化工原理课程设计报告
化工原理课程设计报告2
化工原理课程设计报告(封面)XXXXXXX学院XXXX课程设计报告题目:院(系):专业班级:学生姓名:指导老师:时间:年月日目录第一节、课程设计任务书(一)设计题目 (4)(二)设计任务 (4)(三)设计条件 (4)(四)设计要求 (4)(五)设计进度安排 (4)第二节、概述1.茶饮料概述 (5)2.换热器概述 (5)第三节、工艺流程及方案说明1.工艺流程图 (5)2.方案说明2.1 流体流入空间的选择 (5)2.2出口温度的确定及热源温度的选择 (6)2.3 流速的选择 (7)2.4选择换热器的类型 (7)第四节、设计计算及说明1、流体两端的温度及列管式换热器的形式 (7)1.1流体两端的温度 (7)1.2选择换热器的类型 (7)2、初步确定换热器的类型和尺寸 (7)2.1换热器的热负荷计算 (8)2.2 计算两流体的平均温度差 (8)2.3 传热面积 (8)2.4选择管子尺寸 (9)2.5计算管子数和管长,对管子进行排列,确定壳体直径 (9)2.5.1管子数和管长 (9)2.5.2 壳体直径的计算 (9)2.5.3 壳体壁厚的选择 (9)2.6根据管长和壳体直径的比值,确定管程数 (10)2.7其他附件尺寸的选择 (10)3、核算压强降 (10)3.1 管程压强降 (10)3.2 壳程压强降 (11)第 2 页共13 页4、核算总传热面积 (11)4.1 管程对流传热系数αi (12)4.2 壳程对流传热系数αo (12)4.3 污垢热阻 (12)4.4 总传热系数Ko (12)4.5传热面积安全系数 (12)第五节、主体设备结构图 (13)第六节、设计结果概要表 (13)第七节、对设计的评价及问题的讨论 (13)第八节、参考文献 (14)附:固定管板式换热器的结构图花板布置图第 3 页共13 页第一节设计任务书一、设计题目:列管式换热器设计。
二、设计任务:将自选物料用河水冷却或自选热源加热至生产工艺所要求的温度。
化工原理含实验报告(3篇)
第1篇一、实验目的1. 理解并掌握化工原理中的基本概念和原理。
2. 通过实验验证理论知识,提高实验技能。
3. 熟悉化工原理实验装置的操作方法,培养动手能力。
4. 学会运用实验数据进行分析,提高数据处理能力。
二、实验内容本次实验共分为三个部分:流体流动阻力实验、精馏实验和流化床干燥实验。
1. 流体流动阻力实验实验目的:测定流体在圆直等径管内流动时的摩擦系数与雷诺数Re的关系,将测得的~Re曲线与由经验公式描出的曲线比较;测定流体在不同流量流经全开闸阀时的局部阻力系数。
实验原理:流体在管道内流动时,由于摩擦作用,会产生阻力损失。
阻力损失的大小与流体的雷诺数Re、管道的粗糙度、管道直径等因素有关。
实验中通过测量不同流量下的压差,计算出摩擦系数和局部阻力系数。
实验步骤:1. 将水从高位水槽引入光滑管,调节流量,记录压差。
2. 将水从高位水槽引入粗糙管,调节流量,记录压差。
3. 改变流量,重复步骤1和2,得到一系列数据。
4. 根据数据计算摩擦系数和局部阻力系数。
实验结果与分析:通过实验数据绘制~Re曲线和局部阻力系数曲线,与理论公式进行比较,验证了流体流动阻力实验原理的正确性。
2. 精馏实验实验目的:1. 熟悉精馏的工艺流程,掌握精馏实验的操作方法。
2. 了解板式塔的结构,观察塔板上汽-液接触状况。
3. 测定全回流时的全塔效率及单板效率。
4. 测定部分回流时的全塔效率。
5. 测定全塔的浓度分布。
6. 测定塔釜再沸器的沸腾给热系数。
实验原理:精馏是利用混合物中各组分沸点不同,通过加热使混合物汽化,然后冷凝分离各组分的方法。
精馏塔是精馏操作的核心设备,其结构对精馏效率有很大影响。
实验步骤:1. 将混合物加入精馏塔,开启加热器,调节回流比。
2. 记录塔顶、塔釜及各层塔板的液相和气相温度、压力、流量等数据。
3. 根据数据计算理论塔板数、全塔效率、单板效率等指标。
4. 绘制浓度分布曲线。
实验结果与分析:通过实验数据,计算出了理论塔板数、全塔效率、单板效率等指标,并与理论值进行了比较。
化工原理课程设计
化工原理课程设计一、教学目标本节课的教学目标是使学生掌握化工原理的基本概念、基本理论和基本方法,包括流体的物理性质、流体力学基本方程、流动和压力降、气液平衡、传质过程等,培养学生分析和解决化工问题的能力。
1.掌握流体的密度、粘度、热导率等物理性质。
2.理解流体力学的基本方程,包括连续方程、动量方程和能量方程。
3.掌握流体流动和压力降的基本理论,包括层流和湍流、管道流动和开放流动等。
4.理解气液平衡的基本原理,包括相图、相律和相变换等。
5.掌握传质过程的基本方法,包括扩散、对流传质和膜传质等。
6.能够运用流体力学基本方程分析流体流动问题。
7.能够计算流体流动和压力降的基本参数,如流速、压力降等。
8.能够分析气液平衡问题,确定相态和相组成。
9.能够运用传质过程的基本方法分析和解决化工问题。
情感态度价值观目标:1.培养学生对化工原理学科的兴趣和热情。
2.培养学生严谨的科学态度和良好的职业道德。
3.培养学生团队协作和自主学习的意识。
二、教学内容本节课的教学内容主要包括流体的物理性质、流体力学基本方程、流动和压力降、气液平衡、传质过程等。
1.流体的物理性质:包括密度、粘度、热导率等,通过实例讲解其测量方法和应用。
2.流体力学基本方程:讲解连续方程、动量方程和能量方程,并通过实例分析其应用。
3.流动和压力降:讲解层流和湍流的特性,分析管道流动和开放流动的压力降计算方法。
4.气液平衡:讲解相图、相律和相变换的基本原理,并通过实例分析气液平衡问题。
5.传质过程:讲解扩散、对流传质和膜传质的基本方法,并通过实例分析传质问题的解决方法。
三、教学方法本节课采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等。
1.讲授法:用于讲解流体的物理性质、流体力学基本方程、流动和压力降、气液平衡、传质过程等基本概念和理论。
2.讨论法:通过小组讨论,引导学生主动思考和分析化工问题,提高学生的分析和解决问题的能力。
3.案例分析法:通过分析实际化工案例,使学生更好地理解和应用化工原理,培养学生的实际操作能力。
化工原理课程设计完整版
化工原理课程设计完整版一、教学目标本课程旨在让学生掌握化工原理的基本概念、理论和方法,了解化工生产的基本过程和设备,培养学生运用化工原理解决实际问题的能力。
具体目标如下:1.知识目标:(1)理解化工原理的基本概念和原理;(2)熟悉化工生产的基本过程和设备;(3)掌握化工计算方法和技能。
2.技能目标:(1)能够运用化工原理解决实际问题;(2)具备化工过程设计和优化能力;(3)学会使用化工设备和仪器进行实验和调试。
3.情感态度价值观目标:(1)培养学生的团队合作意识和沟通能力;(2)增强学生对化工行业的认识和兴趣;(3)培养学生对科学研究的热爱和责任感。
二、教学内容本课程的教学内容主要包括以下几个方面:1.化工原理基本概念和原理:包括溶液、蒸馏、吸收、萃取、离子交换等基本操作原理和方法。
2.化工生产过程和设备:包括反应器、换热器、蒸发器、膜分离设备等的基本结构和原理。
3.化工计算方法:包括物料平衡、热量平衡、质量平衡等计算方法。
具体教学大纲安排如下:第1-2周:化工原理基本概念和原理;第3-4周:化工生产过程和设备;第5-6周:化工计算方法。
三、教学方法本课程采用多种教学方法,以激发学生的学习兴趣和主动性:1.讲授法:讲解基本概念、原理和方法,引导学生理解和掌握;2.案例分析法:分析实际案例,让学生学会运用化工原理解决实际问题;3.实验法:进行实验操作,培养学生的实践能力和实验技能;4.小组讨论法:分组讨论,培养学生的团队合作意识和沟通能力。
四、教学资源本课程的教学资源包括:1.教材:《化工原理》;2.参考书:相关化工原理的教材和学术著作;3.多媒体资料:教学PPT、视频、动画等;4.实验设备:反应器、换热器、蒸发器、膜分离设备等。
以上教学资源将用于支持教学内容和教学方法的实施,丰富学生的学习体验。
五、教学评估本课程的评估方式包括平时表现、作业、考试等多个方面,以全面客观地评价学生的学习成果。
1.平时表现:通过课堂参与、提问、小组讨论等形式的评估,考察学生的学习态度和理解能力。
化工原理课程设计柴诚敬
