§3命题形式和真值表
专题03 命题形式变化及真假判定(解析版)
专题03 命题形式变化及真假判定【热点聚焦与扩展】(一)命题结构变换1、四类命题间的互化:设原命题为“若,则”的形式,则 (1)否命题:“若,则” (2)逆命题:“若,则” (3)逆否命题:“若,则”2、,(1)用“或”字连接的两个命题(或条件),表示两个命题(或条件)中至少有一个成立即可,记为 (2)用“且”字连接的两个命题(或条件),表示两个命题(或条件)要同时成立,记为3、命题的否定:命题的否定并不是简单地在某个地方加一个“不”字,对于不同形式的命题也有不同的方法(1)一些常用词的“否定”:是→不是 全是→不全是 至少一个→都没有 至多个→至少个 小于→大于等于 (2)含有逻辑联结词的否定:逻辑联接词对应改变,同时均变为:或→且 且→或(3)全称命题与存在性命题的否定全称命题: 存在性命题: 规律为:两变一不变① 两变:量词对应发生变化(),条件要进行否定 ② 一不变:所属的原集合的不变化(二)命题真假的判断:判断命题真假需要借助所学过的数学知识,但在一组有关系的命题中,真假性也存在一定的关联.1、四类命题:原命题与逆否命题真假性相同,同理,逆命题与否命题互为逆否命题,所以真假性也相同.而原命题与逆命题,原命题与否命题真假没有关联p q p ⌝q ⌝q p q ⌝p ⌝p q ∨p q ∧p q ∨p q ∧p ⌝n 1n +,p q ,p q ⌝⌝p q p ⌝q ⌝p q p ⌝q ⌝():,:,()p x M p x p x M p x ∀∈→⌝∃∈⌝():,:,()p x M p x p x M p x ∃∈→⌝∀∈⌝∀⇔∃()p x ()p x ⇒⌝x M2、,,如下列真值表所示:简而言之“一真则真” 简而言之“一假则假” 3、:与命题真假相反. 4、全称命题:真:要证明每一个中的元素均可使命题成立 假:只需举出一个反例即可 5、存在性命题:真:只需在举出一个使命题成立的元素即可 假:要证明中所有的元素均不能使命题成立【经典例题】例1、【2020年高考全国Ⅱ卷文理16】设有下列四个命题: 1p :两两相交且不过同一点的三条直线必在同一平面内.2p :过空间中任意三点有且仅有一个平面. 3p :若空间两条直线不相交,则这两条直线平行. 4p :若直线⊂l 平面α,直线⊥m 平面α,则l m ⊥.则下述命题中所有真命题的序号是 . ①41p p ∧②21p p ∧③32p p ∨⌝④ 43p p ⌝∨⌝ 【答案】①③④【思路导引】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论. 【解析】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,p q ∨p q ∧p ⌝p M M M同理3l 与2l 的交点B 也在平面α内,∴AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.【专家解读】本题的特点是注重知识的灵活应用,本题考查了空间点、线、面位置关系的判断,考查复合命题真假的判断,考查数学运算、直观想象、逻辑推理等学科素养.解题关键是正确理解空间点线面的位置关系,理解或命题、且命题、非命题的含义及其真值表.例2.【四川省宜宾市2020届高三三模】下列命题是假命题的是( )A .000sin cos x R x x ∃∈-,B .00cos 1x R x ∃∈≥,C .()01ln x x x ∀∈+∞-≥,,D .(0)tan 2x x x π∀∈>,,【答案】A【解析】因为sin cos )4x x x π-=-,其值域为[,所以A 项错误;因为cos [1,1]x ∈-,所以B 项正确;令()1ln =--f x x x ,11'()1x f x x x-=-=, 当01x <<时,'()0f x <,当1x >时,'()0f x >,所以函数()1ln =--f x x x 在(0,1)上单调减,在(1,)+∞上单调增, 所以()1ln =--f x x x 在1x =处取得最小值,且(1)0f =, 所以()0f x ≥在(0,)+∞上恒成立,所以C 项正确;借助于三角函数线,可知(0)tan 2x x x π∀∈>,,,所以D 项正确;故选:A.【专家解读】该题考查的是有关命题真假的判断,涉及到的知识点有三角函数的值域,导数的应用,属于简单题目.例3.【2020届陕西省西安中学高三四模】已知命题p :x R ∃∈,20x ->;命题q :0x ∀≥x <,则下列说法中正确的是 A .p q ∨是假命题 B .p q ∧是真命题 C .()p q ∧⌝是真命题 D .()p q ∨⌝是假命题【答案】C【解析】命题p ,003,20x x ∃=->,即命题p 为真,对命题q ,去111424x x ==>= ,所以命题q 为假,p ⌝为真 所以()p q ∧⌝是真命题,故选:C.【专家解读】(1)对于一些简单命题,判断为真,许推理证明,若判断为假,只需找出一个反例即可; (2)对于复合命题的真假判断应利用真值表;(3)也可以利用“互为逆否命题”的等价性,通过判断其逆否命题的真假来判断原命题的真假.例4.【湖南省长沙市长郡中学2020届高三三模】已知命题:p x R ∃∈,2230x x ++<,则命题p 的否定是( )A .x R ∃∈,2230x x ++>B .x R ∀∈,2230x x ++≤C .x R ∀∈,2230x x ++≥D .x R ∀∈,2230x x ++>【答案】C【解析】命题p 为特称命题,其否定为:p x R ⌝∀∈,2230x x ++≥. 故选:C.【专家解读】本题考查特称命题的否定的改写,要注意量词和结论的变化,属于基础题. 例5.【河北省鸡泽县第一中学2020年高三三模】下列命题是真命题的为( ) A .若=,则x =y B .若x 2=1,则x =1 C .若x =y ,则=D .若x <y ,则x 2<y 2【答案】A 【解析】由得x=y ,而由x 2=1得x=±1,由x=y ,不一定有意义,而x <y 得不到x 2<y 2,故选A .例6.【河南省名校联盟2020年高三三模】下列命题为真命题的个数是( ) ①{x x x ∀∈是无理数},2x 是无理数; ②若0a b ⋅=,则0a =或0b =;③命题“若220x y +=,x ∈R ,y ∈R ,则0x y ==”的逆否命题为真命题;④函数()x xe ef x x--=是偶函数.A .1B .2C .3D .4【答案】B【解析】对于①中,当x =22x =为有理数,故①错误;对于②中,若0a b ⋅=,可以有a b ⊥,不一定要0a =或0b =,故②错误;对于③中,命题“若220x y +=,x ∈R ,y ∈R ,则0x y ==”为真命题,其逆否命题为真命题,故③正确;对于④中,()()x x x xe e e ef x f x x x-----===-,且函数的定义域是(,0)(0,)-∞+∞,定义域关于原点对称,所以函数()x xe ef x x--=是偶函数,故④正确.综上,真命题的个数是2.故选:B.【专家解读】本题考查命题真假的判断,涉及全称命题的真假的判断、逆否命题真假的判断、向量垂直等价条件的应用以及函数奇偶性的判断,考查推理能力.例7.【安徽省六安市第一中学2020届高三三模】下列命题错误的是( )A .命题“若0xy =,则x ,y 中至少有一个为零”的否定是:“若0xy ≠,则x ,y 都不为零”B .对于命题0:p x R ∃∈,使得20010x x ++<,则:p x R ⌝∀∈,均有210x x ++≥C .命题“若0m >,则方程20x x m +-=有实根”的逆否命题为“若方程20x x m +-=无实根,则0m ≤”D .“1x =”是“2320x x -+=”的充分不必要条件 【答案】A【解析】A 选项中命题的否定是:若0xy =,则x ,y 都不为零,故A 不正确;B 选项是一个特称命题的否定,变化正确;C 选项是写一个命题的逆否命题,需要原来的命题条件和结论都否定再交换位置,C 正确;D 选项由前者可以推出后者,而反过来不是只推出1x =,故D 正确, 故选:A.【专家解读】本题考查了命题的否定,逆否命题,充分不必要条件,意在考查学生的推断能力.【精选精练】1.