第6章正交试验设计共67页

合集下载

正交试验设计范文

正交试验设计范文

正交试验设计范文正交试验设计(orthogonal experimental design)是一种统计方法,用来确定影响一个或多个因素的不同水平对观测结果的影响程度和相互关系。

该方法通过一系列的实验来探索不同因素对结果的影响,同时最大限度地减少干扰因素的影响,提供实验数据分析的依据和决策依据。

正交试验设计是基于正交阵(也称为拉丁方)的设计方法,通过将因素的不同水平进行排列组合,从而构建一个有效的实验方案。

正交阵的特点是各因素之间相互独立,能够同时考虑多个因素的影响,降低实验的复杂度和成本。

在正交试验设计中,首先需要确定研究的因素和水平。

因素是影响结果的变量,水平是每个因素的取值范围。

然后,通过正交阵的组合,构建不同水平的因素组合,形成实验方案。

在实验过程中,根据实验结果对各个因素进行分析和比较,确定主要因素和最佳组合。

1.减少实验次数:正交试验设计能够通过少量的实验次数,确定最佳因素组合,大大减少实验的工作量和成本。

2.消除干扰因素:正交试验设计能够排除干扰因素的影响,提高实验的可靠性和准确性。

3.有效分析因素:正交试验设计能够同时考虑多个因素的影响,找到主要因素和最佳组合,提高实验结果的可比性和可靠性。

然而,正交试验设计也存在一些限制和注意事项:1.模型简化:正交试验设计假定各个因素之间相互独立,这可能不符合实际情况,导致结果的失真。

2.限定水平选择:正交试验设计的水平选择通常是事先确定的,可能无法包含所有可能的取值范围,影响结果的全面性。

3.实验误差控制:正交试验设计无法完全消除实验误差,可能会影响结果的可靠性。

综上所述,正交试验设计是一种有效的实验设计方法,通过少量的实验次数,确定最佳因素组合,提高实验结果的可靠性和准确性。

在应用正交试验设计时,需要注意模型的简化、水平选择的局限性和实验误差的控制。

正交试验设计在工程、生产和科学研究中具有广泛的应用前景。

正交试验设计1ppt课件

正交试验设计1ppt课件
第六章 正交试验设计
6.1 引 言 6.2 正交表和正交试验方案 6.3 正交试验的数据分析 6.4 交互作用
6.1 引 言
对于单因素或两因素试验,因其因素少 ,试验的设计 、 实施与分析都比较简单 。但在实际工作中 ,常常需要同时 考察 3个或3个以上的试验因素 ,若进行全面试验 ,则试验 的规模将很大 ,往往因试验条件的限制而难于实施 。
所谓均衡分散,是指用正交表挑选出来的各因素水平 组合在全部水平组合中的分布是均匀的 。
6.2.2 正交试验方案:
正交试验设计 的基本程序包括 试验方案设计及 试验结果分析两 部分。
试验目的与要求 试验指标
选因素、定水平 因素、水平确定 选择合适正交表
表头设计 列试验方案 试验结果分析
(1) 明确试验目的,确定试验指标
即:
在这9个水平组合中,A因素各水平下包括了B、C因素 的3个水平,虽然搭配方式不同,但B、C皆处于同等地位, 当比较 A 因素不同水平时,B 因素不同水平的效应相互抵 消,C因素不同水平的效应也相互抵消。所以A因素3个水平 间具有综合可比性。同样,B、C因素3个水平间亦具有综合 可比性。
(2)均衡分散性:任两列之间各种不同水平的所有 可能组合都出现,且数对出现的次数相等。
验指标的变动幅度。Rj越大, 说明该因素对试验指标的影
响越大。根据Rj大小,可1以. 计算
判断因素的主次顺序。
Ⅰj 、Ⅱj 、Ⅲj …….
极差分析法-R法
Rj 因素主次
2. 判断 优水平
优组合
6.3.2 方差分析法
极差分析法简单明了,通俗易懂,计算工作量少便于推 广普及。但这种方法不能将试验中由于试验条件改变引起 的数据波动同试验误差引起的数据波动区分开来,也就是 说,不能区分因素各水平间对应的试验结果的差异究竟是 由于因素水平不同引起的,还是由于试验误差引起的,无 法估计试验误差的大小。

正交试验设计精品文档66页

正交试验设计精品文档66页

(1) 900 (1) 10 (1) 70
160
(1) 900 (2) 11 (2) 80
215
(1) 900 (3) 12 (3) 90
180
(2)1100 (1) 10 (2) 80
168
(2)1100 (2) 11 (3) 90
236
(2)1100 (3) 12 (1) 70
190
(3)1300 (1) 10 (3) 90
二、无交互作用的正交设计与数据分析
试验设计一般有四个步骤: 1. 试验设计 2. 进行试验获得试验结果 3. 数据分析 4. 验证试验
例1 磁鼓电机是彩色录像机磁鼓组件的关 键部件之一,按质量要求其输出力矩应大于 210g.cm。某生产厂过去这项指标的合格率较 低,从而希望通过试验找出好的条件,以提高 磁鼓电机的输出力矩。
157
(3)1300 (2) 11 (1) 70
பைடு நூலகம்
205
(3)1300 (3) 12 (2) 80
140
9个试验点的分布
3 5
C3
2
C2
4
1
C1 A1
A2
7 9
6
8
B3
B2
A3 B1
(二)做试验,并记录试验结果
在进行试验时,要注意几点: 1. 除了所考察的因子外的其它条件,尽可
能保持相同 2. 试验次序最好要随机化 3. 必要时可以设置区组因子
譬如:考察两个因子,先固定A在A1,发 现B3好,再固定B3,发现A1好,但是实际上好 的条件是A2B2。
B1
B2
B3
A1 50 56 62
A2 56 70 60
A3 54 60 58

