三角形的外角定理优秀课件
合集下载
人教版八年级数学上册第11.2.2三角形的外角 教学课件(共28张PPT)
外角
归纳:
1、每一个三角形都有_6___个外角; 2、每一个顶点相对应的外角都有_2__个。 3、这6个外角中有_3____对外角相等。
4、一个三角形的每一个外角对应一个
_相___邻__的___内__角__和两个__不___相__邻___的__内__.角
•
9、要学生做的事,教职员躬亲共做; 要学生 学的知 识,教 职员躬 亲共学 ;要学 生守的 规则, 教职员 躬亲共 守。21.8.1021.8.10T uesday, August 10, 2021
底角为_3_0__或__7_5_°_.
5.如图所示,∠A=50°,∠B=40°,∠C=30°,则 ∠BDC=_1__2_0_外围走一圈,在每一个拐弯 的地方都转了一个角度(∠ 1, ∠ 2,∠ 3), 那么回到原来位置时,一共转了几度?
∠1+∠2 +∠3 = ?
∠1= 90º ∠1= 85º ∠1= 95º
2. 如图所示, ∠A=37°, ∠CBE=155°,
求∠1, ∠2, ∠3的度数.
D
C 3
2
A 37°
155°
1B
E
∠1=25°, ∠2=62°, ∠3=118°
3.图中∠1与 ∠A、 ∠B 、∠C度 数有什么关系?
课堂巩固:
1.若一个三角形的一个外角小于与它相邻的内角,则这
•
5、You have to believe in yourself. That's the secret of success. ----Charles Chaplin人必须相信自己,这是成功的秘诀。-Thursday, June 17, 2021June 21Thursday, June 17, 20216/17/2021
《三角形的外角》PPT优质课件
通过已知的两个角,求第三个角的度数。
解决三角形形状判断问题
通过已知的三个角,判断三角形的形状(锐 角、直角、钝角)。
解决三角形边长计算问题
解决实际问题中的角度计算问题
通过已知的角度和边长,利用正弦、余弦定 理等求解未知边长。
如建筑设计、工程测量等领域中的角度计算 问题。
06
总结回顾与拓展延伸
关键知识点总结回顾
定理应用举例
01
计算三角形外角的度数。
02
判断三角形形状,如等边、等 腰或直角三角形。
03
解决与三角形外角相关的实际 问题,如角度计算、角度关系
分析等。
03
特殊三角形中外角特点分 析
等腰三角形中外角特点
等腰三角形底边上的外角等于顶角。 等腰三角形两腰上的外角相等,且都等于底角与顶角之和。
当底角为锐角时,底边上的外角为钝角;当底角为钝角时,底边上的外角为锐角。
01
三角形的外角定义
三角形的一个外角等于与它不相 邻的两个内角之和。
02
三角形外角的性质
三角形的外角大于任何一个与它 不相邻的内角。
03
三角形外角和定理
三角形的一个外角等于和它相邻 的两个内角之和。
易错难点剖析及纠正方法分享
易错点
在计算三角形外角时,容易忽略与 之相邻的内角,导致计算结果错误。
纠正方法
THANKS
正确理解三角形外角的定义和性质, 牢记三角形外角和定理,多做相关 练习题加以巩固。
相关数学领域拓展延伸
三角形内角和定理
01
三角形的内角和等于180°。
多边形的外角和定理
02
任意多边形的外角和等于360°。
三角形中的角度关系
解决三角形形状判断问题
通过已知的三个角,判断三角形的形状(锐 角、直角、钝角)。
解决三角形边长计算问题
解决实际问题中的角度计算问题
通过已知的角度和边长,利用正弦、余弦定 理等求解未知边长。
如建筑设计、工程测量等领域中的角度计算 问题。
06
总结回顾与拓展延伸
关键知识点总结回顾
定理应用举例
01
计算三角形外角的度数。
02
判断三角形形状,如等边、等 腰或直角三角形。
03
解决与三角形外角相关的实际 问题,如角度计算、角度关系
分析等。
03
特殊三角形中外角特点分 析
等腰三角形中外角特点
等腰三角形底边上的外角等于顶角。 等腰三角形两腰上的外角相等,且都等于底角与顶角之和。
当底角为锐角时,底边上的外角为钝角;当底角为钝角时,底边上的外角为锐角。
01
三角形的外角定义
三角形的一个外角等于与它不相 邻的两个内角之和。
02
三角形外角的性质
三角形的外角大于任何一个与它 不相邻的内角。
03
三角形外角和定理
三角形的一个外角等于和它相邻 的两个内角之和。
易错难点剖析及纠正方法分享
易错点
在计算三角形外角时,容易忽略与 之相邻的内角,导致计算结果错误。
纠正方法
THANKS
正确理解三角形外角的定义和性质, 牢记三角形外角和定理,多做相关 练习题加以巩固。
相关数学领域拓展延伸
三角形内角和定理
01
三角形的内角和等于180°。
多边形的外角和定理
02
任意多边形的外角和等于360°。
三角形中的角度关系
三角形的外角人教版八年级数学上册课件
重难易错
7. (例 4)如图,在△ABC 中,D 是 BC 上一点,
∠1=∠2+5°,∠3=∠4,∠BAC=85°,求
∠2 的度数.