化工原理课程设计 柴诚敬一、课程目标知识目标:1. 理解并掌握化工原理的基本概念,如流体力学、热力学、传质与传热等;2. 学会运用化学工程的基本原理分析典型化工过程中的现象与问题;3. 掌握化工流程设计的基本方法和步骤,能结合实际案例进行流程分析与优化。
技能目标:1. 能够运用数学工具解决化工过程中的计算问题,如物料平衡、能量平衡等;2. 培养学生运用实验、图表、模拟等方法对化工过程进行研究和评价的能力;3. 培养学生团队协作、沟通表达及解决实际问题的能力。
情感态度价值观目标:1. 培养学生对化工原理学科的兴趣和热爱,激发学习积极性;2. 增强学生的环保意识,使其认识到化工过程对环境的影响及责任感;3. 培养学生严谨、求实的科学态度,提高其创新意识和实践能力。
本课程针对高年级学生,结合化工原理课程性质,注重理论与实践相结合,旨在培养学生运用基本原理解决实际问题的能力。
教学要求以学生为中心,注重启发式教学,激发学生的主动性和创造性。
课程目标分解为具体学习成果,以便于后续教学设计和评估。
通过本课程的学习,使学生能够全面掌握化工原理知识,为未来从事化工领域工作打下坚实基础。
二、教学内容本章节教学内容主要包括:1. 化工流体力学基础:流体静力学、流体动力学、流体阻力与流动形态等;参考教材第二章:流体力学基础。
2. 热力学原理及应用:热力学第一定律、第二定律,以及理想气体、实际气体的热力学性质;参考教材第三章:热力学原理及其在化工中的应用。
3. 传质与传热过程:质量传递、热量传递的基本原理,以及相应的传递速率计算;参考教材第四章:传质与传热。
4. 化工过程模拟与优化:介绍化工过程模拟的基本方法,如流程模拟、动态模拟等,以及优化策略;参考教材第五章:化工过程模拟与优化。
5. 典型化工单元操作:分析各类单元操作的基本原理及设备选型,如反应器、塔器、换热器等;参考教材第六章:典型化工单元操作。
教学大纲安排如下:第一周:化工流体力学基础;第二周:热力学原理及应用;第三周:传质与传热过程;第四周:化工过程模拟与优化;第五周:典型化工单元操作。
化工原理课程设计
化工原理课程设计一、教学目标本节课的教学目标是让学生掌握化工原理的基本概念和基本原理,了解化工过程的基本单元操作,包括流体流动、传质、传热等,培养学生分析和解决化工问题的能力。
具体来说,知识目标包括:1.掌握流体流动的基本原理和计算方法;2.了解传质和传热的基本原理和计算方法;3.掌握化工过程的基本单元操作和流程。
技能目标包括:1.能够运用流体流动、传质、传热的基本原理分析和解决实际问题;2.能够运用化工原理的基本单元操作设计和优化化工过程。
情感态度价值观目标包括:1.培养学生的科学精神和创新意识,使其能够积极面对和解决化工过程中的问题;2.培养学生的团队合作意识和责任感,使其能够有效地参与和完成化工项目。
二、教学内容本节课的教学内容主要包括化工原理的基本概念、基本原理和基本单元操作。
具体来说,教学大纲如下:1.流体流动:流体的性质、流动的类型和计算方法;2.传质:传质的类型和计算方法、传质的设备;3.传热:传热的基本原理和计算方法、传热的设备;4.化工过程的基本单元操作:反应器、分离器、输送设备等。
三、教学方法为了激发学生的学习兴趣和主动性,本节课将采用多种教学方法,包括讲授法、讨论法、案例分析法、实验法等。
具体来说:1.讲授法:通过教师的讲解,让学生掌握化工原理的基本概念和基本原理;2.讨论法:通过小组讨论,让学生深入理解和掌握化工原理的知识;3.案例分析法:通过分析实际案例,让学生了解化工过程的基本单元操作和流程;4.实验法:通过实验操作,让学生亲自体验和验证化工原理的知识。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备以下教学资源:1.教材:化工原理教材,用于提供基础知识和理论框架;2.参考书:化工原理相关参考书,用于提供更多的知识和案例;3.多媒体资料:化工原理相关的视频、图片等资料,用于辅助讲解和展示;4.实验设备:化工原理实验设备,用于进行实验操作和验证。
化工原理设计精馏塔
《化工原理课程设计》报告40000 吨/年苯和甲苯精馏装置设计班级:专业:化工工艺及工程设计者姓名:指导老师:学号:完成日期: 2012年 6月 20 日化工原理课程设计任务书一、设计题目:苯——甲苯混合液筛板(浮阀)精馏塔设计本课程设计是依据实际生产情况加以一定程度的简化而提出的。
二、设计任务及操作条件1、进精馏塔的料液含苯55%(质量),其余为甲苯2、产品的苯含量≥97%(质量),取97%3、釜液中苯含量≥2%(质量),取2%4、年处理原料量:40000吨5、每年实际生产天数:330天(一年中有一个月检修)6、操作条件⑴精馏塔塔顶压强 0.04MPa(表压)⑵进料热状况泡点液体(q=1)⑶回流比 R=1.6Rmin⑷加热水蒸气压强 3.0kg/cm² (表压)⑸单板压降 <8mmHg⑹设备型式筛板⑺厂址徐州地区三、设计项目(设计说明书内容)⒈流程的确定及说明⒉塔板数的计算⒊塔径计算⒋塔板结构设计⑴塔板结构尺寸的确定⑵流体力学验算⑶计算、绘制塔板负荷性能图⒌其它⑴塔釜加热蒸汽消耗量的计算⑵塔顶冷凝器或分凝器(设计者确定)的换热面积和选型,冷却水消耗量的计算⑶灵敏板位置的确定(并图示)⒍应绘制的各幅图⑴实际设计的工艺流程图⑵塔板布置图⑶塔局部侧剖图苯-甲苯饱和蒸汽压的安托尼公式:logp︒=A-B/(C+t) p︒的单位:kPa t的单位:℃组分 A B C苯 6.023 1206.35 220.24甲苯 6.078 1343.94 219.58四、苯的生产工艺流程在炼焦过程产生的焦炉煤气,其中含有30~45%(g/标m 3)的粗苯。
粗苯的主要成分是:苯(约70%)、甲苯(约14%)、二甲苯(约3%)和三甲苯。
生产中一般采用煤焦油中230~300℃的洗油馏分将粗苯从煤气中吸收下来。
洗油在低温(20~80℃)下具有选择吸收煤气中粗苯的性质,而在升高温度(140~180℃)时又能从富油中将粗苯释放出来。
天津大学《化工原理》课程设计报告
《化工原理》课程设计报告真空蒸发制盐系统卤水分效预热器设计学院天津大学化工学院专业化学工程与工艺班级2014学号3014207018姓名孙国铭指导教师马红钦化工流体传热课程设计任务书专业化学工程与工艺班级化工1班姓名孙国铭学号(编号)3014207018(一)设计题目:真空蒸发制盐系统卤水分效预热器设计(二)设计任务及条件1、蒸发系统流程及有关条件见附图。
2、系统生产能力:60 万吨/年。
3、有效生产时间:300天/年。
4、设计内容:Ⅱ效预热器(组)第12345678 台预热器的设计。
5、卤水分效预热器采用单管程固定管板式列管换热器,试根据附图中卤水预热的温度要求对预热器(组)进行设计。
6、卤水为易结垢工质,卤水流速不得低于0.5m/s。
7、换热管直径选为Φ38×3mm。
(三)设计项目1、由物料衡算确定卤水流量。
2、假设K计算传热面积。
3、确定预热器的台数及工艺结构尺寸。
4、核算总传热系数。
5、核算压降。
6、确定预热器附件。
7、设计评述。
(四)设计要求1、根据设计任务要求编制详细设计说明书。
2、按机械制图标准和规范,绘制预热器的工艺条件图(2#),注意工艺尺寸和结构的清晰表达。
设计说明书的编制按下列条目编制并装订:(统一采用A4纸,左装订)(1)标题页,参阅文献1附录一。
(2)设计任务书。
(3)目录。
(4)说明书正文设计简介:设计背景,目的,意义。
由物料衡算确定卤水流量。
假设K计算传热面积。
确定预热器的台数及工艺结构尺寸。
核算总传热系数。
核算压降。
确定预热器附件。
设计结果概要或设计一览表。
设计评述。
(5)主要符号说明。
(6)参考文献。
(7)预热器设计条件图。
主要参考文献1. 贾绍义,柴诚敬. 化工原理课程设计. 天津: 天津大学出版社, 20022. 柴诚敬,张国亮. 化工流体流动和传热. 北京: 化学工业出版社, 20073. 黄璐,王保国. 化工设计. 北京: 化学工业出版社, 20014. 机械制图自学内容:参考文献1,第一章、第三章及附录一、三;参考文献2,第五~七章;参考文献3,第1、3、4、5、11部分。
化工原理课程设计报告书
