概率论与数理统计(完整版)

合集下载

概率论与数理统计(完整版)

概率论与数理统计(完整版)
17
例3. 某接待站在某一周曾接待过12次来访, 且都是在周二 和周四来访. 问是否可以推断接待时间是有规定的?

实际推断原理:“小概率事件在一次试 验中实际上是不可能发生的”.
18
二、几何定义:
定义若对于一随机试验 ,每个样本点出现是等可能的 ,
样本空间所含的样本点个数为无穷多个 ,且具有非 零的 ,有限的几何度量 ,即 0m(),则称这一随机 试验是一几何概型的 .
(一) 样本空间:
定义 随机试验E的所有可能结果组成的集合称为 E的样 本空间, 记为S. 样本空间的元素称为样本点,用表示.
样本空间的分类:
1.离散样本空间:样本点为有限个或可列个. 例 E1,E2等. 2.无穷样本空间:样本点在区间或区域内取值. 例 灯泡的寿命{t|t≥0}.
5
(二) 随机事件
A 2,A 2 A 3, A 1A 2, A 1 A 2, A 1A 2A 3, A 1A 2 A 2A 3 A 1A 3.
14
§3. 概率的概念 一. 古典定义:
等可能概型的两个特点:
(1) 样本空间中的元素只有有限个;
(2) 试验中每个基本事件发生的可能性相同.
例如:掷一颗骰子,观察出现的点数.
概率论与数理统计
第一章 概率论的基本概念 前言
1. 确定性现象和不确定性现象. 2. 随机现象: 在个别试验中其结果呈现出不确定性, 在 大量重复试验中其结果又具有统计规律性. 3. 概率与数理统计的广泛应用.
2
§1.随机试验
我们将对自然现象的一次观察或进行一次科学试验 称为试验。
举例:
E1: 抛一枚硬币,观察正(H)反(T) 面 的情 况. E2: 将一枚硬币抛三次,观察正反面出现的情况.

(完整版)概率论与数理统计试题库

(完整版)概率论与数理统计试题库

《概率论与数理统计》试题(1)判断题(本题共15分,每小题3分。

正确打“V” ,错误打“X” )⑴对任意事件A和B ,必有P(AB)=P(A)P(B) ()⑵ 设A、B是Q中的随机事件,则(A U B)-B=A ()⑶ 若X服从参数为入的普哇松分布,则EX=DX⑷假设检验基本思想的依据是小概率事件原理1 n _⑸ 样本方差S:= —(X i X )2是母体方差DX的无偏估计(n i i、(20分)设A、B、C是Q中的随机事件,将下列事件用A、B、C表示出来(1) 仅A发生,B、C都不发生;(2) 代B,C中至少有两个发生;(3) 代B,C中不多于两个发生;(4) 代B,C中恰有两个发生;(5) 代B,C中至多有一个发生。

三、(15分)把长为a的棒任意折成三段,求它们可以构成三角形的概率四、(10分)已知离散型随机变量X的分布列为X 2 1 0 1 31 1 1 1 11P5 6 5 15 302 求Y X的分布列.1五、(10分)设随机变量X具有密度函数f(x) -e|x|, V x V2求X的数学期望和方差•六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求P(14 X 30).七、(15分)设X1 ,X2,L ,X n是来自几何分布k 1P(X k) p(1 p) , k 1,2,L , 0 p 1 ,的样本,试求未知参数p的极大似然估计•X表示在x 0 0.5 1 1.5 2①(x ) 0.500 0.691 0.841 0.933 0.9772.5 30.994 0.999《概率论与数理统计》试题(1)评分标准⑴ X;(2) X;⑶“;⑷";(5) X o 解(1) ABC(2)ABU AC U BC 或 ABC U ABC U ABC U ABC ;(3) AUBUC 或 ABC U ABC U ABC U ABC U ABC U ABC U ABC ; (4) ABC U ABC U ABC ;(5) AB U AC U BC 或 ABC U ABC U ABC U ABC六解X “ P(14 ^b(k;100,0.20), EX=100 X 0.2=20, DX=100 X 0.2 X 0.8=16.-- --5分 分 30 20 14 20、 X 30) ( --------- )( --------------- ) ------------------ V16 J16 ------10(2.5) ( 1.5)=0.994+0.933—10.927. -------------------------------------n——15分七解n x nL(X 1, L ,x n ;p)p(1 p)x i1 p n(1 p)i1---------5分 -------------------------------------- 10 分每小题4分;解 设A '三段可构成三角形'又三段的长分别为x,y,a x y ,Oxa, 0 ya, Oxy a ,不等式构成平面域S .Aa A 发生 0 x —, 02不等式确定S 的子域A , 所以a a y , x y a2 2------------------------------------ 10A 的面积 1S 的面积 4---------------------------------------- 15则 分分分四 解Y 的分布列为Y 0 1 4 91 7 1 11P — ----- — —5 30 5 30Y 的取值正确得2分, 分布列对一组得 2分; 五 解 EXx 2 凶 dx 0, (因为被积函数为奇函数)2D X EX 22 x 1 |x| 1 —e dx x 2e x dx22 xx e0 2 xe x dx 0------------------------- 4 分 2[ xe x 0e x dx] 2.In L n In p d In L n dp p (X i n )l n(1 p),i 1 X i n @0, --------------------------- 10 分 解似然方程 n n X in i 1 得p 的极大似然估计 ------------------------------------------------------------------- 15 分 《概率论与数理统计》期末试题(2) 与解答一、填空题(每小题 3分,共15分) 1. 设事件 代B 仅发生一个的概率为 0.3,且P(A) P(B) 0.5,则 代B 至少有一个不发 生的概率为 ___________ . 2. __________________________________________________________________________ 设随机变量X 服从泊松分布,且P(X 1) 4P(X 2),则P(X 3) _______________________ . 23. _______________________ 设随机变量X 在区间(0,2)上服从均匀分布,则随机变量Y X 在区间(0,4)内的概率 密度为f Y (y) . 的指数分布,P(X 1) e 2,则4. 设随机变量 X,Y 相互独立,且均服从参数为5._______ , P{min( X ,Y) 1} = ____ 设总体X 的概率密度为 (1)x , 0 x 1, f (x)0, 其它 1.X 1 ,X 2, ,X n 是来自X 的样本,则未知参数 的极大似然估计量为 ___________解:1. P(AB AB) 0.3即 0.3 P(AB) P(AB) P(A) P(AB) P(B) P(AB) 0.5 2P(AB)2所以 P(AB) 0.1P(A B) P(AB) 1 P(AB) 092.P(X 1) P(X 0) P(X 1) e e , P(X 2) e由 P(X 1) 4P(X 2)知e e2 2e即2 21 0解得1,故P(X3)1 1 e . 63•设丫的分布函数为F Y (y), X 的分布函数为F x (x),密度为f x (x)则F Y (V ) P(Y y) P(X 2 y) P( ...y X ,y) FxG.y) F x ( ,y) 因为 X ~U (0, 2),所以 F X ( ,y) 0,即 F Y (y) F X G. y)1.ln x in i 1二、单项选择题(每小题 3分,共15分)1 .设A, B,C 为三个事件,且 A, B 相互独立,则以下结论中不正确的是(A) 若P(C) 1,则AC 与BC 也独立. (B) 若P(C) 1,则AUC 与B 也独立. (C) 若P(C) 0,则AUC 与B 也独立.J(y) F Y (y)1 _2丁x(J)0 y 4, 另解 在(0,2)上函数y 所以 2x 严格单调,反函数为h(y)其它..5f Y (y) Afx(7?)诙4孑 0 ,其它.y 4,4. P(X 1) 1 P(X P{min( X ,Y) 1} 111) eP{min( X,Y) 4 e ・ 1} P(X 1)P(Y 1)5.似然函数为L(X 1 ,L ,X n ;n(i 1n1)Xi(1叽1_ X )解似然方程得 ln L n ln(1)ln x i ln x i i 1@0的极大似然估计为EX X(D )若C B ,则A 与C 也独立• ()2•设随机变量 X~N(0,1), X 的分布函数为(x),贝U P(|X| 2)的值为(A )2[1 (2)] . ( B )2 (2)1 .(C ) 2(2).( D )1 2 (2).()3•设随机变量 X 和Y 不相关,则下列结论中正确的是(A ) X 与 Y 独立. (B ) D(X Y) DX DY .(C ) D(X Y) DX DY .(D ) D(XY) DXDY .()4•设离散型随机变量 X 和Y 的联合概率分布为(X,Y) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) P1 1 1 1 691832. X ~ N(0,1)所以 P(| X | 2) 1 P(| X | 2)1 P(2 X1 (2) ( 2) 1 [2 (2) 1] 2[1 (2)]若X,Y 独立,则 7的值为2 112(A ) -, —(A ) J—99991 15 1 (C ), — (D ) — , . ()6618185 •设总体X 的数学期望为,X 1,X 2丄,X n为来自X 的样本,则下列结论中正确的是(A ) X i 是的无偏估计量 (B ) X i 是 的极大似然估计量(C ) X 1是 的相合(一致)估计量(D ) X i 不是 的估计量.() 解:1.因为概率为1的事件和概率为 0的事件与任何事件独立,所以( A ), (B ), (C )可见A 与C 不独立.2)应选(A )都是正确的,只能选(事实上由图EX X12 3 P(X 2, Y 2)1 1 1 11— — ■ 1 、69183(- )(-391 1 23321 1丄92 918故应(A).3•由不相关的等价条件知应选(B ) 4•若X,Y 独立则有)P(X 2)P(Y 2)f(o三、(7分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1) 一个产品经检查后被认为是合格品的概率;(2) 一个经检查后被认为是合格品的产品确是合格品的概率解:设A ‘任取一产品,经检验认为是合格品’B ‘任取一产品确是合格品’则(1) P(A) P(B)P(A|B) P(B)P(A|B)0.9 0.95 0.1 0.02 0.857.P(AB) 0.9 0.95 (2) P(B| A) 0.9977 .P(A) 0.857四、(12分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5.设X为途中遇到红灯的次数,求X的分布列、分布函数、数学期望和方差.解:X的概率分布为k2 k3 3 kP(X k) cf(5)k(5)3kX 0 1 2即P27 54 36 125 125 12X的分布函数为0 , x 0,27125 ,0 x 1,F(x )81 1 x 2, 125117 2 x3, 1251 , x 3.2 6 EX3 --5 5DX c 2 3 183 --5 5 25五、(10分)设二维随机变量(X,Y)在区域 D匀分布.求(1)(X,Y)关于X的边缘概率密度;38125{(x,y)|x 0, y 0, x y 1}上服从均(2)Z X Y的分布函数与概率密(1) (X ,Y)的概率密度为f(x, y) 2, (x, y) D 0,其它.k 0,1,2,3.2 2x, 0 x 1f(x,y)dy0 ,其它(2)利用公式f Z(z) f (x, z x)dx其中f(x,z x) 2, 0 x 1,0 z x 1 x0,其它2, 0 x 1, x z 1.0,其它.当z 0 或z 1 时f z (z) 0z的分布函数为z z0 z 1 时f z(z) 2 q dx 2x02z 故Z的概率密度为f z(z)2z, 0 z 1,0,其它.0, z 0 0, z 0,fZ⑵z zf Z(y)dy 02ydy,0 z 1 2z , 0 z 1,1,1 z 1.z 1或利用分布函数法0 , z 0,F Z(Z) P(Z z) P(X Y z) 2dxdy, 0 z 1D11 , z 1.0 , z 0,2z , 0 z 1,1 , z 1.f z (z) F z⑵2z,0 ,0 z 1,其它.六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标X和纵坐标Y相互独立,且均服从N(0,22)分布.求(1)命中环形区域D {( x, y) |1 x2 y2 2}的概率;(2)命中点到目标中心距离Z X Y2的数学期望.D (1)P{X,Y) D} f(x,y)dxdyDx28dxdy 8rdrdf x(X)4 41 2 -8re 8 rdrd1 e 8 r 2dr 8 04 0r2re 丁r 2e T dr 02冷dr阪七、(11分)设某机器生产的零件长度(单位: cm ) X 〜N ( , 2),今抽取容量为样本,测得样本均值 X 10,样本方差s 2 0.16. ( 1)求的置信度为0.952区间;(2)检验假设H 。

