高中物理 弹簧模型问题复习探究
高三物理专题复习5弹簧模型-中等(教师版)
:C.:轻质弹簧1以两球整体为研究对象,受力分析,由合成法知当弹簧与故选C .的摩擦力的合力一定竖直向上如图所示,质量为定滑轮的轻质细绳,绳的另一端连接着静置于地面、质量为的轻绳处于竖直方向,与度系数为,取重力加速度为间的摩擦.关于物块的受力情况,下列分析正确的有:(2,若弹力向上,则绳子拉力3将一轻质弹簧竖直立在水平面上,当在其上端放上托盘D.如图所示,一轻质弹簧一端固定在竖直墙壁上,另一自由端位于4D物体开始运动时,弹簧的弹力大于阻力,根据牛顿第二定律有:,知形变量减小,加速度减小,先做加速度减小的加速运动.当加速度减小到零时,速度达到最大,然后弹簧的阻力大于弹簧的弹力,物体做减速运动,加速度的大小,加速度逐渐增大,到达点后,与弹簧分离,仅受阻力,做匀减速直线运动.故D 正确,A 、B 、C 错误.故选D .如图所示,劲度系数为56如图,在光滑的水平面上静止放一个质量为,方向向右如图所示,在动摩擦因数7如图所示,在竖直面内固定一光滑的硬质杆8圆环和弹簧组成的系统机械能守恒由几何关系可知,当环与以在环从到的过程中弹簧对环做正功,而从能是变化的.故A、B错误;当环与点的连线与杆垂直时,弹簧的长度最短,弹簧的弹性势能最小,所以弹簧的弹性势能先减小后增大.故C错误;9如图所示,小车板面上的物体质量为物体与小车始终保持相对静止,弹簧对物体的作用力始终没有发生变化的加速度(向左)做匀加速直线运动时,物体受到的摩擦力为10如图;受到力之后,合外力也应该恰好为,得加;这三式可得错误;11质量为12小车板面上的物体质量为的加速度向右做匀加速直线运动时,物体受到的摩擦力为13如图所示,14如图,球受力分析,受重力、弹簧的压力,墙壁的向右的支持力、细线的拉力、地面的由于三个力夹角均为度,故弹簧的支持力和绳子D选项:根据平衡条件,绳分力和重力之和,故故,地面的压力可能为零,故D错误.故选C.15把质量为的小球(可看作质点)放在竖直的轻质弹簧上,并把小球向下按到甲),如图所示.迅速松手后,弹簧把小球弹起,球升至最高位置16如图所示,两个质量为17如图所示,长木板静止在光滑的水平面上,长木板的左端固定一个档板,档板上固定一个长度为18如图所示,质量为的冲量大小大于弹簧对物体的冲量大小开始运动时金属棒与导轨接触点间电压为如图所示,在倾角为19选项:开始时金属棒切割磁感线产生的感应电动势:,金属棒与导轨接触点间的,故A 正确;20如图所示,21如图所示,一个质量为物体与小木板先保持相对静止一会,后来相对滑动22如图所示,木板23如图所示,在空间中存在竖直向上的匀强电场,质量为,解得:的过程中,除重力和弹力以外,只有电场力做功,电场力做功为:.故B错误;.故C错物体的质量为物体的质量为弹簧压缩最大时的弹性势能为弹簧压缩最大时的弹性势能为如图甲所示,在光滑水平面上,轻质弹簧一端固定,物体2425静止在地面上的物块。
高考物理含弹簧的物理模型专题分析
含弹簧的物理模型纵观历年的高考试题,和弹簧有关的物理试题占有相当的比重,高考命题者常以弹簧为载体设计出各类试题,这类试题涉及静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能问题等。
几乎贯穿整个力学的知识体系。
对于弹簧,从受力角度看,弹簧上的弹力是变力;从能量角度看,弹簧是个储能元件。
因此,弹簧问题能很好地考查学生的综合分析能力,故备受高考命题者的亲睐。
题目类型有:静力学中的弹簧问题,动力学中的弹簧问题,与动量和能量相关的弹簧问题。
1.静力学中的弹簧问题(1)胡克定律:F =kx ,ΔF =k ·Δx(2)对弹簧秤的两端施加(沿轴线方向)大小不同的拉力,弹簧秤的示数一定等于挂钩上的拉力。
例题1:一根轻质弹簧一端固定,用大小为F 1的力压弹簧的另一端,平衡时长度为l 1;改用大小为F 2的力拉弹簧,平衡时长度为l 2。
弹簧的拉伸或压缩均在弹性限度内,该弹簧的劲度系数为 C A .2121F F l l -- B .2121F F l l ++ C .2121F F l l +- D .2121F F l l -+例题2:如图所示,两木块A 、B 的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,两弹簧分别连接A 、B ,整个系统处于平衡状态。
现缓慢向上提木块A ,直到下面的弹簧对地面的压力恰好为零,在此过程中A 和B 的重力势能共增加了A .212221)(k k g m m ++B .)(2)(212221k k g m m ++C .)()(21212221k k k k g m m ++ D .22221)(k g m m ++12211)(k g m m m +解析:取A 、B 以及它们之间的弹簧组成的整体为研究对象,则当下面的弹簧对地面的压力为零时,向上提A 的力F 恰好为:F =(m 1+m 2)g设这一过程中上面和下面的弹簧分别伸长x 1、x 2,由胡克定律得:x 1=121)(k g m m +,x 2=221)(k gm m +故A 、B 增加的重力势能共为: ΔE P =m 1g (x 1+x 2)+m 2gx 2=22221)(k g m m ++12211)(k gm m m +答案:D【点评】计算上面弹簧的伸长量时,较多的同学会先计算原来的压缩量,然后计算后来的伸长量,再将两者相加,但不如上面解析中直接运用Δx =kF∆进行计算更快捷方便。