化工原理课程设计指导老师:伟良学生:曾喜凤王梓学号: 11 15年级: 2012级专业:化学工程与工艺队伍名称: Only one 设计题目:甲苯-乙苯的精馏工艺2014 年 12 月 04 日目录化工原理课程设计任务书............................................................. ................- 1 -前言 ............................................................ ...................................................- 2 -第一章流程确定和说明 ............................................................ ..................- 3 -1.1. 进料状况............................................................. ......................................- 3 -1.2. 塔顶冷凝方式............................................................. .............................- 3 -1.3. 加热方式............................................................. ......................................- 3 -1.4. 再沸器型式............................................................. .................................- 3 -第二章精馏塔的设计计算............................................................. ...............- 5 -一操作条件与基础数据 ............................................................ ..................- 5 -2.1.1. 操作压力 ............................................................ ................................ - 5 -2.1.2. 气液平衡关系及平衡数据 ............................................................... - 5 -2.1.3. 相对挥发度的计算 ............................................................ ............... - 7 -2.1.4. 最小回流比及操作回流比的确定 .................................................. - 8 -二精馏塔的工艺计算............................................................. ........................- 8 -2.2.1. 热量衡算 ............................................................ ................................ - 8 -2.2.2. 理论塔板数的计算............................................................. .............. - 13 -2.2.3. 全塔效率的估算............................................................. ...................- 14 - 2.2.4. 实际塔板数 ............................................................ ..........................- 16 -三.精馏塔主要尺寸的设计计算............................................................. ..... - 16 -2.3.1. 塔和塔板设计的主要依据和条件 .................................................- 16 -2.3.2. 塔体工艺尺寸的计算 ............................................................ ..........- 22 -2.3.3 筛板塔工艺尺寸计算与选取............................................................- 23 -2.3.4 筛板的流体力学验算 ............................................................ ...........- 27 -四.塔板负荷性能图 ............................................................ ........................ - 29 -2.4.1 液相下限线 ............................................................ ...........................- 29 -2.4.2 液相上限线 ............................................................ ...........................- 30 -2.4.3 漏液线 ............................................................ ....................................- 30 -2.4.4 液沫夹带线 ............................................................ ...........................- 31 -2.4.5 液泛线 ............................................................ ....................................- 32 -2.4.6 操作弹性 ............................................................ ................................- 34 -第三章辅助设备及主要附件的选型设计 ...............................................- 36 -3.1 冷凝器的选择............................................................. ............................- 36 -3.1.1 确定流体进入的空间............................................................. ............- 36 -3.1.2 就算平均值的传热温差............................................................. ........- 36 -3.1.3 选k值估算传热面积............................................................. ..............- 36 -3.1.4 初选换热器的规格............................................................. ................