【2020届湖南长沙市第一中学高三三模】已知命题p :x R ∀∈,23x x <;命题q :x R ∃∈,321x x =-,则下列命题中为真命题的是:( ) A .p q ∧ B .p q ⌝∧ C .p q ∧⌝ D .p q ⌝∧⌝【答案】B【解析】0x =可知: 命题p :x R ∀∈,23x x <为假命题,由函数图象可知命题32:,1q x R x x ∃∈=-为真命题,所以p q ⌝∧为真命题.2.【河南省开封市2020届高三二模】已知:0p x ∀>,10x x-≥,则p ⌝为( ) A .00x ∃>,0010x x -< B .00x ∃≤,0010x x -< C .0x ∀>,10x x -< D .00x ∀≤,10x x-≥ 【答案】A【解析】因为1:0,0p x x x∀>-,是全称命题, 故p ⌝为:00x ∃>,0010x x -<;故选:A . 【专家解读】本题考查含量词命题的否定,属于基础题.3.【黑龙江省大庆实验中学2020届高三三模】下列说法错误的是( )A .命题“若2320x x -+=,则1x =”的逆否命题为:“若1x ≠,则2320x x -+≠”B .“1x >”是“||1x >”的充分而不必要条件C .若p 且q 为假命题,则p 、q 均为假命题D .命题:p “存在x ∈R ,使得210x x ++<”,则非:p “任意x ∈R ,均有210x x ++≥”【答案】C【解析】对于选项A ,命题“若2320x x -+=,则1x =”的逆否命题为:“若1x ≠,则2320x x -+≠”,即原命题为真命题;对于选项B ,当1x >时,||1x >,当||1x >,1x >或1x <,即原命题为真命题; 对于选项C ,若p 且q 为假命题,则p 、q 中至少有一个为假命题,即原命题为假命题;对于选项D ,命题:p “存在x ∈R ,使得210x x ++<”,则非:p “任意x ∈R ,均有210x x ++≥”, 即原命题为真命题;故选C.【专家解读】本题考查了命题的逆否命题的真假、充分必要条件、复合命题的真假及特称命题的否定,重点考查了逻辑推理能力,属中档题.4.【吉林省长春市2020届高考数学二模】命题p :存在实数0x ,对任意实数x ,使得()0sin sin x x x +=-恒成立;q :0a ∀>,()ln a xf x a x+=-为奇函数,则下列命题是真命题的是( ) A .p q ∧ B .()()p q ⌝∨⌝ C .()p q ∧⌝ D .()p q ⌝∧【答案】A【解析】对于命题p ,由于()sin sin x x π+=-,所以命题p 为真命题.对于命题q ,由于0a >,由0a xa x+>-解得a x a -<<,且()()1ln ln ln a x a x a x f x f x a x a x a x --++⎛⎫-===-=- ⎪+--⎝⎭,所以()f x 是奇函数,故q 为真命题.所以p q ∧为真命题. ()()p q ⌝∨⌝、()p q ∧⌝、()p q ⌝∧都是假命题.故选:A【专家解读】本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题.5.【四川省绵阳南山中学2020届高三高考仿真模拟】已知α、β是两个不同的平面,m 、n 是两条不重合的直线,命题p :“若m α⊥,m n ⊥,则//n α”;命题q :“若αβ⊥,n αβ=,m n ⊥,则m β⊥”,则下列命题为真命题的是( ) A .p q ∧ B .p q ∨C .()p q ∨⌝D .()p q ⌝∧【答案】C【解析】命题p 中,若m α⊥,m n ⊥,则n 与α可能平行,也可能n ⊂α,故命题p 为假命题; 命题q 中,若αβ⊥,n αβ=,m n ⊥,m 与β的位置关系可能是m β⊂,//m β,也可能m 与β相交,故命题q 为假命题.因此p q ∧,p q ∨,()p q ⌝∧都是假命题,()p q ∨⌝为真命题.故选:C.【专家解读】本题主要考查判断复合命题的真假,涉及线面位置关系,属于基础题型. 6.【辽宁省沈阳二中2020届高三五模试题】已知命题“x R ∃∈,使212(1)02x a x +-+≤”是假命题,则实数a 的取值范围是( ) A .(,1)-∞- B .(1,3)- C .(3,)-+∞ D .(3,1)-【答案】B【解析】因为命题“x R ∃∈,使212(1)02x a x +-+≤”是假命题,所以212(1)02x a x +-+>恒成立,所以2()114202a ∆=--⨯⨯<,解得13a -<<,故实数a 的取值范围是(1,3)-.故选B . 【专家解读】对于函数恒成立或者有解求参的问题,常用方法有:变量分离,参变分离,转化为函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.而二次函数的恒成立问题,也可以采取以上方法,当二次不等式在R 上大于或者小于0恒成立时,可以直接采用判别式法.7.【2020届重庆市南开中学高三三模】已知,x y R ∈,命题“若220x y +=,则0x =或0y =”的原命题,逆命题,否命题和逆否命题这四个命题中,真命题个数为( ) A .0B .2C .3D .4【答案】B【解析】由于220x y +=,则0x y ==,所以原命题为真命题,其逆否命题也是真命题.否命题为“若220x y +≠,则0x ≠且0y ≠”,如220,1,0x y x y ==+≠,所以否命题为假命题,故逆命题也是假命题.所以真命题的个数为2.故选:B【专家解读】本小题主要考查四种命题的真假性的判断,属于基础题. 8.【黑龙江省哈尔滨三中2020届四模试题】下列命题错误的是( ) A .若“p q ∧”为真命题,则p 与q 均为真命题 B .命题“p q ∧为真”是“p q ∨为真”的必要不充分条件C .若0:p x R ∃∈,2210x x +->,则:p x R ⌝∀∈,2210x x +-≤D .“1x =”是“1x ≥”的充分不必要条件 【答案】B【解析】若“p q ∧”为真命题,则p 与q 均为真命题,故A 正确;若“p q ∧为真,则p 真,q 真,此时“p q ∨为真成立,若“p q ∨为真,则有可能,p q 一真一假,此时“p q ∧为假,所以命题“p q ∧为真”是“p q ∨为真”的充分不必要条件,故B 错误;由特称命题的否定为全称命题可得若0:p x R ∃∈,2210x x +->,则:p x R ⌝∀∈,2210x x +-≤,故C 正确;若“1x =”,则“1x ≥”成立,反之不成立,所以“1x =”是“1x ≥”的充分不必要条件,故D 正确; 故选:B.【专家解读】本小题主要考查复合命题的真假、全称命题与特称命题的相互转化以及充分条件,必要条件等基础知识,属于基础题.9.【黑龙江省哈尔滨市第一中学2020届高三三模】下列关于命题的说法错误的是( ) A .命题“若2320x x -+=,则2x =”的逆否命题为“若2x ≠,则2320x x -+≠” B .“2a =”是“函数()log a f x x =在区间()0,∞+上为增函数”的充分不必要条件 C .“若0x 为()y f x =的极值点,则()00f x '=”的逆命题为真 D .命题p :2x ∀>,230x ->的否定是02x ∃>,0230x -≤ 【答案】C【解析】对于A ,由逆否命题的概念可得命题“若2320x x -+=,则2x =”的逆否命题为“若2x ≠,则2320x x -+≠”,故A 正确;对于B ,若2a =,则函数()log a f x x =在区间()0,∞+上为增函数;若函数()log a f x x =在区间()0,∞+上为增函数,则只需满足1a >;所以“2a =”是“函数()log a f x x =在区间()0,∞+上为增函数”的充分不必要条件,故B 正确;对于C ,“若0x 为()y f x =的极值点,则()00f x '=” 的逆命题为“若()00f x '=,则0x 为()y f x =的极值点”,对函数()3f x x =,()00f '=,但0x =不是函数()f x 的极值点,所以原命题的逆命题为假命题,故C 错误;对于D ,由全称命题的否定可知命题p :2x ∀>,230x ->的否定是02x ∃>,0230x -≤,故D 正确. 故选:C.【专家解读】本题考查了逆否命题、逆命题的改写、全称命题的否定,考查了充分条件、必要条件的判断及对数函数性质、极值点的概念,属于基础题.10.