关于高级高中物理弹簧弹力问题归类总结归纳
弹簧问题归类一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F .【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: 12F F ma -=,即12F F a m-=,仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的.【答案】12F F a m-=1F二、质量不可忽略的弹簧【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.【解析】 弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度Fa M=,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为:,x x F x T ma M F L M L===【答案】x x T F L=三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变. 【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于图图 3-7-1图 3-7-3地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a = 与B a =【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C 前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =.以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g .【答案】0 说明:区别于不可伸长的轻质绳中张力瞬间可以突变.【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为030的光滑木板AB 托住,使小球恰好处于静止状态.当AB 突然向下撤离的瞬间,小球的加速度为 ( ) A.0 B.大小为23g ,方向竖直向下C.大小为23g ,方向垂直于木板向下 D. 大小为23g , 方向水平向右 【解析】 末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡,如图3-7-5所示,有cos N mgF θ=.撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的N F (三力平衡),方向与N F 相反,故加速度方向为垂直木板向下,大小为23cos N F g a g m θ=== 【答案】 C. 四、弹簧长度的变化问题设劲度系数为k 的弹簧受到的压力为1F -时压缩量为1x -,弹簧受到的拉力为2F 时伸长量为2x ,此时的“-”号表示弹簧被压缩.若弹簧受力由压力1F -变为拉力2F ,弹簧长度将由压缩量1x -变为伸长量2x ,长度增加量为12x x +.由胡克定律有: 11()F k x -=-,22F kx =.则:2121()()F F kx kx --=--,即F k x ∆=∆说明:弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量.图图图【例5】如图3-7-6所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了 ,物块1的重力势能增加了 .【解析】由题意可知,弹簧2k 长度的增加量就是物块2的高度增加量,弹簧2k 长度的增加量与弹簧1k 长度的增加量之和就是物块1的高度增加量.由物体的受力平衡可知,弹簧2k 的弹力将由原来的压力12()m m g +变为0,弹簧1k 的弹力将由原来的压力1m g 变为拉力2m g ,弹力的改变量也为12()m m g + .所以1k 、2k 弹簧的伸长量分别为:1211()m m g k +和1221()m m g k +故物块2的重力势能增加了221221()m m m g k +,物块1的重力势能增加了21121211()()m m m g k k ++ 五、弹簧形变量可以代表物体的位移弹簧弹力满足胡克定律F kx =-,其中x 为弹簧的形变量,两端与物体相连时x 亦即物体的位移,因此弹簧可以与运动学知识结合起来编成习题.