- 36 -3.2 再沸器的选择............................................................. ........................... - 403.3 预热器的选择............................................................. ........................... - 433.4 塔顶蒸汽出口管 ............................................................ .......................- 44-3.4.1 进料管径 ............................................................ ................................- 44-3.4.2 回流管管径 ............................................................ ...........................- 44 -3.4.3 塔顶出料管管径 ............................................................ ...................- 44-3.4.4 塔顶蒸汽接管直径 ............................................................ ...............- 45-3.4.4 塔底出料管直径 ............................................................ ...............- 453.5 储罐的设计............................................................. ................................- 46-3.6 泵的选型计算............................................................. ............................- 49 -3.7 手孔、裙座等附件设计............................................................. .............- 53-3.8 精馏塔实际高度计算与设计 ..............................................................- 54 -第四章设计结果的自我总结与评价........................................................ -55 - 4.1 设计结果的自我总结与评价 ............................................................. - 554.2 精馏塔主要工艺尺寸与主要设计参数汇总表 (56)附录............................................................. ................................................... - 57-一、符号说明............................................................. ..................................... - 57-二、参考文献............................................................. ..................................... - 58化工原理课程设计任务书(2012级)一、设计题目生产过程中欲建立一座乙苯回收塔,分离甲苯与乙苯形成的混合物,其组成为甲苯30%、乙苯70%(摩尔分率),拟采用板式精馏塔,以对其进行精馏分离,塔顶得到含甲苯≧99.6%(摩尔分率)的甲苯。
化工原理课程设计报告-苯-甲苯精馏塔设计
资料前言化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的根底知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板构造等图形。
在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的平安性、经济合理性。
化工生产常需进展液体混合物的别离以到达提纯或回收有用组分的目的,精馏是利用液体混合物中各组分挥发度的不同并借助于屡次局部汽化和局部冷凝到达轻重组分别离的方法。
塔设备一般分为阶跃接触式和连续接触式两大类。
前者的代表是板式塔,后者的代表则为填料塔。
筛板塔和泡罩塔相比较具有以下特点:生产能力大于10.5%,板效率提高产量15%左右;而压降可降低30%左右;另外筛板塔构造简单,消耗金属少,塔板的造价可减少40%左右;安装容易,也便于清理检修。
本次课程设计为年处理含苯质量分数36%的苯-甲苯混合液4万吨的筛板精馏塔设计,塔设备是化工、炼油生产中最重要的设备之一。
它可使气(或汽)液或液液两相之间进展严密接触,到达相际传质及传热的目的。
在设计过程中应考虑到设计的精馏塔具有较大的生产能力满足工艺要求,另外还要有一定的潜力。
节省能源,综合利用余热。
经济合理,冷却水进出口温度的上下,一方面影响到冷却水用量。
另一方面影响到所需传热面积的大小。
即对操作费用和设备费用均有影响,因此设计是否合理的利用热能R等直接关系到生产过程的经济问题。
目录第一章绪论 (1)1.1 精馏条件确实定 (1)1.1.1 精馏的加热方式11.1.2 精馏的进料状态11.1.3 精馏的操作压力................................................. 错误!未定义书签。
1.2 确定设计方案 (2)1.2.1 工艺和操作的要求21.2.2 满足经济上的要求21.2.3 保证平安生产3第二章设计计算32.1 设计方案确实定 (3)2.2 精馏塔的物料衡算 (3)2.2.1 原料液进料量、塔顶、塔底摩尔分率32.2.2 原料液及塔顶、塔底产品的平均摩尔质量32.2.3 物料衡算32.3 塔板计算 (4)2.3.1 理论板数NT的求取42.3.2 全塔效率的计算错误!未定义书签。
乙醇和水
提馏段:
的一般经验数值为
本设计不设置进口堰高和受液盘
采用F1型重阀,重量为33g,孔径为39mm。
浮阀数目
气体通过阀孔时的速度
取动能因数 ,那么 ,因此
个
由于采用分块式塔板,故采用等腰三角形叉排。若同一横排的阀孔中心距 ,那么相邻两排间的阀孔中心距 为:
取 时画出的阀孔数目只有60个,不能满足要求,取 画出阀孔的排布图如图1所示,其中
可以查得 ,所以
取水为冷凝介质,其进出冷凝器的温度分别为25℃和35℃则
平均温度下的比热 ,于是冷凝水用量可求:
以釜残液对预热原料液,则将原料加热至泡点所需的热量 可记为:
其中
在进出预热器的平均温度以及 的情况下可以查得比热 ,所以,
釜残液放出的热量
若将釜残液温度降至
那么平均温度
其比热为 ,因此,
可知, ,于是理论上可以用釜残液加热原料液至泡点
全塔的平均温度:
在温度 下查得
因为
所以,
全塔液体的平均粘度:
全塔效率
块(含塔釜)
其中,精馏段的塔板数为: 块
整理精馏段的已知数据列于表3(见下页),由表中数据可知:
液相平均摩尔质量:
液相平均温度:
表3精馏段的已知数据
位置
进料板
塔顶(第一块板)
质量分数
摩尔分数
摩尔质量/
温度/℃
83.83
78.62
在平均温度下查得
0.30
0.575
0.95
0.942
0.35
0.595
1.0
1.0
根据生产任务,若按年工作日300天,每天开动设备24小时计算,产品流量为 ,由于产品粘度较小,流量较大,为减少造价,降低生产过程中压降和塔板液面落差的影响,提高生产效率,选用浮阀塔。
化工原理及实验课程设计
