扇形的圆心角是α,半径为R,弧长为l.(1)若α=60°,R=10 cm,求扇形的弧长l;(2)若扇形的周长为20 cm,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?【解】(1)α=60°=π3,l=10×π3=10π3(cm).(2)由已知得,l+2R=20,则l=20-2R,0<R<10,所以扇形的面积S=12lR=12(20-2R)R=10R-R2=-(R-5)2+25,所以当R=5时,S取得最大值最大值为25 cm2,此时l=10 cm,α=2 rad.弧长、扇形面积问题的解题策略(1)明确弧度制下弧长公式l =|α|r ,扇形的面积公式是S =12lr =12|α|r 2(其中l 是扇形的弧长,α是扇形的圆心角).(2)求扇形面积的关键是求扇形的圆心角、半径、弧长三个量中的任意两个量.[提醒] 运用弧度制下有关弧长、扇形面积公式的前提是角的度量单位为弧度.1.(多选)已知扇形的周长是6 cm ,面积是2 cm 2,则下列选项正确的有( ) A .扇形的半径为2 B .扇形的半径为1 C .圆心角的弧度数是1D .圆心角的弧度数是2解析:选ABC.设扇形半径为r ,圆心角的弧度数为α,则由题意得⎩⎪⎨⎪⎧2r +αr =6,12αr 2=2,解得⎩⎨⎧r =1,α=4或⎩⎨⎧r =2,α=1,可得圆心角的弧度数是4或1,扇形的半径是1或2.2.一扇形是从一个圆中剪下的一部分,半径等于圆半径的23,面积等于圆面积的527,则扇形的弧长与圆周长之比为________.解析:设圆的半径为r ,则扇形的半径为2r3,记扇形的圆心角为α,则12α⎝ ⎛⎭⎪⎫2r 32πr 2=527,所以α=5π6.所以扇形的弧长与圆周长之比为l C =5π6·2r 32πr =518. 答案:518三角函数的定义 角度一 利用三角函数的定义求值(1)已知点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,且角θ的终边所在的直线过点M ,则tan θ=( )A .-13B .±13 C .-3 D .±3(2)若角α的终边落在直线y =3x 上,角β的终边与单位圆交于点⎝ ⎛⎭⎪⎫12,m ,且sin α cos β<0,则cos α cos β=________.【解析】 (1)因为点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,所以a =log 313=-1,即M ⎝ ⎛⎭⎪⎫13,-1,所以tan θ=-113=-3. (2)由角β的终边与单位圆交于点⎝ ⎛⎭⎪⎫12,m ,得cos β=12,又由sin α cos β<0知,sin α<0,因为角α的终边落在直线y =3x 上,所以角α只能是第三象限角.记P 为角α的终边与单位圆的交点,设P (x ,y )(x <0,y <0),则|OP |=1(O 为坐标原点),即x 2+y 2=1,又由y =3x 得x =-12,y =-32,所以cos α=x =-12,则cos αcos β=-14.【答案】 (1)C (2)-14三角函数定义问题的解题策略(1)已知角α终边上一点P 的坐标,可求角α的三角函数值.先求P 到原点的距离,再用三角函数的定义求解.(2)已知角α的某三角函数值,可求角α终边上一点P 的坐标中的参数值,可根据定义中的两个量列方程求参数值.(3)已知角α的终边所在的直线方程或角α的大小,根据三角函数的定义可求角α终边上某特定点的坐标.角度二 判断三角函数值的符号(2020·高考全国卷Ⅱ)若α为第四象限角,则( ) A .cos 2α>0B .cos 2α<0C .sin 2α>0D .sin 2α<0【解析】 通解:由题意,知-π2+2k π<α<2k π(k ∈Z ),所以-π+4k π<2α<4k π(k ∈Z ),所以cos 2α≤0或cos 2α>0,sin 2α<0,故选D.优解:当α=-π4时,cos 2α=0,sin 2α=-1,排除A ,B ,C ,故选D. 【答案】 D三角函数值符号的判断方法要判定三角函数值的符号,关键是要搞清三角函数中的角是第几象限角,再根据正、余弦函数值在各象限的符号确定值的符号.如果不能确定角所在的象限,那就要进行分类讨论求解.角度三 三角函数线的应用函数y =lg(3-4sin 2 x )的定义域为________.【解析】 因为3-4sin 2x >0,所以sin 2x <34,所以-32<sin x <32.利用三角函数线画出x 满足条件的终边范围(如图中阴影部分所示),所以x ∈⎝ ⎛⎭⎪⎫k π-π3,k π+π3(k ∈Z ).【答案】 ⎝ ⎛⎭⎪⎫k π-π3,k π+π3(k ∈Z )三角函数线三角函数线是三角函数的几何表示,正弦线、正切线的方向同纵轴一致,向上为正,向下为负;余弦线的方向同横轴一致,向右为正,向左为负.1.下列各选项中正确的是( ) A .sin 300°>0B .cos(-305°)<0C .tan ⎝ ⎛⎭⎪⎫-22π3>0D .sin 10<0解析:选D.300°=360°-60°,则300°是第四象限角,故sin 300°<0;-305°=-360°+55°,则-305°是第一象限角,故cos(-305°)>0;-22π3=-8π+2π3,则-22π3是第二象限角,故tan ⎝ ⎛⎭⎪⎫-22π3<0;3π<10<7π2,则10是第三象限角,故sin10<0,故选D.2.已知角β的顶点与坐标原点重合,始边与x 轴的非负半轴重合,终边上有一点P (-4,a ),且sin β cos β=34,则a 的值为( )A .4 3B .±4 3C .-43或-43 3D . 3解析:选 C.因为点P (-4,a )在角β的终边上且sin βcos β=34,所以-4a (-4)2+a 2=34.解得a =-43或a =-43 3.故选C. 3.若角α的终边落在直线y =-x 上,则sin α|cos α|+|sin α|cos α=________. 解析:因为角α的终边落在直线y =-x 上,所以角α的终边位于第二或第四象限.当角α的终边位于第二象限时,sin α|cos α|+|sin α|cos α=sin α-cos α+sin αcos α=0;当角α的终边位于第四象限时,sin α|cos α|+|sin α|cos α=sin αcos α+-sin αcos α=0.所以sin α|cos α|+|sin α|cos α=0.答案:0[A 级 基础练]1.已知角α的始边与x 轴的正半轴重合,顶点在坐标原点,角α终边上的一点P 到原点的距离为2,若α=π4,则点P 的坐标为( )A .(1,2)B .(2,1)C .(2,2)D .(1,1)解析:选D.设点P 的坐标为(x ,y ), 则由三角函数的定义得⎩⎪⎨⎪⎧sin π4=y 2,cos π4=x 2,即⎩⎪⎨⎪⎧x =2cos π4=1,y =2sin π4=1.故点P 的坐标为(1,1).2.若角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边在直线y =-3x 上,则角α的取值集合是( )A.⎩⎨⎧⎭⎬⎫α|α=2k π-π3,k ∈ZB.⎩⎨⎧⎭⎬⎫α|α=2k π+2π3,k ∈ZC.⎩⎨⎧⎭⎬⎫α|α=k π-2π3,k ∈Z D.⎩⎨⎧⎭⎬⎫α|α=k π-π3,k ∈Z 解析:选D.因为直线y =-3x 的倾斜角是2π3,所以终边落在直线y =-3x 上的角的取值集合为{α|α=k π-π3,k ∈Z }.3.(多选)关于角度,下列说法正确的是( ) A .时钟经过两个小时,时针转过的角度是60° B .钝角大于锐角C .三角形的内角必是第一或第二象限角D .若α是第二象限角,则α2是第一或第三象限角解析:选BD.对于A ,时钟经过两个小时,时针转过的角是-60°,故错误; 对于B ,钝角一定大于锐角,显然正确;对于C ,若三角形的内角为90°,则是终边在y 轴正半轴上的角,故错误; 对于D ,因为角α的终边在第二象限,所以2k π+π2<α<2k π+π,k ∈Z , 所以k π+π4<α2<k π+π2,k ∈Z .当k =2n ,n ∈Z 时,2n π+π4<α2<2n π+π2,n ∈Z ,得α2是第一象限角; 当k =2n +1,n ∈Z 时,(2n +1)π+π4<α2<(2n +1)π+π2,n ∈Z ,得α2是第三角限角,故正确.4.(多选)(2020·山东师范大学附属中学第三次月考)在平面直角坐标系xOy 中,角α的顶点在原点O ,以x 正半轴为始边,终边经过点P (1,m )(m <0),则下列各式的值恒大于0的是( )A.sin αtan α B .cos α-sin α C .sin αcos αD .sin α+cos α解析:选AB.由题意知sin α<0,cos α>0,tan α<0. 选项A ,sin αtan α>0;选项B ,cos α-sin α>0;选项C ,sin αcos α<0;选项D ,sin α+cos α符号不确定.故选AB. 5.已知点P (sin x -cos x ,-3)在第三象限,则x 的可能区间是( ) A.⎝ ⎛⎭⎪⎫π2,π B.⎝ ⎛⎭⎪⎫-π4,3π4 C.⎝ ⎛⎭⎪⎫-π2,π2 D.⎝ ⎛⎭⎪⎫-3π4,π4 解析:选D.由点P (sin x -cos x ,-3)在第三象限,可得sin x -cos x <0,即sin x <cos x ,所以-3π4+2k π<x <π4+2k π,k ∈Z .当k =0时,x 所在的一个区间是⎝ ⎛⎭⎪⎫-3π4,π4. 6.已知扇形的圆心角为π6,面积为π3,则扇形的弧长等于________. 解析:设扇形半径为r ,弧长为l , 则⎩⎪⎨⎪⎧l r =π6,12lr =π3,解得⎩⎪⎨⎪⎧l =π3,r =2.答案:π37.函数y =2sin x -1的定义域为________. 解析:因为2sin x -1≥0,所以sin x ≥12.由三角函数线画出x 满足条件的终边范围(如图中阴影部分所示).所以x ∈⎣⎢⎡⎦⎥⎤2k π+π6,2k π+5π6(k ∈Z ).答案:⎣⎢⎡⎦⎥⎤2k π+π6,2k π+5π6(k ∈Z )8.已知点P (sin θ,cos θ)是角α终边上的一点,其中θ=2π3,则与角α终边相同的最小正角为________.解析:因为θ=2π3,故P ⎝ ⎛⎭⎪⎫32,-12,故α为第四象限角且cos α=32,所以α=2k π+11π6,k ∈Z ,所以与角α终边相同的最小正角为11π6.答案:11π69.已知角α是第三象限角,试判断:(1)π-α是第几象限角?(2)α2是第几象限角?(3)2α是第几象限角?解:(1)因为α是第三象限角, 所以2k π+π<α<2k π+3π2,k ∈Z . 所以-2k π-π2<π-α<-2k π,k ∈Z . 所以π-α是第四象限角. (2)因为k π+π2<α2<k π+3π4,k ∈Z . 所以α2是第二或第四象限角.。