【例6】如图3-7-7所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ).【解析】 系统静止时,设弹簧压缩量为1x ,弹簧弹力为1F ,分析A 受力可知:11sin A F kx m g θ== 解得:1sin A m g x kθ=在恒力F 作用下物体A 向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体B 刚要离开挡板C 时弹簧的伸长量为2x ,分析物体B 的受力有:2sin B kx m g θ=,解得2sin B m g x kθ=设此时物体A 的加速度为a ,由牛顿第二定律有:2sin A A F m g kx m a θ--= 解得:()sin A B A F m m g a m θ-+=因物体A 与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有12d x x =+,即()sin A B m m g d k θ+=【答案】()sin A B m m g d kθ+=六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的图形变相对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关.以此来分析计算物体运动状态的可能变化.结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,.此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动.结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程.【例7】如图3-7-8所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大? (2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少?【解析】 由题意可知,弹簧开始的压缩量0mgx k=,物体B 刚要离开地面时弹簧的伸长量也是0mgx k=. (1)若3F mg =,在弹簧伸长到0x 时,物体B 离开地面,此时弹簧弹性势能与施力前相等,F 所做的功等于物体A 增加的动能及重力势能的和.即:201222F x mg x mv ⋅=⋅+得: 022v gx =(2)所施加的力为恒力0F 时,物体B 不离开地面,类比竖直弹簧振子,物体A 在竖直方向上除了受变化的弹力外,再受到恒定的重力和拉力.故物体A 做简谐运动.在最低点有:001F mg kx ma -+=,式中k 为弹簧劲度系数,1a 为在最低点物体A 的加速度.在最高点,物体B恰好不离开地面,此时弹簧被拉伸,伸长量为02x ,则: 002(2)k x mg F ma +-=而0kx mg =,简谐运动在上、下振幅处12a a =,解得:032mgF =[也可以利用简谐运动的平衡位置求恒定拉力0F .物体A 做简谐运动的最低点压缩量为0x ,最高点伸长量为02x ,则上下运动中点为平衡位置,即伸长量为所在处.由002x mg kF +=,解得: 032mgF =.]【答案】022gx 32mg 图图 3-7-8说明: 区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关. 七.与弹簧相关的临界问题通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰好要离开地面;相互接触的物体恰好要脱离等.此类问题的解题关键是利用好临界条件,得到解题有用的物理量和结论。
安徽省示范高中高考弹簧问题归类探究
安徽省示范高中高考弹簧问题归类探究有关弹簧的题目在高考中几乎年年出现,由于涉及到的弹簧弹力是变力,学生往往对弹力大小和方向的变化过程缺乏清晰的分析,不能建立与之相关的物理模型和进行分门别类,导致解题思路不清、效率低下,错误率较高。
下面我们归纳六类问题探求解法。
一、弹簧弹力瞬时问题因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变。
因此,在分析瞬时变化时,可以认为弹力大小和方向不变,即弹簧的弹力瞬间不突变。