化工原理及实验课程设计一、课程目标知识目标:1. 理解并掌握化工原理的基本概念,如反应器设计、物料平衡、能量平衡等;2. 学会运用化学工程原理分析实际化工过程中的问题,如流体流动、传热、传质等;3. 掌握化工实验的基本方法,能够运用实验数据进行有效分析。
技能目标:1. 培养学生运用数学、科学原理解决化工领域问题的能力;2. 提高学生进行实验操作、数据采集、处理和分析的技能;3. 培养学生团队合作、沟通表达及解决问题的综合能力。
情感态度价值观目标:1. 培养学生对化工原理及实验的兴趣,激发学习热情,形成积极的学习态度;2. 增强学生的环保意识,了解化学工业在可持续发展中的作用;3. 培养学生严谨的科学态度,树立正确的价值观,认识到化工知识在实际生产生活中的重要性。
课程性质分析:本课程为高中化学选修课程,旨在帮助学生了解化工原理及其在实际应用中的重要性。
学生特点分析:高中学生具备一定的化学基础,具有较强的逻辑思维能力和实验操作能力,但对化工原理的了解相对有限。
教学要求:1. 结合实际案例,深入浅出地讲解化工原理及其应用;2. 注重实验操作和数据分析,提高学生的实践能力;3. 创设问题情境,引导学生主动探究、积极思考。
二、教学内容1. 化工原理基本概念:反应器设计原理、物料平衡、能量平衡、化学动力学等;教材章节:第一章化工基础原理;进度安排:2课时。
2. 化学工程应用:流体流动、传热、传质等现象的原理及其在化工过程中的应用;教材章节:第二章流体力学与传热传质;进度安排:4课时。
3. 化工实验方法:实验设计、实验操作、数据采集与处理、实验结果分析等;教材章节:第三章化工实验技术;进度安排:4课时。
4. 实际案例分析:分析化工企业在生产过程中遇到的实际问题,探讨解决方案;教材章节:第四章化工案例分析;进度安排:2课时。
5. 化工与环保:介绍化工生产过程中环保措施及可持续发展理念;教材章节:第五章化工与环境保护;进度安排:2课时。
化工原理实习课程设计
化工原理实习课程设计一、课程目标知识目标:1. 理解化工原理实习课程的基本理论知识,掌握化工过程中常见单元操作的工作原理及设备构造。
2. 学习并掌握化工流程图的绘制方法,能够正确识别和运用各类化工符号。
3. 掌握化工实验数据的处理与分析方法,了解化工过程优化与控制的基本原理。
技能目标:1. 能够运用所学知识,设计简单的化工工艺流程,并进行模拟实验。
2. 学会使用化工实验设备,熟练进行基本的操作与维护。
3. 培养学生团队协作能力,提高沟通与表达能力,能够在团队中发挥积极作用。
情感态度价值观目标:1. 培养学生对化工原理实习课程的兴趣,激发学习热情,形成自主学习的能力。
2. 增强学生的环保意识,认识到化工生产过程中环保的重要性,培养良好的职业操守。
3. 培养学生的创新意识和实践能力,使其具备一定的解决问题和面对挑战的能力。
分析课程性质、学生特点和教学要求,本课程目标旨在使学生在掌握化工原理基本知识的基础上,提高实践操作能力,培养创新精神和团队合作意识。
通过本课程的学习,使学生能够将理论知识与实际操作相结合,为未来从事化工行业及相关领域工作打下坚实基础。
二、教学内容1. 化工原理基本知识:包括流体流动、传热、传质、反应工程等基本原理,重点讲解流体力学、热力学、传质原理等核心概念。
教材章节:第一章至第四章。
2. 化工单元操作:分析各类常见化工单元操作(如蒸馏、吸收、萃取、干燥等)的工作原理、设备构造及过程控制。
教材章节:第五章至第八章。
3. 化工流程图绘制:教授化工流程图的绘制方法,使学生能够正确识别和使用各类化工符号。
教材章节:第九章。
4. 化工实验数据处理与分析:学习化工实验数据的处理与分析方法,掌握实验结果的误差分析及数据处理技巧。
教材章节:第十章。
5. 化工过程优化与控制:介绍化工过程优化与控制的基本原理,分析典型化工过程的优化策略。
教材章节:第十一章。
6. 实践操作与模拟实验:组织学生进行实践操作,设计简单的化工工艺流程,并进行模拟实验。
化工原理换热器课程设计
华北科技学院环境工程学院《化工原理》课程设计报告设计题目列管式换热器的工艺设计和选用学生姓名曹炎学号 201101034208 指导老师高丽花专业班级化工B112班教师评语设计时间:2013年12月9日至2013年 12月20日设计题目:列管式换热器的工艺设计和选用一、设计条件炼油厂用原油将柴油从175℃冷却到130℃。
柴油流量为12500kg/h;原油初温为70℃,经换热后升温到110℃。
换热器的热损失可忽略。
管、壳程阻力压降均不大于30kPa。
污垢热阻均取0.0003m2℃/W。
试设计能完成上述任务的列管式换热器。
二、设计说明书的内容1、目录;2、设计题目及原始数据(任务书);3、论述换热器总体结构(换热器型式、主要结构)的选择;4、换热器加热过程有关计算(物料衡算、热量衡算、传热面积、换热器型号、壳体直径等);5、设计结果概要(主要设备尺寸、衡算结果等);6、参考文献7、图纸(1张,A3、纸打印)目录1 确定设计方案 (2)1.1选择换热器类型 (2)1.2流径安排 (2)1.3 确定物性数据 (2)1.3.1定性温度的确定 (2)1.3.2流体有关物性数据 (2)2 估算传热面积 (3)2.1 热负荷的计算 (3)2.2 平均传热温差 (3)2.4由K值估算传热面积 (4)2.5冷流体用量 (4)3 工艺结构尺寸 (5)3.1 管径、管长、管数 (5)3.1.1管径的选取 (5)3.1.2管长及传热管数的确定 (5)3.2 确定管子在管板上的排列方式 (6)3.3 壳体内径的计算 (6)3.4 折流档板 (7)3.5 计算壳程流通面积及流速 (7)3.6 计算实际传热面积 (8)3.7 附件 (8)4 换热器型号确定 (9)5 换热器核算 (10)5.1热量核算 (10)5.1.1壳程表面对流传热系数 (10)5.1.2管程表面对流传热系数 (11)5.1.3污垢热阻和管壁热阻 (12)5.1.4总传热系数K (12)5.1.5 传热面积裕度 (12)5.2核算换热器内流体的压力降 (13)5.2.1管程压力降 (13)5.2.2壳程压力降: (14)5.3 壁温核算 (15)6 结果概要 (16)七、附件计算及选型 (17)7.1壳体、管箱壳体和封头的设计 (17)7.1.1壁厚的确定 (17)7.1.2 进出口设计 (17)7.1.3、排气、排液管 (17)7.2.管板尺寸 (18)7.3.换热管 (18)7.3.1换热管的规格 (18)7. 3.2换热管排列方式 (18)7.3.4管程分程 (18)7.4.壳体和管板、管板与换热管的连接 (19)7.5 折流板和防冲板 (19)7.5.1折流板的形式(见附图) (19)7.6拉杆和定距管 (19)7.6.1拉杆的尺寸和结构(附录五) (19)7.6.2定距管 (19)八、总结 (20)参考文献 (21)附录 (22)1 确定设计方案1.1选择换热器类型两流体的温度变化情况:热流体进口温度为175℃,出口温度为130℃;冷流体进口温度为70℃,出口温度为110℃。
化工原理课程设计列管换热器
《化工原理课程设计》报告换热器的设计年级2008级专业化学工程与工艺设计者姓名刘国雄设计单位西北师范大学化学化工学院完成日期2010年11 月25 日目录概述1.1.换热器设计任务书................................................................................................................ - 6 -1.2换热器的结构形式................................................................................................................ - 9 -2.蛇管式换热器.......................................................................................................................... - 9 -3.