【黑龙江省哈尔滨市第一中学2020届高三6月模拟】已知命题p :棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥;命题q :棱柱的所有的侧面都是长方形或正方形,下列命题为真命题的是( ) A .p q ∧ B .p q ⌝∧C .p q ∧⌝D .p q ⌝∧⌝【答案】D【解析】对于命题p ,因为棱锥的侧棱长与底面多边形的边长相等,故棱锥的侧面为等边三角形, 如果该棱锥是六棱锥,则六个侧面顶角的和为360︒,但六棱锥的侧面的顶角和小于360︒,矛盾,故p 为假命题.对于命题q ,斜棱柱有侧面不是长方形,故命题q 为假命题. 故p q ⌝∧⌝为真命题.故选:D.【专家解读】复合命题p q ∨的真假判断为“一真必真,全假才假”,p q ∧的真假判断为“全真才真,一假必假”,p ⌝的真假判断是“真假相反”.11.【广东省肇庆市2020届高中毕业班第三次统一检测】如图,正方体1111ABCD A B C D -的棱长为1,P 为1AA 的中点,M 在侧面11AA B B 上,有下列四个命题:①若1D M CP ⊥,则BCM ∆ ②平面1A BD 内存在与11D C 平行的直线;③过A 作平面α,使得棱AD ,1AA ,11D C 在平面α的正投影的长度相等,则这样的平面α有4个;④过A 作面β与面1A BD 平行,则正方体1111ABCD A B C D -在面β. 则上述四个命题中,真命题的个数为( )A .1B .2C .3D .4【答案】C 【解析】对于①,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,如图1所示;过M 作MG ⊥平面ABCD ,G 是垂足,过G 作GH BC ⊥,交BC 于H ,连结MH ,则(0,0,0)D ,(0,1,0)C ,(1,0,0)A ,1(1,0,)2P ,(0,1,0)C ,1(0,0,1)D ,(1,1,0)B ,设(1,,)M a b ,则1(1,,1)D M a b =-,1(1,1,)2CP =-,∵1D M CP ⊥, ∴1111022D M CP a b ⋅=-+-=,解得21a b -=, ∴1CH a =-,21MG b a ==-,MH ==,∴11122BCM S BC MH ∆=⨯⨯=⋅112210=≥=,当35a =时,min ()BCM S ∆=,①正确; 对于11//D C DC ,DC平面1A BD D =,所以11D C 也与平面1A BD 相交.故②错; ③过A 作平面α,使得棱AD ,1AA ,11D C 在平面α的正投影的长度相等,因为11//D C AB ,且11D C AB =,故11D C 在平面α的正投影的长度等于AB 在平面α的正投影的长度,使得棱AD ,1AA ,11D C 在平面α的正投影的长度相等,即使得使得棱AD ,1AA ,AB 面α的正投影的长度相等,若棱AD ,1AA ,AB 面α的同侧,则α为过A 且与平面1A BD 平行的平面,若棱AD ,1AA ,AB 中有一条棱和另外两条棱分别在平面α的异侧,则这样的平面α有3个,故满足使得棱AD ,1AA ,11D C 在平面α的正投影的长度相等的平面α有4个;③正确.④过A 作面β与面1A BD 平行,则正方体1111ABCD A B C D -在面β的正投影为一个正六边形,其中1AC ⊥平面β,而1AC 分别垂直于正三角形1A BD 和11CB D ,所以根据对称性,正方体的8个顶点中,1AC 在平面β内的投影点重合与正六边形的中心,其它六个顶点投影恰是正六边形的六个顶点,且正六边形的边长等于正三角形1A BD 的外接圆半径(投影线与正三角形1A BD 、11CB D 垂直),所以正六边形的边长为sin 6023a =÷︒=,所以投影的面积为2266a ==⎝⎭.④对.故选C . 【专家解读】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力与思维能力,考查运算求解能力.12.【黑龙江省哈尔滨市第三中学校2020届高三三模】已知a R ∈,命题“存在x ∈R ,使230x ax a --≤”为假命题,则a 的取值范围为______.【答案】()12,0-【解析】命题:“存在x ∈R ,使230x ax a --≤”为假命题即230x ax a -->恒成立,则∆<0,即:2120a a ∆=+<,解得120a -<<,故实数a 的取值范围为()12,0-故答案为:()12,0-【专家解读】本题考查由命题的真假求参数的范围,考查一元二次不等式的应用,体现了等价转化的思想,属于中等题.13.【2020届湖南省永州市祁阳县高三二模】已知:()2:,21p x R x m x ∀∈>+,0:,q x R ∃∈200210x x m +--=, (1)若q 是真命题,求实数m 的取值范围;(2)若()p q ∧⌝为真命题,求实数m 的取值范围.【答案】(1)2m ≥-;(2)2m <-.【解析】(1)因为0:R,q x ∃∈200210x x m +--=为真命题,所以方程2210x x m +--=有实根,所以判别式()4410m ∆=++≥,所以实数m 的取值范围为2m ≥-.(2)()221x m x >+可化为220mx x m -+<,若:R,p x ∀∈()221x m x >+为真命题, 则220mx x m -+<对任意的x ∈R 恒成立,当0m =时,不等式可化为20x -<,显然不恒成立;当0m ≠时,有20440m m <⎧⎨-<⎩,1m ∴<-, 由(1)知,若q ⌝为真命题,则2m <-,又()p q ∧⌝为真,故p 、q ⌝均为真命题,所以实数m 需满足12m m <-⎧⎨<-⎩,解得2m <-, 所以实数m 的取值范围为2m <-.【专家解读】本题考查利用复合命题的真假求参数的取值范围;考查运算求解能力和逻辑思维能力;熟练掌握复合命题的真假判断是求解本题的关键;属于中档题.。
数理逻辑--第2讲命题公式和真值表
离散数学命题公式和真值表第2讲命题常项犹如数学中常量(a,b,c )命题变项犹如数学中变量(x,y,z )确指的或具体的命题。
命题常项命题变项不确指的或抽象的命题。
命题常项与命题变项都用p,q,r…等表示。
对命题变项p而言,p只是一个标识,可以用任何一个具体的命题替代。
命题公式将命题常项(即1,0)和命题变项用联结词和圆括号按一定的逻辑关系联结起来的符号串。
(1)(2)单个命题常项和命题变项是命题公式,称为原子公式。
若A是命题公式,则(⎤A)也是命题公式。
(3)若A,B是命题公式,则(A∧B),(A∨B),(A→B),(A↔B)也是命题公式。
(4)由有限次地应用(2)~(3)形成的符号串是命题公式。
定义2.1(命题公式)注意1设A是公式,B为A中连续的一部分,若B也是公式,则称B为A的子公式。
2公式最外层的括号可以去掉。
注意3优先级规定(1)各联结词运算的优先级为:⎤,∧,∨,→,↔。
(2)对于同一级者一目,从右向左二目,从左到右(3)括号优先,从里到外。
注意根据运算优先级的规定不必要的括号也可以去掉。
如:(p∨q)∨(⎤r)可写为p∨q∨⎤r真值表公式的解释和赋值将公式中的每个命题变项都指定一个具体的命题,抽象的公式就具有了实际的意义,成了命题,具有了真值,这称为公式的解释。
对公式的解释相当于是将指定为真(假)命题的命题变项赋值1(0)。
真命题假命题赋值1赋值0命题变项定义2.2(公式的赋值)设p1 ,p2 ,…,p n是出现在公式A中的全部的命题变项,给p1,p2,…,p n各指定一个真值,称为对A的一个赋值。
定义2.2(公式的赋值)将n个命题变项按下标顺序或字典顺序排列后,赋值就相当于一长为n的0,1字符串。
思考含有n个命题变项的公式共有多少个不同的赋值?SAT(适定性问题)给一个命题公式,它是否存在一个成真赋值?1971年Cook证明:SAT问题是(第一个)NPC问题。
定义2.3(真值表)将命题公式A在所有赋值下取值情况列成表,称做A的真值表。
命题公式真值表
说明:
(1)命题变元是没有真假值的,只有当命题变元用 确定的命题代入时,才得到一个命题,命题的真值 依赖于代换变元的那些命题的真值;
1-3 命题公式与翻译
(2) 不是所有由命题变元 ,常元 ,联结词和括号组成的字符串 都能成为命题公式.例如, P , P (Q ) 等不是命题公式.