专题32 任意角和弧度制(解析版)

专题32 任意角和弧度制(解析版)

专题32 任意角和弧度制知识点一任意角1.中午12点15分时,钟表上的时针和分针所成的角是()A.90°B.75°C.82.5°D.60°【答案】C【解析】根据钟面的特征可知12点15分时,分针指向3,而时针在12和1之间,而15分等于四分之一小时,故时针走了四分之一大格,根据每大格30°即可得到结果.×30°=82.5°.中午12点15分时,钟表上的时针和分针所成的角是90°-142.如果时钟上的时针、分针和秒针都是匀速地转动,那么从3时整(3∶00)开始,在1分钟的时间内,3根针中,出现一根针与另外两根针所成的角相等的情况有()A.1次B.2次C.3次D.4次【答案】D【解析】从3时整(3∶00)开始,在1分钟的时间内,3根针中,出现一根针与另外两根针所成的角相等的情况有:①当秒针转到大约45°的位置时,以及大约225°的位置时,秒针平分时针与分针.②当秒针转到大约180°的位置时,时针平分秒针与分针.③当秒针转到大约270°的位置时,分针平分秒针与时针.综上,共4次.3.如图,钟表中9点30分时,时钟的分针与时针所成角的度数为()A.90°B.105°C.120°D.135°【答案】B【解析】钟表12个数字,每相邻两个数字之间的夹角为30°,钟表上9点30分,时针指向9.5,分针指向6,两者之间相隔3.5个数字.3×30°+15°=105°,∴钟面上9点30分时,分针与时针所成的角的度数是105°.4.400°角终边所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】400°=360°+40°,∵40°是第一象限,∴400°角终边所在象限是第一象限.5.给出下列四个命题:①-75°角是第四象限角;②225°角是第三象限角;③475°角是第二象限角;④-315°角是第一象限角,其中真命题有()A.1个B.2个C.3个D.4个【答案】D【解析】对于①:如图1所示,-75°角是第四象限角;对于②:如图2所示,225°角是第三象限角;对于③:如图3所示,475°角是第二象限角;对于④:如图4所示,-315°角是第一象限角.6.如果α是第三象限的角,则下列结论中错误的是()A.-α为第二象限角B.180°-α为第二象限角C.180°+α为第一象限角D.90°+α为第四象限角【答案】B【解析】若α是第三象限角,则360°·k+180°<α<360°·k+270°;则360°·k+90°<-α<360°·k+180°,360°·k+270°<180°-α<360°·k+360°此时为第四象限角.7.终边与x轴重合的角α的集合是()A.{α|α=k·360°,k∈Z}B.{α|α=k·180°,k∈Z}C.{α|α=k·90°,k∈Z}D.{α|α=k·180°+90°,k∈Z}【答案】B【解析】设终边在x轴上的角为α,当α在x轴正半轴时,α=k·360°=2k·180°,其中k∈Z;当α在x轴负半轴时,α=2k·180°+180°=(2k+1)·180°,其中k∈Z,综上所述:α的集合是{α|α=k·180°,k∈Z}.8.若角α满足α=k·120°+30°(k∈Z),则α的终边一定在()A.第一象限或第二象限或第三象限B.第一象限或第二象限或第四象限C.第一象限或第二象限或x轴非负半轴上D.第一象限或第二象限或y轴非正半轴上【答案】D【解析】当k=3n,n∈Z时,α=n·360°+30°,为第一象限角;当k=3n+1,n∈Z时,α=n·360°+150°,为第二象限角;当k=3n+2,n∈Z时,α=n·360°+270°,为y轴非正半轴上的角.则α的终边一定在第一象限或第二象限或y轴非正半轴上.9.与-457°角的终边相同的角的集合是()A.{α|α=457°+k·360°,k∈Z}B.{α|α=97°+k·360°,k∈Z}C.{α|α=263°+k·360°,k∈Z}D.{α|α=-263°+k·360°,k∈Z}【答案】C【解析】由于-457°=-1×360°-97°=-2×360°+263°,故与-457°角终边相同的角的集合是{α|α=-457°+k·360°,k∈Z}={α|α=263°+k·360°,k∈Z}.10.与405°角终边相同的角是()A.k·360°-45°,k∈ZB.k·180°-45°,k∈ZC.k·360°+45°,k∈ZD.k·180°+45°,k∈Z【答案】C【解析】405°=360°+45°,故选C.11.集合{α|k·180°+45°≤α≤k·180°+90°,k∈Z}中的角所表示的范围(阴影部分)是()A.B.C.D.【答案】C【解析】当k=2n时,{α|2n·180°+45°≤α≤2n·180°+90°,n∈Z},此时α的终边和45°≤α≤90°的终边一样.当k=2n+1时,{α|2n·180°+180°+45°≤α≤2n·180°+180°+90°,n∈Z},此时α的终边和225°≤α≤270°的终边一样.12.下列说法正确的是()A.小于90°的角是锐角B.钝角必是第二象限角,第二象限角必是钝角C.第三象限的角大于第二象限的角D.角α与角β的终边相同,角α与角β可能不相等【答案】D【解析】小于90°的角除了锐角还有零角与负角,故A错;钝角必是第二象限角,但第二象限角不一定为钝角,故B错;第三象限角不一定大于第二象限角,如224°,500°,故C错;D正确.13.判断下列各组角中,哪些是终边相同的角.(1)k·90°与k·180°+90°(k∈Z);(2)k·180°±60°与k·60°(k∈Z);(3)(2k+1)·180°与(4k±1)·180°(k∈Z);(4)k·180°+30°与k·180°±30°(k∈Z).【答案】(1)由于k·90°表示90°的整数倍,而k·180°+90°=(2k+1)·90°表示90°的奇数倍,故这两个角不是终边相同的角.(2)由于k·180°±60°=(3k±1)·60°表示60°的非3的整数倍.而k·60°表示60°的整数倍,故这两个角不是终边相同的角.(3)由于(2k+1)·180°表示180°的奇数倍,(4k±1)·180°也表示180°的奇数倍,故(2k+1)·180°与(4k±1)·180°(k∈Z)是终边相同的角.(4)由于k·180°+30°=(6k+1)·30°表示30°的(6k+1)倍,而k·180°±30°=(6k±1)·30°表示30°的(6k±1)倍,故这两个角不是终边相同的角.14.如图,分别写出适合下列条件的角的集合:(1)终边落在射线OB上;(2)终边落在直线OA上;(3)终边落在阴影区域内(含边界).【答案】(1)终边落在射线OB上的角的集合为S1={α|α=60°+k·360°,k∈Z};(2)终边落在直线OA上的角的集合为S2={α|α=30°+k·180°,k∈Z};(3)终边落在阴影区域内(含边界)的角的集合为S3={α|30°+k·180°≤α≤60°+k·180°,k∈Z}.15.已知角x的终边落在图示阴影部分区域,写出角x组成的集合.【答案】(1){x|k·360°-135°≤x≤k·360°+135°,k∈Z}.(2){x|k·360°+30°≤x≤k·360°+60°,k∈Z}∪{x|k·360°+210°≤x≤k·360°+240°,k∈Z}={x|2k·180°+30°≤x≤2k·180°+60°或(2k+1)·180°+30°≤x≤(2k+1)·180°+60°,k∈Z}={x|k·180°+30°≤x≤k·180°+60°,k∈Z}.16.如图所示,阴影表示角α终边所在的位置,写出角α的集合.