第6章 正交试验设计

第6章 正交试验设计

A2B3C1
A2B2C3
A3B3C2
A1B3C3
2 A1B2C2 3
1
5 4 18
6
8 9
7
13
12
17
16 19 20 15
14
10 24 23
11
25 26
立方体上共 有9 个面, 设对应于A1、 A2、A3的是 左、中、右 三个面;对 应于B1、B2、 B3的是下、 中、上三个 面;对应于 C1、C2、C3 的是前、中、 后三个面。
L 正交表的代号
m正交表的列数
Ln r
n 正交表的行数
m

(最多能安排的因素个数, 包括交互作用、误差等)
r 各因素的水平数
(各因素的水平数相等)
(需要做的试验次数)
正交表符号的意义
正交表的纵列数 (最多允许安排因素的个数)
L8(27)
正交表的代 号
字码数(因素的水平数)
正交表的横行数

R越大,因素越重要
若空列R较大,可能原因:
漏掉某重要因素
因素之间可能存在不可忽略的交互作用
(6)优方案的确定


优方案:在所做的试验范围内,各因素较优的水 平组合 若指标越大越好 ,应选取使指标大的水平 若指标越小越好,应选取使指标小的水平 还应考虑:降低消耗、提高效率等 在本例中,试验指标是乳化能力,指标越大越好, 所以应挑选每个因素的K1 ,K2 ,K3(或k1 ,k2 ,k3) 中最大的值对应的那个水平 。
21
A1B1C1
22
A2B1C2
27
A:
考虑兼顾全面试验法和简单比较法的优点, 利用根据数学原理制作好的规格化表—— 正交表来设计试验不失为一种上策。 用正交表来安排试验及分析试验结果,这 种方法叫做正交试验法。 事实上,正交最优化方法的优点不仅表现 在试验的设计上,更表现在对试验结果的 处理上。

第六章 正交试验设计

第六章  正交试验设计
当试验指标不服从正态分布时,进行 方差分析的依据就不够充分,此时可 以用率 来衡量因子作用的大小 。 由于S因中除了因子的效应外,还包括 误差,从而称S因—因。为因子的纯偏 差平方和,称因子的纯偏差平方和与 的比为因子的贡献率 。
因子与误差的差率
来源 平方和 自由度 纯偏差 贡献率
S
平方和 (%)
第一节 基础知识
一、名词术语
1、试验因素:影响考核指标取值 的量称为试验因素(因子)。 一般记为:A,B,C, 等 •定量的因素 •可控因素 •定性的因素 •不可控因素 2、因素的位级(水平):指试验因素 所处的状态。
3、考核指标:根据试验目的而选定的用来 衡量试验效果的量值(指标)。
望大值 定量指标 望小值
5 )试验结果分析。
第二节 无交互作用单一指标的正交 设计与数据分析
一 试验目的:提高磁鼓电机的输出力矩
二 试验指标:输出力矩(越大越好) 三 因子与水平:
A:充磁量(10-4特)
AB:1=9定00位高A度2=(1度10)0 A3=1300
B1=10 B2=11
B3=12
C :定子线圈匝数(匝)
C1=70 C2=80
C3=90
四 选正交表,进行表头设计,列出实验
计划 选L9(34)
表达设计
A (充磁量)
列号 试验号
1 2 3 4 5 6 7 8 9
T1 T2 T3
T1 T2 T3 R
S
1
1(900) 1 1 2(1100) 2 2 3(1300) 3 3 555 594 502
185 198 167.3 30.7
V因—因子的均方和(偏差平方和与自 由度的比) 因—因子的自由度(水平数(q)1) Ve—误差的均方和 e—误差的自由度