例1、如图所示,木块A 与B 用一轻弹簧相连,竖直放在木块C上,三者静置于地面,A 、B 、C 的质量之比是1∶2∶3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是a A =____ ,a B =____分析与解 由题意可设A 、B 、C 的质量分别为m 、2m 、3m以木块A 为研究对象,抽出木块C 前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均没变,故木块A 的瞬时加速度为0以木块AB 为研究对象,由平衡条件可知,木块C 对木块B 的作用力F cB =3mg 以木块B 为研究对象,木块B 受到重力、弹力和F cB 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均没变,F cB 瞬时变为0,故木块C 的瞬时合外力为竖直向下的3mg 。
瞬时加速度为1.5g说明 区别不可伸长的轻质绳中张力瞬间可以突变二、弹簧长度的变化问题设劲度系数为k 的弹簧受到压力为-F1时压缩量为-x1,弹簧受到拉力为F2时伸长量为x2,此时的“-”号表示压缩的含义。
若弹簧受力由压力-F1变为拉力F2,弹簧长度将由压缩量-x1变为伸长量为x2,长度增加量为x1+x2由胡克定律有: F2=kx2 -F1=k(-x1)∴F1-(-F2)=k[x1-(-x2)] 即: △F=k△x说明弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时△x表示的物理含义是弹簧长度的改变量,并不是形变量。
高中物理重要方法典型模型突破14-模型专题(6)-弹簧模型
专题十四 模型专题(6) 弹簧模型【重点模型解读】弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考查了学生对静力学问题、动力学问题、能量守恒问题、功能关系问题等知识点的理解,考查了对于一些重要方法和思想的运用。
1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应。
在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-21kx 12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p =21kx 2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.4.典型实例:图示或释义 规律或方法与弹簧相关的平衡问题弹簧类平衡问题常常以单一问题出现,涉及的知识主要是胡克定律、物体的平衡条件,求解时要注意弹力的大小与方向总是与弹簧的形变相对应,因此审题时应从弹簧的形变分析入手,找出形变量x 与物体空间位置变化的对应关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来列式求解与弹簧相关的动力学问题 (1)弹簧(或橡皮筋)恢复形变需要时间,在瞬时问题中,其弹力的大小往往可以看成不变,即弹力不能突变。
而细线(或接触面)是一种不发生明显形变就能产生弹力的物体,若剪断(或脱离)后,其中弹力立即消失,即弹力可突变,一般题目中所给细线和接触面在没有特殊说明时,均可按此模型处理(2)对于连接体的加速问题往往先使用整体法求得其加速度,再用隔离法求得受力少的物体的加速度,并利用加速度的关系求解相应量与弹簧相关的功能问题弹簧连接体是考查功能关系问题的经典模型,求解这类问题的关键是认真分析系统的物理过程和功能转化情况,再由动能定理、机械能守恒定律或功能关系列式,同时注意以下两点:①弹簧的弹性势能与弹簧的规格和形变程度有关,对同一根弹簧而言,无论是处于伸长状态还是压缩状态,只要形变量相同,则其储存的弹性势能就相同;②弹性势能公式E p =12kx 2在高考中不作要求(除非题中给出该公式),与弹簧相关的功能问题一般利用动能定理或能量守恒定律求解 【典例讲练突破】【例1】如图所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2【拓展】此题若求m l移动的距离又当如何求解?【练1】如图所示,A、B两物体静止在粗糙水平面上,其间用一根轻弹簧相连,弹簧的长度大于原长。
弹簧问题总结高考 高考弹簧问题及应对策略
弹簧问题总结高考高考弹簧问题及应对策略轻弹簧是一种理想化的物理模型,以轻弹簧为载体,设置一定的物理情景,可以考查弹力的概念,牛顿第二定律及变力做功等知识点。
在这些知识点中弹簧与其关联物之间总存在力、运动状态和能量的联系,对学生的要求较高,有较高的区分度,因此成为高考的热点难点。
本人在多年高手教学中摸索出一些经验,应对高考中的弹簧问题主要从以下几个方面:一.弹簧的形变量与物体的运动相联系这类题的考查主要是要求学生弹簧状态的改变中找到物体运动的距离,从弹力的变化中找出物体的加速度变化情况,确定速度的变化情况。
应对策略①弹簧的形变量与物体的运动距离密切相连,如果弹簧的初末状态均为压缩(伸长)压缩量为x1、x2,弹簧一端的物体运动距离x=x1-x2或x=x2-x1,如果弹簧的初末状态一个为压缩,一个为伸长,则弹簧一端的运动物体运动距离x=x1+x2。
②物体的运动引起弹簧弹力的改变,对物体应用牛顿第二定律或平衡条件分析物体的速度变化情况。