解:设∠2=x°, 则∠1=∠2+5°=(x+5)°, ∠3=∠4=∠1+∠2=x°+(x+5)°=(2x+5)°. ∵在△ABC中,∠BAC=85°, ∴∠2+∠4=180°-∠BAC, 即x+2x+5=180-85.解得x=30,即∠2=30°.
8. 如图所示,在△ABC 中,D 是 BC 边上一点, ∠1=∠2,∠3=∠4,∠BAC=63°, 求∠DAC
的度数.
解:设∠2=∠1=x°,则∠3=∠4=2x°. ∴在△ACD中,∠DAC=180°-4x°. ∵∠BAC=63°, ∴180°-4x°+x°=63°.解得x=39. ∴∠DAC=180°-4x°=24°.
14. 如图,点 D 在 AB 上,点 E 在 AC 上,BE、 CD 相交于点 O. (1)若∠A=50°,∠BOD=70°,∠C=30°, 求∠B 的度数;
解:(1)∵∠A=50°,∠C=30°,∴∠BDO= ∠A+∠C=80°. ∵∠BOD=70°, ∴∠B=180°-∠BDO-∠BOD=30°.
解:∵∠C=30°,AE∥BC, ∴∠EAC=∠C=30°. 又∠E=45°, ∴∠AFD=∠E+∠EAC=45°+30°=75°.
12. 如图,求∠A+∠B+∠C+∠D+∠E 的度数.
解:如图,连接CD, 根据三角形的外角性质得 ∠1=∠B+∠E=∠2+∠3, 在△ACD中有, ∠A+∠2+∠ACE+∠3+∠ADB=180°, ∴∠A+∠B+∠C+∠D+∠E=180°.
三角形的外角关系及其推论
04 三角形外角关系推 论
推论一:三角形外角大于任何一个与它不相邻的内角
定理:三角形的外角大于任何一 个与它不相邻的内角
应用:在解决几何问题时,这个 推论可以帮助我们快速判断三角 形的外角大小关系
添加标题
添加标题
添加标题
添加标题
证明:通过三角形内角和为180 度,以及三角形外角的定义,可 以得出这个结论
应用实例:在数学竞赛中,经常出现涉及三角形外角的题目,需要运用三 角形外角关系进行解答 技巧总结:掌握三角形外角关系,有助于在数学竞赛中快速解题,提高解 题效率
THANK YOU
汇报人:
05
三角形外角在实际 问题中的应用
在几何作图中的应用
确定三角形的形状:通过已知的外角,可以判断三角形的形状 计算角度:通过已知的外角,可以计算出其他角度的大小 判断三角形的相似性:通过已知的外角,可以判断两个三角形是否相似 计算面积:通过已知的外角,可以计算出三角形的面积
在解决实际问题中的应用
判断三角形的形状:根据外角和定理,可以判断三角形是锐角、直角还是钝角三角形。
计算角度:利用外角和定理,可以计算出三角形中某个角的大小。
证明三角形全等:在证明两个三角形全等时,外角和定理可以作为一个重要的依据。
解决实际问题:在解决一些实际问题时,如建筑、测量等领域,外角和定理可以帮助我们 更好地理解和解决问题。
外角定理的证明:通过三角形内角和为180度,以及三角形外角的定义,可 以证明外角定理。
外角定理的应用:在解决三角形问题时,外角定理可以帮助我们快速找到 答案。
外角定理的推广:外角定理可以推广到多边形,即多边形的外角和等于360 度。
外角定理的证明
外角定理的定义:三角形的外角等于与它不相邻的两个内角的和。
认识三角形三角形PPT优秀课件
三角形稳定性及应用
三角形稳定性
当三角形的三条边的长度确定后,这个三角形的形状和大小也就唯一确定了,这 种性质叫做三角形的稳定性。
应用
在建筑、桥梁、机械等领域中,常常利用三角形的稳定性来增强结构的稳固性。 例如,在建筑中,常常使用三角形框架来支撑建筑物,以增加其抗震能力。
02
特殊三角形类型及特点
等腰三角形性质与判定
四边形的分类
根据四边形的边长和角度特征,四边形可分为平行四边形 、矩形、菱形、正方形等。