(完整版)概率论与数理统计知识点总结(详细)

(完整版)概率论与数理统计知识点总结(详细)

《概率论与数理统计》第一章概率论的基本概念 (2)§2.样本空间、随机事件 (2)§4等可能概型(古典概型) (3)§5.条件概率 (4)§6.独立性 (4)第二章随机变量及其分布 (5)§1随机变量 (5)§2离散性随机变量及其分布律 (5)§3随机变量的分布函数 (6)§4连续性随机变量及其概率密度 (6)§5随机变量的函数的分布 (7)第三章多维随机变量 (7)§1二维随机变量 (7)§2边缘分布 (8)§3条件分布 (8)§4相互独立的随机变量 (9)§5两个随机变量的函数的分布 (9)第四章随机变量的数字特征 (10)§1.数学期望 (10)§2方差 (11)§3协方差及相关系数 (11)第五章 大数定律与中心极限定理 (12)§1. 大数定律 ...................................................................................... 12 §2中心极限定理 . (13)第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。

(完整版)概率论与数理统计习题集及答案

(完整版)概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。

§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。

(完整版)概率论与数理统计习题答案详解版(廖茂新复旦版)

(完整版)概率论与数理统计习题答案详解版(廖茂新复旦版)

概率论与数理统计习题答案详解版(廖茂新复旦版)习题一1. 设A,B,C 为三个事件,用A,B,C 的运算式表示下列事件:(1)A 发生而B与 C 都不发生;(2)A,B,C 至少有一个事件发生;(3)A,B,C 至少有两个事件发生;(4)A,B,C 恰好有两个事件发生;(5)A,B至少有一个发生而 C 不发生;(6)A,B,C 都不发生.解:(1)A BC或 A B C或 A (B∪C).(2)A∪B∪C.(3)(AB)∪(AC)∪(BC).(4)(AB C )∪(AC B )∪(BC A).(5)(A∪B)C.(6) A B C 或ABC.2. 对于任意事件A,B,C,证明下列关系式:(1)(A+B)(A+B )( A + B)( A + B )= ;(2)AB+A B +A B+A B AB= AB;(3)A-(B+C)= (A-B)-C. 证明:略.3.设A,B为两事件,P(A)=0.5,P(B)=0.3,P(AB)=0.1,求:(1)A发生但B不发生的概率;(2)A,B 都不发生的概率;(3)至少有一个事件不发生的概率.解(1)P(A B )=P(A-B)=P(A-AB)=P(A)-P(AB)=0.4;(2) P(AB)=P( A B)=1-P(A∪B)=1-0.7=0.3;(3) P(A∪B)=P(AB )=1-P(AB)=1-0.1=0.9.4.调查某单位得知。

购买空调的占15%,购买电脑占12%,购买DVD 的占20%;其中购买空调与电脑占6%,购买空调与DVD占10%,购买电脑和DVD占5%,三种电器都购买占2%。

求下列事件的概率。

(1)至少购买一种电器的;(2)至多购买一种电器的;(3)三种电器都没购买的.解:(1)0.28, (2)0.83, (3)0.725.10 把钥匙中有 3 把能打开门,今任意取两把,求能打开门的概率。

解:8/156. 任意将10 本书放在书架上。

其中有两套书,一套 3 本,另一套4 本。

(完整版)《概率论与数理统计》讲义

(完整版)《概率论与数理统计》讲义

第一章 随机事件和概率 第一节 基本概念1、排列组合初步(1)排列组合公式)!(!n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。

)!(!!n m n m C n m -=从m 个人中挑出n 个人进行组合的可能数。

例1.1:方程xx x C C C 76510711=-的解是 A . 4 B . 3 C . 2 D . 1例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少?(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。

(3)乘法原理(两个步骤分别不能完成这件事):m ×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。

例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法?例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少?例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜色,且相邻区域的颜色必须不同,则共有不同的涂法A.120种B.140种 C.160种D.180种(4)一些常见排列①特殊排列②相邻③彼此隔开④顺序一定和不可分辨例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单?①3个舞蹈节目排在一起;②3个舞蹈节目彼此隔开;③3个舞蹈节目先后顺序一定。

例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法?例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法?①重复排列和非重复排列(有序)例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法?②对立事件例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法?例1.11:15人中取5人,有3个不能都取,有多少种取法?例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?③ 顺序问题例1.13:3白球,2黑球,先后取2球,放回,2白的种数?(有序) 例1.14:3白球,2黑球,先后取2球,不放回,2白的种数?(有序) 例1.15:3白球,2黑球,任取2球,2白的种数?(无序)2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

(完整版)概率论与数理统计试题库

(完整版)概率论与数理统计试题库

《概率论与数理统计》试题(1)判断题(本题共15分,每小题3分。

正确打“V” ,错误打“X” )⑴对任意事件A和B ,必有P(AB)=P(A)P(B) ()⑵ 设A、B是Q中的随机事件,则(A U B)-B=A ()⑶ 若X服从参数为入的普哇松分布,则EX=DX⑷假设检验基本思想的依据是小概率事件原理1 n _⑸ 样本方差S:= —(X i X )2是母体方差DX的无偏估计(n i i、(20分)设A、B、C是Q中的随机事件,将下列事件用A、B、C表示出来(1) 仅A发生,B、C都不发生;(2) 代B,C中至少有两个发生;(3) 代B,C中不多于两个发生;(4) 代B,C中恰有两个发生;(5) 代B,C中至多有一个发生。

三、(15分)把长为a的棒任意折成三段,求它们可以构成三角形的概率四、(10分)已知离散型随机变量X的分布列为X 2 1 0 1 31 1 1 1 11P5 6 5 15 302 求Y X的分布列.1五、(10分)设随机变量X具有密度函数f(x) -e|x|, V x V2求X的数学期望和方差•六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求P(14 X 30).七、(15分)设X1 ,X2,L ,X n是来自几何分布k 1P(X k) p(1 p) , k 1,2,L , 0 p 1 ,的样本,试求未知参数p的极大似然估计•X表示在x 0 0.5 1 1.5 2①(x ) 0.500 0.691 0.841 0.933 0.9772.5 30.994 0.999《概率论与数理统计》试题(1)评分标准⑴ X;(2) X;⑶“;⑷";(5) X o 解(1) ABC(2)ABU AC U BC 或 ABC U ABC U ABC U ABC ;(3) AUBUC 或 ABC U ABC U ABC U ABC U ABC U ABC U ABC ; (4) ABC U ABC U ABC ;(5) AB U AC U BC 或 ABC U ABC U ABC U ABC六解X “ P(14 ^b(k;100,0.20), EX=100 X 0.2=20, DX=100 X 0.2 X 0.8=16.-- --5分 分 30 20 14 20、 X 30) ( --------- )( --------------- ) ------------------ V16 J16 ------10(2.5) ( 1.5)=0.994+0.933—10.927. -------------------------------------n——15分七解n x nL(X 1, L ,x n ;p)p(1 p)x i1 p n(1 p)i1---------5分 -------------------------------------- 10 分每小题4分;解 设A '三段可构成三角形'又三段的长分别为x,y,a x y ,Oxa, 0 ya, Oxy a ,不等式构成平面域S .Aa A 发生 0 x —, 02不等式确定S 的子域A , 所以a a y , x y a2 2------------------------------------ 10A 的面积 1S 的面积 4---------------------------------------- 15则 分分分四 解Y 的分布列为Y 0 1 4 91 7 1 11P — ----- — —5 30 5 30Y 的取值正确得2分, 分布列对一组得 2分; 五 解 EXx 2 凶 dx 0, (因为被积函数为奇函数)2D X EX 22 x 1 |x| 1 —e dx x 2e x dx22 xx e0 2 xe x dx 0------------------------- 4 分 2[ xe x 0e x dx] 2.In L n In p d In L n dp p (X i n )l n(1 p),i 1 X i n @0, --------------------------- 10 分 解似然方程 n n X in i 1 得p 的极大似然估计 ------------------------------------------------------------------- 15 分 《概率论与数理统计》期末试题(2) 与解答一、填空题(每小题 3分,共15分) 1. 设事件 代B 仅发生一个的概率为 0.3,且P(A) P(B) 0.5,则 代B 至少有一个不发 生的概率为 ___________ . 2. __________________________________________________________________________ 设随机变量X 服从泊松分布,且P(X 1) 4P(X 2),则P(X 3) _______________________ . 23. _______________________ 设随机变量X 在区间(0,2)上服从均匀分布,则随机变量Y X 在区间(0,4)内的概率 密度为f Y (y) . 的指数分布,P(X 1) e 2,则4. 设随机变量 X,Y 相互独立,且均服从参数为5._______ , P{min( X ,Y) 1} = ____ 设总体X 的概率密度为 (1)x , 0 x 1, f (x)0, 其它 1.X 1 ,X 2, ,X n 是来自X 的样本,则未知参数 的极大似然估计量为 ___________解:1. P(AB AB) 0.3即 0.3 P(AB) P(AB) P(A) P(AB) P(B) P(AB) 0.5 2P(AB)2所以 P(AB) 0.1P(A B) P(AB) 1 P(AB) 092.P(X 1) P(X 0) P(X 1) e e , P(X 2) e由 P(X 1) 4P(X 2)知e e2 2e即2 21 0解得1,故P(X3)1 1 e . 63•设丫的分布函数为F Y (y), X 的分布函数为F x (x),密度为f x (x)则F Y (V ) P(Y y) P(X 2 y) P( ...y X ,y) FxG.y) F x ( ,y) 因为 X ~U (0, 2),所以 F X ( ,y) 0,即 F Y (y) F X G. y)1.ln x in i 1二、单项选择题(每小题 3分,共15分)1 .设A, B,C 为三个事件,且 A, B 相互独立,则以下结论中不正确的是(A) 若P(C) 1,则AC 与BC 也独立. (B) 若P(C) 1,则AUC 与B 也独立. (C) 若P(C) 0,则AUC 与B 也独立.J(y) F Y (y)1 _2丁x(J)0 y 4, 另解 在(0,2)上函数y 所以 2x 严格单调,反函数为h(y)其它..5f Y (y) Afx(7?)诙4孑 0 ,其它.y 4,4. P(X 1) 1 P(X P{min( X ,Y) 1} 111) eP{min( X,Y) 4 e ・ 1} P(X 1)P(Y 1)5.似然函数为L(X 1 ,L ,X n ;n(i 1n1)Xi(1叽1_ X )解似然方程得 ln L n ln(1)ln x i ln x i i 1@0的极大似然估计为EX X(D )若C B ,则A 与C 也独立• ()2•设随机变量 X~N(0,1), X 的分布函数为(x),贝U P(|X| 2)的值为(A )2[1 (2)] . ( B )2 (2)1 .(C ) 2(2).( D )1 2 (2).()3•设随机变量 X 和Y 不相关,则下列结论中正确的是(A ) X 与 Y 独立. (B ) D(X Y) DX DY .(C ) D(X Y) DX DY .(D ) D(XY) DXDY .()4•设离散型随机变量 X 和Y 的联合概率分布为(X,Y) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) P1 1 1 1 691832. X ~ N(0,1)所以 P(| X | 2) 1 P(| X | 2)1 P(2 X1 (2) ( 2) 1 [2 (2) 1] 2[1 (2)]若X,Y 独立,则 7的值为2 112(A ) -, —(A ) J—99991 15 1 (C ), — (D ) — , . ()6618185 •设总体X 的数学期望为,X 1,X 2丄,X n为来自X 的样本,则下列结论中正确的是(A ) X i 是的无偏估计量 (B ) X i 是 的极大似然估计量(C ) X 1是 的相合(一致)估计量(D ) X i 不是 的估计量.() 解:1.因为概率为1的事件和概率为 0的事件与任何事件独立,所以( A ), (B ), (C )可见A 与C 不独立.2)应选(A )都是正确的,只能选(事实上由图EX X12 3 P(X 2, Y 2)1 1 1 11— — ■ 1 、69183(- )(-391 1 23321 1丄92 918故应(A).3•由不相关的等价条件知应选(B ) 4•若X,Y 独立则有)P(X 2)P(Y 2)f(o三、(7分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1) 一个产品经检查后被认为是合格品的概率;(2) 一个经检查后被认为是合格品的产品确是合格品的概率解:设A ‘任取一产品,经检验认为是合格品’B ‘任取一产品确是合格品’则(1) P(A) P(B)P(A|B) P(B)P(A|B)0.9 0.95 0.1 0.02 0.857.P(AB) 0.9 0.95 (2) P(B| A) 0.9977 .P(A) 0.857四、(12分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5.设X为途中遇到红灯的次数,求X的分布列、分布函数、数学期望和方差.解:X的概率分布为k2 k3 3 kP(X k) cf(5)k(5)3kX 0 1 2即P27 54 36 125 125 12X的分布函数为0 , x 0,27125 ,0 x 1,F(x )81 1 x 2, 125117 2 x3, 1251 , x 3.2 6 EX3 --5 5DX c 2 3 183 --5 5 25五、(10分)设二维随机变量(X,Y)在区域 D匀分布.求(1)(X,Y)关于X的边缘概率密度;38125{(x,y)|x 0, y 0, x y 1}上服从均(2)Z X Y的分布函数与概率密(1) (X ,Y)的概率密度为f(x, y) 2, (x, y) D 0,其它.k 0,1,2,3.2 2x, 0 x 1f(x,y)dy0 ,其它(2)利用公式f Z(z) f (x, z x)dx其中f(x,z x) 2, 0 x 1,0 z x 1 x0,其它2, 0 x 1, x z 1.0,其它.当z 0 或z 1 时f z (z) 0z的分布函数为z z0 z 1 时f z(z) 2 q dx 2x02z 故Z的概率密度为f z(z)2z, 0 z 1,0,其它.0, z 0 0, z 0,fZ⑵z zf Z(y)dy 02ydy,0 z 1 2z , 0 z 1,1,1 z 1.z 1或利用分布函数法0 , z 0,F Z(Z) P(Z z) P(X Y z) 2dxdy, 0 z 1D11 , z 1.0 , z 0,2z , 0 z 1,1 , z 1.f z (z) F z⑵2z,0 ,0 z 1,其它.六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标X和纵坐标Y相互独立,且均服从N(0,22)分布.求(1)命中环形区域D {( x, y) |1 x2 y2 2}的概率;(2)命中点到目标中心距离Z X Y2的数学期望.D (1)P{X,Y) D} f(x,y)dxdyDx28dxdy 8rdrdf x(X)4 41 2 -8re 8 rdrd1 e 8 r 2dr 8 04 0r2re 丁r 2e T dr 02冷dr阪七、(11分)设某机器生产的零件长度(单位: cm ) X 〜N ( , 2),今抽取容量为样本,测得样本均值 X 10,样本方差s 2 0.16. ( 1)求的置信度为0.952区间;(2)检验假设H 。