第6章正交试验

第6章正交试验

第六章 正交试验设计试验设计是数理统计中一个很庞大的分支, 其内容十分丰富, 本章只介绍正交试验设计(简称正交设计或正交试验). 正交试验设计是利用“正交表”进行科学地安排与分析多因素试验的方法, 其主要优点是能在很多实验方案中挑选出代表性较强的试验方案, 并通过对少数试验方案之试验结果的分析, 推断出最优方案, 得到比试验结果本身给出的还要多得多的有关多因素之信息. 在正交试验中, 对试验结果的分析, 通常采用直观分析法(也称极差分析法)和方差分析法.第一节 引 言一、正交试验设计的背景引例 为了提高维尼纶耐水性能, 需要分析维尼纶生产的最后一道工序—醛化过程. 醛化过程的好坏用一个叫缩醛化度的指标来衡量, 缩醛化度越高, 纤维的耐水性能越好. 但影响缩醛化度的因素很多, 如反应时间、反应温度、甲醛浓度、硫酸浓度、芒硝浓度等. 这些因素除芒硝浓度取三个水平外, 其余四个因素都各取七个水平. 这样多的因素和水平, 若全面试验需做3×74=7203次试验, 约用五年时间, 这实际上是行不通的.面对上述试验问题, 我们很希望只选做其中一部分有代表性的试验而又能较好地反应全面醛配可能出现的各种情况, 以便从中挑选出较好的试验方案, 这正是正交试验设计所研究的范畴.通常, 称两个因素以上的试验为多因素试验. 正交试验设计是以概率论和数理统计为基础, 科学地安排多因素试验的一类实用性很强的数学方法, 它是数理统计学中一个很大的分支. 它所研究的主要内容是, 如何利用“正交表”进行科学地安排与分析多因素试验以减少试验的次数. 其主要优点是能在很多实验方案中挑选出代表性较强的试验方案, 并通过对少数试验方案之试验结果的分析, 推断出最优方案, 得到比试验结果本身给出的还要多得多的有关多因素之信息. 对试验结果的分析, 通常采用两种方法: 一种是直观分析法(也称极差分析法), 另一种是方差分析法.表6.1 正交表L(27)表6.2 正交表L 4二、正交表正交表是一种特殊的表格, 这里只介绍它的记号、特点及使用方法. 表L 8(27)与L 9(34)即是两张常用的正交表. L 8(27)与L 9(34)是正交表的记号, 其具体含义为:L 是正交表代号; 8或9表示该正交表的行数, 即需要做的试验次数; 2或3表示水平数; 7或4表示正交表的纵列数, 即最多可安排的因素的个数.正交表L 8(27)与L 9(34具有如下的性质:(1) 整齐可比性: 表中任一列所含各种水平的个数都相同;(2) 均衡搭配性: 表中任两列所有各种可能的数对出现的次数都相同. 凡具有上述两种性质的表, 都称为正交表.三、正交试验设计正交试验设计, 包括选表、表头设计以及利用所选定的正交表安排试验方案, 并对试验结果进行统计分析, 确定较优或最优试验方案的一种科学方法. 具体地说, 正交试验设计能明确地回答如下几个方面的问题:(1) 因素的主次, 即各因素对所考察指标影响的大小顺序;(2) 因素与指标的关系, 即每个因素的各水平变化时, 指标是怎样变化的; (3) 什么是最优试验方案或最优工艺条件; (4) 进一步试验的方向.第二节 正交试验的直观分析一、直观分析(无交互作用)例1(合成氨最佳工艺条件试验) 根据已有的经验, 决定在合成氨试验中选取的因素与水平如表6.3所示. 假定各因素之间无交互作用, 试验的目前是提高产量. 要求进行试验设计并对试验的结果进行分析.解: 为了避免试验产生系统误差,因素的各水平哪一个定为1水平、2水平、3水平, 应按“随机化”的方法确定. 1.选表与表头设计 本例是一个三水平的试验, 因此要选用L n (3t )型正交表. 由于有3个因素, 且不考虑因素之间的交互作用, 所以选一张3≥t 的表, 而L 9(34)是是满足条件3≥t 的最小L n (3t )型表, 故选用正交表L 9(34)安排试验. 由于不考虑各因素之间的交互作用,只需将各因素分别填写在所选表的上方与列号对应的位置上, 一个因素占有一列, 不同的因素占有不同的列, 就得到所谓的表头设计, 如表6.4所示.注意: 未放置因素的列, 称为空白列或空列. 空白列在正交设计的方差分析中也称为误差列, 它有着重要的作用, 一般要求至少有一个空白列.2.确定试验方案完成了表头设计以后, 只要将表中各列的数字“1”、“2”、“3”分别看成该列所填因素在各个试验中的水平数, 而正交表的每一行就是一个试验方案. 于是, 本例得到9个试验方案.3.按规定的试验方案做试验并记录试验结果按正交表的各试验号中规定的水平组合进行试验, 并记录其结果得到表 6.5. 注意: 必须严格按照规定的方案完成每一号试验; 为了保证具有相同的随机性, 试验往往不按照表上试验号的顺序进行, 而是采取抽签的方法决定试验的顺序.4.计算极差, 确定因素的主次顺序 记K ij =第j 列上水平号为i 的各试验结果之和;k ij = K ij /s, 其中s 为第j 列上水平号i 出现的次数, 即k ij 表示第j 列的表6.3 例1的因素水平表因素取水平i时进行试验所取得的试验结果的平均值;R j=max i{ K ij }-min i{ K ij }, R j称为第j列的极差或所在因素的极差, 也可定义r j=max i{ k ij }-min i{ k ij }为第j列的极差或所在因素的极差.对于本例, 我们有:K11=y1+ y2+ y3=1.72+1.82+1.80=5.34, k11= K11/3=1.780,K21=y4+ y5+ y6=1.92+1.83+1.98=5.73, k21= K21/3=1.910,K31=y7+ y8+ y9=1.59+1.60+1.81=5.00, k31= K31/3=1.667,R1=max i{ K i1 }-min i{ K i1}=5.73-5.00=0.73;其它的K ij , k ij与R j类似地可以得到, 见表6.5.表6.5例1的试验方案及试验结果分析一般地, 各列的极差是不相等的, 这说明各因素的水平改变对试验结果的影响是不相同的. 极差越大, 说明这个因素的水平改变对试验结果的影响也越大. 因此, 极差最大的那一列因素就是水平改变对试验结果影响最大的因素, 也就是主要的因素. 由于有R1 >R2 >R3 >R4, 因此本例的因素主次顺序为:主→次A B C注意: 有时空白列的极差比所有其他因素的极差还要大, 这说明因素之间可能存在有不可忽视的交互作用, 或者忽略了对试验结果有重要影响的其它因素, 或者试验误差太大, 需要具体问题具体分析.5.最优方案的确定挑选因素的优水平与所要求的指标有关. 