例1.(2005年全国理综III卷)如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A、B,它们的质量分别为mA、mB,弹簧的劲度系数为k,C为一固定挡板。
系统处一静止状态,现开始用一恒力F沿斜面方向拉物块A使之向上运动,求物块B刚要离开C时物块A的加速度a和从开始到此时物块A的位移d,重力加速度为g。
解:令x1表示未加F时弹簧的压缩量,由胡克定律和牛顿定律可知令x2表示B刚要离开C时弹簧的伸长量,a表示此时A的加速度,由胡克定律和牛顿定律可知:mgsinθ=kx1①kx2=mBgsinθ②F-mAgsinθ-kx2=mAa③得由题意d=x1+x2⑤由①②⑤式可得二.弹簧的瞬时问题这类题的考查主要针对弹簧两端都有物体时弹簧的弹力不能发生突变,即弹簧形变瞬间不发生变化,弹力不变。
应对策略:一个力发生变化的瞬间,弹簧的弹力大小方向都不变,绳的弹力杆的弹力瞬间发生变化,正确的受力分析后根据牛顿第二定律求解。
高中物理中的弹簧问题归类剖析
高中物理中的弹簧问题归类分析 (教师版 )有关弹簧的题目在高考取几乎年年出现,因为弹簧弹力是变力,学生常常对弹力大小和方向的变化过程缺少清楚的认识,不可以成立与之有关的物理模型并进行分类,致使解题思路不清、效率低下、错误率较高 .在详细实质问题中,因为弹簧特征使得与其相连物体所构成系统的运动状态拥有很强的综合性和隐蔽性,加之弹簧在伸缩过程中波及力和加快度、功和能、冲量和动量等多个物理观点和规律,所以弹簧试题也就成为高考取的重、难、热门, 一、“轻弹簧”类问题在中学阶段,凡波及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常有的理想化物理模型 .因为“轻弹簧”质量不计,选用随意小段弹簧,其两头所受张力必定均衡,不然,这小段弹簧的加快度会无穷大 .故轻弹簧中各部分间的张力到处相等,均等于弹簧两头的受力.弹簧一端受力为F ,另一端受力必定也为 F ,假如弹簧秤,则弹簧秤示数为F .【例 1】如下图,一个弹簧秤放在圆滑的水平面上,外壳质量m 不可以忽视,弹簧及挂钩质量不计,施加水平方向的力 F 1、 F 2 ,且 F 1F 2 ,则弹簧秤沿水平方向的加快度为,弹簧秤的读数为.【分析】 以整个弹簧秤为研究对象,利用牛顿运动定律得:F 1 F 2 ma ,即 aF 1F 2m仅以轻质弹簧为研究对象,则弹簧两头的受力都F 1 ,所以弹簧秤的读数为F 1 .说明 : F 2 作用在弹簧秤外壳上, 并无作用在弹簧左端, 弹簧左端的受力是由外壳内侧供给的.F 1 F 2F 1 【答案】 am二、质量不行忽视的弹簧【例 2】如图 3-7-2 所示,一质量为 M 、长为 L 的均质弹簧平放在圆滑的水平面 , 在弹簧右 端施加一水平力 F 使弹簧向右做加快运动 . 试分析弹簧上各部分的受力状况.【分析】 弹簧在水平力作用下向右加快运动,据牛顿第二定律得其加快度F, 取弹簧左部随意长度 x 为研究aM图 3-7-2对象,设其质量为m 得弹簧上的弹力为:x M Fx Fx FT x ma 【答案】 T xL MLL三、 弹簧的弹力不可以突变( 弹簧弹力刹时 ) 问题弹簧 (特别是软质弹簧 )弹力与弹簧的形变量有关, 因为弹簧两头一般与物体连结,因弹簧形变过程需要一段时间,其长度变化不可以在瞬时达成,所以弹簧的弹力不可以在瞬时发生突变.即能够以为弹力大小和方向不变,与弹簧对比较,轻绳和轻杆的弹力能够突变.【例 3】如下图,木块 A 与 B 用轻弹簧相连,竖直放在木块 C 上,三者静置于地面, A 、B 、C 的质量之比是 1:2:3. 设全部接触面都圆滑,当沿水平方向迅速抽出木块 C 的刹时,木块 A 和 B 的加快度分别是 a A = 与 a B =【分析】由题意可设 A 、B 、C 的质量分别为 m 、2m 、3m ,以木块 A 为研究对象,抽出木块 C 前, 木块 A 遇到重力和弹力一对均衡力,抽出木块 C 的刹时,木块 A 遇到重力和弹力的大小和方 向均不变,故木块 A的刹时加快度为 0. 以木块 A 、B 为研究对象,由均衡条件可知,木块 C 对木块 B 的作使劲3F CB mg .以木块 B 为研究对象, 木块 B 遇到重力、 弹力和 F CB 三力均衡, 抽出木块 C 的刹时,木块 B 遇到重力和弹力的大小和方向均不变,F CB 刹时变成 0,故木块 C 的刹时合外力为 3mg , 竖直向下,刹时加快度为【答案】 01.5g .说明:差别于不行伸长的轻质绳中张力瞬时能够突变 .【例 4】如图 3-7-4 所示,质量为住,使小球恰巧处于静止状态 . 当m 的小球用水平弹簧连结, 并用倾角为 300 的圆滑木板AB 忽然向下撤退的瞬时,小球的加快度为 ( )AB 托A. 0B. 大小为 2 3g ,方向竖直向下3C.大小为2 3g ,方向垂直于木板向下3图 3-7-4D. 