【答案】(1)终边落在x轴非负半轴上的角的集合为{α|α=k·360°,k∈Z},终边落在60°角终边上的角的集合为{α|α=k·360°+60°,k∈Z},终边落在130°角终边上的角的集合为{α|α=k·360°+130°,k∈Z},终边落在220°角终边上的角的集合为{α|α=k·360°+220°,k∈Z},∴终边落在阴影部分的角的集合可表示为{α|k·360°≤α≤k·360°+60°,k∈Z}∪{α|k·360°+130°≤α≤k·360°+220°,k∈Z},(2)终边落在75°角终边上的角的集合为{α|α=k·360°+75°,k∈Z},终边落在-45°角终边上的角的集合为{α|α=k·360°-45°,k∈Z},故终边落在阴影部分的角的集合为{α|k·360°-45°≤α<k·360°+75°,k∈Z}.17.写出如图所示阴影部分的角α的范围.【答案】(1)因为与45°角终边相同的角可写成45°+k·360°,k∈Z的形式,与-180°+30°=-150°角终边相同的角可写成-150°+k·360°,k∈Z的形式.所以图(1)阴影部分的角α的范围可表示为{α|-150°+k·360°<α≤45°+k·360°,k∈Z}.(2)同理可表示图(2)中角α的范围为{α|45°+k·360°≤α≤300°+k·360°,k∈Z}.知识点二弧度制18.下列说法中,错误的是()A.半圆所对的圆心角是πradB.周角的大小等于2πC.1弧度的圆心角所对的弧长等于该圆的半径D.长度等于半径的弦所对的圆心角的大小是1弧度【答案】D【解析】根据弧度的定义及角度与弧度的换算知A 、B 、C 均正确,D 错误. 19.比值lr (l 是圆心角α所对的弧长,r 是该圆的半径)( )A .既与α的大小有关,又与r 的大小有关B .与α及r 的大小都无关C .与α的大小有关,而与r 的大小无关D .与α的大小无关,而与r 的大小有关 【答案】C【解析】由题意,比值lr =|α|,∴比值lr 与α的大小有关,而与r 的大小无关,故选C.20.下列转化结果错误的是( ) A .60°化成弧度是π3 B .-103π化成度是-600° C .-150°化成弧度是-7π6 D .π12化成度是15° 【答案】C【解析】对于A,60°=60×π180=π3;对于B ,-10π3=-103×180°=-600°;对于C ,-150°=-150×π180=-56π;对于D ,π12=112×180°=15°. 21.在△ABC 中,满足∠A =π6,∠B =π3,则∠C 等于( )A .120°B .90°C .75°D .135°【答案】B【解析】∵三角形的内角和为π,∴∠C =π-π3-π6=π2,∵π=180°,∴∠C =90°.22.圆的半径是6cm ,则15°的圆心角与圆弧围成的扇形面积是() A .π2cm 2B .3π2cm 2C .πcm 2D .3πcm 2【答案】B【解析】15°化为弧度为π180×15=π12.∴15°的圆心角与圆弧围成的扇形面积是12|α|r 2=12×π12×36=3π2(cm 2)23.扇形圆心角为π3,则扇形内切圆的圆面积与扇形面积之比为()A .1∶3B .2∶3C .4∶3D .4∶9【答案】B【解析】设扇形的半径为R ,扇形内切圆半径为r ,则R =r +rsin π6=r +2r =3r . ∴S 内切=πr 2.S 扇形=12|α|R 2=12×π3×R 2=12×π3×9r 2=32πr 2,∴S 内切∶S 扇形=2∶3.24.若2弧度的圆心角所对的弧长为2cm ,则这个圆心角所夹的扇形的面积是( ) A .4cm 2B .2cm 2C .4πcm 2D .1cm 2【答案】D【解析】弧度是2的圆心角所对的弧长为2,所以根据弧长公式,可得圆的半径为1,所以扇形的面积为:12×2×1=1(cm 2). 25.已知扇形的周长为8cm ,圆心角为2弧度,则该扇形的面积为( )A .4cm 2B .6cm 2C .8cm 2D .16cm 2【答案】A【解析】设扇形的半径为R,所以2R+2R=8,所以R=2,扇形的弧长为4,半径为×4×2=4(cm2).2,扇形的面积为:1226.若角α,β的终边关于y轴对称,则α与β的关系一定是(其中k∈Z)()A.α+β=πB.α-β=π2C.α-β=π+2kπ2D.α+β=(2k+1)π【答案】D【解析】可以取几组特殊角代入检验.27.已知集合A={α|2kπ≤α≤(2k+1)π,k∈Z},B={α|-4≤α≤4},则A∩B等于()A.∅B.{α|-4≤α≤π}C.{α|0≤α≤π}D.{α|-4≤α≤-π或0≤α≤π}【答案】D【解析】集合A限制了角α终边只能落在x轴上方或x轴上.28.给出下列命题,其中正确的是()(1)弧度角与实数之间建立了一一对应关系;(2)终边相同的角必相等;(3)锐角必是第一象限角;(4)小于90°的角是锐角;(5)第二象限的角必大于第一象限角.A.(1)B.(1)(2)(5)C.(3)(4)(5)D.(1)(3)【答案】D【解析】∵角的弧度制是与实数一一对应的,第一个命题正确,终边相同的角有无数个,它们的关系可能相等,也可能不等,锐角一定是第一象限角,但第一象限角不一定是锐角,小于90°的角可能是负角,象限角不能比较大小,∴(1)(3)的说法是正确的,故选D.29.圆O的半径为1,P为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A与点P重合)沿圆周逆时针滚动,则点A第一次回到点P的位置时,点A走过的路径的长度为________.【答案】(【解析】由图可知:∵圆O 的半径r =1,正方形ABCD 的边长a =1,∴以正方形的边为弦时所对的圆心角为π3,正方形在圆上滚动时点的顺序依次为如图所示,∴当点A 首次回到点P 的位置时,正方形滚动了3圈共12次,设第i 次滚动,点A 的路程为Ai ,则A 1=π6×|AB |=π6, A 2=π6×|AC |=√2π6, A 3=π6×|DA |=π6,A 4=0,∴点A 所走过的路径的长度为3(A 1+A 2+A 3+A 4)=2+√22π. 30.一条弦的长度等于半径r ,求:(1)这条弦所对的劣弧长;(2)这条弦和劣弧所组成的弓形的面积.【答案】(1)在半径为r 的⊙O 中弦AB =r ,则△OAB 为等边三角形,所以∠AOB =π3,则弦AB 所对的劣弧长为π3r .(2)∵S △AOB =12·OA ·OB ·sin ∠AOB =√34r 2, S 扇形OAB =12|α|r 2=12×π3×r 2=π6r 2,∴S 弓形=S 扇形OAB -S △AOB =π6r 2-√34r 2=(π6−√34)r 2. 31.如图,一长为√3dm ,宽为1dm 的长方形木块在桌面上作无滑动翻滚,翻滚到第四次时被一小木块挡住,使木块底面与桌面所成角为π6,试求点A 走过的路程及走过的弧所在的扇形的总面积.(圆心角为正)【答案】在扇形ABA 1中,圆心角恰为π2,弧长l 1=π2·|AB |=π2·√3+1=π,面积S 1=12·π2·|AB |2=12·π2·4=π.在扇形A 1CA 2中,圆心角也为π2,弧长l 2=π2·|A 1C |=π2·1=π2,面积S 2=12·π2·|A 1C |2=12·π2·12=π4.在扇形A 2DA 3中,圆心角为π-π2-π6=π3,弧长l 3=π3·|A 2D |=π3·√3=√33π,面积S 3=12·π3·|A 2D |2=12·π3·(√3)2=π2,∴点A 走过的路程长l =l 1+l 2+l 3=π+π2+√3π3=(9+2√3π6),点A 走过的弧所在的扇形的总面积S =S 1+S 2+S 3=π+π4+π2=7π4.32.用弧度表示顶点在原点,始边重合于x 轴的非负半轴,终边落在如图所示的阴影部分内的角的集合(不包括边界).【答案】(1)∵330°的终边也可看作-30°的终边,∴-30°=-π6,75°=5π12,∴{θ|−π6=2kπ<θ<5π12+2kπ,k∈Z?}(2)∵225°的终边也可看作-135°的终边,∴-135°=-3π4,135°=3π4,∴{θ|−3π4+2kπ<θ<3π4+2kπ,k∈Z?}。