若指标越大越好, 则应该选取使指标最大的水平, 即各列K1j、K2j和K3j(或k1j、k2j和k3j)中最大的那个水平; 反之, 若指标越小越好, 则应取使指标小的那个水平. 对于本例, 试验的指标是提高合成氨的产量, 指标越大越好, 所以应该挑选每个因素的K1j、K2j、K3j之中最大的那个水平. 由于K2A>K1A>K3A K3B>K2B>K1B K2C>K1C>K3C故得最优方案为: A 2B 3C 2. 即反应温度为490(ºC )、反应压力为300个大气压以及使用乙种催化剂时, 生产方案是最优的.注意: 实际确定最优方案时, 还应区分因素的主次. 对于主要因素, 一定要按有利于指标的要求选取最好的水平, 而对于不重要的因素则可以根据有利于提高效率、降低消耗等要求来考虑因素水平的选取.本例确定的最优方案A 2B 3C 2, 并不包含在正交表里已做过的9个试验方案之中, 这正体现了正交试验设计的优越性. 那么, 它是不是真正的最优方案呢? 我们可以作进一步的理论计算来论证.6.最优方案的工程平均由于任何试验结果总是带有误差, 对某一试验方案来说, 我们关心的是这个试验方案之试验结果的平均值, 最优试验方案试验结果的平均值就称为“最优工程平均”. 为此, 我们先来讨论“效应”的问题:设μ为试验总体的理论总均值, ij μ为因素j 的第i 个水平所对应试验总体的理论均值, 定义a i =iA μ-μ为因素A 的第i 个水平的效应. 由于μ与iA μ均为未知, 此时可用样本均值来进行估计, 因而定义i aˆ=k iA -y 称i aˆ为因素A 的第i 水平的效应. 不难验证∑i a ˆ=0,即同一个因素(或同一列) 的各水平效应之和为0.本例中, 因素A 的各水平的效应分别为:1ˆa=k 1A -y =1.78-1.786=-0.006, 2ˆa=k 2A -y =0.124, 3ˆa = k 3A -y =-0.119. 它们的含义是: 因素A 取A 1水平会使产量平均降低0.006t, 因素A 取A 2水平会使产量平均增加0.124t, 因素A 取A 3水平会使产量平均降低0.119t. 同样可得:1ˆb = k 1B -y =-0.043, 2ˆb = k 2B -y =-0.036, 3ˆb = k 3B -y =0.077; 1ˆc= k 1C -y =-0.019, 2ˆc = k 2C -y =0.064, 3ˆc = k 3C -y =-0.046. 综合起来, 在不考虑交互作用的情况下, 可用迭加的方法求得某一试验方案试验结果的平均值—称为该试验方案的工程平均, 它等于总平均y 加上该试验方案各因素所取水平的效应之和. 某一方案的工程平均, 实质上就是该试验方案试验结果真值的无偏点估计. 对本例, 最优方案A 2B 3C 2的工程平均为y ˆ=2.051.7.对比验证试验最优方案在正式作为生产方案实施之前还需要进行对比验证试验: 将最优方案A 2B 3C 2与按正交表之规定做过的9个方案中产量最高的第6号方案A 2B 3C 1作对比试验. 若方案A 2B 3C 2比第6号试验产量更高, 通常认为A 2B 3C 2就是真正的最优方案; 否则, 就取第6号试验方案A 2B 3C 1作为最优方案. 后一种情况发生, 一般来说可能是没有考虑交互作用, 或者是试验误差较大引起的, 需要作进一步的研究, 可能有提高产量的潜力.8.作出因素水平-指标变化的趋势图 二、正交试验设计原理的解释由于正交表的整齐可比性与均衡搭配性, 使得用正交表安排的试验具有均衡分散性与整齐可比性, 所以它能大大地减少试验次数, 甚至比简单地比较全面试验的结果有可能提供更多更有用的信息.图6.1 例1的因素水平-指标变化趋势图三、直观分析(有交互作用)在此情况下, 对多因素正交试验的表头设计必须借助两列间的交互作用表, 许多正交表的后面都附有相应的交互作用表. 表6.6即是正交表L 8(27)的交互作用表.用正交表安排有交互作用的试验时, 通常将交互作用看作一个新的因素, 它在正交表上的占有列, 称为交互作用列. 为了避免“混杂”现象, 交互作用列应该通过杳交互作用表来确定. 从表6.6可以确定任何两列的交互作用列.例2 工件的渗碳层深度要求为1±0.25mm, 试验与考察的水平如表 6.7所示,还要考察交互作用A ×B 与B ×C. 试验的目的是确定这4个因素及两个交互作用对渗碳指标影响的重要性主次顺序, 并找到最优的生产方案(注意, 渗碳层深度越接近1越好).解: 1.选表与表头设计这是一个4因素2水平试验, 加上考虑交互因素A ×B 与B ×C, 因此所选的2水平正交表至少要有6列, 满足这种条件的2水平正交表中以L 8(27)为最小, 因此选用正交表L 8(27)安排试验.将因素A 、B 分别放在正交表的1、2两列上, 查L 8B 占用第三列, 因此第3列不能安排其它因素, 否则就会产生混杂现象; 现将因素C 入放在第4列, 再查L 8(27)的交互作用表得交互作用B ×C 占用第6列, 因素D 可安排在第5列或第7列上. 现将因素D 安排在第5列, 从而得到如表6.8的表头设计.2.明确试验方案, 依照试验方案进行试验并记录试验结果由此得到表 6.9. 注意, 交互作用所在列和空白列对确定试验方案不起任何作用, 因为那些列的数字“1”、“2”不代表任何实际水平.73. 计算极差, 确定因素的主次仿例1, 可得因素的主次顺序如表6.9所示. 4.确定最优方案交互因素A ×B 是影响试验结果最重要的因素, 但是交互因素A ×B 没有实际的水平, 故不能按K 13与K 23大小来确定, 而应该按A 与B 搭配的好坏来确定. 表6.10是因素A 与B 的水平搭配表, 也称之为二元表. 由于指标y 越小越好, 可知A 与B 的最优搭配为A 1B 2; 类似地, 可以得到B 与C 的最优搭配为B 2C 2.由于D 的最优水平为D 1, 从而得到最优方案为A 1B 2C 2D 1, 而不考虑交互作用的最优方案为A 1B 2C 1D 1, 两方案的不同之处在于因素C 的水平取法. 不般来说, 次要因素应服从于主要因素, 因此我们认为方案A 1B 2C 2D 1是最优的.第三节 正交试验的方差分析极差分析法的优点是, 方法简单、直观、计算量较小, 便于普及和推广. 但是, 极差分析法不能估计试验过程中以及结果测定中必然存在的误差大小, 不能真正区分某因素各水平所对应试验结果的差异, 究竟是由于水平的改变引起的还是由于试验误差引起的; 再者, 极差分析法得到的结论不够精确, 而且当水平数超过3时, 极差分析方法不便于使用.一、方差分析(无交互作用)表6.10 例2的因素A 与B 的水平搭配表。