大小为2 3g ,方向水平向右3【分析】 末撤退木板前, 小球受重力 G 、弹簧拉力 F 、木板支持力 F N 作用而均衡, 如图 3-7-5所示,有 F Nmg.cosG 和弹力 F 保持不变 ( 弹簧弹力不可以突变 ) ,而木板支持力 F N 立刻撤退木板的瞬时,重力 消逝 , 小球所受 G 和 F 的协力大小等于撤以前的 F N ( 三力均衡 ) ,方向与 F N 相反,故加快度方 向为垂直木板向下,大小为F N g2 3 gamcos3【答案】 C.图 3-7-5四、弹簧长度的变化问题设劲度系数为 k 的弹簧遇到的压力为F 1 时压缩量为 x 1 ,弹簧遇到的拉力为 F 2 时伸长量为x 2 ,此时的“ - ”号表示弹簧被压缩 .若弹簧受力由压力 F 1 变成拉力 F 2 ,弹簧长度将由压缩量x 1 变成伸长量 x 2 ,长度增添量为 x 1 x 2 .由胡克定律有 : F 1 k( x 1 ) , F 2kx 2 .则: F 2 ( F 1 ) kx 2( kx 1 ) ,即 F k x说明 :弹簧受力的变化与弹簧长度的变化也相同按照胡克定律, 此时 x 表示的物理意义是弹簧长度的改变量,其实不是形变量 .【例 5】如图 3-7-6 所示,劲度系数为 k 1 的轻质弹簧两头分别与质量为 m 1 、m 2 的物块 1、2 拴接,劲度系数为 k 2 的轻质弹簧上端与物块 2 拴接,下端压在桌面上 ( 不拴接 ) ,整个系统处于均衡状态 . 现将物块 1 迟缓地竖直上提,直到下边那个弹簧的下端刚离开桌面. 在此过程中,物块 2 的重力势能增添了 , 物块 1 的重力势能增添了.【分析】由题意可知,弹簧k 2 长度的增添量就是物块2 的高度增添量,弹 图 3-7-6簧 k 2 长度的增添量与弹簧 k 1 长度的增添量之和就是物块 1 的高度增添量 .由物体的受力均衡可知,弹簧 k 2 的弹力将由本来的压力 (m 1 m 2 ) g 变成 0, 弹簧 k 1 的弹力将 由本来的压力 m 1 g 变成拉力 m 2 g , 弹力的改变量也为 ( m 1 m 2 )g . 所以 k 1 、 k 2 弹簧的伸长量分别为 : 1( m 1m 2 ) g 和 1(m 1 m 2 )gk 1k 2故物块 2 的重力势能增加了1m2 (m1 m2 )g 2,物块 1 的重力势能增加了k2( 1 1)m1 (m1m2 ) g2k1 k2【答案】1m2 (m1 m2 ) g2(11)m1 (m1m2 )g 2 k2k1k2五、弹簧形变量能够代表物体的位移弹簧弹力知足胡克定律F kx ,此中x为弹簧的形变量,两头与物体相连时x 亦即物体的位移,所以弹簧能够与运动学知识联合起来编成习题.【例 6】如图3-7-7 所示,在倾角为的圆滑斜面上有两个用轻质弹簧相连结的物块A、B ,其质量分别为 m A、m B,弹簧的劲度系数为k , C为一固定挡板,系统处于静止状态, 现开始用一恒力 F 沿斜面方向拉A使之向上运动,求 B 刚要走开C时 A 的加快度 a 和从开始到此时 A 的位移 d (重力加快度为 g ).【分析】系统静止时 , 设弹簧压缩量为x1,弹簧弹力为 F1,分析A受力可知 : F1kx1 m A g sinm A g sin解得 : x1k在恒力 F 作用下物体 A 向上加快运动时,弹簧由压缩渐渐变成伸图 3-7-7长状态 . 设物体B刚要走开挡板 C 时弹簧的伸长量为x2,分析物体B 的受力有: kx2m B g sin, 解得 x2m B g sink设此时物体 A 的加快度为a,由牛顿第二定律有: F m A g sin kx2m A aF(m A m B )g sin解得 : a mA因物体 A 与弹簧连在一同,弹簧长度的改变量代表物体 A 的位移,故有 d x1x2,即(m A m B ) g sindk(m A m B )g sin【答案】 dk六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时辰要与当时的形变相对应 .一般应从弹簧的形变分析下手,先确立弹簧原长地点、现长地点及临界地点,找出形变量 x 与物体空间地点变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长地点对应的形变量有关.以此来分析计算物体运动状态的可能变化.联合弹簧振子的简谐运动,分析波及弹簧物体的变加快度运动,常常能达到事半功倍的效果.此时要先确立物体运动的均衡地点,差别物体的原长地点,进一步确立物体运动为简谐运动.联合与均衡地点对应的答复力、加快度、速度的变化规律,很简单分析物体的运动过程.【例 7】如图 3-7-8 所示,质量为m的物体A用一轻弹簧与下方地面上质量也为m 的物体B相连,开始时 A 和 B 均处于静止状态,此时弹簧压缩量为x0,一条不行伸长的轻绳绕过轻滑轮,一端连结物体 A 、另一端C握在手中,各段绳均恰巧处于挺直状态,物体 A 上方的一段绳索沿竖直方向且足够长 . 