【2025高中数学】第四章 三角函数第1讲 任意角和弧度制、三角函数的概念

【2025高中数学】第四章 三角函数第1讲 任意角和弧度制、三角函数的概念

第四章 三角函数第1讲 任意角和弧度制、三角函数的概念课标要求 命题点 五年考情命题分析预测学生用书P0711.任意角与弧度制 (1)任意角 角的分类{按旋转方向不同分类{正角:一条射线绕其端点按①逆时针 方向旋转形成的角负角:一条射线绕其端点按②顺时针 方向旋转形成的角零角:射线没有旋转按终边位置不同分类{ 象限角:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边在第几象限,就说这个角是第几象限角轴线角:角的终边落在③坐标轴 上(2)弧度制注意 1.用弧度制表示角的大小时,“弧度”二字或“rad”通常省略不写,但用角度制表示角的大小时,度(°)一定不能省略.2.正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.3.利用扇形的弧长和面积公式时,要注意角的单位必须是弧度.常用结论1.象限角及轴线角2.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z}或{β|β=α+2kπ,k∈Z}.注意 1.第一象限角未必是锐角,但锐角一定是第一象限角.2.终边相同的角不一定相等,但相等的角终边一定相同,不相等的角的终边有可能相同. 2.任意角的三角函数(1)任意角的三角函数设α是一个任意角,α∈R,它的终边与单位圆交于点P(x,y),那么sin α=⑦y,cos α=⑧x,tan α=⑨yx(x≠0).推广:设角α终边上任意一点P(原点除外)的坐标为(x,y),点P与原点的距离为r,即r=√x2+y2,则sin α=⑩yr ,cos α=⑪xr,tan α=⑫yx(x≠0).(2)三角函数值在各象限内的符号上述符号的规律可简记为:一全正,二正弦,三正切,四余弦.注意已知三角函数值的符号,判断角的终边所在位置时,不要遗漏终边在坐标轴上的情况,如sin π2=1>0,cos π=-1<0.(3)特殊角的三角函数值3.角的终边的对称性(1)β,α的终边关于x 轴对称⇔β=-α+2k π,k ∈Z. (2)β,α的终边关于y 轴对称⇔β=π-α+2k π,k ∈Z. (3)β,α的终边关于原点对称⇔β=π+α+2k π,k ∈Z.1.下列说法正确的是( B )A.三角形的内角是第一象限角或第二象限角B.不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关C.若sin α=sin β,则α与β的终边相同D.若α,β的终边关于x 轴对称,则α+β=0解析 对于A ,当三角形内角为π2时,角的终边在y 轴上,A 错误;对于B ,角的大小只与旋转方向及角度有关,B 正确;对于C ,若α=π6, β=5π6,此时sin α=sin β,但α与β的终边不相同,C 错误;对于D ,π3与5π3的终边关于x 轴对称,但π3+5π3=2π≠0,D 错误.2.已知P (-4,3)是角α的终边上一点,则cos α=( D ) A.45B.-35C.35D. -45解析 设点P (-4,3)到原点O 的距离为r ,则 r =√(-4)2+32=5,所以cos α=xr =-45,故选D.3.已知α是第一象限角,那么α2是( D ) A.第一象限角 B.第二象限角 C.第一或第二象限角D.第一或第三象限角解析 易知2k π<α<π2+2k π,k ∈Z ,故k π<α2<π4+k π,k ∈Z ,所以α2是第一或第三象限角. 4.[全国卷Ⅰ]若tan α>0,则( C ) A.sin α>0B.cos α>0C.sin 2α>0D.cos 2α>0解析 因为tan α>0,所以α为第一或第三象限角,即2k π<α<2k π+π2或2k π+π<α<2k π+3π2,k ∈Z ,则4k π<2α<4k π+π或4k π+2π<2α<4k π+3π,k ∈Z.所以2α为第一或第二象限角或终边在y 轴的非负半轴上的角,从而sin 2α>0. 5.在直径为20 cm 的圆中,4π3的圆心角所对弧的长为 40π3cm.解析 由弧长公式l =|α|r 可得,弧长为4π3×202=40π3(cm ).6.[易错题]已知扇形的圆心角为30°,其弧长为2π,则此扇形的面积为 12π . 解析 ∵圆心角α=30°=π6,l =|α|r ,∴r =2ππ6=12,∴扇形面积S =12lr =12×2π×12=12π.学生用书P073命题点1 任意角及其表示例1 (1)时针经过四个小时,转过了( B ) A.2π3 radB.-2π3radC.5π6radD.-5π6rad解析 因为时针顺时针旋转,所以转过一圈的弧度为-2π rad ,则时针经过四个小时,转过了412×(-2π)rad =-2π3 rad.(2)终边在直线y =√3x 上的角的集合为( B ) A.{β|β=k π+π6,k ∈Z} B.{β|β=k π+π3,k ∈Z} C.{β|β=2k π+π6,k ∈Z}D.{β|β=2k π+π3,k ∈Z}解析 解法一 易知直线y =√3x 的倾斜角为π3.若终边落在射线y =√3x (x ≥0)上,则有β=2n π+π3,n ∈Z ,若终边落在射线y =√3x (x ≤0)上,则有β=2n π+4π3,n ∈Z.综上可得β=k π+π3,k ∈Z.故终边在直线y =√3x 上的角的集合为{β|β=k π+π3,k ∈Z}.故选B.解法二 易知直线y =√3x 的倾斜角为π3.终边落在x 轴上的角的集合为{α|α=k π,k ∈Z},将其逆时针旋转π3,即可得到终边在y =√3x 上的角,故所求集合为{β|β=k π+π3,k ∈Z}.方法技巧1.利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k (k ∈Z )赋值来求得所需的角.2.确定k α,αk (k ∈N *)的终边位置的方法:先写出k α或αk 的范围,然后根据k 的可能取值确定k α或αk 的终边所在位置.训练1 [2023湖北十堰月考]与9π4终边相同的角的表达式中,正确的是( D )A.45°+2k π,k ∈ZB.k ·360°+π4,k ∈Z C.k ·360°+315°,k ∈ZD.2k π-7π4,k ∈Z解析 在同一个表达式中,角度制与弧度制不能混用,所以A ,B 错误.与9π4终边相同的角可以写成2k π+9π4(k ∈Z )的形式,k =-2时,2k π+9π4=-7π4,315°换算成弧度制为7π4,所以C 错误,D 正确.故选D.命题点2 扇形的弧长公式与面积公式例2 [2023天津南开中学统练]如图1是杭州第19届亚运会会徽,名为“潮涌”,钱塘江和钱江潮头是会徽的形象核心,绿水青山展示了浙江杭州山水城市的自然特征,江潮奔涌表达了浙江儿女勇立潮头的精神气质,整个会徽形象象征着新时代中国特色社会主义大潮的涌动和发展.