概率论与数理统计(完整版)

概率论与数理统计(完整版)
在其中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取后不放回, 连取两次, 求在第1次取到偶数的条 件下, 第2次取到奇数的概率.
32
(二) 乘法公式:
由条件概 ,立率 即P 定 可 (A 义 0 得 )则 , 有 P(AP B()A)|A P)(.B
33
例3. r只红球○ t只白球○
每次任取一只球观 察颜色后, 放回, 再 放回a只同色球
在袋中连续取球4次, 试求第一、二次取到红球且 第三、四次取到白球的概率.
34
(三) 全概率公式和贝叶斯公式:
1. 样本空间的划分
定义 : 若B1,B2,,Bn一组事件 : 满足
(iB i) B j φ ,i ji,j, 12,.,.n .,,
(1) 样本空间中的元素只有有限个;
(2) 试验中每个基本事件发生的可能性相同.
例如:掷一颗骰子,观察出现的点数.
概率的古典定义:
对于古典概型, 样本空间S={1, 2, … , n}, 设事件A包 含S的 k 个样本点,则事件A的概率定义为
A中 的 基 本 事k件 数 P(A)S中的基本事n件总数 15
P(B| A) P(AB) P(A)
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即 10 对于每一 B有 个 , 1 事 P(件 |B A)0.
20 P (|SA) 1.
30 设B1,B2,两两互不,相 则容
P(Bi |A)P(Bi |A.)
i1
k1
3.积事件: 事件A B={x|x A 且 x B}称A与B的
积,即事件A与BA同时发生. A B 可简记为AB.