多边形的定义和性质
多边形是由三条或三条以上的线段首尾顺次连接所组成的 封闭图形。多边形的内角和为(n-2)×180度,其中n为 多边形的边数。
多边形的对角线
多边形中任意两个不相邻的顶点之间的连线称为多边形的 对角线。n边形的对角线总数为n(n-3)/2条。
定义:两个三角形如果它们的三边及三 角分别相等,则称这两个三角形全等。
全等三角形的面积和周长都相等。 对应角相等。
性质 对应边相等。
相似和全等条件比较
相似之处
01
02
都涉及三角形的角和边的关系。
都有对应的判定定理。
03
04
不同之处
相似仅要求对应角相等,而全等要求对应 边和对应角都相等。
05
06
相似的条件较为宽松,全等的条件更为严 格。
直角三角形中的特殊性质
勾股定理及其逆定理的应用,以及直角三角形的射影定理等。
三角形中的最值问题
通过三角形的性质和判定条件,解决与三角形有关的最值问题,如 最短路径、最大面积等。
拓展延伸:四边形等多边形知识
四边形的定义和性质
四边形是由四条不在同一直线上的线段首尾顺次连接所组 成的封闭图形。四边形的内角和为360度,且任意三个角 之和大于第四个角。
八年级数学上册第7章平行线的证明5三角形内角和定理第2课时三角形的外角课件新版北师大版
4
5
6
7
8
9
10
11
12
13
14
15
知识点3 三角形内角和定理推论2
7. 如图,点 D 为△ ABC 的边 BC 延长线上一点,关于∠ B 与
∠ ACD 的大小关系,下列选项正确的是(
A. ∠ B >∠ ACD
B. ∠ B =∠ ACD
C. ∠ B <∠ ACD
D. 无法确定
1
2
3
4
5
6
7
8
9
10
内角和与内外角的关系得出结论.如图①,想要找到∠
BDC 与∠ BAC +∠ B +∠ C 之间的关系,通过连接 AD
并延长到点 E ,得到△ ABD 和△ ADC ,进而得出∠
BDC =∠ BAC +∠ B +∠ C 的结论.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
请你应用上述材料中的方法,探究图②中∠ A +∠ B +
∠ C +∠ D +∠ E 的度数.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
解:连接 AF 并延长至点 M .
因为∠ BAC =∠ BAM +∠ CAM ,∠BFM =∠B +∠BAM ,
∠ CFM =∠ C +∠ CAM ,
所以∠ BFC =∠ BFM +∠ CFM =∠ B +∠ BAM +∠CAM
1
2
3
4
5
85
6
7
湘教版初中八年级数学上册2-1三角形第2课时三角形的外角及其性质课件
解析 (1)∵∠B=35°,∠E=25°, ∴∠ECD=∠B+∠E=60°, ∵CE平分∠ACD,∴∠ACE=∠ECD=60°, ∴∠BAC=∠ACE+∠E=85°. (2)证明:∵CE平分∠ACD,∴∠ECD=∠ACE, ∵∠BAC=∠E+∠ACE,∴∠BAC=∠E+∠ECD, ∵∠ECD=∠B+∠E,∴∠BAC=∠E+∠B+∠E, ∴∠BAC=∠B+2∠E.
2
∠A1=
1 2
∠A,同理∠A2=
1 2
∠A1,∴∠A2=
12∠A1=
1×
2
1∠A=
2
1 22
∠A,同理∠A3=
1 23
∠A,∠A4=
1 24
∠A,
∠A5=
1 25
∠A=
1 32
×96°=3°.故选D.
9.(教材变式·P49习题2.1 T8)(2024湖南岳阳汨罗期中,14,★ ★☆)如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G= 180° .