如图2是会徽的几何图形,设弧AD 长度是l 1,弧BC 长度是l 2,几何图形ABCD 面积为S 1,扇形BOC 面积为S 2,若l 1l 2=2,则S1S 2=( A )A.3B.4C.1D.2解析 设∠BOC =α(α>0),由l 1l 2=2,得OA·αOB·α=OAOB =2,即OA =2OB ,则S 1S 2=12α·OA 2-12α·OB 212α·OB 2=OA 2-OB 2OB 2=4OB 2-OB 2OB 2=3.故选A.方法技巧有关扇形弧长和面积问题的解题策略(1)求扇形面积的关键是求得扇形的圆心角、半径、弧长三个量中的任意两个量. (2)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形. (3)扇形面积的最值问题,常转化为二次函数的最值问题.训练2 (1)[2023广东深圳统考]荡秋千是中华大地上很多民族共有的游艺竞技项目.据现有文献记载,秋千源自先秦.位于广东清远的天子山悬崖秋千建在高198米的悬崖边上,该秋千的缆索长8米,荡起来最大摆角为85°,则该秋千最大摆角所对的弧长为( B ) A.68π9米 B.34π9米 C.13.6米 D.198米解析 由题意得最大摆角,即圆心角|α|=85π180=17π36,半径R =8,由弧长公式可得l=|α|·R =17π36×8=34π9(米).故选B.(2)[2024河北张家口期中]如图,已知扇形的周长为6,当该扇形的面积取最大值时,弦长AB =( A ) A.3sin 1 B.3sin 2 C.3sin 1°D.3sin 2°解析 设扇形的圆心角为α(α>0),半径为r ,弧长为l ,则l +2r =6,l =6-2r ,由{r >0,l =6-2r >0,可得0<r <3,所以扇形的面积为S =12lr =(3-r )r ≤(3-r +r2)2=94,当且仅当3-r =r ,即r =32时,扇形的面积S 最大,此时l =6-2r =3.因为l =αr ,所以扇形的圆心角α=l r =332=2.如图,取线段AB 的中点E ,连接OE ,由垂径定理可知OE ⊥AB ,因为OA =OB ,所以∠AOE =12∠AOB =12×2=1,所以AB =2AE =2OA sin 1=3sin 1.故选A. 命题点3 三角函数定义的应用 角度1 利用三角函数的定义求值例3 [2023南京江宁区模拟]在平面直角坐标系中,角α的顶点在坐标原点,始边在x 轴的非负半轴上,终边过点(x ,4)且tan (-π+α)=-2,则cos α =( B ) A.-2√55B.-√55C.√55D.2√55解析 ∵角α的终边过点(x ,4)且tan (-π+α)=tan α=-2,∴4x=-2,∴x =-2,∴cos α=√(-2)+42=-√55,故选B.方法技巧三角函数的定义中常见的三种题型及解题方法训练3 已知角α的终边经过点P (-1,m ),且sin α=-35,则tan α的值是( B ) A.±34B.34C.-34D.43解析 ∵角α的终边经过点P (-1,m ),∴sin α=√m 2+1=-35,解得m =-34,∴tan α=-m =34.故选B.角度2 判断三角函数值的符号例4 (1)[全国卷Ⅱ]若α为第四象限角,则( D ) A.cos 2α>0 B.cos 2α<0 C.sin 2α>0D.sin 2α<0解析 由α为第四象限角,故-π2+2k π<α<2k π(k ∈Z ),可得-π+4k π<2α<4k π(k ∈Z ),所以2α的终边在第三、四象限或y 轴的非正半轴上,因此sin 2α<0,cos 2α的正负无法确定.(2)已知角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边在直线y =3x 上,且sin α<0,P (m ,n )是角α终边上一点,且|OP |=√10(O 为坐标原点),则m -n 等于( A ) A.2B.-2C.4D.-4解析 因为P (m ,n )在直线y =3x 上,所以n =3m ①,又sin α<0,所以m <0,n <0.由|OP |=√10,得m 2+n 2=10 ②.联立①②,并结合m <0,n <0,可得m =-1,n =-3,所以m -n =2. 方法技巧判断三角函数值的符号,先确定角所在象限,再根据三角函数在各象限的符号确定正负.若不确定角所在象限,需分类讨论求解.注意角的终边在坐标轴上的情况.训练4 [2023福建漳州质检]已知sin θ<0,tan θ<0,则角θ的终边位于( D ) A.第一象限 B.第二象限 C.第三象限D.第四象限解析 由sin θ<0,tan θ<0,根据三角函数值的符号与角的终边所在象限间的关系,可得角θ的终边位于第四象限.故选D.1.[命题点1]已知cos (θ+π2)<0,cos (θ-π)>0,下列不等式中必成立的是( A )A.tan θ2>1tanθ2B.sin θ2>cos θ2 C.tan θ2<1tanθ2D.sin θ2<cos θ2解析 ∵cos (θ+π2)<0,cos (θ-π)>0,∴sin θ>0,cos θ<0,∴θ是第二象限角,∴π2+2k π<θ<π+2k π(k ∈Z ),∴π4+k π<θ2<π2+k π(k ∈Z ),(注意θ2的取值范围) ∴tan θ2>1tanθ2一定成立.当θ2在第一象限时,有sin θ2>cos θ2,当θ2在第三象限时,有sin θ2<cos θ2.故选A.2.[命题点2/新高考卷Ⅰ]某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,BH ∥DG ,EF =12 cm ,DE =2 cm ,A 到直线DE和EF 的距离均为7 cm ,圆孔半径为1 cm ,则图中阴影部分的面积为 (52π+4) cm 2.解析 如图,连接OA ,由A 是切点知OA ⊥AG .由B 是切点知BC ⊥BH .过A 分别作AQ 垂直直线DE 于点Q ,AM 垂直直线EF 于点M ,交DG 于点N ,交BH 于点R ,则AQ =7,AM =7.又DE =2,所以AN =5,NG =MF =12-7=5, 所以△ANG 是等腰直角三角形, 所以∠GAN =∠OAN =π4,∠AOR =π4.过点O 作OP ⊥DG 于点P ,设OP =3x ,则DP =5x ,所以OR =PN =7-5x ,AR =AN -RN =5-OP =5-3x ,又△OAR 为等腰直角三角形,因此7-5x =5-3x ,于是x =1,OR =2,所以OA =2√2,因为∠AOR =π4,所以∠AOB =34π.所以S 阴影=12×34π×(2√2)2+12×(2√2)2-12π=(52π+4)(cm 2).3.[命题点3角度1/2023贵阳市统考]在平面直角坐标系xOy 中,角α,β均以O 为顶点, x 轴的非负半轴为始边,α的终边与单位圆O 相交于第四象限的点P ,且点P 的横坐标为45,β的终边是将角α的终边绕点O 逆时针旋转π4所得,则tan β的值为 17.