(完整版)《概率论与数理统计》习题及答案选择题

(完整版)《概率论与数理统计》习题及答案选择题

·151·《概率论与数理统计》习题及答案选 择 题单项选择题1.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为( ). (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”; (C )“甲种产品滞销或乙种产品畅销”; (D )“甲种产品滞销”.解:设B =‘甲种产品畅销’,C =‘乙种产品滞销’,A BC = A BC B C ===‘甲种产品滞销或乙种产品畅销’. 选C.2.设,,A B C 是三个事件,在下列各式中,不成立的是( ).(A )()A B B A B -=;(B )()AB B A -=; (C )()A B AB ABAB -=;(D )()()()A B C A C B C -=--.解:()()()A B B AB B A B BB A B -=== ∴A 对. ()()A B B A B B AB BB AB A B A -====-≠ B 不对()()().AB AB A B B A ABAB -=--= C 对 ∴选B.同理D 也对.3.若当事件,A B 同时发生时,事件C 必发生,则( ). (A )()()()1P C P A P B ≤+-; (B )()()()1P C P A P B ≥+-; (C )()()P C P AB =; (D )()().P C P AB =解:()()()()()()()1AB C P C P AB P A P B P A B P A P B ⊂⇒≥=+-≥+-∴ 选B.4.设(),(),()P A a P B b P AB c ===,则()P AB 等于( ).(A )a b -; (B )c b -; (C )(1)a b -; (D )b a -. 解:()()()()()()()P AB P A B P A P AB a P A P B P AB c b =-=-=--+=-·152· ∴ 选B.5.设,A B 是两个事件,若()0P AB =,则( ).(A ),A B 互不相容; (B )AB 是不可能事件; (C )()0P A =或()0P B =; (D )AB 未必是不可能事件. 解:()0P AB AB =⇒=∅/. ∴ 选D.6.设事件,A B 满足AB =∅,则下列结论中肯定正确的是( ). (A ),A B 互不相容; (B ),A B 相容; (C )()()()P AB P A P B =; (D )()()P A B P A -=. 解:,A B 相容 ∴ A 不对. ,,A B B A AB ===Φ ∴ B 错. ()0AB P AB =Φ⇒=,而()()P A P B 不一定为0 ∴ C 错. ()()()()P A B P A P AB P A -=-=. ∴ 选D. 7.设0()1,(|)(|)1P B P A B P A B <<+=,则( ) (A ),A B 互不相容; (B ),A B 互为对立; (C ),A B 不独立; (D ),A B 相互独立.解:()()()()()1()1()()()1()()1()P AB P AB P AB P A B P AB P A B P B P B P B P B P B P B -=+=+=+-- ()(1())()(1()()())()(1())P AB P B P B P A P B P AB P B P B -+--+=-⇒22()()()()()()()P B P B P AB P B P A P B P B -=+--()()()P AB P A P B ∴= ∴ 选D. 8.下列命题中,正确的是( ). (A )若()0P A =,则A 是不可能事件; (B )若()()()P A B P A P B =+,则,A B 互不相容; (C )若()()1P AB P AB -=,则()()1P A P B +=;(D )()()()P A B P A P B -=-. 解:()()()()P AB P A P B P AB =+-()()()()1P A B P AB P A P B ⇒-=+=由()0P A A =⇒=Φ/, ∴ A 、B 错.只有当A B ⊃时()()()P A B P A P B -=-,否则不对. ∴ 选C.·153·9.设,A B 为两个事件,且B A ⊂,则下列各式中正确的是( ). (A )()()P AB P A =; (B )()()P AB P A =;(C )(|)()P B A P B =; (D )()()()P B A P B P A -=-. 解:()()B A AB A P A B P A ⊂⇒=⇒= ∴选A.10.设,A B 是两个事件,且()(|)P A P A B ≤;(A )()(|)P A P A B =; (B )()0P B >,则有( ) (C )()(|)P A P A B ≥; (D )前三者都不一定成立.解:()(|)()P AB P A B P B =要与()P A 比较,需加条件. ∴选D. 11.设120()1,()()0P B P A P A <<>且1212(|)(|)(|)P A A B P A B P A B =+,则下列等式成立的是( ). (A )1212(|)(|)(|)P A A B P A B P A B =+; (B )1212()()()P A B A B P A B P A B =+; (C )1212()(|)(|)P A A P A B P A B =+;(D )1122()()(|)()(|)P B P A P B A P A P B A =+. 解1:121212(|)(|)(|)(|)P A A B P A B P A B P A A B =+-12(|)(|)P A B P A B =+ 1212(|)0()0P A A B P A A B ⇒=⇒=12121212()()()()()()P A B A B P A B P A B P A A B P A B P A B =+-=+ ∴ 选B. 解2:由1212{|}(|)(|)P A A B P A B P A B =+ 得1212()()()()()P A B A B P A B P A B P B P B +=可见 1212()()()P A B A B P A B P A B =+∴ 选B.12.假设事件,A B 满足(|)1P B A =,则( ). (A )B 是必然事件; (B )()1P B =; (C )()0P A B -=; (D )A B ⊂.解:()(|)1()()()()0()P AB P B A P AB P A P A P AB P A ==⇒=⇒-=()0P A B ⇒-= ∴ 选C.13.设,A B 是两个事件,且,()0A B P B ⊂>,则下列选项必然成立的是( ).·154· (A )()(|)P A P A B <; (B )()(|)P A P A B ≤; (C )()(|)P A P A B >; (D )()(|)P A P A B ≥.解:()()(|)()()()A B P AB P A P A B P A P B P B ⊂====≥ ()()0()1A B P A P B P B ⊂⇒≤<< ∴选B (或者:,()()()(|)(|)A B P A P AB P B P A B P A B ⊂==≤)14.设12()0,,P B A A >互不相容,则下列各式中不一定正确的是( ). (A )12(|)0P A A B =; (B )1212(|)(|)(|)P A A B P A B P A B =+; (C )12(|)1P A A B =; (D )12(|)1P A A B =.解:1212()0P A A A A =⇐=Φ1212()(|)0()P A A B P A A B P B == A 对.121212(|)(|)(|)(|)P A A B P A B P A B P A A B =+-12(|)(|)P A B P A B =+ B 对. 121212(|)(|)1(|)P A A B P A A B P A A B ==-121(|)(|)1P A B P A B =--≠ C 错.121212(|)(|)1(|)101P A A B P A A B P A A B ==-=-= D 对.∴ 选C.15.设,,A B C 是三个相互独立的事件,且0()1P C <<,则在下列给定的四对事件中不相互独立的是( ). (A )A B 与C ; (B )AC 与C ;(C )A B -与C ; (D )AB 与C . 解:[()]()()()()(1())(1())()P AB C P ABC P A P B P C P A P B P C ===--[1(()()()())]()()()P A P B P A P B P C P A B P C =-+-= A 对.()[()]()()()()P ACC P AC C P AC CC P AC P C P AC ===+-()()()P C P AC P C =≠ AC ∴与C 不独立 ∴ 选B.16.设,,A B C 三个事件两两独立,则,,A B C 相互独立的充分必要条件是( ).(A )A 与BC 独立; (B )AB 与AC 独立;(C )AB 与AC 独立; (D )A B 与A C 独立.·155·解:,,A B C 两两独立, ∴若,,A B C 相互独立则必有()()()()()()P ABC P A P B P C P A P BC == ∴A 与BC 独立.反之,如A 与BC 独立则()()()()()()P ABC P A P BC P A P B P C == ∴选A. 17.设,,A B C 为三个事件且,A B 相互独立,则以下结论中不正确的是( ). (A )若()1P C =,则AC 与BC 也独立; (B )若()1P C =,则A C 与B 也独立; (C )若()1P C =,则A C -与A 也独立;(D )若C B ⊂,则A 与C 也独立. 解:()()(),()1P AB P A P B P C ==∴概率为1的事件与任何事件独立AC ∴与BC 也独立. A 对. [()][()]()P AC B P A C B P AB BC ==()()()()()P AB P BC P ABC P A C P B =+-= ∴B 对.[()]()()()()P A C A P ACA P AC P A P C -===()()P A P AC =∴ C 对 ∴ 选D (也可举反例).18.一种零件的加工由两道工序组成. 第一道工序的废品率为1p ,第二道工序的废品率为2p ,则该零件加工的成品率为( ). (A )121p p --; (B )121p p -; (C )12121p p p p --+; (D )12(1)(1).p p -+- 解:设A =成品零件,i A =第i 道工序为成品 1,2.i = 11()1P A p =- 22()1P A p =-1212()()()()P A P A A P A P A ==12(1)(1)p p =-- 12121p p p p =--+ ∴ 选C.19.设每次试验成功的概率为(01)p p <<,现进行独立重复试验,则直到第10次试验才取得第4次成功的概率为( ).(A )44610(1)C p p -; (B )3469(1)C p p -; (C )4459(1)C p p -; (D )3369(1).C p p -解:说明前9次取得了3次成功 ∴ 第10次才取得第4次成功的概率为33634699(1)(1)C p p p C p p -=-∴ 选B.20.设随机变量X 的概率分布为(),1,2,,0kP X k b k b λ===>,则·156· ( ).(A )λ为任意正实数; (B )1b λ=+;(C )11b λ=+; (D )11b λ=-. 解:111()111k kk k k b P X K b b b λλλλλλ∞∞∞=========--∑∑∑ ∴ 11bλ=+ 选C .21.设连续型随机变量X 的概率密度和分布函数分别为()f x 和()F x ,则下列各式正确的是( ).(A )0()1f x ≤≤; (B )()()P X x f x ==; (C )()()P X x F x ==; (D )()()P X x F x =≤. 解:()()()F x P X x P X x =≤≥= ∴ 选D. 22.下列函数可作为概率密度的是( ). (A )||(),x f x ex R -=∈; (B )21(),(1)f x x R x π=∈+; (C)22,0,()0,0;xx f x x -⎧≥=<⎩(D )1,||1,()0,|| 1.x f x x ≤⎧=⎨>⎩解:A :||0222x x x e dx e dx e dx +∞+∞+∞----∞===⎰⎰⎰∴ 错.B :211arctan []1(1)22dx x x πππππ+∞+∞-∞-∞==+=+⎰ 且 21()0(1)f x x R x π=≥∈+ ∴ 选B. 23.下列函数中,可作为某个随机变量的分布函数的是( ). (A )21()1F x x =+; (B )11()arctan 2F x x π=+; (C )1(1),0()2,0;x e x F x x -⎧->⎪=⎨⎪≤⎩·157·(D )()()x F x f t dt -∞=⎰,其中() 1.f t dt +∞-∞=⎰解:对A :0()1F x <≤,但()F x 不具有单调非减性且()0F +∞= ∴A 不是. 对B :arctan 22x ππ-≤≤∴ 0()1F x ≤≤.由arctan x 是单调非减的 ∴ ()F x 是单调非减的.11()()022F ππ-∞=+⋅-= 11()122F ππ+∞=+⋅=.()F x 具有右连续性. ∴ 选B.24.设12,X X 是随机变量,其分布函数分别为12(),()F x F x ,为使12()()()F x aF x bF x =-是某一随机变量的分布函数,在下列给定的各组数值中应取( ).(A )32,55a b ==-; (B )22,33a b ==; (C )13,22a b =-=; (D )13,22a b ==.解:12()()()0F aF bF -∞=-∞--∞=,()1F a b +∞=-=,只有A 满足∴ 选A25.设随机变量X 的概率密度为()f x ,且()(),()f x f x F x -=是X 的分布函数,则对任意实数a 有( ). (A )0()1()a F a f x dx -=-⎰;(B )01()()2a F a f x dx -=-⎰;(C )()()F a F a -=;(D )()2()1F a F a -=-. 解:()()()()a a a F a f x dx f du f u du μ-+∞-∞+∞-==--=⎰⎰⎰()()a f x dx f x +∞-∞-∞=-⎰⎰001(()())a dx f x dx f x dx -∞=-+⎰⎰00111()()22a a f x dx f x dx =--=-⎰⎰由()2()1f x dx f x dx +∞+∞-∞==⎰⎰001()()2f x dx f x dx +∞-∞⇒==⎰⎰∴ 选B.26.设随机变量2~(1,2)X N ,其分布函数和概率密度分别为()F x 和·158· ()f x ,则对任意实数x ,下列结论中成立的是( ).(A )()1()F x F x =--; (B )()()f x f x =-; (C )(1)1(1)F x F x -=-+; (D )11122x x F F -+⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭. 解:2~(1,2)()X N f x ∴以1x =为对称轴对称.(1)(1)P X x P X x ∴>+=≤-即 (1)1(1)1(1)F x P X x F x -=-≤+=-+ ∴ 选C.27.设22~(,4),~(,5)X N Y N μμ,设1(4)P X p μ≤-=,2(5)P Y p μ≥+=,则( ).(A )对任意实数μ有12p p =; (B )12p p <;(C )12p p >; (D )只对μ的个别值才有12.p p =解:14(4)(1)1(1)4p P X μμμ--⎛⎫=≤-=Φ=Φ-=-Φ⎪⎝⎭25(5)1(5)11(1)5p P Y P Y μμμμ+-⎛⎫=≥+=-<+=-Φ=-Φ ⎪⎝⎭∴ 12p p = ∴ 选A (or 利用对称性)28.设2~(,)X N μσ,则随着σ的增大,概率(||)P X μσ-<的值( ).(A )单调增大; (B )单调减少; (C )保持不变; (D )增减不定.