复数与复变函数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章
复数与复变函数
一、 选择题 1.当i
i z
-+=
11时,5075100
z z z ++的值等于( )
(A )i (B )i - (C )1 (D )1- 2.设复数z 满足3
)2(π
=
+z
arc ,6
5)2(π=
-z arc ,那么=z (
)
(A )i 31+- (B )i +-3 (C )i 2
321+-
(D )i 2
1
23+-
3.复数)2
(
tan πθπ
θ<<-=i z 的三角表示式是( )
(A ))]2
sin()2[cos(
sec θπ
θπ
θ+++i (B ))]2
3sin()23[cos(
sec θπ
θπθ+++i (C ))]23sin()23[cos(
sec θπθπθ+++-i (D ))]2
sin()2[cos(sec θπ
θπθ+++-i 4.若z 为非零复数,则2
2z z -与z z 2的关系是( )
(A )z z z z 222≥- (B )
z z z z 222=-
(C )
z z z z 222≤-
(D )不能比较大小
5.设
y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的
轨迹是( )
(A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转
3
π,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向
量对应的复数是( )
(A )2 (B )i 31+
(C )
i -3
(D )
i +3
7.使得2
2
z
z
=成立的复数z 是( )
(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数
8.设z 为复数,则方程i z z +=+2的解是(
)
(A )i +-
4
3 (B )
i +4
3 (C )
i -4
3 (D )i --
4
3 9.满足不等式
2≤+-i
z i
z 的所有点z 构成的集合是( )
(A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程
232=-+i z 所代表的曲线是(
)
(A )中心为i 32-,半径为2的圆周
(B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为
2的圆周
(D )中心为i 32-,半径为2的圆周
11.下列方程所表示的曲线中,不是圆周的为( ) (A )
22
1
=+-z z
(B )
433=--+z z
(C )
)1(11<=--a az
a
z
(D ))0(0>=-+++c c a a z a z a z z
12.设
,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f (
)
(A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.
00)
Im()Im(lim
0z z z z x x --→(
)
(A )等于i (B )等于i - (C )等于0 (D )不存在 14.函数
),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( )
(A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续
(C )),
(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续
15.设C z ∈且
1=z ,则函数
z
z z z f 1
)(2+-=的最小值为(
)
(A )3- (B )2- (C )1- (D )1
二、填空题
1.设)
2)(3()
3)(2)(1(i i i i i z
++--+=
,则=z
2.设)2)(32(i i z +--=,则=z arg
3.设
4
3)arg(,5π=
-=i z z ,则=z
4.复数
2
2
)3sin 3(cos )5sin 5(cos θθθθi i -+的指数表示式为
5.以方程i z 1576
-=的根的对应点为顶点的多边形的面积为
6.不等式
522<++-z z 所表示的区域是曲线 的内部
7.方程
1)1(212=----z
i i
z 所表示曲线的直角坐标方程为
8.方程i
z i z +-=-+221所表示的曲线是连续点 和 的线段的垂直平分
线
9.对于映射z
i =
ω,圆周1)1(2
2=-+y x 的像曲线为
10.
=+++→)21(lim 421z z i
z
三、若复数z 满足03)21()21(=+++-+z i z i z z ,试求2
+z 的取值范围.
四、设0≥a
,在复数集C 中解方程a z z =+22.
五、设复数i z ±≠,试证
2
1z z +是实数的充要条件为
1=z 或0)(=z IM .
六、对于映射)1
(21z
z +=
ω,求出圆周4=z 的像. 七、试证1.
)0(022
1
≠≥z z z 的充要条件为2121z z z z +=+;