解析 因为P 为单位圆上的一点,且位于第四象限,点P 的横坐标x P =45,所以点P 的纵坐标y P =-√1-(45)2=-35,由三角函数的定义可得,tan α=y P x P=-34,又β=α+π4,所以tan β=tan (α+π4)=tanα+11-tanα=17.4.[命题点3/2021北京高考]若P (cos θ,sin θ)与Q (cos (θ+π6),sin (θ+π6))关于y 轴对称,写出一个θ的值5π12.解析 由题意可得cos θ=-cos (θ+π6),sin θ=sin (θ+π6),则θ=2k π+π-(θ+π6),θ=5π12+k π,k ∈Z ,令k =0,则θ=5π12,故θ的一个值为5π12.学生用书·练习帮P2911.与-2 025°终边相同的最小正角是( A )A.135°B.132°C.58°D.12°解析 因为-2 025°=-360°×6+135°,所以与-2 025°终边相同的最小正角是135°. 2.[2023广东部分学校调研]sin π6是第( A )象限角.A.一B.二C.三D.四解析 因为sin π6=12∈(0,π2),所以sin π6是第一象限角.故选A. 3.[2023辽宁辽阳统考]若α是第二象限角,则-π2-α是( B )A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析 由α与-α的终边关于x 轴对称,可知若α是第二象限角,则-α是第三象限角,所以-π2-α是第二象限角.故选B.4.已知角α的终边经过点P (3,t ),且sin (2k π+α)=-35(k ∈Z ),则t 等于( B ) A.-916B.-94C.-34D.94解析 ∵角α的终边经过点P (3,t ),∴r =√32+t 2,∴sin α=t√32+t 2.又sin (2k π+α)=-35=sin α(k ∈Z ),∴t√32+t 2=-35,∴t =-94(正值已舍去),故选B.5.[2023浙江统考]已知点(2√3,-2)在角α的终边上,则角α的最大负值为( C ) A.-5π6B.-2π3C.-π6D.5π3解析 易知点(2√3,-2)在第四象限,且tan α=-22√3=-√33,所以α=-π6+2k π,k ∈Z ,故当k =0,α=-π6,此时为最大的负值,故选C.6.[情境创新]如图所示,《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为π4米,肩宽约为π8米,“弓”所在圆的半径约为1.25米,则掷铁饼者双手之间的距离约为( B ) A.1.012米B.1.768米C.2.043米D.2.954米解析 由题意画出示意图,如图所示,则AB ⏜的长为2×π4+π8=5π8(米),OA =OB =1.25米,∠AOB =5π81.25=π2,所以AB =√2OA =54√2米≈1.768米.即掷铁饼者双手之间的距离约为1.768米.7.[2023江西上饶市第一中学月考]如图所示,终边落在阴影部分(包括边界)的角α的集合为 {α|-120°+k ·360°≤α≤135°+k ·360°,k ∈Z} .解析 由题图,与阴影部分下侧终边相同的角为-120°+k ·360°,且k ∈Z ,与上侧终边相同的角为135°+k ·360°,且k ∈Z ,所以阴影部分(包括边界)的角α的集合为{α|-120°+k ·360°≤α≤135°+k ·360°,k ∈Z}.8.已知角α满足sin α<0,且tan α>0,则角α的集合为 {α|2k π+π<α<2k π+3π2,k ∈Z} ;sin α2·cos α2·tan α2 > 0(填“>”“<”或“=”).解析 由sin α<0,知角α的终边在第三、四象限或在y 轴的非正半轴上;又tan α>0,所以角α的终边在第三象限,故角α的集合为{α|2k π+π<α<2k π+3π2,k ∈Z}.由2k π+π<α<2k π+3π2,k ∈Z ,得k π+π2<α2<k π+3π4,k ∈Z.当k =2m ,m ∈Z 时,角α2的终边在第二象限,此时sin α2>0,cos α2<0,tan α2<0,所以sin α2·cos α2·tan α2>0;当k =2m +1,m ∈Z 时,角α2的终边在第四象限,此时sin α2<0,cos α2>0,tan α2<0,所以sin α2·cos α2·tan α2>0.9.如图所示,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(√2,-√2),角速度为1,那么点P 到x 轴的距离d 关于时间t 的函数图象大致为( C )解析 因为P 0(√2,-√2),所以∠P 0Ox =π4.设角速度为ω,则ω=1,所以按逆时针方向旋转时间t 后,得∠POP 0=t ,(θ=ωt ,θ为射线OP 转过的角度)所以∠POx =t -π4.由三角函数的定义,知y P =2sin (t -π4),因此d =2|sin (t -π4)|.当t =0时,d =2|sin (-π4)|=√2;当t =π4时,d =0,故选C.10.[2023河北衡水饶阳中学模拟]若扇形的周长为36,要使这个扇形的面积最大,则此时扇形的圆心角α的弧度数为( B )A.1B.2C.3D.4解析 设扇形的半径为r ,弧长为l ,则2r +l =36,所以S =12rl =14(36-l )·l =-14l 2+9l(0<l <36),故当l =18时,S 取最大值,此时r =9,所以α=l r =189=2,故选B. 11.[2023江苏淮安统考]如图,正六边形ABCDEF 的边长为2,分别以点A ,B 为圆心,AF长为半径画弧,两弧交于点G ,则AG⏜,BG ⏜,AB 围成的阴影部分的面积为 4π3-√3 .解析 如图,连接GA ,GB .由题意知,线段GA ,GB ,AB 的长度都等于半径2,所以△GAB 为正三角形,则∠GBA =∠GAB =π3,故△GAB 的面积为S 1=√34×22=√3,扇形GBA 的面积为S 2=12×π3×22=2π3,由图形的对称性可知,扇形GAB 的面积与扇形GBA 的面积相等,所以阴影部分的面积S =2S 2-S 1=4π3-√3.12.[数学文化/2024江西南昌市等5地开学考试]《梦溪笔谈》是我国科技史上的杰作,其中收录了扇形弧长的近似计算公式:l AB ⏜=弦+2×矢 2径.如图,公式中“弦”是指扇形中AB⏜所对弦AB 的长,“矢”是指AB ⏜所在圆O 的半径与圆心O 到弦的距离之差,“径”是指扇形所在圆O 的直径.若扇形的面积为16π3,扇形的半径为4,利用上面公式,求得该扇形的弧长的近似值为( D )A.√3+1B.2√3+1C.3√3+1D.4√3+1解析 设该扇形的圆心角为α,由扇形面积公式得12×42×α=16π3,所以α=2π3.如图,取AB⏜的中点C ,连接OC ,交AB 于点D ,则OC ⊥AB ,则OD =OA ×cos ∠AOD =4cos π3=2,AB =2AD =2×4sin π3=4√3,CD =OC -OD =2,所以该扇形的弧长的近似值为l AB ⏜=弦+2×矢 2径=AB +2CD 22OA =4√3+2×48=4√3+1.故选D.。