解:1)1(2)1()1()(|)(|-Φ=-Φ-Φ=+<<-=<-σμσμσμX P X P ∴ 不随σ变 ∴ 选C.29.设随机变量X 的分布函数为)(x F X ,则35-=X Y 的分布函数 )(y F Y 为( ).(A ))35(-y F X ; (B )3)(5-y F X ; (C )⎪⎭⎫⎝⎛+53y F X ; (D ).3)(51+y F X解:))3(51()35()()(+≤=≤-=≤=y X P y X P y Y P y F Y ⎪⎭⎫⎝⎛+=53y F X ∴ 选C.·159·30.设X 的概率密度为)1(1)(2x x f +=π,则X Y 2=的概率密度为( ). (A ))41(12y +π; (B )2)4(1y +π;(C ))4(22y +π; (D ))1(22y +π.解:⎪⎭⎫⎝⎛=≤=≤=≤=2)2()2()()(y F y X P y X P y Y P y F X Y∴ )4(2)41(121221)(22y y y f y f X Y +=+⋅=⎪⎭⎫ ⎝⎛=ππ ∴ 选C. 31.设随机变量X 与Y 相互独立,其概率分布分别为212111P X - 212111PY -则下列式子正确的是( ).(A )Y X =; (B )0)(==Y X P ;(C )21)(==Y X P ; (D )1)(==Y X P . 解:A 显然不对. )1,1()1,1()(==+-=-===Y X P Y X P Y X P2121212121)1()1()1()1(=⋅+⋅===+-=-==Y P X P Y P X P ∴ 选C.32.设)1,1(~),1,0(~N Y N X ,且X 与Y 相互独立,则( ).(A )21)0(=≤+Y X P ; (B )21)1(=≤+Y X P ; (C )21)0(=≤-Y X P ; (D )21)1(=≤-Y X P .解:)1,1(~)1,0(~N Y N X 且独立 ∴ )2,1(~N Y X +21)0()1()1(=Φ=>+=≤+Y X P Y X P ∴ 选B. 33.设随机变量2,1,412141101~=⎪⎪⎭⎫⎝⎛-i X i且满足1)0(21==X X P ,则==)(21X X P ( ).·160· (A )0; (B )1/4; (C )1/2; (D )1. 解:(2121P∴ )0()1()(212121==+-====X X P X X P X X P )1(21==+X X P0000=++= ∴ 选A.34.设随机变量X 取非负整数值,)1()(≥==n a n X P n ,且1=EX ,则a 的值为( ).(A )253+; (B )253-; (C )253±; (D )5/1.解:∑∑∑∑∞=∞=∞===-∞='-='====1111)1()(1n n n aX n aX nn n nX a X a naa naEX2)1(11a ax x a a X -='⎪⎭⎫⎝⎛-==∴ 253,013,)1(22±==+--=a a a a a ,但1<a . ∴ 253-=a . ∴ 选B. 35.设连续型随机变量X 的分布函数为⎪⎩⎪⎨⎧<≥-=,1,0,1,11)(4x x x x F则X 的数学期望为( ).(A )2; (B )0; (C )4/3; (D )8/3.解:⎪⎩⎪⎨⎧<≥=-114)(5x x xx f3541114144(3dx EX x dx x x x ∞∞∞-=⋅==⨯-⎰⎰34= ∴ 选C.36.已知44.1,4.2),,(~==DX EX p n B X ,则二项分布的参数为( ). (A )6.0,4==p n ; (B )4.0,6==p n ; (C )3.0,8==p n ; (D )1.0,24==p n .解:4.06.04.244.144.14.2=⇒=÷=⇒⎭⎬⎫====p q npq DX np EX 6=n∴ 选B.37.已知离散型随机变量X 的可能值为1,0,1321==-=x x x ,且89.0,1.0==DX EX ,则对应于321,,x x x 的概率321,,p p p 为( ).(A )5.0,1.0,4.0321===p p p ;(B )1230.1,0.1,0.5p p p ===; (C )4.0,1.0,5.0321===p p p ;(D )1230.4,0.5,0.5.p p p ===⎪⎭⎪⎬⎫+==+=⇒-=+-==312222319.0)1.0(89.0)(1.0p p EX EX EX DX p p EX 1230.40.10.5p p p ⎧=⎪⇒=⎨⎪=⎩ ∴ 选A.38.设)1,1(~),1,2(~-N Y N X ,且Y X ,独立,记623--=Y X Z ,则~Z __________.(A ))1,2(N ; (B ))1,1(N ; (C ))13,2(N ; (D ))5,1(N . 解:)1,1(~)1,2(~-N Y N X 且独立∴ 2)623(=--=Y X E EZ .949413DZ DX DY =+=+=.又独立正态变量的线性组合仍为正态变量,∴ ~(2,13)Z N ∴ 选C.39.设6)(),1,2(~),9,2(~=XY E N Y N X ,则)(Y X D -之值为( ).(A )14; (B )6; (C )12; (D )4. 解:),cov(2)(Y X DY DX Y X D -+=-, 246),cov(=-=-=EXEY EXY Y X 62219)(=⨯-+=-Y X D . ∴ 选B.40.设随机变量X 的方差存在,则( ).(A )22)(EX EX =; (B )22)(EX EX ≥; (C )22)(EX EX >; (D )22)(EX EX ≤.解:0)(22≥-=EX EX DX ∴ 22)(EX EX ≥. ∴ 选D. 41.设321,,X X X 相互独立,且均服从参数为λ的泊松分布,令)(31321X X X Y ++=,则2Y 的数学期望为( ).(A )λ31; (B )2λ; (C )231λλ+; (D )λλ+231.解:321X X X 独立)(~λP )3(~)(321λP X X X ++∴λ3)()(321321=++=++X X X D X X X E3)(91)](31[321321λ=++=++X X X D X X X D 2222)(λ-=-=EY EY EY∴ 322λλ+=EY ∴选C.42.设Y X ,的方差存在,且EXEY EXY =,则( ).(A )DXDY XY D =)(; (B )DY DX Y X D +=+)(;(C )X 与Y 独立; (D )X 与Y 不独立. 解:),cov(2)(Y X DY DX Y X D ++=+DY DX EXEY EXY DY DX +=-++=)(2 ∴选B.43.若随机变量Y X ,满足)()(Y X D Y X D -=+,且0>DXDY ,则必有( ).(A )Y X ,独立; (B )Y X ,不相关; (C )0=DY ; (D )0)(=XY D .解:Y X P Y X Y X D Y X D ,00),cov()()(⇒=⇒=⇒-=+不相关. ∴ 选B.44.设Y X ,的方差存在,且不等于0,则DY DX Y X D +=+)(是YX ,( ).(A )不相关的充分条件,但不是必要条件; (B )独立的必要条件,但不是充分条件; (C )不相关的必要条件,但不是充分条件; (D )独立的充分必要条件.解:由()cov(,)00D X Y DX DY X Y X ρ+=+⇔=⇔=⇔与Y 不相关 ∴ DY DX Y X D +=+)(是不相关的充要条件. A 、C 不对. 由独立DY DX Y X D +=+⇒)(,反之不成立 ∴ 选B.45.设Y X ,的相关系数1=XY ρ,则( )(A )X 与Y 相互独立; (B )X 与Y 必不相关; (C )存在常数b a ,使1)(=+=b aX Y P ; (D )存在常数b a ,使1)(2=+=b aX Y P . 解:⇔=1||XY ρ存在b a ,使1)(=+=b aX Y P ∴ 选C.46.如果存在常数)0(,≠a b a ,使1)(=+=b aX Y P ,且+∞<<DX 0,那么Y X ,的相关系数ρ为( ).(A )1; (B )–1; (C )||1ρ=; (D )||1ρ<. 解:aDX X X a b aX X Y X ==+====),cov(),cov(),cov(1以概率 DX a DY 21以概率==== ||||),cov(1a a DX a aDX DYDX Y X XY=====⋅=以概率ρ||1ρ∴=,以概率1成立. ∴ 选C.47.设二维离散型随机变量),(Y X 的分布律为则( ).(A )Y X ,不独立; (B )Y X ,独立; (C )Y X ,不相关; (D )Y X ,独立且相关.解:1.0)0,0(===Y X P)2.01.0)(25.005.01.0()0()0(+++===Y P X P 12.03.04.0=⨯= )0()0()0,0(==≠==Y P X P Y X P ∴ X 与Y 不独立. ∴ 选A.48.设X 为连续型随机变量,方差存在,则对任意常数C 和0>ε,必有( ).(A )εε/||)|(|C X E C X P -=≥-; (B )εε/||)|(|C X E C X P -≥≥-; (C )εε/||)|(|C X E C X P -≤≥-; (D )2/)|(|εεDX C X P ≤≥-. 解:||||||(||)()()X C X C X C P X C f x dx f x dx εεεε-≥-≥--≥=≤⎰⎰||1()||X C f x dx E X C εε+∞-∞-≤=-⎰∴ 选C.49.设随机变量X 的方差为25,则根据切比雪夫不等式,有)10|(|<-EX X P ( ).(A )25.0≤; (B )75.0≤; (C )75.0≥; (D )25.0≥. 解:75.0431002511)10|(|2==-=-≥<-εDXEX X P ∴ 选C.50.设 ,,21X X 为独立随机变量序列,且i X 服从参数为λ的泊松分布,,2,1=i ,则( ).(A ))(lim 1x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λλ;(B )当n 充分大时,∑=ni iX1近似服从标准正态分布; (C )当n 充分大时,∑=ni iX1近似服从),(λλn n N ;(D )当n 充分大时,)()(1x x XP ni iΦ≈≤∑=.解:由独立同分布中心极限定理∑∞→=⇒nn i iX1近似服从),(λλn n N∴ 选C51.设 ,,21X X 为独立随机变量序列,且均服从参数为λ的指数分布,则( ).(A ))(/lim 21x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λλ; (B ))(lim 1x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λ;(C ))(/11lim 21x x X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λλ; (D )).(lim 1x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λ解:λ1=i EX 21λ=i DX λnX E n i =⎪⎭⎫ ⎝⎛∑1 21λn X D n i =⎪⎭⎫ ⎝⎛∑由中心极限定理⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑∞→x n nX P n i n 21lim λλ⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-=∑∞→x n n X P n i n 1lim λ)(x Φ=. ∴ 选B.52.设4321,,,X X X X 是总体),(2σμN 的样本,μ已知,2σ未知,则不是统计量的是( ).(A )415X X +; (B )41ii Xμ=-∑;(C )σ-1X ; (D )∑=412i iX.统计量是不依赖于任何未知参数的连续函数. ∴ 选C.53.设总体n X X X p B X ,,,),,1(~21 为来自X 的样本,则=⎪⎭⎫ ⎝⎛=n k X P ( ).(A )p ; (B )p -1;(C )k n k k n p p C --)1(; (D )k n k k n p p C --)1(.解:n X X X 21相互独立且均服从),1(p B 故 ∑=ni ip n B X1),(~即 ),(~p n B X n 则()()(1)k k n k n k P X P nX k C p p n-====- ∴ 选C.54.设n X X X ,,,21 是总体)1,0(N 的样本,X 和S 分别为样本的均值和样本标准差,则( ).(A ))1(~/-n t S X ; (B ))1,0(~N X ;(C ))1(~)1(22--n S n χ; (D ))1(~-n t X n .解:∑==ni i X n X 11 0=X E ,)1,0(~112n N X n n n X D ∴== B 错 )1(~)1(222--n S n χσ )1(~)1(1)1(2222--=-∴n S n S n χ)1(~-n t n SX . ∴ A 错.∴ 选C.55.设n X X X ,,,21 是总体),(2σμN 的样本,X 是样本均值,记=21S∑∑∑===--=-=--n i n i n i i i i X n S X X n S X X n 1112232222)(11,)(1,)(11μ,∑=-=n i i X n S 1224)(1μ,则服从自由度为1-n 的t 分布的随机变量是( ).(A )1/1--=n S X T μ; (B )1/2--=n S X T μ;(C )nS X T /3μ-=; (D )n S X T /4μ-=解:)1(~)(2212--∑=n X Xni iχσ)1,0(~N n X σμ-)1(~1)(1122----=∑=n t n X XnX T ni iσσμ)1(~11/)(222---=--=n t n S X n nS n X T μμ ∴ 选B.56.设621,,,X X X 是来自),(2σμN 的样本,2S 为其样本方差,则2DS 的值为( ).(A )431σ; (B )451σ; (C )452σ; (D ).522σ 解:2126,,,~(,),6X X X N n μσ= ∴)5(~5222χσS由2χ分布性质:1052522=⨯=⎪⎪⎭⎫ ⎝⎛σS D即442522510σσ==DS ∴ 选C.57.设总体X 的数学期望为n X X X ,,,,21 μ是来自X 的样本,则下列结论中正确的是( ).(A )1X 是μ的无偏估计量; (B )1X 是μ的极大似然估计量; (C )1X 是μ的一致(相合)估计量; (D )1X 不是μ的估计量. 解:11EX EX X μ==∴是μ的无偏估计量.∴ 选A.58.设n X X X ,,,21 是总体X 的样本,2,σμ==DX EX ,X 是样本均值,2S 是样本方差,则( ).(A )2~,X N n σμ⎛⎫ ⎪⎝⎭; (B )2S 与X 独立;(C ))1(~)1(222--n S n χσ; (D )2S 是2σ的无偏估计量. 解:已知总体X 不是正态总体 ∴(A )(B )(C )都不对.∴ 选D.59.设n X X X ,,,21 是总体),0(2σN 的样本,则( )可以作为2σ的无偏估计量.(A )∑=n i i X n 121; (B )∑=-n i i X n 1211; (C )∑=n i i X n 11; (D )∑=-ni i X n 111. 解:2222)(,0σ==-==i i i i i EX EX EX DX EX22121)1(σσ=⋅=∑n nX n E n i∴ 选A.60.设总体X 服从区间],[θθ-上均匀分布)0(>θ,n x x ,,1 为样本,则θ的极大似然估计为( )(A )},,max {1n x x ; (B )},,min{1n x x (C )|}|,|,max {|1n x x (D )|}|,|,min{|1n x x解:1[,]()20x f x θθθ⎧∈-⎪=⎨⎪⎩其它似然正数∏==ni i n x f x x L 11),();,,(θθ 1,||1,2,,(2)0,i nx i n θθ⎧≤=⎪=⎨⎪⎩其它此处似然函数作为θ函数不连续 不能解似然方程求解θ极大似然估计∴ )(θL 在)(n X =θ处取得极大值 |}|,|,max{|ˆ1nn X X X ==θ ∴ 选C.。