解析 如图,由三角形的外角性质得∠EOF=∠B+∠F, ∠GOF=∠C+∠G,∠DPE=∠A+∠D,∴∠GOE=∠B+∠F+∠C +∠G,由三角形的内角和定理得∠GOE+∠DPE+∠E=180°, 所以∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°.
10.(2024湖南永州宁远期中,23,★★☆)如图,CE是△ABC的 外角∠ACD的平分线,且CE交BA的延长线于点E. (1)若∠B=35°,∠E=25°,求∠BAC的度数. (2)求证:∠BAC=∠B+2∠E.
《三角形的外角》三角形PPT精品课件
∴ ∠BEC= ∠A+ ∠ACE,
∵∠A=42° ,∠ACE=18°,
∴ ∠BEC=60°.
∵ ∠BFC是△BEF的一个外角,
∴ ∠BFC= ∠ABD+ ∠BEF,
B
C ∵ ∠ABD=28° ,∠BEC=60°,
∴ ∠BFC=88°.
巩固练习
如图,直线AB,CD被BC
所截,若AB∥CD,∠1=45°,
A
B
360°
=________.
1
P
C
N3
F
2 M
D
E
课堂小结
三角形
的外角
定 义
角一边必须是三角形的一边,另一边必须是三角
形另一边的延长线
性 质
三角形的一个外角等于与它不相邻的两个内角的和
三角形的
外 角 和
辅助线总结
三角形的外角和等于360 °
①求角的度数,通过三角形一顶点的平行线,
利用平行线的性质解决
F
∠BAE+ ∠CBF+ ∠ACD+(∠1+ ∠2+ ∠3)=540 °,
所以∠BAE+ ∠CBF+ ∠ACD=540 °– 180°=360°.
3
C
D
探究新知
E
A 4
1
M
解法三:过A作AM平行于BC,
3
∠3= ∠4
B
F
2
C
D
∠2= ∠BAM,
∠2+ ∠ 3= ∠ 4+∠BAM,
所以 ∠1+ ∠2+ ∠3= ∠1+ ∠4+ ∠BAM=360°
A.24°
B.59°
C.60°
D.69°
课堂检测
∵∠A=42° ,∠ACE=18°,
∴ ∠BEC=60°.
∵ ∠BFC是△BEF的一个外角,
∴ ∠BFC= ∠ABD+ ∠BEF,
B
C ∵ ∠ABD=28° ,∠BEC=60°,
∴ ∠BFC=88°.
巩固练习
如图,直线AB,CD被BC
所截,若AB∥CD,∠1=45°,
A
B
360°
=________.
1
P
C
N3
F
2 M
D
E
课堂小结
三角形
的外角
定 义
角一边必须是三角形的一边,另一边必须是三角
形另一边的延长线
性 质
三角形的一个外角等于与它不相邻的两个内角的和
三角形的
外 角 和
辅助线总结
三角形的外角和等于360 °
①求角的度数,通过三角形一顶点的平行线,
利用平行线的性质解决
F
∠BAE+ ∠CBF+ ∠ACD+(∠1+ ∠2+ ∠3)=540 °,
所以∠BAE+ ∠CBF+ ∠ACD=540 °– 180°=360°.
3
C
D
探究新知
E
A 4
1
M
解法三:过A作AM平行于BC,
3
∠3= ∠4
B
F
2
C
D
∠2= ∠BAM,
∠2+ ∠ 3= ∠ 4+∠BAM,
所以 ∠1+ ∠2+ ∠3= ∠1+ ∠4+ ∠BAM=360°
A.24°
B.59°
C.60°
D.69°
课堂检测
7.三角形外角定理的证明课件北师大版数学八年级上册
4.如图,这是我们证明三角形内角和定理时画的辅助线 (CM∥AB),你能就此图说明∠ACD与∠A、∠B的关系吗?
因为CM∥AB, 所以∠A=∠1,∠B=∠2. 又因为∠ACD=∠1+∠2, 所以∠ACD=∠A+∠B
小组讨论
如图,在△ABC中,∠ABC的平分线与外角∠ACE的平分线相交于点D. (1)若∠ABC=60°,∠ACB=40°,求∠A和∠D的度数;
归纳:三角形的一个外角等于与它不相邻的两个内角的和. 在这里,我们通过三角形内角和定理直接推导出一个新定理,像这 样,由基本事实或定理直接推导出的定理,叫做这个基本事实或定 理的推论.因此,这个结论称为三角形内角和定理的推论,它可以 当作定理直接使用.