高1数学-三角函数-角度制与弧度制

高1数学-三角函数-角度制与弧度制

高一数学第一节 任意角和弧度制知识点1.角的分类:(1)正角:一条射线逆时针方向旋转形成的角(2)负角:一条射线顺时针方向旋转形成的角(3)零角:一条射线不做旋转2.象限角的概念:(1)定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.(2)轴线角:如果角的终边在坐标轴上,则这个角不属于任何一个象限,称这个角为轴线角。

(3)终边相同的角的表示:所有与角α终边相同的角,连同α在内,可构成一个集合S ={ β | β = α + k·360 ° ,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和.注意:∈ k∈Z∈ α是任一角;∈ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差360°的整数倍;∈ 角α + k·720 °与角α终边相同,但不能表示与角α终边相同的所有角.例如: 第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z o o o ; 第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z o o o o ; 第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z o o o o ; 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z o o o o ;终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z o ;终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z o o ; 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z o. 3.由角α所在象限判断α所在象限:4.弧度制:(1)角度制:规定把周角的3601作为1度的角,用度做单位来度量角的制度叫做角度制. (2)弧度制:长度等于半径的弧所对的圆心角叫做1弧度的角;在弧度制下, 1弧度记做1rad .在实际运算中,常常将rad 单位省略.(3)弧度制的性质:∈ 半圆所对的圆心角为;ππ=r r∈ 整圆所对的圆心角为.22ππ=rr ∈ 正角的弧度数是一个正数. ∈ 负角的弧度数是一个负数. ∈ 零角的弧度数是零. ∈ 角α的弧度数的绝对值|α|=. r l注:角度制是60进制,弧度制是十进制:5.角度与弧度之间的转换:∈ 将角度化为弧度:π2360=︒; π=︒180;rad 01745.01801≈=︒π;rad n n 180π=︒. ∈ 将弧度化为角度: 2360p =?;180p =?;ο)180(rad παα= 6.常规写法:∈ 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数. ∈ 弧度与角度不能混用.要不用弧度制,要不统一角度制。

第五章-5.1-任意角和弧度制高中数学必修第一册人教A版

第五章-5.1-任意角和弧度制高中数学必修第一册人教A版


第二象限角时, 的终边在标号为“二”的位置上.故 可能是第一象限
3
3
角、第二象限角或第四象限角.
图5.1-8
【学会了吗|变式题】
2.[多选题](2024·福建省厦门市期末)
已知角
的终边与120∘
A.第一象限角

角的终边关于轴对称,则 是(
2
B.第二象限角
C.第三象限角
BD
)
D.第四象限角
【解析】∵ 角 的终边与120∘ 角的终边关于轴对称,∴ 角 的终边与−120∘ 角
=−
②③
的是______.
【解析】在①中, 与 的始边相同, 的终边为 的始
边, 与 的终边相同,所以 = + .
在②中, 与 的始边相同, 的终边为− 的始边,−
与 的终边相同,所以 = + − = − .
同理可知,
③中 = − ,④中 = + .
(1)405∘ ;
【解析】405∘ 角是第一象限角.405∘ = 45∘ + 360∘ ,所以在0∘ ∼ 360∘ 范围内,与
405∘ 角终边相同的角是45∘ 角.
(2)−45∘ ;
【解析】−45∘ 角是第四象限角.−45∘ = 315∘ − 360∘ ,所以在0∘ ∼ 360∘ 范围内,与
−45∘ 角终边相同的角是315∘ 角.
4
AB