第六章 正交试验设计

第六章 正交试验设计

(3)常用正交表的分类
凡是标准表,水平数都相等(水平数只能取素数或素数 幂,完全由拉丁方而来)。因此,有7水平,9水平标准 表,没有6水平,8水平标准表。 利用标准表可以考察交互效应。
(4)正交表的基本性质
正交性
1)任何l列中各水平都出现,出现次数相等。 2)任意2列间不同水平所有可能组合都出现,出现次数相等。
重复试验的方差分析与无重复试验的方差分析基本情况相 同
(1)计算K1j, K2j,· · ·,时,是各号试验下的数据之和;
代表性。
任意2列间所合组合全部出现,任意两因素间都是全面试验。 综合可比性。
任2列间所有可能组合出现次数相等,使任一因素各水平试验条 件相同。
除标准表外,还有混合型正交表,但进行正交设计 时,一般查用现成的正交表。 并非任意给定的参数都可以构造出正交表,好多问 题还未解决。
第三节 正交试验设计的基本步骤
单 因 素 轮 换 法
试验结果缺乏足够证据 各因素参加试验的几率不等 无法考察因素间存在交互作用 若没有重复,无法估计试验误差
全 面 试 验
33=27,若要设置重复,则加大了试验次数
正 交 拉 丁 方
试验点分布均匀 各因素参加试验的几率相等
第二节 正交表
(1)正交表——正交拉丁方的自然推广
主要
方法,具有很高的效率。
(4)全面试验只有在因素、水平都不多的情形之下才能实施。 如6个因素,每因素5个水平,全面试验就需要56=15625 组合,若要估计试验误差则还要增加重点试验,一般不 可能做到。 (5)当因素较多时,既要考虑合理的试验处理及重复次数, 又希望得出较全面的结论,需要用科学方法进行安排。
第五节 正交试验设计的方差分析

正交实验设计PPT

正交实验设计PPT
(4) 确定优方案 优方案是指在所做的试验范围内,各因素较优的水平组合。 本例中得到的优方案,并不包含在正交表中已做过的 9 个试 验方案中,这正体现了正交试验设计的优越性。
(5) 进行验证试验,做进一步的分析。
(二)多指标正交试验设计及其结 果的直观分析
第1种:指标拆开单个处理综合分析法
第一步:将各个指标值(实验结果)填入表内。将多个 指标拆开,按各个单指标正交实验分别计算各因素不同
• 相关概念 • 1)实验指标:用来衡量实验结果的量
实验指标有可以用数字表示的定量指标,也有不能用数字直接表示的 定 性指标,但可通过打分、或定出等级用数字表示
• 2)因素:影响实验结果的实验条件(也叫因子) • 3)水平:因素变化的各种状态(也叫位级)
1.2正交表
• 正交表定义:正交设计法中合理安排实验,并对数据进行 统计分析的一种特殊表格工具。
列号 试验序号
1
4
5
6
7
1 2 3
yi
4 5 6 7 8
1
1
1
1
1
1
2
2
2
2
2
1
1
2
2
2
2
2
1
1
3
1
2
1
2
3
2
1
2
1
4
1
2
2
1
4
2
1
1
2
第二节 正交实验的设计运用
正交实验设计的基本步骤
1、明确实验目的,确定实验指标 2、选定实验因素,选取水平,列出因素水平表(关键) 3、选择适合的正交表,进行表头设计
• 再如:某个实验要考察4个因素质,每个因素3个水平(状 态),那要做81次实验。