概率论与数理统计答案完整版

概率论与数理统计答案完整版

概率论与数理统计答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】习题答案第1章三、解答题1.设P (AB ) = 0,则下列说法哪些是正确的 (1) A 和B 不相容; (2) A 和B 相容; (3) AB 是不可能事件; (4) AB 不一定是不可能事件; (5) P (A ) = 0或P (B ) = 0 (6) P (A – B ) = P (A ) 解:(4) (6)正确.2.设A ,B 是两事件,且P (A ) = ,P (B ) = ,问: (1) 在什么条件下P (AB )取到最大值,最大值是多少 (2) 在什么条件下P (AB )取到最小值,最小值是多少 解:因为)()()()(B A P B P A P AB P -+≤,又因为)()(B A P B P ≤即.0)()(≤-B A P B P 所以(1) 当)()(B A P B P =时P (AB )取到最大值,最大值是)()(A P AB P ==.(2) 1)(=B A P 时P (AB )取到最小值,最小值是P (AB )=+=. 3.已知事件A ,B 满足)()(B A P AB P =,记P (A ) = p ,试求P (B ).解:因为)()(B A P AB P =,即)()()(1)(1)()(AB P B P A P B A P B A P AB P +--=-== ,所以 .1)(1)(p A P B P -=-=4.已知P (A ) = ,P (A – B ) = ,试求)(AB P .解:因为P (A – B ) = ,所以P (A )– P(AB ) = , P(AB ) = P (A )– , 又因为P (A ) = ,所以P(AB ) =– =,6.0)(1)(=-=AB P AB P .5. 从5双不同的鞋子种任取4只,问这4只鞋子中至少有两只配成一双的概率是多少 解:显然总取法有410C n=种,以下求至少有两只配成一双的取法k :法一:分两种情况考虑:15C k=24C 212)(C +25C 其中:2122415)(C C C 为恰有1双配对的方法数法二:分两种情况考虑:!2161815C C C k ⋅⋅=+25C其中:!2161815C C C ⋅⋅为恰有1双配对的方法数法三:分两种情况考虑:)(142815C C C k-=+25C其中:)(142815C C C -为恰有1双配对的方法数法四:先满足有1双配对再除去重复部分:2815C C k=-25C法五:考虑对立事件:410C k=-45C 412)(C其中:45C 412)(C 为没有一双配对的方法数法六:考虑对立事件:!4141618110410C C C C C k ⋅⋅⋅-=其中:!4141618110C C C C ⋅⋅⋅为没有一双配对的方法数所求概率为.2113410==C k p6.在房间里有10个人,分别佩戴从1号到10号的纪念章,任取3人记录其纪念章的号码.求: (1) 求最小号码为5的概率; (2) 求最大号码为5的概率.解:(1) 法一:12131025==C C p ,法二:1213102513==A A C p (2) 法二:20131024==C C p ,法二:2013102413==A A C p 7.将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率. 解:设M 1, M 2, M 3表示杯子中球的最大个数分别为1,2,3的事件,则834)(3341==A M P , 1694)(324232=⨯=A C M P , 1614)(3143==C M P8.设5个产品中有3个合格品,2个不合格品,从中不返回地任取2个,求取出的2个中全是合格品,仅有一个合格品和没有合格品的概率各为多少解:设M 2, M 1, M 0分别事件表示取出的2个球全是合格品,仅有一个合格品和没有合格品,则3.0)(25232==C C M P ,6.0)(2512131==C C C M P ,1.0)(25221==C C M P 9.口袋中有5个白球,3个黑球,从中任取两个,求取到的两个球颜色相同的概率.解:设M 1=“取到两个球颜色相同”,M 1=“取到两个球均为白球”,M 2=“取到两个球均为黑球”,则φ==2121M M M M M 且.所以.2813C C C C )()()()(282328252121=+=+==M P M P M M P M P10. 若在区间(0,1)内任取两个数,求事件“两数之和小于6/5”的概率.解:这是一个几何概型问题.以x 和y 表示任取两个数,在平面上建立xOy 直角坐标系,如图. 任取两个数的所有结果构成样本空间 = {(x ,y ):0 x ,y 1} 事件A =“两数之和小于6/5”= {(x ,y ) : x + y 6/5} 因此2517154211)(2=⎪⎭⎫ ⎝⎛⨯-=Ω=的面积的面积A A P . 图11.随机地向半圆220x ax y -<<(a 为常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,求原点和该点的连线与x 轴的夹角小于4π的概率. 解:这是一个几何概型问题.以x 和y 表示随机地向半圆内掷一点的坐标,表示原点和该点的连线与x 轴的夹角,在平面上建立xOy 直角坐标系,如图.随机地向半圆内掷一点的所有结果构成样本空间 ={(x ,y ):220,20x ax y a x -<<<<}事件A =“原点和该点的连线与x 轴的夹角小于4π” ={(x ,y ):40,20,202πθ<<-<<<<x ax y a x }因此211214121)(222+=+=Ω=πππa aa A A P 的面积的面积.12.已知21)(,31)(,41)(===B A P A B P A P ,求)(B A P . 解:,1213141)()()(=⨯==A B P A P AB P ,6121121)|()()(=÷==B A P AB P B P 13.设10件产品中有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率是多少解:题中要求的“已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率”应理解为求“已知所取两件产品中至少有一件是不合格品,则两件均为不合格品的概率”。

(完整版)概率论与数理统计公式整理(超全版)

(完整版)概率论与数理统计公式整理(超全版)
,( , ,…, ),通常叫先验概率。 ,( , ,…, ),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。
(17)伯努利概型
我们作了 次试验,且满足
每次试验只有两种可能结果, 发生或 不发生;
次试验是重复进行的,即 发生的概率每次均一样;
每次试验是独立的,即每次试验 发生与否与其他次试验 发生与否是互不影响的。
并且同时满足P(ABC)=P(A)P(B)P(C)
那么A、B、C相互独立。
对于n个事件类似。
(15)全概公式
设事件 满足
1° 两两互不相容, ,
2° ,
则有

(16)贝叶斯公式
设事件 , ,…, 及 满足
1° , ,…, 两两互不相容, >0, 1,2,…, ,
2° , ,

,i=1,2,…n。
此公式即为贝叶斯公式。
条件概率是概率的一种,所有概率的性质都适合于条件概率。
例如P(Ω/B)=1 P( /A)=1-P(B/A)
(13)乘法公式
乘法公式:
更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有
… …… … 。
(14)独立性
①两个事件的独立性
设事件 、 满足 ,则称事件 、 是相互独立的。
则称上式为离散型随机变量 的概率分布或分布律。有时也用分布列的形式给出:

显然分布律应满足下列条件:
(1) , , (2) 。
(2)连续型随机变量的分布密度
设 是随机变量 的分布函数,若存在非负函数 ,对任意实数 ,有

则称 为连续型随机变量。 称为 的概率密度函数或密度函数,简称概率密度。

(完整版)概率论与数理统计知识点总结(免费超详细版)

(完整版)概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。

概率论与数理统计公式整理(完整版)

概率论与数理统计公式整理(完整版)

An 1) 。
①两个事件的独立性
设事件 A 、B 满足 P(AB) P( A)P(B) ,则称事件 A 、B 是相互独立的。
若事件 A 、 B 相互独立,且 P( A) 0 ,则有
P(B | A) P( AB) P( A)P(B) P(B)
P( A)
P( A)
(14)独立 性
(15)全概 公式
布,所以(0-1)分布是二项分布的特例。
5 / 27
概率论与数理统计 公式(全)
泊松分布
设随机变量 X 的分布律为 P( X k) k e , 0 , k 0,1,2, k!
则称随机变量 X 服从参数为 的泊松分布,记为 X ~ () 或
超几何分布 几何分布
者 P( )。
泊松分布为二项分布的极限分布(np=λ,n→∞)。
当 A=Ω时,P( B )=1- P(B)
(12)条件 概率
定义 设 A、B 是两个事件,且 P(A)>0,则称 P( AB) 为事件 A 发生条件下,事 P( A)
件 B 发生的条件概率,记为 P(B / A) P( AB) 。 P( A)
条件概率是概率的一种,所有概率的性质都适合于条件概率。
2 / 27
一个事件就是由 中的部分点(基本事件 )组成的集合。通常用大写字母
A,B,C,…表示事件,它们是 的子集。 为必然事件,Ø 为不可能事件。
不可能事件(Ø )的概率为零,而概率为零的事件不一定是不可能事件;同理, 必然事件(Ω)的概率为 1,而概率为 1 的事件也不一定是必然事件。
①关系: 如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生):
设事件 B1, B2 ,…, Bn 及 A 满足

概率论与数理统计课件(完整)

概率论与数理统计课件(完整)
人们在长期的实践中总结得到“概率很小的事件在一次 试验中实际上几乎是不发生的”(称之为实际推断原理)。 现在概率很小的事件在一次试验中竟然发生了,因此有理由 怀疑假设的正确性,从而推断接待站不是每天都接待来访者, 即认为其接待时间是有规定的。
1.3 频率与概率
某人向目标射击, 以A表示事件“命中目标”, P( A) =? 定义:(p8) 事件A在n次重复试验中出现nA次,则 比值nA/n称为事件A在n次重复试验中
(1) P(A) ≥0;
(2) P()=1;

(3) 可列可加性:设A1,A2,…, 是一列两两互不 相容的事件,即AiAj=,(ij), i , j=1, 2, …, 有 P( A1 A2 … )= P(A1) +P(A2)+…. 则称P(A)为事件A的概率。 (1.1)
2.概率的性质 P(8-9) (1) 有限可加性:设A1,A2,…An , 是n个两两互 不相容的事件,即AiAj= ,(ij), i , j=1, 2, …, n ,则有 P( A1 A2 … An)= P(A1) +P(A2)+… P(An); (2) 单调不减性:若事件AB,则 P(A)≥P(B) (3)事件差 A、B是两个事件, 则 P(A-B)=P(A)-P(AB)
种取法.
1、抽球问题
例1:设合中有3个白球,2个红球,现从合中 任抽2个球,求取到一红一白的概率。 解:设A-----取到一红一白
N () C
2 5
1 1 N ( A) C3 C2