定义 1-3.1 命题演算的合式公式,规定为: (1)单个命题变元本身是一个合式公式; (2)如果 A 是合式公式,那么 A 是合式公式; (3)如果 A 和 B 是合式公式,那么
1-3 命题公式与翻译
2、命题的翻译
练习 将下列命题符号化: (1)她既聪明又用功. (2)他虽聪明但不用功. (3)虽然这次语文考试的题目很难,但是王丽还是取得了好成绩. (4)张三或李四都可以做这件事. (5)一公安人员审查一起案件,事实如下,请将案件事实符 号化: 张三或李四盗窃了机房的一台电脑,若是张三所为,则作案 时间不能发生在午夜前;若李四的证词正确,则午夜时机房 的灯未灭; 若李四证词不正确,则作案时间发在午夜前; 午夜时机房的灯全灭了.
分配律
P (Q R) ( P Q) ( P R)
吸收律
P ( P Q) P , P ( P Q) P
1-4 真值表与等价公式
4.基本等价公式
德·摩根律 同一律 零律 否定律 (互补律) 条件式转化律 双条件转化律
( P Q) P Q , ( P Q) P Q
1-3 命题公式与翻译
1、命题公式(合式公式)
定义 1 由命题变元、常元、联结词、括号以规定的格式联结 起来的字符串称为命题公式,也称合式公式.命题公式中的命 题变元称为命题公式的分量.
例如,若 P 和 Q 是命题变元, 则下面式子均是命题公式
真值表公式分类命题定律代入置换
合式公式
原子公式
定义:单个命题变元和命题常元称为原子命题公式, 简称原子公式。
合式公式
合式公式是由下列规则生成的公式: ①单个原子公式是合式公式。 ②若A是一个合式公式,则(lA)也是一个合式公式。 ③若A、B是合式公式,则(A∧B)、(A∨B)、(A→B)和 (A B)都是合式公式。 ④只有有限次使用①、②和③生成的公式才是合式公 式。
下次课程
对偶、蕴涵和其他联结词
Thank you
AB(A→B)∧(B→A)(A∧B)∨(A∧B)
AB(AB) (13) 输出律:(A∧B)→CA→(B→C)。 (14) 归谬律:(A→B)∧(A→B)A。 上面这些定律,即是通常所说的布尔代数或逻
辑代数的重要组成部分,它们的正确性利用真
值表是不难给出证明的。
一个不确定的泛指的任意命题 定义: 以真(1)、假(0)为其变域的变元
注意:命题变元不是命题,只有用一个特定的命题取代才能确定它 的真值:真或假(对该命题变元指派真值)
命题公式
含有命题变元的断言称为命题公式 注意:不是所有由命题变元、联结词和括号所组成的字符串都能成 为命题公式。
和的区别与联系
区别:是逻辑联结词,属于目标语言中 的符号,它出现在命题公式中;不是逻 辑联结词,属于元语言中的符号,表示两 个命题公式的一种关系,不属于这两个公 式的任何一个公式中的符号。 联系:
定理: A B当且仅当AB是永真式。
等价公式的性质
① 自反性,即对任意公式A,有A A。
在公式中,对于命题变元指派真值的各种可能组合, 就确定了这个命题的各种真值情况,把它汇列成表, 就是命题公式的真值表 公式真值表构造方法:
真值表推理规则证明方法
第四章数学命题的数学设计一、真值表1、否定(非):, 设P为一个命题,称P为P的否定式,记作p,其真值表如2、合取:设p,q表示两个命题,用逻辑联结词“与”把它们连接起来成为一个新命题“p与q”,记作qp∧。
真值表如下:3、析取:设p,q表示两个命题,用逻辑联结词“或”把它们连接起来成为一个新命题“p或q”,记作qp∨。
真值表如下:4、蕴涵(如果、、、那么、、、):设p,q表示两个命题,用“如果、、、那么、、、”把它们连接起来成为一个新命题“如果p,那么q”,记作qp→。
真值表如下:5、当且仅当(等价式):设p,q 表示两个命题,把q p ↔称为p,q 的等价式,其真值表如下真值表的作用证明重言式、两个命题等价,解决逻辑推理问题 例1 q p q p ∨≡∧例2 q p q p ∨≡→其真值表如下:三、推理规则1、合取规则:p 为真q 为真, q p ∧也为真。
2、分离规则:q p →为真,p 为真,q 也为真(充分条件假言规则)。
3、全称命题为真,则特称命题也为真。
4、r p ,,→→→则r q q p 。
5、是恒真命题r p r q q p ↔→↔∧↔)()(。
6、q(T) (T) p q(T)p ↔7、qp p q q p ↔→→8、(T)p (T) )(q T q p →(否定规则)9、pq q p →→10、(T)q (T) )(p T q p ∨(选言规则)11、qqp p q p ∧∧或(联言规则)12、三段论:推理形式为如果M 是P,S 是M,那么S 是P 。
它的逻辑式为:)()()(P S M S P M →→→∧→。
由真值表可知:)()()(P S M S P M →→→∧→1≡是恒真命题。
凡是恒真命题(重言式)都可作为推理规则。
前面提到的分离规则1)(≡→∧→q p q p ,选言规则1)(≡→∧∨q p q p ,联言规则1)(≡→∧p q p ,也都是恒真命题。
分别证明如下:11)()(31)()()()(21)()()()()(1≡∨≡∨∨≡∨∧≡→∧≡∨∨∨≡∨∧∨≡→∧∨≡∨∨∨≡∨∧∨≡∧∨≡→∧→q p q p p q p p q p q p q p q p q p q p q p q p q p q p q p p q p q q p 、、、四、证明方法1、直接证明:直接从所给论题入手,以公理、定义、定理等为论据,运用逻辑推理规则来论证论题为真的证明方法。
离散数学中的命题逻辑与真值表
离散数学是数学中的一个重要分支,研究的是具有离散状态的问题。