典例精讲
【题型一】三角形外角的性质 例1:如图,在△ABC中,∠A=70°,∠ACD是△ABC 的外角.若∠ACD=120°,则∠B=__5_0_°__.
旧识回顾 1.三角形内角和定理是什么?
三角形的内角和等于180° 2.邻补角的定义是什么?
两个角有一条公共边,它们的另一边互为反向延长线,具有 这种关系的两个角,互为邻补角
新知导入
情境导入
A
B C
问题导入
同学们, 当今世界风云变幻,虽然和平与发展已成为世界的主流.但 是各个国家和地区之间的矛盾仍然存在,我们的幸福生活离不开党的 领导,人民解放军的保护.这是一个八一军徽,轮廓是一个五角星, 那么大家知道这五个角的和是多少吗?
公元220年至280年间,中国历史上的一个重要时期.在这个时 期,中国分裂成为三个政治实体:曹魏、蜀汉和东吴.这三个 政治实体之间相互争斗,形成了著名的三国鼎立的局面. 这是三国时期的局势图,把三国主要 城邦用直线连接起来就形成了我们今 天要学习的三角形外角
三角形的内角和与外角和ppt课件
A P
C
34
在△ABC中,∠A=80°, ∠ ABC和∠A BC的平分线相交于O, (1)求∠BOC的度数。 (2) 将∠A换个度数,那求出是多少?你能体会∠A和∠BOC有什么关系吗?
1 ∠BOC=90 ° + ∠A
2
1 C
A
O 2 35B
2、 △ABC中,BE为∠ABC的平分线,CE为∠ACD的平分线,两线交于E点。 你能找出∠E与∠A有什么关系吗?
D ∠ACD> ∠ B
2、三角形的一个外角等于与它不相邻的两个内角的和。
3、三角形的外角大于任何一个与它不相邻的内角。
20
3.什么是三角形的外角和?
21
三角形的外角和
对于三角形的每个内角,从与它相邻的两个外角中取一个,这样取得的三个外角 相加所得的和,叫做三角形的外角和。
思考:三角形的内角和等于180°,那么三角形的外角和等于多少度? 返回22
3321papbpcabacbcpapbpcabbcac34abcceacd如图d是abcbc上一点abd的外角三角形的一个外角等于与它不相邻的两个内角的三角形的内角和为180等式的性质37在求角的度数时常可利用三角形的内角和及外角的性质来找数量关系
2.1.3三角形的内角和外角
1
学习目标: 1. 熟练运用三角形的内角和定理 2.理解并掌握三角形的外角性质 3. 熟练运用三角形的外角和定理
14
如图,如果你从A走到B,再转向C走,能画出你转弯的角吗?
C
不相邻的 内角
相邻的 内角
你能说出∠CBD的边与△ABC的 边的三关角系形吗的? 外角
A
B
D
不相邻的 BC是△ ABC的边
BD是AB的延长线
《三角形的内角和与外角和》课件
06
练习题及拓展思考题
基础知识巩固练习题
已知三角形的两个内角分别为30°和60° ,求第三个内角的大小。
已知等腰三角形的一个底角为40°,求其 顶角的大小。
一个三角形的内角和是多少度?请说明 理由。
在直角三角形中,已知一个锐角为35°, 求另一个锐角的大小。
提高能力拓展思考题
请用多种方法证明三角形的 内角和为180°。
外角和为360度。
实际应用举例
例子一
在几何图形中,利用三角形外角和定理求解角度问题。例如 ,在一个五角星中,可以通过三角形外角和定理计算出五角 星的内角和。
例子二
在实际生活中,利用三角形外角和定理解决一些与角度有关 的问题。例如,在建筑设计中,可以利用三角形外角和定理 来计算出建筑物的某些角度,以确保建筑物的稳定性和美观 性。
连接三角形的一个 顶点和它所对边的 中点的线段。
三角形性质总结
三角形的两边之和大于第 三边,两边之差小于第三 边。
三角形的三个内角之和等 于180度。
等腰三角形的两腰相等, 两底角相等。
等边三角形的三边相等, 三个内角都相等且每个角 都是60度。
直角三角形的两个锐角互 余,且斜边的平方等于两 直角边的平方和(勾股定 理)。
已知四边形ABCD中, ∠A=∠C,∠B=∠D,求证: 四边形ABCD是平行四边形
。
在一个五边形中,已知四个 内角的大小,求第五个内角
的大小。
已知一个多边形的边数增加 1,其内角和增加多少度?