CC 3 P( A) 2 C5 5
1 3
1 2
答:取到一红一白的概率为3/5
一般地,设盒中有N个球,其中有M个白 球,现从中任抽n个球,则这n个球中恰有

(完整版)概率论与数理统计试题及答案.doc

(完整版)概率论与数理统计试题及答案.doc

2008- 2009 学年第1学期概率论与数理统计(46 学时 ) A一、单项选择题(本大题共 5 小题,每小题 3 分,共 15 分)。

1、 A、 B 为两个随机事件,若P( AB)0 ,则( A) A、 B 一定是互不相容的;(B)AB一定是不可能事件;(C) AB 不一定是不可能事件;(D)P( A)0或 P(B)0 .Y 0 1 22、二维离散型随机变量( X ,Y)的分布律为X1 1/6 1/3 02 1/4 1/6 1/12F ( x, y) 为 ( X ,Y) 的联合分布函数,则F (1.5,1.5)等于(A)1/6 ;(B)1/2 ;(C)1/3 ;( D)1/4.3、 X、 Y 是两个随机变量,下列结果正确的是(A)若E( XY)EXEY ,则X、Y独立;(B)若 X、Y 不独立 , 则 X、Y 一定相关;(C)若 X、Y 相关, 则 X、Y 一定不独立;(D)若D(X Y) DX DY ,则X、Y独立.4、总体 X ~ N ( , 2 ), , 2均未知, X 1, X 2 ,L , X n 为来自 X 的一个简单样本,X 为样本 均值, S 2 为样本方差。

若 的置信度为 0.98的置信区间为 (X c S n , X c S n ) ,则常数 c 为( A )t 0.01 (n 1) ;( ) 0.01 (n) ;B t( C )t0.02(n 1) ;( )(n) .D t 0.025、随机变量 X 1, X 2 ,L , X n 独立且都服从 N (2,4)__1 n分布,则 XX i 服从n i1(A ) N (0,1) ;(B ) N (2,4 n) ;(C ) N (2 n, 4n) ;(D ) N(2, 4) .n二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)。

6、已知 A 、 B 为两个随机事件 ,若 P( A) 0.6, P( AB) 0.1,则 P( A | AB) =1.7、已知随机变量 X 服从区间 (0, 2) 上的均匀分布,则 E(2X) =( ).8、已知连续型随机变量 X 的概率密度函数为 f (x)2 x,0 x 1,则概率 P(| X | 1 2) =0,其它( ) .9、随机变量 X : b(3, 1 ), Y : b(3, 2 ) ,且 X ,Y 独立,则 D(X Y) =() .3310 、 已 知 随 机 变 量 X i , i 1,2,3 相互独立,且都服从 N(0,9)分布,若随机变量Y a( X 12X 22 X 32) :2(3) ,则常数 a =( ).三、解答题(本大题共 6 小题,每小题 10 分,共 60 分)。

(完整版)概率论与数理统计复习提纲

(完整版)概率论与数理统计复习提纲
缺点:没有充分利用总体分布提供的信息;矩估计量不具有唯一性;可能估计结果的精度比其它估计法的低
三、最大似然估计法
1. 直观想法:在试验中,事件A的概率P(A)最大, 则A出现的可能性就大;如果事件A出现了,我们认为事件A的概率最大.
2. 定义 设总体X的概率函数或密度函数为 (或 ),其中参数 未知,则X的样本 的联
(1) 设总体X的概率密度函数为f(x), 则样本的联合密度函数为
(2)设总体X的概率函数为 , 则样本的联合概率函数为
二、统计量
1. 定义
不含总体分布中任何未知参数的样本函数 称为统计量, 是 的观测值.
注:(1)统计量 是随机变量; (2)统计量 不含总体分布中任何未知参数;
(3)统计量的分布称为抽样分布.
3.样本:从总体X中,随机地抽取n个个体 ,称为总体X的容量为n的样本。
注:⑴ 样本 是一个n维的随机变量;⑵ 本书中提到的样本都是指简单随机样本,其满足2个特性:
① 代表性: 中每一个与总体X有相同的分布.② 独立性: 是相互独立的随机变量.
4.样本 的联合分布
设总体X的分布函数为F(x),则样本 的联合分布函数为
都有确定的实值P(A),满足下列性质:
(1)非负性: (2)规范性:
(3)有限可加性(概率加法公式):对于k个互不相容事件 ,有 .
则称P(A)为随机事件A的概率.
2.概率的性质
① ②
③若 ,则

注:性质的逆命题不一定成立的.如若 则 。(×)若 ,则 。(×)
三、古典概型的概率计算
古典概型:若随机试验满足两个条件:①只有有限个样本点,
合概率函数(或联合密度函数) (或
称为似然函数.
3. 求最大似然估计的步骤:

(完整版)大学概率论与数理统计公式全集

(完整版)大学概率论与数理统计公式全集

大学概率论与数理统计公式全集一、随机事件和概率1、随机事件及其概率运算律名称交换律结合律分配律德摩根律2、概率的定义及其计算公式名称求逆公式加法公式条件概率公式乘法公式全概率公式贝叶斯公式(逆概率公式)伯努利概型公式两件事件相互独立相应公式P(AB)=P(A)P(B)表达式A+B=B+A(A+B)+C=A+(B+C)=A+B+CA(B±C)=AB±ACA+B=ABAB=BA(AB)C=A(BC)=ABCA+(BC)=(A+B)(A+C)AB=A+B公式表达式P(A)=1-P(A)P(A+B)=P(A)+P(B)-P(AB)P(B A)=P(AB)P(A)P(AB)=P(A)P(B A)nP(AB)=P(B)P(A B)i iP(B)=∑P(A)P(B A)i=1P(AjB)=P(Aj)P(B Aj)∑P(A)P(B A)j ii=1∞k kPn(k)=Cnp(1-p)n-k,k=0,1,Λn;P(B A)=P(B);P(B A)=P(B A);P(B A)+P(B A)=1;P(B A)+P(B A)=1二、随机变量及其分布1、分布函数性质P(X≤b)=F(b)P(a<X≤b)=F(b)-F(a)2、离散型随机变量分布名称0–1分布B(1,p)二项分布B(n,p)泊松分布P(λ)几何分布G(p)超几何分布H(N,M,n)3、连续型随机变量分布名称均匀分布U(a,b)密度函数⎧1⎪b-a,f(x)=⎨⎪0,⎩a<x<b其他分布律P(X=k)=p k(1-p)1-k,k=0,1k kP(X=k)=Cnp(1-p)n-k,k=0,1,Λ,nP(X=k)=e-λλkk!,k=0,1,2,ΛP(X=k)=(1-p)k-1p,P(X=k)=k n-kCMCN-MnCN,k=l,l+1,Λ,min(n,M)k=0,1,2,Λ分布函数0,x<a⎧⎪⎪x-aF(x)=⎨,a≤x<bb-a⎪1,x≥b⎪⎩指数分布E(λ)正态分布N(μ,σ2)标准正态分布N(0,1)f(x)=-λx⎧⎪λe,x>0f(x)=⎨⎪其他⎩0,x<0⎧0,F(x)=⎨-λx1-e,x≥0⎩2πσ⎰2πσ⎰11x12πσe-(x-μ)22σ2-∞<x<+∞F(x)=-∞e-(t-μ)22σ2d tϕ(x)=12πe-x22-∞<x<+∞F(x)=x-∞e-(t-μ)22σ2d t三、多维随机变量及其分布1、离散型二维随机变量边缘分布p i⋅=P(X=xi)=∑P(X=x,Y=y)=∑pi jj jijp⋅j=P(Y=yj)=∑P(X=x,Y=y)=∑pi ji iij2、离散型二维随机变量条件分布p i j =P(X=xiY=yj)=P(X=xi,Y=yj)P(Y=yj)=pijP⋅j,i=1,2Λx yp j i =P(Y=yjX=xi)=P(X=xi,Y=yj)P(X=xi)=pijPi⋅,j=1,2Λ3、连续型二维随机变量(X ,Y)的联合分布函数F(x,y)=⎰-∞⎰-∞f(u,v)dvdu4、连续型二维随机变量边缘分布函数与边缘密度函数边缘分布函数:FX (x)=⎰-∞⎰-∞f(u,v)dvdu边缘密度函数:fX(x)=⎰-∞f(x,v)dvF Y (y)=x+∞+∞⎰⎰y+∞-∞-∞f(u,v)dudv fY(y)=⎰+∞-∞f(u,y)du5、二维随机变量的条件分布fY X (y x)=f(x,y)f(x,y),-∞<y<+∞fX Y(x y)=,-∞<x<+∞fX(x)fY(y)四、随机变量的数字特征1、数学期望离散型随机变量:E(X)=∑xk pk连续型随机变量:E(X)=⎰-∞xf(x)dxk=1+∞+∞2、数学期望的性质(1)E(C)=C,C为常数E[E(X)]=E(X)E(CX)=CE(X)(2)E(X±Y)=E(X)±E(Y)E(aX±b)=aE(X)±b E(C1X1+ΛCnXn)=C1E(X1)+ΛCnE(Xn)(3)若XY相互独立则:E(XY)=E(X)E(Y)(4)[E(XY)]2≤E2(X)E2(Y)3、方差:D(X)=E(X2)-E2(X)4、方差的性质(1)D(C)=0D[D(X)]=0D(aX±b)=a2D(X)D(X)<E(X-C)2(2)D(X±Y)=D(X)+D(Y)±2Cov(X,Y)若XY相互独立则:D(X±Y)=D(X)+D(Y)5、协方差:Cov(X,Y)=E(X,Y)-E(X)E(Y)若XY相互独立则:Cov(X,Y)=06、相关系数:ρXY =ρ(X,Y)=Cov(X,Y)D(X)D(Y)若XY相互独立则:ρXY=0即XY不相关7、协方差和相关系数的性质(1)Cov(X,X)=D(X)Cov(X,Y)=Cov(Y,X)(2)Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)Cov(aX+c,bY+d)=abCov(X,Y)8、常见数学分布的期望和方差分布0-1分布B(1,p)二行分布B(n,p)泊松分布P(λ)几何分布G(p)超几何分布H(N,M,n)均匀分布U(a,b)正态分布N(μ,σ2)指数分布E(λ)数学期望p方差p(1-p)np(1-p)npλ1pλ1-ppn2nMNM M N-m(1-)N N N-1 a+b2(b-a)212σ2μ1λ1λ2五、大数定律和中心极限定理1、切比雪夫不等式)D (X )若E (X )=μ,D (X )=σ2,对于任意ξ>0有P {X -E (X )≥ξ}≤D (X 或P {X -E (X )<ξ}≥1-22ξξ2、大数定律:若X1ΛXn相互独立且n →∞时,1n(1)若X 1ΛX n 相互独立,E (X i )=μi ,D (X i )=σi 2∑i =1n1Xi−−→nD n∑E (X )ii =1n且σi 21≤M 则:n ∑i =11Xi−−→nP ∑E (X ),(n →∞)ii =1n1nP −→μ(2)若X1ΛXn相互独立同分布,且E (Xi )=μi则当n →∞时:∑X i−ni =13、中心极限定理(1)独立同分布的中心极限定理:均值为μ,方差为σ2>0的独立同分布时,当n 充分大时有:∑X Y n=k =1nk -n μ~−−→N (0,1)n σ(2)拉普拉斯定理:随机变量ηn(n =1,2Λ)~B (n ,p )则对任意x 有:x →+∞lim P {ηn-npnp (1-p )≤x }=⎰x 12π-∞e-t 22dt=Φ(x )n(3)近似计算:P (a ≤∑Xk≤b )=P (a -n μ≤k =1n∑Xk =1k-n μ≤b -n μn σn σn σ)≈Φ(b -n μn σ)-Φ(a -n μn σ)六、数理统计1、总体和样本总体X 的分布函数F (x )样本(X 1,X 2Λ2、统计量(1)样本平均值:X =1n(3)样本标准差:S =Xn)的联合分布为F (x 1,x2Λx n)=∏F (x k)k =1n∑i =1n1X i(2)样本方差:S =n -12∑1(Xi-X )=n -1i =12nn ∑i =1n (Xi2-nX )21n -1∑1(X i -X ) (4)样本k 阶原点距:Ak=ni =12n ∑Xi =1k i,k =1,2Λ(5)样本k 阶中心距:Bk=M k =1n∑(Xi =1n i-X )k ,k =2,3Λ(6)次序统计量:设样本(X 1,X 2Λ序重新排列,得到x (1)≤x(2)≤Λ为样本(X 1,X 2ΛX n)X n)的观察值(x 1,x 2Λx n),将x 1,x 2Λxn按照由小到大的次≤x(n ),记取值为x (i )的样本分量为X (i ),则称X(1)≤X(2)≤Λ≤X(n )的次序统计量。