套管式换热器.......................................................................................................................... - 9 - 1.3换热器材质的选择.............................................................................................................. - 10 - 1.4管板式换热器的优点.......................................................................................................... - 11 - 1.5列管式换热器的结构.......................................................................................................... - 12 - 1.6管板式换热器的类型及工作原理...................................................................................... - 13 -1.7确定设计方案...................................................................................................................... - 14 -2.1设计参数.............................................................................................................................. - 14 - 2.2计算总传热系数.................................................................................................................. - 15 - 2.3工艺结构尺寸...................................................................................................................... - 16 - 2.4换热器核算.......................................................................................................................... - 18 -2.4.1.热流量核算............................................................................................................... - 18 -2.4.2.壁温计算................................................................................................................... - 20 -2.4.3.换热器内流体的流动阻力.................................................................................... - 21 -概述在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。
化工原理课程设计报告天津
化工原理课程设计报告天津一、课程目标知识目标:1. 让学生掌握化工原理的基本概念,如流体力学、热力学、传质和反应工程等;2. 使学生了解化工过程中常见单元操作的工作原理及其在工业中的应用;3. 帮助学生理解并运用化学工程中的基本方程和计算方法。
技能目标:1. 培养学生运用数学和科学方法解决化工过程中实际问题的能力;2. 提高学生分析化工流程、设计简单工艺方案的能力;3. 培养学生使用专业软件和实验技能进行化工过程模拟和优化的能力。
情感态度价值观目标:1. 激发学生对化工原理学科的兴趣,培养其探究精神和创新意识;2. 引导学生关注化工领域的发展趋势,提高其对环保、能源等社会问题的责任感;3. 培养学生的团队协作精神和沟通能力,使其具备良好的职业素养。
本课程针对天津地区的实际情况,结合学生特点和教学要求,将课程目标分解为具体的学习成果。
通过本课程的学习,学生能够掌握化工原理的基本知识,具备解决实际问题的能力,同时形成积极的情感态度和价值观。
为后续的教学设计和评估提供明确依据。
二、教学内容本课程教学内容主要包括以下几部分:1. 化工原理基本概念:流体力学、热力学、传质和反应工程等;- 教材章节:第1章 流体力学基础,第2章 热力学基础,第3章 传质原理,第4章 反应工程基础2. 常见单元操作及其应用:流体输送、热量传递、质量传递、搅拌、过滤、干燥等;- 教材章节:第5章 流体输送,第6章 传热,第7章 质量传递,第8章 搅拌、过滤和干燥3. 化工过程分析与设计:流程模拟、工艺方案设计、优化与控制;- 教材章节:第9章 化工过程分析与合成,第10章 化工过程模拟与优化,第11章 化工过程控制4. 实验技能与专业软件应用:实验操作、数据采集与处理、专业软件操作;- 教材章节:第12章 化工实验技能,第13章 化工数据采集与处理,第14章 专业软件应用教学内容按照教学大纲的安排和进度进行组织,确保学生能够系统地学习化工原理的知识。
化工原理课程设计报告
化⼯原理课程设计报告课程设计任务书设计题⽬:⽔冷却环⼰酮换热器的设计⼀、设计条件1、处理能⼒53万吨/年2、设备型式列管式换热器3、操作条件a.环⼰酮:⼊⼝温度120℃,出⼝温度为43℃b.冷却介质:⾃来⽔,⼊⼝温度20℃,出⼝温度40℃c.允许压强降:不⼤于1×105Pad.每年按330天计,每天24⼩时连续运⾏4、设计项⽬a.设计⽅案简介:对确定的⼯艺流程及换热器型式进⾏简要论述。
b.换热器的⼯艺计算:确定换热器的传热⾯积。
c.换热器的主要结构尺⼨设计。
d.主要辅助设备选型。
e.绘制换热器总装配图。
⼆、设计说明书的内容1、⽬录;2、设计题⽬及原始数据(任务书);3、论述换热器总体结构(换热器型式、主要结构)的选择;4、换热器加热过程有关计算(物料衡算、热量衡算、传热⾯积、换热管型号、壳体直径等);5、设计结果概要(主要设备尺⼨、衡算结果等);6、主体设备设计计算及说明;⽬录1. 前⾔ (1)1.换热器简介 (1)2. 列管式换热器分类: (2)2. 设计⽅案简介 (2)2.1换热器的选择 (2)2.2流程的选择 (2)2.3物性数据 (2)3.1.1计算传热量 (3)3.1.2计算冷却⽔流量 (3)3.1.3计算两流体的平均传热温度 (3) 3.1.4计算P、R值 (3)3.1.5假设K值 (4)3.1.6估算⾯积 (5)3.1.7拟选管的规格、估算管内流速 (5) 3.1.8计算单程管数 (5)3.1.9计算总管数 (5)3.1.10管⼦的排列 (6)3.1.11折流板 (6)3.2核算传热系数 (6)3.2.1计算管程传热系数 (6)3.2.2计算壳程传热系数 (7)3.2.3污垢热阻 (7)3.2.4计算总传热系数 (7)3.3核算传热⾯积 (7)3.3.1计算估计传热⾯积 (7)3.3.2计算实际传热⾯积 (8)3.4压降计算 (8)3.4.1计算管程压降 (8)3.4.2计算壳程压降 (8)3.5附件 (9)3.5.1接管 (9)3.5.2拉杆 (9)4. 换热器结果⼀览总表 (10)5. 设计结果概要 (11)1.结果 (11)6. 致谢 (12)7. 附录 (13)1.符号表含义及单位 (13)2.管⼦排列⽅式图 (15)3.换热器主要尺⼨⽰意图 (16)4.参考⽂献 (16)1.前⾔1.换热器简介]1[换热器是将热流体的部分热量传递给冷流体的设备,⼜称热交换器。
《化工原理课程设计》实践教学报告
评语
实践情况
实践态度
实践能力
实践效果
实践单位意见
指导教师意见
实践单位(章):函授站初审意见
审核人(签章):
年月日
学院验收意见
验收人(签章):
年月日
附表1