在离散数学中,命题逻辑是一个重要的概念,它使用符号和规则来描述命题之间的关系。
而真值表则是命题逻辑中用来表示命题的真值的一种方法。
命题逻辑是一种研究命题真假关系的形式方法,它不关心命题的内容,只关注命题的逻辑结构。
在命题逻辑中,命题是指只有真假两种可能取值的陈述。
命题可以用符号表示,通常用大写字母P、Q、R等来表示,例如P表示“今天下雨”。
命题与其他符号之间通过逻辑运算符进行连接,常见的运算符有“与”(∧)、“或”(∨)和“非”(¬)等。
例如,P∧Q表示“今天下雨并且明天晴朗”,P∨Q表示“今天下雨或者明天晴朗”,¬P表示“今天不下雨”。
真值表是一种用来表示命题真值的工具,它通过给定命题的不同情况,列出所有可能的真值组合,并计算命题的真假情况。
真值表是通过行列表示的,其中每一行代表一种可能的真值组合,每一列代表一个命题或运算符。
真值表中的值可以是“真”(T)或“假”(F),分别表示命题为真或为假。
例如,对于P∧Q的真值表,一共有四种可能的真值组合(P为真Q为真、P为真Q为假、P为假Q为真、P为假Q为假),并且可以得到相应的结果(真、假、假、假)。
通过真值表,我们可以对复杂的命题逻辑进行推理和分析。
例如,如果我们希望判断命题P∧Q的真假情况,可以通过查看真值表中相应的行来得到答案。
在真值表中,只要有一组真值组合使得命题为真,那么命题就为真。
如果所有的真值组合都使得命题为假,那么命题就为假。
除了用来判断命题的真假情况,真值表还可以用来进行逻辑推理。
通过对真值表的分析,可以得到一些逻辑上的结论。
例如,如果我们希望证明一个逻辑等式成立,可以通过对真值表进行分析来判断。
如果两个命题在所有的真值组合下都有相同的真假情况,那么它们就是等价的。
在计算机科学和数理逻辑中,真值表还有广泛的应用。
计算机中的逻辑电路可以使用真值表来描述和分析,通过真值表,我们可以判断逻辑电路的输出情况。
逻辑学真值表
例如:用真值表法判定下列推理是否 有效。 1.如果乔丹是美国总统,那么他是美国 领导人。乔丹不是美国总统,所以, 他不是美国领导人。 (p:乔丹是美国总统;q:乔丹是美国 领导人) 推理形式:((p→q)∧﹁p)→ ﹁q
p T T F F
q T F T F
﹁p ﹁q F F T T F T F T
p T T F F
q T F T F
﹁p ﹁q p→q F F T T F T F T T F T T
﹁q→﹁p (p→q)→(﹁q → ﹁p) T F T T T T T T
p→q T F T T
(p→q)∧﹁p ((p→q)∧﹁p)→﹁q F F T T T T F T
2.如果美国绕开联合国向伊拉克改动战 争,联合国的权威就会受到破坏。所 以,要想联合国的权威不会受到破坏, 美国就不绕开联合国向伊拉克改动战 争。 (p:美国绕开联合国向伊拉克改动战争; q:联合国的权威就会受到破坏) 推理形式:(p→q)→(﹁q → ﹁p)
p T T F F
q T F T F
﹁p ﹁q ﹁p∨q F F T T F T F T←p T F T T
﹁q→﹁p T F T T
﹁p←﹁q T F T T
真值表方法: 1.用符号表达出命题形式。 2.列出命题形式中的命题变元。 3.根据括号和联结词的用法确定命题形式内部的次序。 4.画出真值表。 5.依照确定的表达式次序检验真值。 6.根据最后一步即主联结词一栏的真值情况对该表达式做 出判定。 (1)如果主联结词一栏都为真,则该命题为重言式,相 应的推理有效。 (2)如果主联结词一栏都为假,则该命题为矛盾式,相 应的推理无效。 (3)如果主联结词一栏有真有假,则该命题为可真公式, 相应的推理无效。
3 命题逻辑的推理理论
(7)拒取式规则
AB B A
(8) 假言三段论规则
AB BC AC
(9)析取三段论规则
AB B A
(10)构造性二难推理规则
AB CD AC BD
(11)破坏性二难推理规则
AB CD BD AC
(12) 合取引入规则
A B AB
证明方法: ◦ 直接证明法 ◦ 附加前提法 ◦ 归谬法(或称反证法)
(2) 联结词符号: ┐, , , , (3) 括号与逗号:( ),, 2. 合式公式(同合取联接词定义)
3. 推理规则
(1)前提引入规则 在证明的任何步骤上都可以引入前提。
(2)结论引入规则 在证明的任何步骤上所得到的结论都可以作为后继证明的前提。
(3)置换规则 在证明的任何步骤上,命题公式中的子公式都可以用与之等值的公
1、用不同的方法验证下面推理是否正确。对于正确的推理还 要在P系统中给出证明。 (1) 前提:pq, q
结论:p (2) 前提:qr, pr
结论:qp
(1)不正确。 验证答案,只需证明(pq)qp不是重言式。 方法一 等值演算
(pq)qp ((pq)q)p (pq)qp ((pq)(qq))p pq 易知10是成假赋值,故(pq)qp不是重言式,所以推理不正确。
数理逻辑
命题逻辑 一阶逻辑
命题和联结 词
命题变项
复合命题 公式
真值表 等值式与等
值演算 公式类型
范式
实际应用
析取范式 合取范式
主析取范式 主合取范式
根据下列真语句,请判断是谁谋害了张先生? (1)A、B、C三人中至少有一人。 (2)如果张先生生前未饮过麻醉剂,那不是C。 (3)如果张先生曾饮过麻醉剂,那不是A。 (4)如果是A谋害的,那么B也参加了。 (5)如果作案在落雨前,则是A谋害的。 (6)如果作案不在落雨前,张先生临死前搏斗过。 (7)张先生临死前搏斗过,就不是B谋害的。 (8)经过法医解剖化验,张先生死前曾饮过麻醉剂。
逻辑学真值表及命题演算
回溯思考方法
1. 2. 3. 4.