此刻 C 端施加水平恒力F使物体A从静止开始向上运动 .( 整个过程弹簧一直处在弹性限度之内).(1) 假如在 C 端所施加的恒力大小为3mg ,则在物体B刚要走开地面时物体 A 的速度为多大?(2) 若将物体B的质量增添到 2m,为了保证运动中物体 B 一直不走开地图 3-7-8面,则 F 最大不超出多少 ?【分析】 由题意可知,弹簧开始的压缩量x 0 mg ,k 物体 B 刚要走开地面时弹簧的伸长量也是x 0mg.(1)若F 3mg , 在弹簧伸长到kx 0 时,物体 B 走开地面, 此时弹簧弹性势能与施力前相等,F 所做的功等于物体 A 增添的动能及重力势能的和 .即: F 2x mg 2 x 0 1mv 2 得: v 2 2gx 0(2) 所施加的力为恒力 2F 0 时,物体 B 不走开地面, 类比竖直弹簧振子, 物体 A 在竖直方向上除了受变化的弹力外,再遇到恒定的重力和拉力. 故物体 A 做简谐运动 .在最低点有: F 0 mg kx 0 ma 1 , 式中 k 为弹簧劲度系数, a 1 为在最低点物体A 的加快度 .在最高点,物体 B 恰巧不走开地面, 此时弹簧被拉伸, 伸长量为 2x 0 ,则 : k(2 x 0 ) mg F 0ma 2而 kx 0mg ,简谐运动在上、下振幅处a 1 a 2 ,解得:3mg F 02也能够利用简谐运动的均衡地点求恒定拉力F 0 . 物体 A 做简谐运动的最低点压缩量为x 0 ,最高点伸长量为 2x 0 ,则上下运动中点为均衡地点,即伸长量为所在处. 由 mgkxF 0 , 解得:23mg .F 02【答案】 2 2 gx 03mg2说明 : 差别原长地点与均衡地点 .和原长地点对应的形变量与弹力大小、方向、弹性势能有关 ,和均衡地点对应的位移量与答复大小、方向、速度、加快度有关.七.与弹簧有关的临界问题经过弹簧相联系的物体,在运动过程中常常波及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰巧要走开地面;互相接触的物体恰巧要离开等 .此类问题的解题要点是利用好临界条件,获得解题实用的物理量和结论.【例 8】如图 3-7-9 所示, A 、B 两木块叠放在竖直轻弹簧上,已知木块 A 、B 的质量分别为 0.42kg 和 0.40kg ,弹簧的劲度系数 k 100N / m ,若在 A 上作用一个竖直向上的力 F ,使A 由静止开始以2 的加快度竖直向上做匀加快运动( g 10 m / s 2 )求:(1) 使木块 A 竖直做匀加快运动的过程中,力 F 的最大值 ; (2) 若木块由静止开始做匀加快运动, 直到 A 、B 分别的过程中, 弹簧的弹性 势能减少了 0.248J ,求这一过程中 F 对木块做的功 .【分析】 本题难点在于可否确立两物体分别的临界点. 当 F 0 ( 即不加竖直 图 3-7-9向上 F 力) 时,设木块 A 、B 叠放在弹簧上处于均衡时弹簧的压缩量为 x , 有 :kx (m A m B )g , 即 x(m A m B )g①k对木块 A 施加力 F , A 、 B 受力如图 3-7-10所示,对木块 A 有:F Nm A g m A a②对木块 B 有: kx 'Nm B g m B a ③可知,当 N 0 时,木块 A 、B 加快度相同,由②式知欲使木块 A 匀加快运动,随 N 减小 F 增大,当N 0 时 , F 获得了最大值 F m , 即 :F m m A (a又当 N0 时, A 、B 开始分别,由③式知,弹簧压缩量kx'm B (a g) ,则 x'm B (a g ) ④k木块 A 、 B 的共同速度: v 2 2a( x x ') ⑤ 由题知,此过程弹性势能减少了 W P E PJ图 3-7-10设F力所做的功为W F,对这一过程应用功能原理,得:W 1(mAm )v2(m m) g( x x ') EPF2B AB联立①④⑤⑥式,且PE J,得:W F10 2J【答案】( 1)F m W F102JN【例 9】如图 3-7-11所示,一质量为M 的塑料球形容器,在 A 处与水平面接触 . 它的内部有向来立的轻弹簧,弹簧下端固定于容器内部底部,上端系一带正电、质量为 m 的小球在竖直方向振动,当加一直上的匀强电场后,弹簧正幸亏原长时,小球恰巧有最大速度. 在振动过程中球形容器对桌面的最小压力为0,求小球振动的最大加快度和容器对桌面的最大压力.图 3-7-11【分析】因为弹簧正幸亏原长时小球恰巧速度最大,所以有: qE mg①小球在最高点时容器对桌面的压力最小,有:kx Mg②此时小球受力如图 3-7-12所示,所受协力为 F mg kx qE③由以上三式得小球的加快度a Mg .m明显,在最低点容器对桌面的压力最大,由振动的对称性可知小球在最低点和最高点有相同的加快度,解以上式子得:kx Mg所以容器对桌面的压力为:图 3-7-12 F N Mg kx2Mg .