请说明理由。
01
02
03
04
05
答案解析与讨论
01
基础知识巩固练习题答案解析
通过三角形内角和定理及等腰三角形、直角三角形的性质求解各题,强
人教初中数学八上 1122《三角形的外角》课件教学 (高效课堂)获奖 人教数学2022
∠1+∠2+∠3+ ∠BA+C ∠ABC+ ∠BCA= ∠BAC +∠ABC +∠BCA =180°,所以
540度。
结论: 三角形的外角和为360度。
判断题: 1、三角形的外角和是指三角形所有外角的和。( )
2、三角形的外角和等于它内角和的2倍。( )
3、三角形的一个外角等于两个内角的和。( )
4、三角形的一个外角等于与它不相邻的两个内角的和。 ()
论?能说明理由吗? l
轴对称图形的性质:
轴对称图形的对称轴,是任何 一对对应点所连线段的垂直平分线.A
A′
B
B′
课堂练习
练习1 如图所示的每个图形是轴对称图形吗?如 果是,指出它的对称轴.
课堂练习
练习2 如图所示的每幅图形中的两个图案是轴对称 的吗?如果是,试着找出它们的对称轴,并找出一对对
称点.
他条件不变,上述结论还成
立B吗?
B′
C N C′
探索新知
问题3 如图,△ABC 和△A′B′C′关于直线MN
对称,点A′,B′,C′分别是点A,B,C 的对称点,线
段AA′,BB′,CC′与直线MN 有什么关系?
M
Hale Waihona Puke AA′经过线段中点并且垂直
P
于这条线段的直线,叫做这
条线段的垂直平分线.B
B′
C N C′
探索新知
追问3 你能用数学语言概括前面的结论吗?
成轴对称的两个图形的性质:
如果两个图形关于某条
直线对称,那么对称轴是任A
M
何一对对应点所连线段的垂 P
直平分线.即对称点所连线
段被对称轴垂直平分;B对称 轴垂直平分对称点所连线段.
人教版八年级上册数学第十一章11.2.2三角形的外角课件 (共24张PPT)
第十一章
11.2 与三角形有关的角
11.2.2 三角形的外角
1.掌握三角形外角的定义和三角形
外角定理; 2.运用三角形外角定理解决问题。
三角形的外角:三角形的一边与另一边的反 向延长线组成的角,叫做三角形的外角。 A
B
C
D
三角形的一个顶点位置有两个外角,这两个 外角是对顶角。
C
5 3 6 1 2 9 4
= ∠EFG+∠EGF+∠E =180°.
B
F
E
C
D
问题探究
已知:如图,∠BAE、∠CBF、∠ACD是△ABC
的三个外角.求证:∠BAE+∠CBF+∠ACD=360°. 证明:∵∠BAE=∠2+∠3, E A
1
∠CBF=∠1+∠3,
∠ACD=∠2+∠1, ∴∠BAE+∠CBF+∠ACD =2(∠1+∠2+∠3) , F B
E
A
> ∠ACB. > ∠BAC;∠FBC____ (3)∠FBC____
讨论归纳
三角形外角的性质:
三角形的一个外角大于与它不相
邻的任何一个内角。
1.已知,∠BAC=55°,∠B=60 °.
试求∠ACB、 ∠ACD、 ∠CAE. A
55°
E
解:在△ABC中,
∠BAC+∠B+∠ACB=180 °, ∴∠ACB=180 °-∠B-∠BAC ∵∠BAC=55°,∠B=60 °. ∴∠ACB=65°.
数. 解:根据三角形外角的性质可得: ∠ 1=∠A+ ∠B , ∠2=∠C+ ∠D , ∠3= ∠E+ ∠F, 1 C 3 F B A
11.2 与三角形有关的角
11.2.2 三角形的外角
1.掌握三角形外角的定义和三角形
外角定理; 2.运用三角形外角定理解决问题。
三角形的外角:三角形的一边与另一边的反 向延长线组成的角,叫做三角形的外角。 A
B
C
D
三角形的一个顶点位置有两个外角,这两个 外角是对顶角。
C
5 3 6 1 2 9 4
= ∠EFG+∠EGF+∠E =180°.
