华科电力电子实验报告

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电气11级

《信号与控制综合实验》课程

电力电子部分实验报告

姓名学专业班

同组学号专业班号

同组者

实验评分表

基本实验实验编号名称/内容实验分值评分

PWM信号的生成和PWM控制的实现

DC/DC PWM升压降压变换电路性能的研究

三相桥式相控整流电路性能的研究

DC/AC单相桥式SPWM逆变电路性能的研

设计性实验实验名称/内容实验分值评分

实验三十九信号的调制—SPWM信号

的产生与实现

教师评价意见总分

目录

实验二十八 PWM信号的生成和PWM控制的现 (4)

实验二十九 DC/DC—PWM升压、降压变换电路性能研究 (11)

实验三十三相桥式相控整流电路性能研究 (14)

实验三十一DC/AC单相桥式SPWM逆变电路性能研究 (23)

实验三十九信号的调制—SPWM信号的产生与实现 (32)

实验心得 (40)

实验二十八 PWM信号的生成和PWM控制的实现

一.实验目的

分析并验证基于集成PWM控制芯片TL494的PWM控制电路的基本功能,从而掌握PWM 控制芯片的工作原理和外围电路设计方法。

二.实验原理

PWM控制的基本原理:将宽度变化而频率不变的的脉冲作为电力电子变换器电路中的开关管驱动信号,控制开关管的适时、适式的通断;而脉冲宽度的变化与变换器的输出反馈有着密切的联系,当输出变化时,通过输出反馈调节开关管脉冲驱动信号,调节驱动脉冲的宽度,进而改变开关管在每个周期中的导通时间,以此来抵消输出电压的变化,从而满足电能变换的需要。

本实验中采用实验室中已有的PWM控制芯片TL494来完成实验,当然在进行具体的PWM控制之前,我们必须要详细的了解和认识该控制芯片的工作原理和方式,如何输出?输出地双路信号存在怎样的关系?参考信号是如何形成的?反馈信号是如何加载到控制芯片上,同时又是如何以此反馈信号来完成输出反馈的?另外我们也必须了解和认识到对不同开关管进行驱动时,为保证开关管的完全可关断,保证电路的正常可靠工作,死区时间的控制方式。最后我们也要了解为防止电力电子变换器在突然启动时,若开放较宽脉冲而带来的较大冲击电流的影响(和会给整个电路带来许多不利影响),控制芯片要采用“软启动”的方式,这也是本实验中认识的一个重点。

三.实验内容

(1)考察开关频率为20kHz,单路输出时,集成电路的软启动功能。

(2)考察开关频率为20kHz,单路输出时,集成电路的反馈电压Vf对输出脉宽的影响。(3)考察开关频率为20kHz,单路输出时,集成电路的反馈电流If对输出脉宽的影响。(4)考察开关频率为20kHz,单路输出时,集成电路的保护封锁功能

(5)考察开关频率为20kHz,单路输出时,集成电路死区电压对输出脉宽的影响。

四.实验步骤

本实验采用单路输出,将端口13接地。

1.PWM脉宽调节:软启动后,在V1端口施加电压作为反馈信号Vf,给定信号Vg=2.5v,改变V1端口电压大小,即可改变V3,从而改变输出信号的脉宽。V3越大,K越大,C=J+K越大,脉宽越小;反之脉宽越大。记录不同V1下的输出波形并与预计实验结果比较。

2.软启动波形:为防止变换器启动时较大的冲击电流,控制芯片TL494和其他控制芯片相似也采用了软启动。在启动时,为防止变换器冲击电流的出现,驱动脉宽应从零开始增大,逐渐变宽到工作所需宽度。本实验中此功能由脉冲封锁端口电位的逐渐开放来实现,电位又打逐渐变小,便可实现软启动。为对控制芯片的该控制过程有更明确和清晰的认识,我们可以观察芯片启动过程中“启动和保护端口4”(TP3)的电压波形变化并与实验前预测进行比较。

3.观察TL494控制芯片的脉冲封锁功能:本实验中脉冲封锁很容易实现,可以通过增大V4电位实现,进行简单的观察,可以通过改变JP2接法增大V4电位,使得V4+0.12>Vct,则输出立即封锁。

4.死区时间测量:使反馈电压为零,即V3=0,则K=0,调节V4电位,观察并记录PWM 输出波形,并测量死区时间。

5.观察PWM控制芯片TL494的过流保护功能:通过在I1和I2端口施加可变电压,观察封锁时间(相关封锁指示灯亮,输出变为零),并记录封锁时的施加电压,认识芯片TL494的限流保护功能。

五、实验结果及相关波形:

1、锯齿波的观测

控制芯片TL494的参考锯齿波(f=20KHZ)

2.接通JP2 ,观察TP3的启动波形

JP2接通时投票TP3启动波形

3.3和4的波形相同,改变反馈电压的同时,所输出的PWM脉冲宽度改变,如下:

占空比为0.37,不同反馈电压时的信号脉宽不同。JP2连接12:

JP2连接34:

5、死区时间的测量

死区时间Td与被驱动导通的最大脉宽时间的关系为,而最大脉宽时间与反馈电压的大小有关。故在当前电压下测得的死区时间如图所示:

死区时间大概为2.5纳秒

六、实验思考题:

1.如何验证本实验中PWM控制电路(TL494)具有稳压控制功能?

答:本实验中采用的控制芯片TL494中的稳压功能是通过反馈环节来实现的,在实验原理部分已经进行了较为详细的说明;

当然若要进行简单的验证,我们可以采用简单的Buck电路,限定输出Vo=50v,此时通过霍尔电压传感器采集输出电压信号,同时采用合适的采样电阻(给定输出电压不同,则采样电阻不同),并调节可调电阻RP1,使变换器输出Vo=50v时,电压误差信号端输入为零(即此时有效反馈为零,不影响输出)。当控制电路调节完成时,改变输入电压或负载大小,观察输出电压变化(理论上由于反馈调节的存在,输出电压不变或者变化很小),即可验证PWM 控制电路(TL494)具有稳压控制功能。

2.如何验证本实验中PWM控制电路(TL494)具有的保护功能?

答:PWM控制电路的保护功能由脉冲封锁端实现,这一点在软启动过程中我们已经看到:改变脉冲封锁端口的电位,即可改变输出脉冲信号的脉宽;若脉冲封锁端电位由于外界因素的影响而被迫升高,使得V4+0.12>Vct,则输出立即封锁。

利用这一点,我们仍采用简单的Buck电路进行验证,用电流传感器采样主电路电流,选择合适的采样电阻(根据主电路极限电流的大小不同而不同),转换成电压信号,并反馈到脉冲封锁端,一旦主电路电流超过允许极限电流,脉冲封锁端电位便快速上升,使输出立即封锁,保护主电路不致过流。

3.举例说明软启动的作用。

相关文档
最新文档