A(BC) A D C(EF) DF
/E
(1)“回溯”思考,首先要考察待证结论与前提的关联性, 待证结论处在命题的后件,要获证必须基于对前件 C的肯定。 (2) C与前提1关联,要获取必须基于主联结关系的销去。 (3) 前提1的销去,取决于对前提2中条件A的否定。 (4) 要获取对A的否定,必须基于对后件D的否定,而后件 D的否定处在前提4之中,要获取 D必先分解前提4。
直接证明法:推导结论
1. (BD) 2. CD 3. AB 4. (EF)C 5. AF 6. A (5. 销去) 7. B (3.6.销去) 8. BD (1.7.等值) 9. D (7.8.销去) 10. C (2.9.销去) 11. (EF) (4.10.销去) 12. EF (11.等值) 13. F (5.销去) 14. E (12.13.销去)
否定式: ¬p 合取式:p∧q 析取式:p∨q 蕴涵式:p→q 等值式:p←→q
三、五种基本真值形式的真值表
• 定义,真值表是数理逻辑中用以定义命题 联结词并确定复合命题真或假的一种图表。 • T 表示“真”、F 表示“假” • 1、¬p p T F ¬p F T
2、 p∧q
p
T T F F
q
T F T F
(1)命题公式的性质判定
(2)推理形式有效性的判定 (3)命题公式之间关系的判定
重言式、矛盾式、可满足式的判定
• 1、重言式(又叫永真式)是指在一个命题形式 中不论其中的变项取什么值,该命题形式的值 总是真的。
• 如: p∨ ¬p
p T F ¬p F T p∨ ¬p T T
• 2、矛盾式(又叫永假式)是指在一个命 题形式中不论其中的变项取什么值,该命 题形式的值总是假的。 • 如: p∧ ¬p
真值表逻辑等价永真蕴涵
逻辑等价
• 在真值表中,两个命题公式A和B 在分量的不同指派下,其真值总是 相同的,则称这两个命题公式A和B 是逻辑等价的
• 记做A⇔B
10
逻辑等价例1
• 证明┐P∨Q ⇔ P→Q
P 0 0 1 1 Q 0 1 0 1 ┐P∨Q 1 1 0 1 P→Q 1 1 0 1
11
逻辑等价例2
• 证明 P▽Q⇔(┐P∧Q)∨(┐Q∧P)
(9)┐P∧(P∨Q) ⇒ Q
(10)(P→Q)∧(Q→R) ⇒ P→R
(11)(P∨Q)∧(P→R)∧(Q→R) ⇒ R (12)(P→Q)∧(R→S) ⇒ (P∧R)→(Q∧S ) (13)(PQ) ∧(QR) ⇒ (P R)
33
永真蕴含的性质
• 设A、B、C是命题公式 (1)若A⇔B,则A⇒B,B⇒A; (2)若A⇒B, 则 PA⇒PB; PA⇒PB;(补充) PA⇒PB;(补充) (注意: AP⇒BP;AP⇒BP; PA⇒PB 或PA⇒PB 都不一定成立。)
• P∨(Q∧R) ⇔ (P∨Q)∧(P∨R) (分配律) P∧(Q∨R) ⇔ (P∧Q)∨(P∧R) • P∨(P∧Q) ⇔ P P∧(P∨Q) ⇔ P (吸收律)
14
常用的逻辑等价公式(3)
• ┐(P∨Q) ⇔ ┐P∧ ┐Q ┐(P∧Q) ⇔ ┐P∨ ┐Q (摩根律)
•
P∨ P ⇔ P P∧ P ⇔ P P∨ 0 ⇔ P P∧ 1 ⇔ P
证明: 因为P→Q ⇔ ┐P∨Q, 利用代换规则得 P∧(P→Q) ⇔ P∧(┐P∨Q) ⇔ (P∧ ┐P)∨(P∧Q) ⇔ 0∨(P∧Q) ⇔ P∧Q
17
命题的演算
• 利用代换规则从一个命题得到另一 个逻辑等价的命题称为命题的演算。
《命题公式真值表》课件
命题公式的组成
命题符号
用来代表命题的符号,例如P、Q。
连接词
用来连接命题的词,例如否定、合取、析取。
命题公式的举例
1 真命题
2 假命题
3 合式命题
命题公式的真值始终为真。
命题公式的真值始终为假。
命题公式由多个命题符号 和连接词组成。
连接词的分类与举例
否定
对命题取反,例如非P。
合取
两个命题都为真时,整个命 题才为真,例如P且Q。
命题公式的应用领域与意义
命题公式在现实生活中有哪些应用?
析取
两个命题至少一个为真时, 整个命题为真,例如P或Q。
条件
若P为真,则Q也为真,例如P→Q。
双条件
当P和Q的真值相同时,整个命题为真,例如 P↔Q。
生成命题公式的方法
命题符号的选择
选择具有代表性的符号表达命题。
连接词的运用
灵活运用连接词构建复杂的命题公式。
真值表的构建方法
1
真值表的构建步骤
2
列出所有可能的命题取值组合,并计算
整个命题的真值。
3
真值的定义
根据命题的取值,确定每个命题的真值。
命题公式的应用
命题演算
利用命题公式对逻辑电路进行分 析和设计。
逻辑推理
运用命题公式的规则进行问题的 分析和解决。
总结与回顾
命题公式的概念、组成、举例、分类及运用通过本课件,你学来自了什么?真值表的构建方法
真值表如何帮助我们分析和验证命题公式?
《命题公式真值表》PPT 课件
欢迎来到《命题公式真值表》PPT课件!这个课件将带你深入了解命题公式的 概念、组成、举例、分类及运用,以及真值表的构建方法和命题公式的应用 领域与意义。
离散数学第3章 命题逻辑
0
0
0
1 1 0 0
1 0 1 0
0
13
一般来说, 只要不是非常明显的不可兼就使用.
例 p: 今天晚上我在寝室上自习, q :今天晚上我去电影 院看电影. 今天晚上我在寝室上自习或去电影院看电影。 p q.
14
5. 蕴涵(条件)联结词 : p q p: 我有时间, q : 我去看望我的父母. p q : 如果我有时间, 那么我去看望我的父母 . “”相当于“如果…那么…”, “若…则…”,等. p q 可读作“(若)p则q”. p称为前件, q称为后件.
p 1 1 0 0 q 1 0 1 0 pq 1 1 1 0
12
4. 异或联结词 : p q “不可兼或”, 它表示两者不能同时为真
例 p: 明天去深圳的飞机是上午八点起飞, q :明天去深圳 的飞机是上午八点半起飞. p q: 明天去深圳的飞机是上午八点或上午八点半起飞 . p 1 1 0 q 1 0 1 pq 0 1 1 p q pq 1 1 1
2
例
判断下列语句是否是命题. 2 + 3 = 5. √ 大熊猫产在我国东北. √ x > 3. 立正! 这朵花真漂亮! 你喜欢网络游戏吗? 1+1=10. √ 火星上有生物. √ 我说的都是假话. 小王和小李是同学. √ 你只有刻苦学习,才能取得好成绩. √
3
2. 命题的真值 命题的真值就是命题的逻辑取值. 经典逻辑值只有两个: 1和0 在数理逻辑中, 更多时候逻辑真是用 T(True) 或 t, 逻辑假用 F(False) 或 f 表示的.
命题公式真值表
(4) (P Q) (P Q);
(5) (P Q) (P Q).
A
6
1-4 真值表与等价公式
解 (1) P Q 的真值表为:
P
Q
T
T
T
F
F
T
F
F
P Q
T F T T
(2) P Q 的真值表为:
P
Q
PQ
T
T
T
T
F
F
F
T
T
F
F
T
A
7
1-4 真值表与等价公式
(3) (P Q) P 的真值表为:
(1)单个命题变元本身是一个合式公式;
(2)如果 A 是合式公式,那么 A是合式公式;
(3)如果 A 和 B 是合式公式,那么
A B , A B , A B, A B 是合式公式;
(4)当且仅当能够有限次地应用(1)、(2)、(3)
所得到的包含命题变元,联结词和括号的字符串
是合式公式.
A
3
1-3 命题公式与翻译
A 中的 X 用Y 置换,所得公式 B 与公式 A 等价,即 A B .
例 4 证明: Q (P (P Q)) Q P
例 5 证明下列等价式
(1) (P Q) (P Q) P ;
(2) P (Q R) Q (P R) .