B
F
E
C
D
问题探究
已知:如图,∠BAE、∠CBF、∠ACD是△ABC
的三个外角.求证:∠BAE+∠CBF+∠ACD=360°. 证明:∵∠BAE=∠2+∠3, E A
1
∠CBF=∠1+∠3,
∠ACD=∠2+∠1, ∴∠BAE+∠CBF+∠ACD =2(∠1+∠2+∠3) , F B
E
A
> ∠ACB. > ∠BAC;∠FBC____ (3)∠FBC____
讨论归纳
三角形外角的性质:
三角形的一个外角大于与它不相
邻的任何一个内角。
1.已知,∠BAC=55°,∠B=60 °.
试求∠ACB、 ∠ACD、 ∠CAE. A
55°
E
解:在△ABC中,
∠BAC+∠B+∠ACB=180 °, ∴∠ACB=180 °-∠B-∠BAC ∵∠BAC=55°,∠B=60 °. ∴∠ACB=65°.
数. 解:根据三角形外角的性质可得: ∠ 1=∠A+ ∠B , ∠2=∠C+ ∠D , ∠3= ∠E+ ∠F, 1 C 3 F B A
八年级数学上册 第十一章 三角形 11.2 与三角形有关的角 11.2.2 三角形的外角课件
关闭
C
第六页,共十三页。
解析解(j析iě xī)
答答案案(dá
àn)
1
2
3
4
5
6
7
2.若三角形的一个外角(wài jiǎo)小于与它相邻的内角,则这个三角形是( ). A.直角三角形 B.锐角三角形 C.钝角三角形 D.无法确定
关闭
C
第七页,共十三页。
答答à案n案)(dá
1
2
3
4
5
6
7
3.如图,已知AB∥CD,∠EBA=45°,则∠E+∠D的度数(dùshu)为 ( ). A.30° B.60°
11.2.2 三角形的外角(wài jiǎo)
第一页,共十三页。
学前温故
(wēn ɡù)
新课早知
1.三角形三个内角的和等于 180°. 2.在两条直线相交所构成的四个角中,相邻(xiānɡ lín)的两个角的度数和
为 180° .
第二页,共十三页。
学前温故
(wēn ɡù)
新课早知
1.三角形的一边与另一边的延长线组成的角,叫做三角形的
第十三页,共十三页。
2.三角形内角、外角的不等关系 【例2】 如图,点D是△ABC外角∠ACE的平分线 与BA的延长线的交点(jiāodiǎn).求证:∠BAC>∠B. 分析∠BAC,∠DCE分别是△ACD,△BCD的一个外角,根据三角形的外角大于 任何一个和它不相邻的内角进行证明. 证明∵∠BAC是△ACD的一个外角, ∴∠BAC>∠ACD. ∵∠DCE是△BCD的一个外角, ∴∠DCE>∠B. 又CD平分∠ACE,∴∠ACD=∠DCE, ∴∠BAC>∠ACD=∠DCE>∠B,即∠BAC>∠B.
人教版《三角形的外角》PPT课件
∠ACD= 130 ° .
(2)猜想:任意一个三角形的外角与它不相邻的两个内
角是否都有(1)中这种关系呢?
∠ACD = ∠A +∠B.
(3)能否证明你的猜想?
A
B
CD
三角形内角和定理的推论
三角形的外角等于与之不相 ∠ACD是△ABC的一个外角
探究1:三角形外角的性质
4、如图,已知△ABC中,∠A沿着EF翻折到∠A’,
注意 三角形外角与内角的关系: 4、如图,已知△ABC中,∠A沿着EF翻折到∠A’,
请探究 ∠A, ∠1,∠2 之间的关系?
∠2和∠5, 是对顶角,相等;
∠请3用和三∠6种, 是不对同(顶的角方1,法)相证等明位.该结置论!关系:相邻和不相邻.
∠C=180º-40º-70º=70°.
(2)数量关系:外角与相邻内角互补,
三角形的一个外角等于与它不相邻的两个内角的和
∠2和∠5, 是对顶角,相等; 5、如图所示,已知△ABC,∠ABC和∠ACD的角平分
4、如图,已知△ABC中,∠A沿着EF翻折到∠A’,
∠1+ ∠2+ ∠3=?
∠1=18 °, ∠2=130 °
∠3和∠6, 是对顶角,相等.