江苏大学高等学历继续教育
实践教学报告
函授站(校外教学点):徐州中大学院
专业班级
2023级化学工程与工艺
学号、姓名
实践课程名称
化工原理课程设计
指导教师
岳朝松
实践教学地点
起止时间
2024年3月3日、4日
实践日志
(包括实践方式、内容及体会等,可另附单位证明、实践照片等)
主要内容:化工原理课程设计
说明:此表由学员填写,实验、上机、课程设计、专题调查、实习等均采用此表,于该实践教学环节结束一周内交教学点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计任务书设计题目:水冷却环己酮换热器的设计一、设计条件1、处理能力53万吨/年2、设备型式列管式换热器3、操作条件a.环己酮:入口温度120℃,出口温度为43℃b.冷却介质:自来水,入口温度20℃,出口温度40℃c.允许压强降:不大于1×105Pad.每年按330天计,每天24小时连续运行4、设计项目a.设计方案简介:对确定的工艺流程及换热器型式进行简要论述。
b.换热器的工艺计算:确定换热器的传热面积。
c.换热器的主要结构尺寸设计。
d.主要辅助设备选型。
e.绘制换热器总装配图。
二、设计说明书的内容1、目录;2、设计题目及原始数据(任务书);3、论述换热器总体结构(换热器型式、主要结构)的选择;4、换热器加热过程有关计算(物料衡算、热量衡算、传热面积、换热管型号、壳体直径等);5、设计结果概要(主要设备尺寸、衡算结果等);6、主体设备设计计算及说明;目录1. 前言 (1)1.换热器简介 (1)2. 列管式换热器分类: (2)2. 设计方案简介 (2)2.1换热器的选择 (2)2.2流程的选择 (2)2.3物性数据 (2)3. 工艺计算 (3)3.1试算 (3)3.1.1计算传热量 (3)3.1.2计算冷却水流量 (3)3.1.3计算两流体的平均传热温度 (3)3.1.4计算P、R值 (3)3.1.5假设K值 (4)3.1.6估算面积 (5)3.1.7拟选管的规格、估算管内流速 (5)3.1.8计算单程管数 (5)3.1.9计算总管数 (5)3.1.10管子的排列 (6)3.1.11折流板 (6)3.2核算传热系数 (6)3.2.1计算管程传热系数 (6)3.2.2计算壳程传热系数 (7)3.2.3污垢热阻 (7)3.2.4计算总传热系数 (7)3.3核算传热面积 (7)3.3.1计算估计传热面积 (7)3.3.2计算实际传热面积 (8)3.4压降计算 (8)3.4.1计算管程压降 (8)3.4.2计算壳程压降 (8)3.5附件 (9)3.5.1接管 (9)3.5.2拉杆 (9)4. 换热器结果一览总表 (10)5. 设计结果概要 (11)1.结果 (11)6. 致谢 (12)7. 附录 (13)1.符号表含义及单位 (13)2.管子排列方式图 (15)3.换热器主要尺寸示意图 (16)4.参考文献 (16)5.ChemCAD运行结果 (16)1.前言1.换热器简介]1[换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。
换热器是化工、石油、动力、食品及其他许多工业部门的通用设备,在生产中占有重要地位。
化工生产中所用的换热器类型很多。
按其用途分,有加热器、冷却器、冷凝器、蒸发器和再沸器等。
按其结构分,有列管式、板式等。
不同类型换热器,其性能各异,因此要了解各种换热器的特点,以便根据工艺要求选用适当类型,同时还要根据传热的基本原理,选择流程,确定换热器的基本尺寸,计算传热面积以及计算流体阻力等。
列管式换热器是目前应用最广泛的一种换热设备,设计资料和数据比较完善,目前在许多国家已有系列化标准。
列管式换热器在换热效率、紧凑性和金属消耗量等方面不及其他新型换热器,但由于它有结构牢固。
适应性大、材料范围广等独特优点,因而在各种换热器的竞争发展中仍占有绝对优势。
列管式换热器种类很多,目前广泛使用的按其温度差补偿结构来分,主要有以下几种。
1)固定管板式换热器这类换热器结构比较简单、紧凑、造价便宜,但管外不能清洗。
因此换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接顶盖,顶盖和壳体上有流体进出口管。
通常在管外装置一系列垂直于管束的挡板。
同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。
因此,当管壁与壳壁温差较大时,由于两者热膨胀性质不同,产生了很大的温差应力,以至管子扭弯或管子从管板上松脱,甚至毁坏换热器。
为了克服温差应力必须有温差补偿装置,一般在管壁与壳壁温度相差50℃以上时,为了安全起见,换热器应有温差补偿装置。
靠膨胀节的弹性变形可以减少温差应力。
但这种换热器只能用在壳壁与管壁温差低于60~70℃和壳程流体压强超过588kPa,时,由于补偿圈过早,难以伸缩而失去温差补偿的作用,此时就应考虑其他结构。
2)浮头式换热器换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以便管子受热或冷却时可以自由伸缩,但在这块管板上连接一个顶盖,称为“浮头”,所以这种换热器叫做浮头式换热器。
这种型式换热器的优点为:管束可以拉出,便于清洗;管束的膨胀不受壳体的约束,因而当两种换热流体的温差较大时,不会因管束与壳体的热膨胀量不同而产生温差应力。
其缺点是结构复杂,造价高。
3)填料函式换热器这类换热器管束一端可以自由膨胀,结构比浮头式换热器简单,造价也比浮头式换热器低。
但壳程内介质有外漏的可能,壳程中不应处理易挥发、易燃、易爆和有毒介质。
4)U形管式换热器这类换热器只有一个管板,管程至少为两程,管束可以抽出清洗,管子可以自由膨胀。
其缺点是管子内壁清洗困难,管子更换困难,管板上排管数目少。
对于列管式换热器,一般要根据换热流体的腐蚀性及其他特性来选择结构与材料,根据材料的加工性能、流体的压力和温度、换热器管程与壳程的温度差的热负荷、检修清洗的要求等因素决定采用哪一类型的列管式换热器。
2. 列管式换热器分类:类型 特点固定管板式刚性结构 用于管壳温差较小的情况(一般≤50℃),管间不能清洗 带膨胀节有一定的温差补偿能力,壳程只能承受低压力 浮头式 管内外均能承受高压,可用于高温高压场合 U 型管式 管内外均能承受高压,管内清洗及检修困难填料函式外填料函 管间容易泄漏,不宜处理易挥发、易爆炸及压力较高的介质 内填料函密封性能差,只能用于压差较小的场合 斧式 壳体上部有个蒸发空间用于再沸、蒸煮双套管式结构比较复杂,主要用于高温高压场合和固定床反应器中2. 设计方案简介2.1换热器的选择在水冷却环己酮换热器设计中,要遵循经济,传热效果好,方便清洗,符合实际需要等原则采用浮头式列管换热器。
浮头式换热器的优点为:管束可以拉出,便于清洗;管束的膨胀不受壳体的约束,因而当两种换热流体的温差相差较大时,不会因管束与壳体的热膨胀量不同而产生温差应力。
2.2流程的选择在列管换热器中,考虑到冷却水常是工业用水,含有3CaCO 、3NaCO 等盐类,受热后容易析出形成垢层,在管内流体要维持高速,可避免悬浮颗粒沉积,所以冷却水走管程。
环己酮为被冷却流体且流量小一般走壳程,便于散热。
2.3物性数据a.定性温度:取流体进出口的平均值管程冷却水定性温度 402030()2i t C +==︒ 壳程环己酮定性温度 01204381.5()2t C +==︒ b.根据定性温度,通过CHEMCAD 软件查询可得壳程和管程流体的相关物性参数 ①冷却水在30℃下相关物性参数: 密度 3995.7/i kg mρ=定压比热容 4.174/()i Cp kJ kg k =∙导热系数 0.6171/()i W m k λ=∙粘度 320.801210/i N s m μ-=⨯∙ ②环己酮在81.5℃下相关物性参数: 密度3/994.892m kg o =ρ定压比热容 )/(07569.2k kg kJ Cp o ∙= 导热系数 )/(125835.0k m W o ∙=λ 粘度 230/10850161.0m s N ∙⨯=-μ3. 工艺计算3.1试算3.1.1计算传热量4001276()0.95 6.69210 2.07569(12043)0.951.016210/ 2.82210Q W Cp T T kJ h W=-⨯=⨯⨯⨯-⨯=⨯=⨯3.1.2计算冷却水流量71.016210121729.756/4.17420i i Q W kg h Cp t ⨯===∆⨯3.1.3计算两流体的平均传热温度环己酮 120℃ → 43℃ 冷却水 40℃ ← 20℃ 温差 80℃ 23℃ 选取逆流方式:1280 3.478 1.2,23t t ∆=≈>∆因此采用对数平均值进行校正 [3]'1212802345.7380ln ln 23o mt t t C t t ∆-∆-∆===∆∆3.1.4计算P 、R 值[3]211140200.212020t t P T t --===--[3]1221120433.854020T T R t t --===--拟采用单壳程,偶数管程的浮头式换热器由上图查得 [3]0.870.8ϕ∆=>平均传热温度校正 '0.8745.7339.79o m m t t C ϕ∆=∆∙∆=⨯=3.1.5假设K 值由环己酮走壳程,冷却水走管程且环己酮32320.510/110/N s m N s m μ--⨯∙<<⨯∙为中有机物,查K 值大致范围表可得K 的范围为290~6892/()W m K ∙在此范围内取K=3002/()W m K ∙。