练习 证明 P (Q R) (P Q) R
A
14
1-4 真值表与等价公式
例 6 化简下列命题公式: (1) P (P (Q P)) (2) (P Q) (Q P)
说明:
(1)命题变元是没有真假值的,只有当命题变元用 确定的命题代入时,才得到一个命题,命题的真值 依赖于代换变元的那些命题的真值;
数理逻辑中的命题逻辑与真值表
数理逻辑中的命题逻辑与真值表数理逻辑是研究形式系统的一门学科,主要关注于判断、推理和表达的规则。
其中,命题逻辑是数理逻辑的基础,用于研究命题的真值和逻辑关系。
在命题逻辑中,真值表是一种重要的工具,用于描述命题的真假情况和逻辑运算的结果。
本文将介绍数理逻辑中的命题逻辑以及真值表的基本概念和应用。
一、命题逻辑的基本概念命题逻辑是研究命题的逻辑关系的一种形式系统。
在命题逻辑中,命题是可以判断真假的陈述句,通常用大写字母P,Q,R等表示。
命题可以是简单命题,也可以是复合命题。
简单命题是不能进一步分解的命题,而复合命题由多个简单命题通过逻辑运算符连接构成。
常见的逻辑运算符有合取(∧),析取(∨),蕴含(→),等值(↔)和否定(¬)。
合取表示与关系,只有当连接的命题都为真时,合取命题为真;析取表示或关系,只有当连接的命题至少有一个为真时,析取命题为真;蕴含表示如果...那么...关系,当前提为假或者结论为真时,蕴含命题为真;等值表示两个命题具有相同的真值;否定表示命题的反面。
二、真值表的基本概念真值表是用来描述命题的真假情况和逻辑运算的结果的表格。
在真值表中,列出了所有可能的命题组合及其对应的真值。
对于n个命题,共有2^n种可能的命题组合。
每种命题组合都对应一个真值,通过真值表可以直观地了解命题间的逻辑关系。
以一个简单的真值表为例:P | Q | P ∧ Q | P ∨ Q | P → Q--------------------------------------T | T | T | T | TT | F | F | T | FF | T | F | T | TF | F | F | F | T在上述真值表中,P和Q代表两个命题,P ∧Q表示P和Q的合取,P ∨ Q表示P和Q的析取,P → Q表示P蕴含Q。
根据真值表可以得知P和Q的真假情况,以及不同逻辑运算的结果。
真值表为判断命题逻辑的真值和逻辑关系提供了有效的工具。
命题公式及真值表
离散结构命题公式及真值表教学目标基本要求(1)会判断命题公式及其层次;(2)真值表;(3)公式类型;重点难点真值表的应用。
命题中的符号命题中的符号:(1) 命题常元:真值唯一确定。
例如:T、F(2) 命题变元:真值可变化。
例如:P、Q、R(3) 联接词:优先级按¬, ∧, ∨, →, ↔递减(4) 辅助符号如括号()。
命题中的符号任意组成的符号串是否都有意义?例:(∧p ¬q) pq →(思考:按什么规律组成的符号串才有意义?合式公式合式公式:合法的命题公式。
(简称公式)(1)命题常元或变元是合式公式(2)若A, B是合式公式,(¬A),(A∧B),(A∨B),(A→B),(A↔B)也是合式公式(3)只有有限次地应用(1)、(2)形成的符号串才是合式公式注意这个定义是递归的。
(1)是递归的基础,由(1)开始,使用规则(2),可以得到任意的合式公式。
公式简写的约定1) 最外层括号可以省略;2) 省略括号后, 运算顺序与联结词的优先级一致,则可以省略;3) 相同联结词按从左到右的顺序计算,则可以省略。
公式的层次定义:(1)若公式A 是单个的命题变项,则称A 为0层公式。
(3)若公式的层次为k ,则称A 是k 层公式。
(2)若有下面情况之一的,称A 为n+1层公式:A 是¬B ,B ∧C ,B ∨C ,B→C ,B↔C ,其中B 、C 分别是i 层、j 层公式,且n=max(i,j); 例:((¬p ∧q)∨(p ∧ ¬q))→r1层 2层 3层 4层公式的解释命题公式代表一个命题,但只有当公式中的每一个命题变元都用一个确定的命题代入时,命题公式才有确定值,成为命题。
解释(I):给公式A( P1,P2,…,Pn )中的命题变元P1,P2,…,Pn指定一组真值称为对A的一个解释(赋值)。
成真赋值: 使公式为真的赋值。
成假赋值: 使公式为假的赋值。
逻辑命题的真值表
逻辑命题的真值表在逻辑学的广袤天地中,真值表宛如一座精确的导航仪,为我们揭示逻辑命题之间的内在关系和真假取值。
对于那些初次接触这一概念的朋友来说,它可能稍显神秘,但实际上,真值表是一种极其有用且直观的工具。
那么,什么是逻辑命题呢?简单来说,逻辑命题就是能够判断真假的陈述句。
比如“今天是晴天”“1 + 1 =2”等等。
而真值表呢,则是用来展示在不同情况下这些命题的真假情况。
我们先来看看最基本的逻辑连接词:“与”(通常用“∧”表示)、“或”(通常用“∨”表示)、“非”(通常用“¬”表示)。
先说说“与”运算。
当两个命题都为真时,“与”运算的结果才为真;只要其中有一个命题为假,结果就是假。
举个例子,命题 P 是“今天下雨”,命题 Q 是“气温低于 20 度”。
如果今天既下雨了,气温又低于 20 度,那么 P ∧ Q 就是真的;要是今天没下雨,或者气温高于 20 度,又或者两者都不满足,那么 P ∧ Q 就是假的。
再看“或”运算。
只要两个命题中有一个为真,“或”运算的结果就为真;只有当两个命题都为假时,结果才是假。
比如命题 M 是“我吃了苹果”,命题 N 是“我吃了香蕉”。
只要我吃了苹果或者香蕉,或者两者都吃了,M ∨ N 就是真的;只有我既没吃苹果也没吃香蕉时,M ∨ N 才是假的。
“非”运算相对简单,它是对一个命题的否定。
如果命题 A 为真,那么¬A 就为假;反之,如果命题 A 为假,¬A 就为真。
比如说命题 A 是“月亮是圆的”,因为这是真的,所以¬A 即“月亮不是圆的”就是假的。
接下来,我们通过真值表来更清晰地展示这些逻辑运算。
对于“与”运算(P ∧ Q),我们列出 P 和 Q 所有可能的真假组合:当 P 为真,Q 为真时,P ∧ Q 为真;当 P 为真,Q 为假时,P ∧ Q 为假;当 P 为假,Q 为真时,P ∧ Q 为假;当 P 为假,Q 为假时,P ∧ Q 为假。
命题逻辑的真值表和范式
命题逻辑的真值表和范式命题逻辑是研究命题(陈述句)之间的逻辑关系的一种逻辑学分支。
在命题逻辑中,我们使用真值表和范式来表示和分析命题的逻辑结构。
本文将介绍真值表和范式在命题逻辑中的重要性和应用。
一、真值表真值表是用来表示和计算命题的真假值情况的一种工具。
它列举了命题中每个命题变量的可能取值情况,并根据命题之间的逻辑运算规则计算出整个命题的真假值。
真值表通常由命题变量和逻辑运算符组成。
例如,对于两个命题变量P和Q,我们可以构建如下的真值表:P | Q | P∧Q | P∨Q | P→Q | P↔Q----------------------T | T | T | T | T | T----------------------T | F | F | T | F | F----------------------F | T | F | T | T | F----------------------F | F | F | F | T | T在真值表中,"T"代表命题的真值为真,"F"代表命题的真值为假。
通过观察真值表,并根据命题之间的逻辑运算规则,我们可以推断出命题之间的逻辑关系。
例如,P∧Q表示P与Q的合取,只有当P和Q 都为真时,合取才为真。
类似地,P∨Q表示P与Q的析取,只要P和Q中至少有一个为真,析取就为真。
真值表为我们提供了一种清晰的逻辑分析工具,能够帮助我们理解和推理命题之间的逻辑关系。
二、范式范式是用来简化和表示复杂命题的一种方法。
它将命题表示为若干个简单命题之间的逻辑连接,并以逻辑运算符为界限构成。
在命题逻辑中,最常见的范式有析取范式(DNF)和合取范式(CNF)。
析取范式将命题表示为若干个合取式之间的析取,而合取范式将命题表示为若干个析取式之间的合取。