,故A正确;
4
+ 2π , ∈ ,

,故B正确;
4
+ 2π =

− ,解得
4
+ 2π =
13π
,解得
4
=

02-第一节 任意角和弧度制-课时2 弧度制高中数学必修一人教A版

02-第一节 任意角和弧度制-课时2 弧度制高中数学必修一人教A版


为圆心,的长为半径画弧,两弧交于点,则 , ,围成的阴影部

− 3
分的面积为________.
3
【解析】 如图,连接,.由题意知,线段,,
的长度都等于2,所以△ 为正三角形,则
∠ = ∠ =
1
2
π
.又△
3
的面积
1 = × 2 × 3 = 3,扇形的面积
2.4 rad的角的终边所在的象限为( C )
A.第一象限
B.第二象限
C.第三象限
【解析】 因为4 ≈ π + 0.86,所以π < 4 < π
D.第四象限
π
+ ,故其终边在第三象限.
2
知识点2 弧度制与角度制的互化
3.用弧度制表示与150∘ 角终边相同的角的集合为( D )
A.{| =

D.用弧度表示的角都是正角
【解析】 对于A,根据弧度的定义知,“1弧度的圆心角所对的弧长等于
所在圆的半径”,故A正确;对于B,大圆中1弧度的圆心角与小圆中1弧度
的圆心角相等,故B错误;对于C,只有在同圆或等圆中,1弧度的圆心角
所对的弧长是相等的,故C错误;对于D,用弧度表示的角也可以是负角
或零角,故D错误.


准,则手表分针转过的角的弧度数为_____,已知手表分针长1
cm,则分针扫
π
2.
过的扇形面积为__cm
3
3
【解析】 由题意得手表分针转过的角的弧度数为 = −2π ×
20
60
=

− .由
3
π
3
cm2 .
手表分针长1 cm,即扇形的半径 = 1 cm,得分针扫过的扇形弧长
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

S1={β| β= 900K+∙3600,K∈Z} ={β| β= 900 +2K∙1800,K∈Z} ={β| β= 900 +1800 的偶数倍}
{偶数}∪{奇数} ={整数}
终边落在xy 轴负半轴上的角的集合为
S2={β| β= 12870000K+∙3600,K∈Z}
={β| β= 1980000++ 18002+K∙1800,K∈Z}
x 00 +Kx3600
o 或3600+KX3600
2700 +Kx3600
7
例2 写出终边落在y轴上的角的集合。
解:终边落在y轴正半轴上的角的集合为
S1={β| β=900+K∙3600,K∈Z} ={β| β=900+2K∙1800,K∈Z} ={β| β=900+1800 的偶数倍}
终边落在y轴负半轴上的角的集合为
11
弧度制的定义:用弧度做单位来度量
角的制度叫做 弧度制
1.定义:把长度等于半径长的弧所对的圆 心角叫做1弧度的角.用符号rad表示。
正角
2.正角的弧负度角数 负角的弧零度角数
零角的任弧意度角数的集合
正数
负数 正数 0 负数
零 实数集R
12
3.任一已知角α的弧度数的绝对值
|α| = —lr
α 其中l为以角 作为圆心角时所对圆弧的
14
例1. 按照下列要求,把67 °30化成弧度: (1)精确值; (2)精确到0.001的近似值。
例2. 将3.14 rad换算成角度(用度数 表示,精确到0.001).
15
例3.利用弧度制来推导扇形的公式:
(1)S

1 2
R 2;
(2)S

1 2
lR.
l OS
R
16
由弧度的定义可知:
圆心角AOB的弧度数等于它所对的弧的长与半径
2)始边重合于X轴的正半轴
Ⅲ Ⅳ
终边落在第几象限就是第几象限角
4
y -3300
3900
300
x
o
300=
=300+0x3600
3900=300+3600 =300+1x3600
-3300=300-3600 =300-1x3600 300+2x3600 , 300-2x3600
300+3x3600 ,
S2={β| β=2700+K∙3600,K∈Z}
={β| β=900+1800+2K∙1800,K∈Z} ={β| β=900+(2K+1)1800 ,K∈Z} ={β| β=900+1800 的奇数倍}
{偶数}∪{奇数} ={整数}
900+K∙3600 Y X O
所以 终边落在y轴上的角的集合为
§1.1.1角的概念的推广
1
终边 B
顶 点
o
A
始边
角:一条射线绕着它的端点在平面内旋转形成的图形
2
逆时针
顺时针
定义:
任 正角:按逆时针方向旋转形成的角 意 负角:按顺时针方向旋转形成的角 角 零角:射线不做旋转时形成的角
3
y
o 终边
终边 终 边
x 始边
终 边
终 边
Ⅰ Ⅱ
1)置角的顶点于原点
长,r为圆的半径.
4.
l = |α| r (弧长计算公式)
13
5.角度制与弧度制的换算:
360º = 2π rad, 180º = π rad
1º=
πห้องสมุดไป่ตู้
180
rad0.01745rad
1rad = ( 1π80) º 57.3º =57º 18′
6 .特殊角的度数与弧度数的对应表:
0º 30º 45º 60º 90º 180º 270º 0 4 3 2 23
正角
正实数
零角 负角
零 负实数
18
尽量做做这两节的课后练习 及选做学案上的部分题目! 书面作业:P9 A组 1 ,2,3
19
…,
300-3x3600
…,
与300终边相同的角的一般形 式为300+KX3600,K ∈ Z
与a终边相同的角的一般形式为 a+Kx3600,K ∈ Z
S={ β| β= a+kx3600 , K∈ Z}
5
例2 写出终边落在Y轴上的角的集合。
终边落在坐标轴上的情形
900 +Kx3600 y
1800 +Kx3600
9
小结:
正角:射线按逆时针方向旋转形成的角
1.任意角的概念 负角:射线按顺时针方向旋转形成的角
零角:射线不作旋转形成的角
2.象限角
1)置角的顶点于原点
2)始边重合于X轴的非负半轴 3)终边落在第几象限就是第几象限角
3 . 终边与 角α相同的角
α+K·360°,K∈Z 10
1.1.2弧 度 制
1800+k∙3600
={β| β= 900 +(2K+1)1800 ,K∈Z}
Y
X K∙3600 O
={β| β= 900 1+800 的奇数倍}
所以 终边落在 xy 轴上的角的集合为
S=S1∪S2 ={β| β=1800 的偶数倍} ∪{β| β=1800 的奇数倍} ={β| β=1800 的整数倍} ={β| β=K∙1800 ,K∈Z}
2700+k∙3600
S=S1∪S2 ={β| β=900+1800 的偶数倍} ∪{β| β=900+1800 的奇数倍} ={β| β=900+1800 的整数倍} ={β| β=900+K∙1800 ,K∈Z}
8
例2 写出终边落在 yx 轴上的角的集合。
解:终边落在 xy 轴正半轴上的角的集合为

长的比的绝对值。

B
的 合 理
B
l=r
1弧度
l=r
1弧度
OO r r A A
的与 一半 个径 比长 值无


17
小 结 1.圆心角α所对弧长与半径的比是一个
仅与角α大小有关的常数,所以作为度 量角的标准.
2.角度是一个量,弧度数表示弧长与半 径的比,是一个实数,这样在角集合与实 数集之间就建立了一个一一对应关系.
相关文档
最新文档