练习
1.说出下列图形中∠1和∠2的度数:
A
80 °
60 °
2 1
B
CD
(1)
∠1=40 °, ∠2=140 °
50° A
2
1 B
32° C
(2)
∠1=18 °, ∠2=130 °
2.如图,求证:∠BDC= ∠B+ ∠C+ ∠BAC
请用三种不同的方法证明该结论!
三角形的外角&常见结论的证明(复习)
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
形内角和定理)
∠ACB+∠ACD=180°(平角定义)
∴∠ACD=∠A+∠B(等量代换)
B
C
D
如图, ∠ACD 是△ABC的一个外
A
∵ ∠ACD= ∠B+ ∠A
∴∠ACD>∠A, ∠ACD >∠B
D
B
C
结论1、三角形的一个外角等于与它不 相邻的两个内角的和。
结论2、三角形的一个外角大于任何一个 与它不相邻的内角。
三角形的外角定 理优秀课件
温故知新:
三角形内角和定理: 三角形的内角和是180°
任意三角形 三个内角
w∠A+∠B+∠C=1800的几种变形: w∠A=1800 –(∠B+∠C). w∠B=1800 –(∠A+∠C). w∠C=1800 –(∠A+∠B).
三角形的外角:
A
三角形的一边与另一
பைடு நூலகம்
边的反向延长线组成的
C∵ ∠2是△ADC的外角 ∴ ∠2 >∠3
∴ ∠1>∠2>∠3
45°
α
30°
例3 已知:如图,∠1、∠2、∠3是△ABC的
三个外角
求证:∠1+∠2+∠3=360°
A
2
结论:三角形的外角和等于360°
5
6
B
3
1 4
C
通常把一个三角形每 一个顶点处的一个外 角的和叫做三角形的
外角和。
三角形的外角和
对于三角形的每个内角,从与它相邻的 两个外角中取一个,这样取得的三个外角 相加所得的和,叫做三角形的外角和。
结论: 三角形的外角和等于360°
判断题: 1、三角形的外角和是指三角形所有外角的和。( )
2、三角形的外角和等于它内角和的2倍。( )
3、三角形的一个外角等于两个内角的和。( )
4、三角形的一个外角等于与它不相邻的两个内角的和。 ()
5、三角形的一个外角大于任何一个内角。( )
6、三角形的一个内角小于任何一个与它不相邻的外角。 ()
你能比较∠2 、 ∠A的关系么?再试试看。
A
P
D 1
2
B
C
练一练: 1、求下列各图中∠1的度数。
1 50°
45°
120°
35°
1
A
60°
1
DB
CE
练一练: 2.求各图中∠1的度数
100 o
60 o
1
1
60°
55°
练一练:3、把图中∠1、 ∠2、 ∠3按从大
到小的顺序排列,并说明理由。
A D
E B
解:∠1> ∠2> ∠3
∵ ∠1是△BDE的外角, ∴∠1>∠2,
总结: 三角形的外角与内角的关系:
A
∵ ∠ACD= ∠B+ ∠A
∴∠ACD>∠A, ∠ACD >∠B
D
B
C
1、三角形的一个外角与它相邻的内角互补;
2、三角形的一个外角等于与它不相邻的两个内角的和;
3、三角形的一个外角大于任何一个与它不相邻的内角。
你选谁 ?
A
B
C
D
∠ACD > ∠A (<、>); ∠ACD > ∠B (<、>)
每一个顶点相对应的外角都有 2个.
三角形的外角与三角形的内角之间有 怎样的数量关系?
△ABC的外角∠ACD与它不 相邻的内角∠ A、 ∠ B有 怎样的关系?为什么?
不相邻 内角
与相邻的内角∠ 1有什 么的关系?
B
A
外
相邻 内角 1
角
2
CD
∠ACD= ∠ A+ ∠ B
证明: △ABC中
∵∠A+∠B+∠ACB=180°(三角
角,叫做三角形的外
角1 .
B
C
D
三个特征: 1. ∠ 1的顶点在三角形的一个顶点上;
2. ∠ 1的一条边是三角形的一条边; 3. ∠ 1的另一条边是三角形的某条边的延长线
画图并思考:
画一个△ABC ,你能画出它的所有 外角来吗?请动手试一试.同时想一想 △ABC的外角共有几个呢?
归纳每:一个三角形都有6个 外角.