例如,对于命题P、Q和R,我们可以将它们表示为析取范式和合取范式。
析取范式(DNF):(P∧Q∧¬R)∨(¬P∧Q∧R)∨(¬P∧¬Q∧R)合取范式(CNF):(P∨¬Q∨¬R)∧(¬P∨Q∨¬R)∧(¬P∨Q∨R)范式的使用可以帮助我们简化和理解复杂的逻辑表达式。
§3命题形式和真值表
§3命题形式和真值表上节介绍了将命题表示为符号串。
是否每个符号串都是命题呢?p q →什么样的符号串才能表示命题呢?如下命题形式定义的符号串表示的才是命题。
命题形式的定义定义6命题形式是由命题变元和联结词按以下规则组成的符号串:(1) 任何命题变元都是命题形式---此时称为原子命题形式;(2) 如果α是命题形式, 则(¬α)也是命题形式;(3) 如果α、β是命题形式, 则(α∨β)、(α∧β)、(α→β)和(α↔β)都是命题形式;(4) 只有有限次地应用(1)—(3)构成的符号串才是命题形式.下列符号串都是命题形式:(¬p)(p∧(¬q))(p ∨(¬p))(p ↔(¬p))(p ∧(¬p))((p ∧p) →(¬(p ∨r)))下列符号串是否为命题形式?(1)pq→(2)(p¬q)(3)(p∧(¬q))(4)p∧(¬q)(5)((¬q))(6)¬p一些注记1.定义6是归纳定义,而不是循环定义。
(1)是奠基,(2)、(3)是归纳步骤。
2.如果在(2)和(3)中将括号去掉,结果如何?p→q→r 与P→q→r、P→q→r3.如仅去掉(2)和(3)中某类公式的括号呢?例如,仅去掉(2)中括号。
(p∧¬q) ——¬的优先级高于其它的。
4.如果规定省略命题形式最外层括号,与2的差别。
约定¬的优先级高于其它的省略命题形式最外层括号命题形式的简单性质任一个命题形式必为下列形式之一:命题变元、(¬α)、(α∨β)、(α∧β)、(α→β)或(α↔β)命题形式的BNF (Bacus Normal Form):α::= p | (¬α) | (α∨β) | (α∧β) |(α→β)| (α↔β)每个命题形式都是有限符号串。
指派命题形式的真假由它中命题变元的值完全确定。
命题、联结词、命题公式与真值表
(2)(PR)∧(┐Q∨S)
(3)(P∧(Q∨R))→((P∨Q)∧(R∧S))
(4)┐(P∨(Q→(R∧┐P)))→(R∨┐S)
练习2:page14,17、18
A 1、判断下面一段论述是否为真:
B
是无理数。并且,如果3是无理数,则 2也是
C
无理数。另外,只有6能被2整除,6才能被4整除。 D E
A(BC) (D E)
1 01
10
p
2、什么情况下,下面论述为真:
q
说小王不会唱歌或小李不会跳舞是正确的,而
说如果小王会唱歌,小李会跳舞是不正确的。
(p q) (pq)
综合问题1
Key:
pq
qp (qp) q (qp) qp
00
1
0
1
01
0
0
1
10
1
0
1
11
1
1
1
回顾一下:五个联结词真值表
否定
等价(双条件)
合取
析取
蕴涵(条件)
几个相关概念
1、合式公式的层次:
0层
1层
2层
3层
pq
qp (qp) q (qp) qp
00
1
0
1
01
0
0
1
10
1
0
1
11
1
1
1
几个相关概念
2、赋值、成真(假)赋值、指派
pq
qp
00
1
赋值
01
0
10
1
11
1
成真赋值
指派
(qp) q (qp) qp
0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3命题形式和真值表
上节介绍了将命题表示为符号串。
是否每个符号串都是命题呢?
p q →
什么样的符号串才能表示命题呢?如下命题形式定义的符号串表示的才是命题。
命题形式的定义
定义6命题形式是由命题变元和联结词按以下规则组成的符号串:
(1) 任何命题变元都是命题形式---此时称为原子
命题形式;
(2) 如果α是命题形式, 则(¬α)也是命题形式;
(3) 如果α、β是命题形式, 则(α∨β)、(α∧β)、
(α→β)和(α↔β)都是命题形式;
(4) 只有有限次地应用(1)—(3)构成的符号串才是
命题形式.
下列符号串都是命题形式:(¬p)
(p∧(¬q))
(p ∨(¬p))
(p ↔(¬p))
(p ∧(¬p))
((p ∧p) →(¬(p ∨r)))
下列符号串是否为命题形式?
(1)pq→
(2)(p¬q)
(3)(p∧(¬q))
(4)p∧(¬q)
(5)((¬q))
(6)¬p
一些注记
1.定义6是归纳定义,而不是循环定义。
(1)是奠基,(2)、(3)是归纳步骤。
2.如果在(2)和(3)中将括号去掉,结果如何?
p→q→r 与P→q→r、P→q→r
3.如仅去掉(2)和(3)中某类公式的括号呢?例如,
仅去掉(2)中括号。
(p∧¬q) ——¬的优先级高于其它的。
4.如果规定省略命题形式最外层括号,与2的差别。
约定
¬的优先级高于其它的
省略命题形式最外层括号
命题形式的简单性质
任一个命题形式必为下列形式之一:
命题变元、(¬α)、(α∨β)、(α∧β)、(α→β)或(α↔β)
命题形式的BNF (Bacus Normal Form):α::= p | (¬α) | (α∨β) | (α∧β) |
(α→β)| (α↔β)
每个命题形式都是有限符号串。
指派
命题形式的真假由它中命题变元的值完全确定。
定义7设α为一个命题形式, α中出现的所有命题
变元都在p1,p2,…,p n中, 对序列p1,p2,…,p n 指定的的任一真假值序列t1,t2,…,t n称为α的关于p1,p2,…,p n的一个指派(asignment),其中t i = 0或1, i ∈N, 1 ≤i ≤n.
即指派是从{p1,p2,…,p n}到{0,1}的一个函数。
成真指派
若p1,p2,…,p n的一个指派使α为真,则称此指派为α的一个成真指派
若p1,p2,…,p n的一个指派使α为假,则称此指派为α的一个成假指派。
由定义可知:
¾¬p关于p的成真指派为0, 成假指派为1.
¾p ∧q关于p、q的成真派为<1, 1>, 成假指派为
<1,0>, <0,1>, <0, 0>.
¾p ∨q关于p、q的成真指派为<1,1>, <0,1>, <1,0>, 成假指派为<0,0>.
¾不难给出p→q、p ↔q的成真和成假指派. (§2.1).
例5
求(p∧q) →(¬(q∨r))的成真和成假指派。
解:令(p∧q) →(¬(q∨r))为α。
要使α为假,必须p∧q为真且¬(q∨r)为假。
从而p∧q必须为真,且q∨r也必须为真。
故α的成假指派为(1,1,1)和(1,1,0).
α的成真指派为(0,0,0)、(1,0,0)、(0,1,0)、(0,0,1)、(0,1,1)、(1,0,1)。
定义8命题形式在所有可能的指派下所取值列成的表称为真值表.
命题形式的类型
定义9
命题形式α称为重言式(或永真式),如果α关于其中出现的命题变元的所有指派均为成真指派.
命题形式α称为矛盾式(永假式),如果α对于其中出现的命题变元的所有指派均为成假指派.
一个命题形式α称为可满足式, 如果α对于其中出现的命题变元的某个指派为成真指派.
例如:p ∧(¬p)为矛盾式,p ∨(¬p)为重言式。
(¬p) ∨q为可满足式。
与哑元的无关性
定理1设命题形式α中出现的命题变元都在
p1, p2, …,p n中, p n+1, …, p n+m是另外m个不在α中出现的命题变元. 对于p1, p2, …, p n, p n+1, …,p n+m 的任意两个指派:
<u1, u2, …, u n, u n+1, …, u n+m>和
<v1, v2, …, v n, v n+1, …, v n+m>,
其中:u i, v i= 0或1 (1 ≤i, j ≤n+m).
若u1= v1, …, u n=v n, 则α在这两个指派下的值相同.
作业
p508 (P100)
2(1)、(4)
3(2)、(3)、(6)、(8)、(9)
That’s All of Today Thanks for Listening。