第6章正交试验设计

第6章正交试验设计

M
S
e
S
S
e
d
f
e
(4)计算F值
各均方除以误差的均方,例如:
FA
MSA MSe

FA
MSA
M
S
e
FAB
MSAB MSe

FAB
MSAB MSe
(5)显著性检验
例如: 若 FAF(dfA,dfe,)则因素A对试验结果有显著影响 若 F A BF (dfA B,dfe),则交互作用A×B对试验结果有 显著影响
4

1.5
试验号
1 2 3 4 5 6 7 8 9 K1 K2 K3 k1 k2 k3 极差R 因素主→次 优方案
因素
A
B
C
1
1 1(1)
1
2 2(2)
1
3 3(2)
2
1 2(2)
2
2 3(2)
2
3 1(1)
3
1 3(2)
3
2 1(1)
3
3 2(2)
9.0 2.5
-4.6
8.2 9.1
29.5
7.7 13.3 3.0 0.8
6.2.2 多指标正交试验设计及其结果的直观分析
两种分析方法: 综合平衡法 综合评分法
(1)综合平衡法
先对每个指标分别进行单指标的直观分析 对各指标的分析结果进行综合比较和分析,得出较优方案
②例
三个指标 : 提取物得率 总黄酮含量 葛根素含量
三个指标都是越大越好
对三个指标分别进行直观分析: ➢ 提取物得率:
C2 (y2+ y4)/2 =(0.448+0.516)/2=0.482

正交试验设计

正交试验设计
因素所在列是随意的,但是一旦安排完成,试验方案即确定,之后的试验以及后续分析将根据这一安排进行, 不能再改变。对于部分表,如L18(2*3^7)则没有交互作用列,如果需要考虑交互作用需要选择其它的正交表。
极差分析
在完成试验收集完数据后,将要进行的是极差分析(也称方差分析)。 极差分析就是在考虑A因素时,认为其它因素对结果的影响是均衡的,从而认为,A因素各水平的差异是由于 A因素本身引起的。 用极差法分析正交试验结果应引出以下几个结论: ①在试验范围内,各列对试验指标的影响从大到小的排队。 某列的极差最大,表示该列的数值在试验范围内变化时,使试验指标数值的变化最大。所以各列对试验指标 的影响从大到小的排队,就是各列极差D的数值从大到小的排队。 ②试验指标随各因素的变化趋势。 ③使试验指标最好的适宜的操作条件(适宜的因素水平搭配)。 ④对所得结论和进一步研究方向的讨论。
分析方法
一、直接对比法
直接对比法就是对试验结果进行简单的直接对比。直接对比法虽然对试验结果给出了一定的说明,但是这个 说明是定性的,而且不能肯定地告诉我们最佳的成分组合。显然这种分析方法虽然简单,但是不能令人满意 。
二、直观分析法
直观分析法是通过对每一因素的平均极差来分析问题。所谓极差就是平均效果中最大值和最小值的差。有了 极差,就可以找到影响指标的主要因素,并可以帮助我们找到最佳因素水平组合。
设计过程
1)确定试验因素及水平数; 2)选用合适的正交表; 3)列出试验方案及试验结果; 4)对正交试验设计结果进行分析,包括极差分析和方差分析; 5)确定最优或较优因素水平组合。
术语辨析
(1)正交试验设计法是遗传算法的一种特例,即正交试验设计法是一种初始种群固定的、只使用定向变异算 子的、只进化一代的遗ቤተ መጻሕፍቲ ባይዱ算法。

正交试验设计原理与实例教程PPT课件

正交试验设计原理与实例教程PPT课件
18
• ②正交表中1列可以安排1个因素,因此它可安排的因 素数可以小于或等于q,但不能大于q。
• ③括号内的tq表示q个因素、每个因素t个水平全面试 验的水平组合数(即处理数)。因为安排因素个数不能
大于q,所以n /tq为最小部分实施。

显然,L4(23)是最简单的正交表,有4列3行用它最
多能安排3个2水平因素的试验。部分试验为4次,全面
组合 ,则 可利用正交 设计来安排试验。
2019/11/2
6
• 1.2 正交拉丁方

在试验安排中 ,每个因素在研究的范围
内选几个水平,就好比在选优区内打上网格 ,
如果网上的每个点都做试验,就是全面试验。
3个因素的选优区可以用一个立方体表示(图
11-2),3个因素各取 3个水平,把立方体划
分成27个格点,反映在 图11上就是立方体内

2019/11/2
14
2019/11/2
15

常用的正交表已由数学工作者制定出来,供进行正
交设计时选用。2水平正交表除L8(27)外,还有L4(23)、 L16(215) 等 ; 3 水 平 正 交 表 有 L9(34) 、 L27(213)…… 等 (详见附表17及有关参考书)。

表11-6是一张正交表,记号为L9(34),其中
“L”代表正交表;L右下角的数字“9”表示有
9行 ,用这张正交表安排试验包含3个处理(水平
组合) ;括号内的底数“3” 表示因素的水平数,
括号内3的指数“4”表示有4列 ,也指安排的
因素数,用这张正交表最多可以安排4个3水平
因素。 2019/11/2
16
2.2 正交表的表示符号 ①正交表记号所表示的含义归纳如下:

正交试验设计

正交试验设计

正交试验设计1 正交试验设计的概念及原理 1.1 基本概念利用正交表来安排与分析多因素试验的一种设计方法。

特点:在试验因素的全部水平组合中,仅挑选部分有代表性的水平组合进行试验。

通过部分实施的试验结果,了解全面试验情况,从中找出较优的处理组合。

考察增稠剂用量、pH 值和杀菌温度对豆奶稳定性的影响。

每个因素设置3个水平进行试验 。

全面试验:可以分析各因素的效应,交互作用,也可选出最优水平组合。

全面试验包含的水平组合数较多,工作量大,在有些情况下无法完成 。

若试验的主要目的是寻求最优水平组合,则可利用正交表来设计安排试验。

● 正交试验是用部分试验来代替全面试验的,它不可能像全面试验那样对各因素效应、交互作用一一分析; ● 当交互作用存在时,有可能出现交互作用的混杂。

● 虽然正交试验设计有上述不足,但它能通过部分试验找到最优水平组合,因而很受实际工作者青睐。

1.2 基本原理在试验安排中,每个因素在研究的范围内选几个水平, 可以理解为在选优区内打上网格,如果网上的每个点都做试验,就是全面试验。

3个因素的选优区可以用一个立方体表示。

3个因素各取3个水平,把立方体划分成27个格点。

若27个网格点都试验,就是全面试验。

A2 A3A1B1C1B3 B2A 因素:增稠剂用量,A1、A2、A3B 因素:pH ,B1、B2、B3C 因素:杀菌温度,C1、C2、C33因素3水平33=271.2 基本原理正交设计就是从选优区全面试验点(水平组合)中挑选出有代表性的部分试验点(水平组合)来进行试验。

A1B1C1 A1B2C2A1B3C3A2B1C2A2B2C3A3B1C3A3B2C1A3B3C2A2B3C1A1B1C3A1B3C1A2B1C1 A2B2C1A2B3C3A3B1C1A3B2C39个组合保证了A 的每个水平与B 、C 的各个水平在试验中各搭配一次。

任一因素的每个水平都与另外两个因素的每个水平相组合且组合1次。

7正交试验设计

7正交试验设计

正交试验设计1正交试验的引入在实际的生产实践当中,由于需要考虑的因素(对结果产生影响的变量)通常比较多,同时,每个因素的水平个数(每个变量的可取值个数)也不止一两个。

如果对每个因素的每个水平交互搭配全部进行试验,例如:对于5因素4水平的实验,全部次数为:541024,需要用相当长的时间进行统计分析计算,同时耗费了大量的人力物力。

而如果采用正交试验设计,试验的次数将大大减少,同时对统计结果的分析也变得简单。

正交试验设计是利用正交表科学的安排与分析多因素试验的方法,是最常用的试验设计之一。

2正交表的分类及优势正交表分为:等水平正交表和混合水平正交表。

等水平代表各因素所取的水平数相同,混合水平表示各因素的水平数不一定相同。

正交表的优点:(1)能够在所有方案中均匀的选出具有代表性的方案;(2)通过对少数试验的分析,可以推得较优的方案,并且较优方案往往不包含在少数进行试验了的方案中。

(3)通过对结果分析,可以得到更多有用的信息。

包括各因素的重要性等。

3正交试验设计的步骤总的来说包括两部分:一是试验设计,二是数据处理。

归纳为:(1)明确试验目的,确定评价指标;(2)挑选因素,确定水平;(3)选正交表,进行表头设计:一般要求为因素数≤正交表列数(4)明确试验方案,进行试验得到结果;(5)对结果进行统计分析:采用直观分析法或方差分析法,得到因素的主词以及优方案等信息;(6)进行验证试验,做进一步的分析。

4有交互作用的正交试验设计在许多试验中,不仅要考虑各个因素对试验指标起作用,还有考虑因素间的交互作用对试验解结果的影响。

在这种正交试验的设计当中,要把交互作用也作为因素考虑进去。

可以查对应的正交表来进行表头设计。

5举例下面通过举例来说明如何设计正交表以及对用不同的方法对试验结果进行分析。

例1(三水平三因素正交表设计以及直观分析法)以下试验考虑的两个指标全部解:可选用正交表49(3)L 来安排试验级差R 0.59 0.55 0.59 1.86因素主次 CAB 优方案131C A B符号说明:i K :表示人一类上水平号为i 是所对应的试验结果之和;级差R :表示在任一列上K 的最大值与最小值之差;级差越大,说明对结果影响越大,那么这个因素越重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