管程壳程总传热系数/[W/(m 3·℃)水(流速为0.9~1.5m/s ) 水 冷水 冷水 冷水 盐水 有机溶剂轻有机物μ<0.5mPa·s 中有机物μ=0.5~1mPa·s 重有机物μ>1mPa·s水(流速为0.9~1.5m/s ) 水(流速较高时) 轻有机物μ<0.5mPa·s 中有机物μ=0.5~1mPa·s 重有机物μ>1mPa·s 轻有机物μ<0.5mPa·s 有机溶剂μ=0.3~0.55mPa·s 轻有机物μ<0.5mPa·s 中有机物μ=0.5~1mPa·s 重有机物μ>1mPa·s582~698 814~1163 467~814 290~698 116~467 233~582 198~233 233~465 116~349 58~233水(流速为1m/s ) 水水溶液μ<2mPa·s 水溶液μ>2mPa·s 有机物μ<0.5mPa·s 有机物μ=0.5~1mPa·s 有机物μ>1mPa·s 水 水 水 水 水 水 水 水水蒸气(有压力)冷凝 水蒸气(常压或负压)冷凝 水蒸气冷凝 水蒸气冷凝 水蒸气冷凝 水蒸气冷凝 水蒸气冷凝有机物蒸气及水蒸气冷凝 重有机物蒸气(常压)冷凝 重有机物蒸气(负压)冷凝 饱和有机溶剂蒸气(常压)冷凝 含饱和水蒸气的氯气(<50℃) SO 2冷凝 NH 3冷凝 氟里昂冷凝2326~4652 1745~3489 1163~1071 582~2908 582~1193 291~582 114~349 582~1163 116~349 58~174 582~1163 174~349 814~1163 698~930 7563.1.6估算面积622.82210236.4130039.79m Q A m K t ⨯===∆⨯估估3.1.7拟选管的规格、估算管内流速管径选择 选用25 2.5φ⨯传热管(碳钢) 估算管内流速 取管内流速0.9/u m s =估3.1.8计算单程管数 单程管数 22/(3600)121729.756/(995.73600)=120.17120()0.02u 0.020.944i i W n ρππ⨯⨯==≈⨯⨯⨯⨯根3.1.9计算总管数 管长 0A 236.41L=25.097nd 3.141200.025m π==⨯⨯ 若按单程设计,则传热管过长,因此采用多管程结构若取传热管长[3]6l m =,则该换热器管程数为 25.097 4.1846p L N l ===≈则传热管总根数 1204480()N =⨯=根3.1.10管子的排列确定管子排列方法 正三角形排列管心距 0a=1.25d =1.2525=32mm ⨯ 穿过中心线管数 1.148024.124()c n ==≈根 取管板利用率为0.8壳体内径 480D 1.05 1.050.0320.823(0.80.8N a m m =∙=⨯⨯=取0.8)则67.50.8l D =≈在[3]6~10之内3.1.11折流板采用弓形折流板(水平圆缺)取弓形折流板圆缺高度为壳体内径的25%,则折流板的高度为0.250.250.80.2H D m =⨯=⨯=折流板间距 0.40.40.80.32B D m ==⨯= 板数 6117.750.32B N =-=≈18块3.2核算传热系数3.2.1计算管程传热系数 流通截面积 [2]22S 0.7850.024800.15074i i d A m π==⨯⨯=流速 [2]121729.756/(995.73600)0.225/0.1507ii iWu m s S ⨯===雷诺系数 [2]30.020.225995.7Re 5592.420.801210i i ii id u ρμ-⨯⨯===⨯ 普朗特数 [2]334.174100.801210Pr 5.420.617i ii iCp μλ-⨯⨯⨯===传热系数0.80.4[2]0.80.420.023Re Pr 0.6170.0235592.42 5.421388.87/()0.02ii i i io d W m C λα==⨯⨯⨯=∙3.2.2计算壳程传热系数当量直径 [2]222200334()4(0.0320.025)24240.023.140.025a d de m d πππ-⨯⨯-⨯===⨯流通截面积 [2]2000.025(1)0.320.8(1)0.0560.032d S BD m a =-=⨯⨯-= 流速 4000 6.69210/(892.9943600)0.372/0.056W u m s S ⨯⨯===雷诺系数 000030.0250.372892.994Re 9768.550.85016110d u ρμ-⨯⨯===⨯普朗特数 330000 2.07569100.85016110Pr 14.020.125835Cp μλ-⨯⨯⨯===传热系数10.55[2]030010.55230.36RePr0.1258350.369768.5514.02854.53/()0.02eo d W m C λα==⨯⨯⨯=∙3.2.3污垢热阻管程水污垢热阻 42[3]3.439410/o i Rs m C W -=⨯∙ 壳程环己酮污垢热阻 32[3]00.17610/o Rs m C W -=⨯∙3.2.4计算总传热系数[2]0000004321110.0250.0250.00250.02513.4394100.176101388.870.020.02450.0225854.53365.24/()i i i i m o K d d bd Rs Rs d d d W m C αλα--=++++=⨯+⨯⨯++⨯+⨯⨯=∙则0365.24 1.22300K K ==在[3]1.15 1.25之间,满足要求3.3核算传热面积3.3.1计算估计传热面积620Q 2.82210=194.18365.2439.79m A m K t ⨯==∆⨯计3.3.2计算实际传热面积20 3.140.025*******.08A d lNt m π==⨯⨯⨯=实 则226.08==1.16194.18A A 实计在[3]1.1 1.20之间,满足要求3.4压降计算3.4.1计算管程压降[2]12P ()i t s pP P F N N ∑∆=∆+∆ 注:t F :结构校正因数,取1.4 p N :管程,由前面计算为4 s N :串联的壳程数(为1)[2]212i i ii u l P d ρλ∆=∙[2]2232i i u P ρ∆=∙由Re 5592.42i =知,35[2]310Re 10i ⨯≤≤ 则0.250.250.31640.31640.0366Re 5592.42i i λ===216995.70.2250.0366276.740.022P Pa ⨯∆=⨯⨯= 22995.70.225375.612P Pa ⨯∆=⨯= 5[3](276.7475.61) 1.4411973.16110i P Pa ∑∆=+⨯⨯⨯=<⨯3.4.2计算壳程压降''[2]012()s sP p p F N ∑∆=∆+∆[2]2'200101(1)()2nc B ii u P Ff n N XX ρ=∆=+-∑[2]2'0022(3.5)2B u B P N D ρ∆=-注:校正因数 1.15s F =,壳程1s N =F :管子排列方法对压力降的校正系数(三角形排列)取0.5F = 0f :壳程流体摩擦系数。