(完整版)概率论与数理统计练习题附答案详解

(完整版)概率论与数理统计练习题附答案详解

第一章《随机事件及概率》练习题一、单项选择题1、设事件A 与B 互不相容,且P (A )>0,P (B )>0,则一定有( )(A )()1()P A P B =-; (B )(|)()P A B P A =;(C )(|)1P A B =; (D )(|)1P A B =。

2、设事件A 与B 相互独立,且P (A )>0,P (B )>0,则( )一定成立 (A )(|)1()P A B P A =-; (B )(|)0P A B =;(C )()1()P A P B =-; (D )(|)()P A B P B =。

3、设事件A 与B 满足P (A )>0,P (B )>0,下面条件( )成立时,事件A 与B 一定独立(A )()()()P AB P A P B =; (B )()()()P A B P A P B =U ;(C )(|)()P A B P B =; (D )(|)()P A B P A =。

4、设事件A 和B 有关系B A ⊂,则下列等式中正确的是( )(A )()()P AB P A =; (B )()()P A B P A =U ;(C )(|)()P B A P B =; (D )()()()P B A P B P A -=-。

5、设A 与B 是两个概率不为0的互不相容的事件,则下列结论中肯定正确的是( ) (A )A 与B 互不相容; (B )A 与B 相容;(C )()()()P AB P A P B =; (D )()()P A B P A -=。

6、设A 、B 为两个对立事件,且P (A )≠0,P (B ) ≠0,则下面关系成立的是( ) (A )()()()P A B P A P B =+U ; (B )()()()P A B P A P B ≠+U ;(C )()()()P AB P A P B =; (D )()()()P AB P A P B =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在其中计算B发生的概率, 从而得到P(B|A).
例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取后不放回, 连取两次, 求在第1次取到偶数的条 件下, 第2次取到奇数的概率.
.
32
(二) 乘法公式:
由条件概 ,立率 即P 定 可 (A 义 0 得 )则 , 有 P(AP B()A)|A P)(.B
P(A 1)P(A2)P(An).(有限可 )
性3质 . 若 AB,则有
P(BA)P(B)P(A);
P (B )P (A ).
一般地有: P(B-A)=P(B)-P(AB).
.
26
性4质 .对任一 A, 事 P(A)件 1.
性5质 .对任一 A , P 事 (A)件 1P(A).
性6质 .对任意A 两 ,B有 事件 P(AB)P(A)P(B)P(A)B.
.
5
(二) 随机事件
定义 样本空间S的子集称为随机事件, 简称事件. 在一 次试验中, 当且仅当这一子集中的一个样本点出现时, 称 这一事件发生.
基本事件: 由一个样本点组成的单点集. 如:{H},{T}.
复合事件: 由两个或两个以上的基本事件复合而成的事件 为复合事件. 如:E3中{出现正面次数为奇数}.
§2. 样本空间与随机事件
(一) 样本空间:
定义 随机试验E的所有可能结果组成的集合称为 E的样 本空间, 记为S. 样本空间的元素称为样本点,用表示.
样本空间的分类:
1.离散样本空间:样本点为有限个或可列个. 例 E1,E2等. 2.无穷样本空间:样本点在区间或区域内取值. 例 灯泡的寿命{t|t≥0}.
.
16
例1. 袋中装有4只白球和2只红球. 从袋中摸球两次,每次任取一球.有两种式: (a)放回抽样; (b)不放回抽样.
求: (1)两球颜色相同的概率; (2)两球中至少有一只白球的概率.
例2. 设一袋中有编号为1,2,…,9的球共9只, 现从中任取3 只, 试求: (1)取到1号球的概率,(事件A) (2)最小号码为5的概率.(事件B)
.
33
例3. r只红球○ t只白球○
每次任取一只球观 察颜色后, 放回, 再 放回a只同色球
在袋中连续取球4次, 试求第一、二次取到红球且 第三、四次取到白球的概率.
.
34
(三) 全概率公式和贝叶斯公式:
1. 样本空间的划分
定:义 若 B1,B2,,Bn一组事:件满
(iB i) B j φ ,i ji,j, 12,.,.n .,,
E3: 将一枚硬币抛三次,观察出现正面的情况. E4: 电话交换台一分钟内接到的呼唤次数. E5: 在一批灯泡中任取一只, 测试它的寿命.
.
3
随机试验:
(1) 可在相同的条件下重复试验; (2) 每次试验的结果不止一个,且能事先明确所有可能的结 果; (3) 一次试验前不能确定会出现哪个结果.
.
4
对偶律: A B A B;
A B A B.
证明 对偶律.
.
13
例.事件 A、B、C两两互不相 则容 有,
ABC 反之 不成 立
例. 甲、乙、丙三人各射击一次,事件A1,A2,A3分别表示 甲、乙、丙射中,试说明下列事件所表示的结果:
A 2,A 2 A 3, A 1A 2, A 1 A 2, A 1A 2A 3, A 1A 2 A 2A 3 A 1A 3.
可列个A事 1, A2件 ,的和事件记 Ak.为
k1
3.积事件: 事件A B={x|x A 且 x B}称A与B的
积,即事件A与BA同时发生. A B 可简记为AB.
类似地,
事件
SA
k 1
K
为可列B 个事件A1,
A2,
...的积事件.
(2)AB
A B
(3)A B
.S
9
4.差事件:
事件A-B={x|xA且xB} 称为A与B的差. 当且仅当 A发生, B不发生时事件A-B发生. 即:
推广 P(ABC)P(A )P(B )P(C) P(A)B P(A)C P(B)C P(AB ).C
n
P (A 1 A 2 A n ) P(A i ) P(A i A j )
i1
1i jn
P(A i A jA k )
1i jk n
(
1)
n1
.
P(
A
1
A
2
A n ).
27
例4. 设P(A)=p, P(B)=q, P(AB)=r, 用p, q, r表示下列 事件的概率:
说明 当古典概型的试验结果为连续无穷多个时, 就归结为几何概率.
.
20
会面问题
例1 甲、乙两人相约在 0 到 T 这段时间内, 在预 定地点会面. 先到的人等候另一个人, 经过时间 t ( t<T ) 后离去.设每人在0 到T 这段时间内各时刻 到达该地是等可能的 , 且两人到达的时刻互不相 关. 求甲、乙两人能会面的概率.
A的 对 立 事A件 .若A与 记B互 为为 对 立 事 件 A, B, 或BA.
B A
S
BA
.
12
7.事件的运算律:
交换律: A B B A ; A B B A .
结合律: A(BC)(AB )C; A(BC)(AB )C.
分配律: A(BC )(AB)(AC ); A(BC )(AB)(AC ).
概率论与数理统计
第一章 概率论的基本概念 前言
1. 确定性现象和不确定性现象. 2. 随机现象: 在个别试验中其结果呈现出不确定性, 在 大量重复试验中其结果又具有统计规律性.
3. 概率与数理统计的广泛应用.
.
2
§1.随机试验
我们将对自然现象的一次观察或进行一次科学试验 称为试验。
举例:
E1: 抛一枚硬币,观察正(H)反(T) 面 的情 况. E2: 将一枚硬币抛三次,观察正反面出现的情况.
( 1 ) P ( A B )( ;P 2 ( A B )( ;P 3 ( A ) B )( ;4 ( A B )P .
.
28
§5. 条件概率
(一)条件概率: 设试验E的样本空间为S, A, B是事件, 要考虑
在A已经发生的条件下B发生的概率, 这就是条件概 率问题.
例1.老王的妻子一胎生了3个孩子,已知老大是女孩,求另 两个也都是女孩的概率(假设男孩、女孩出生率相同).
.
17
例3. 某接待站在某一周曾接待过12次来访, 且都是在周二 和周四来访. 问是否可以推断接待时间是有规定的?

实际推断原理:“小概率事件在一次试 验中实际上是不可能发生的”.
.
18
二、几何定义:
定义若对于一随机试验,每个样本点出现是等可能的 ,
样本空间所含的样本点个数为无穷多个,且具有非 零的 ,有限的几何度量,即 0m(),则称这一随机 试验是一几何概型的 .
.
21
蒲丰投针试验
例2 1777年,法国科学家蒲丰(Buffon)提出了投针 试验问题.平面上画有等距离为a(>0)的一些平行直 线,现向此平面任意投掷一根长为l ( <a )的针,试求 针与任一平行直线相交的概率.
a M
x
.
22
几何概型的概率的性质
(1) 对任一事件A ,有 0p(A)1;
(2 )P ( ) 1 ,P ( ) 0 ; (3) 对于两两互斥 个的 事可 A1件 ,A列 2,多 , P(A1A2)P(A1)P(A2)
A-BAAB
显然: A-A=, A- =A, A-S=
s
A B
(4)AB
.
10
5.事件的互不相容(互斥):
若 AB,则A 称 与 B 是 互 不 ,或 相 互 ,容 即 斥
A 与 B 不能同 . 时发生
B
A B
A
.
11
6. 对立事件(逆事件): 若ABS且A B,则A称 与B互为逆事件
为对立.事 即:件 在一次实 , 事 验件 A中 与B中必然有 个 发,且 生仅 有 一.个 发 生
n
(ii)Bi S,
i1
S B1
则 本称 空B1间 S,B的2,一 B个 n为划样 . 分 Bn
1. 定义: 设A, B是两个事件, 且P(A)>0, 称
P(B| A) P(AB) P(A)
为在事件A发生的条件下. 事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即 10 对于每一 B有 个 , 1 事 P(件 |B A)0.
20 P (|SA) 1.
30 设B1,B2,两 两 互 不,则 相 容
推广 P(AB)>0, 则有 P(ABC)=P(A)P(B|A)P(C|AB).
一般, 设A1, A2, …,An是n个事件,(n≥2), P(A1A2 ...An-1)>0, 则有乘法公式:
P(A1A2…An)=P(A1)P(A2|A1)…P(An-1|A1A2…An-2) P(An|A1A2…An-1).
.
7
(三)事件间的关系与事件的运算
1.包含关系和相等关系:
若事件A发生必然导致事件B发生,则称件B包含事件A,记 作AB. 若A B且A B, 即A=B, 则称A与B相等.
B
A S
(1B{x|xA或xB}称为 A与B的和事 . 件
即AB ,中至少有一 ,称个 为 A与 发 B的 生和 ,记AB.
.
19
定义 当随机试验的样本空间是某个区域,并且任 意一点落在度量 (长度, 面积, 体积) 相同的子区域 是等可能的,则事件 A 的概率可定义为
P(A) m(A)
相关文档
最新文档