R越大,因素越重要 若空列R较大,可能原因: ➢ 漏掉某重要因素 ➢ 因素之间可能存在不可忽略的交互作用
(6)优方案的确定
优方案:在所做的试验范围内,各因素较优的水平组合 若指标越大越好 ,应选取使指标大的水平 若指标越小越好,应选取使指标小的水平 还应考虑:降低消耗、提高效率等
(7)进行验证试验,作进一步的分析
③如何对每个指标评出分数
非数量性指标:依靠经验和专业知识给出分数 有时指标值本身就可以作为分数 ,如回收率、纯度等 用“隶属度”来表示分数 :
隶 属 度 指 指 标 标 最 值 大 值 指 标 指 最 标 小 最 值 小 值
④例
两个指标:取代度、酯化率 两个指标重要程度不同 综合分数=取代度隶属度×0.4+酯化率隶属度× 0.6
注意 : 按照规定的方案完成每一号试验 试验次序可随机决定 试验条件要严格控制
(5)计算极差,确定因素的主次顺序
三个符号: ➢ Ki:表示任一列上水平号为 i 时,所对应的试验结果之和。 ➢ ki :ki= Ki/s,其中s为任一列上各水平出现的次数 ➢ R(极差):在任一列上
R=max{K1 ,K2 ,K3}-min{K1 ,K2 ,K3}, 或 R=max{k1 ,k2 ,k3}-min{k1 ,k2 ,k3}
例: 3因素2水平 交互作用:A×B、A×C 指标:吸光度 ,越大越好
①选表
应将交互作用看成因素 按5因素2水平选表:L8(27)
②表头设计 交互作用应该占有相应的列——交互作用列 交互作用列是不能随意安排 表头设计两种方法:
查交互作用表 查表头设计表
③明确试验方案、进行试验、得到试验结果
因素主次:C A B 优方案:C3A2B2 或C3A2B3 ➢ 总黄酮含量: 因素主次:A C B 优方案:A3C3B3 ➢ 葛根素含量 : 因素主次:C A B 优方案:C3A3B2 综合平衡:A3B2C3
③综合平衡原则: 次服从主(首先满足主要指标或因素) 少数服从多数 降低消耗、提高效率 ④综合平衡特点: 计算量大 信息量大 有时综合平衡难
⑤综合评分法特点
将多指标的问题,转换成了单指标的问题,计算量小 准确评分难
6.2.3 有交互作用的正交试验设计
(1)交互作用的判断 设有两个因素A和B ,各取两水平 在每个组合水平上做试验,根据试验结果判断
A1
A2
B1
25
35
B2
30
15
A1
A2
B1
25
35
B2
30
40
(2)有交互作用的正交试验设计及其结果的直观分析
④计算极差、确定因素主次
注意: 排因素主次顺序时,应该包括交互作用
⑤优方案的确定 如果不考虑因素间的交互作用 ,优方案:A2B2C1 交互作用A×C比因素C对试验指标的影响更大 因素A,C水平搭配表
6.1 概述
适合多因素试验 全面试验 : ➢ 每个因素的每个水平都相互搭配进行试验
例:3因素4水平的全面试验次数≥43=64次 正交试验设计(orthogonal design) : ➢ 利用正交表科学地安排与分析多因素试验的方法
例:3因素4水平的正交试验次数:16
6.1.1 正交表(orthogonal table)
次数相同 两性质合称为“正交性” :使试验点在试验范围内排列
整齐、规律,也使试验点在试验范围内散布均匀
(2)混合水平正交表 各因素的水平数不完全相同的正交表
混合水平正交表性质:
(1)表中任一列,不同数字出现次数相同 (2)每两列,同行两个数字组成的各种不同的水平搭配出
现的次数是相同的,但不同的两列间所组成的水平搭配种 类及出现次数是不完全相同
(1)选正交表
要求: 因素数≤正交表列数 因素水平数与正交表对应的水平数一致 选较小的表
选L9(34)
(2)表头设计
将试验因素安排到所选正交表相应的列中 因不考虑因素间的交互作用,一个因素占有一列(可以随
机排列) 空白列(空列):最好留有至少一个空白列
(3)明确试验方案
(4)按规定的方案做试验,得出试验结果
6.2.2 多指标正交试验设计及其结果的直观分析
两种分析方法: 综合平衡法 综合评分法
(1)综合平衡法
先对每个指标分别进行单指标的直观分析 对各指标的分析结果进行综合比较和分析,得出较优方案
②例
三个指标 : 提取物得率 总黄酮含量 葛根素含量
三个指标都是越大越好
对三个指标分别进行直观分析: ➢ 提取物得率:
(1)等水平正交表: 各因素水平数相等的正交表 ①记号 :Ln( r m ) L——正交表代号 n——正交表横行数(试验次数) r——因素水平数 m——正交表纵列数(最多能安排的因数个数)
②等水平正交表特点
表中任一列,不同的数字出现的次数相同 表中任意两列,各种同行数字对(或称水平搭配)出现的
6.1.2 正交试验设计的优点
能均匀地挑选出代表性强的少数试验方案 由少数试验结果,可以推出较优的方案 可以得到试验结果之外的更多信息
6.2 正交试验设计结果的直观分析法
6.2.1 单指标正交试验设计及其结果的直观分析 例:
单指标:乳化能力 因素水平:3因素3水平(假定因素间无分法: 根据各个指标的重要程度,对得出的试验结果进行分析,
给每一个试验评出一个分数,作为这个试验的总指标 进行单指标试验结果的直观分析法
②评分方法:
直接给出每一号试验结果的综合分数 对每号试验的每个指标分别评分,再求综合分 ➢ 若各指标重要性相同:各指标的分数总和 ➢ 若各指标重要性不相同:各指标的分数加权和
优方案往往不包含在正交实验方案中,应验证 优方案是在给定的因素和水平的条件下得到的,若不限定
给定的水平,有可能得到更好的试验方案 对所选的因素和水平进行适当的调整,以找到新的更优方
案 趋势图
正交试验设计的基本步骤:
(1) 明确试验目的,确定评价指标 (2) 挑选因素(包括交互作用),确定水平 (3) 选正交表,进行表头设计 (4) 明确试验方案,进行试验,得到结果 (5) 对试验结果进行统计分析 (6) 进行验证试验,作进一步分析
相关文档
最新文档