【答案】Mg2Mg m八、弹力做功与弹性势能的变化问题弹簧伸长或压缩时会储藏必定的弹性势能,所以弹簧的弹性势能能够与机械能守恒规律综合应用,我们用公式E P 12kx2计算弹簧势能,弹簧在相等形变量时所拥有的弹性势能相等一般是考试热门 .弹簧弹力做功等于弹性势能的减少许.弹簧的弹力做功是变力做功,法求解 :(1) 因该变力为线性变化,能够先求均匀力,再用功的定义进行计算(2) 利用 F x 图线所包围的面积大小求解;(3) 用微元法计算每一小段位移做功,再累加乞降;(4) 依据动能定理、能量转变和守恒定律求解.一般能够用以下四种方;因为弹性势能仅与弹性形变量有关,弹性势能的公式高考取不作定量要求,所以,在求弹力做功或弹性势能的改变时,一般从能量的转变与守恒的角度来求解.特别是波及两个物理过程中的弹簧形变量相等时,常常弹性势能的改变能够抵消或代替求解.【例 10】如图3-7-13所示,挡板P 固定在足够高的水平桌面上,物块 A 和B 大小可忽视,它们分别带有Q A和Q B的电荷量,质量分别为m A和 m B . 两物块由绝缘的轻弹簧相连,一个不行伸长的轻绳越过滑轮,一端与 B 连结,另一端连结轻质小钩. 整个装置处于场强为 E 、方向水平向左的匀强电场中, A 、B开始时静止,已知弹簧的劲度系数为k ,不计全部摩擦及A、B 间的库仑力,A、B所带电荷量保持不变, B 不会遇到滑轮.(1) 若在小钩上挂质量为 M 的物块 C 并由静止开释,可使物块不会走开 P , 求物块 C 降落的最大距离 h .A 对挡板P 的压力恰为零,但(2) 若 C 的质量为 2M , 则当 A 刚走开挡板 P 时, B 的速度多大 ?【分析】 经过物理过程的分析可知,当物块A 刚走开挡板 P 时, 弹力恰巧与 A 所受电场力均衡,弹簧伸长量必定,前后两次改变物块 C 质量,在第 (2) 问对应的物理过程中, 弹簧长度的变化及弹性势能的改变相同,能够代替求解.图 3-7-13设开始时弹簧压缩量为x 1 ,由均衡条件kx 1 Q B E , 可得 x 1Q B Ek①设当 A 刚走开挡板时弹簧的伸长量为Q A E ②x 2 , 由 kx 2 Q A E ,可得 : x 2降落的最大距离为 :k故 C 12③h xx由①②③三式可得 :hE(Q A Q B )④k(2) 由能量守恒定律可知, 物块 C 着落过程中, C 重力势能的减少许等于物块B 电势能的增量和弹簧弹性势能的增量以及系统动能的增量之和.当 C 的质量为 M 时,有: MgHQ B EhE 弹⑤当 C 的质量为 2M 时,设 A 刚走开挡板时 B 的速度为 v ,则有:2MgH Q B EhE 弹1(2 M m B )v 2 ⑥2由④⑤⑥三式可得A 刚走开 P 时B 的速度为 :v2MgE (Q A Q B ) ⑦k (2 M m B )【答案】( 1) h E (Q A Q B ) (2) v 2MgE (Q A Q B )kk (2 Mm B )【例 11】如图 3-7-14所示,质量为 m 1 的物体 A 经一轻质弹簧与下方地面上的质量为m 2 的物体 B 相连,弹簧的劲度系数为 k , 物体 A 、B 都处于静止状态 . 一不行伸长的轻绳一端绕过轻滑轮连结物体 A ,另一端连结一轻挂钩 . 开始时各段绳都处于挺直状态, 物体 A 上方的一段绳沿竖直方向 . 现给挂钩挂一质量为 m 2 的物体 C 并从静止开释,已知它恰巧能使物体 B 走开地面但不持续上涨 . 若将物体 C 换成另一质量为 (m m ) 的物体 D ,仍从上述初始地点由静止释1 2放,则此次物体 B 刚离地时物体 D 的速度大小是多少 ?已知重力加快度为 g【分析】 开始时物体 A 、B 静止,设弹簧压缩量为x 1 ,则有: kx 1 m 1g悬挂物体 C 并开释后,物体 C 向下、物体 A 向上运动,设物体B 刚要离地时弹簧伸长量为 x 2 ,有 kx 2m 2 gB 不再上涨表示此时物体A 、C 的速度均为零,物体 C 己降落到其最低点 , 与初 状态对比,由机械能守恒得弹簧弹性势能的增添量为:E m 2 g (x 1 x 2 ) m 1g (x 1 x 2 )物体 C 换成物体 D 后,物体 B 离地时弹簧势能的增量与前一次相同,由能量关 图 3-7-14系得:1( m 2 m 1 )v 21m 1v 2 ( m 2 m 1 )g ( x 1 x 2 ) m 1 g( x 1 x 2 )E联立上式解得题中所 求速度为:222m 1 (m 1 m 2 ) g22m 1 ( m 1m 2 )g 2【答案】 vv(2 m 1 m 2 )k(2 m 1 m 2 )k说明: 研究对象的选择、物理过程的分析、临界条件的应用、能量转变守恒的联合常常在一些题目中需要综合使用.九、弹簧弹力的双向性弹簧能够伸长也能够被压缩,所以弹簧的弹力拥有双向性,亦即弹力既可能是推力又可能是拉力,这种问题常常是一题多解.【例 12】如图3-7-15 所示,质量为 m 的质点与三根相同的轻弹簧相连,静止时相邻两弹簧间的夹角均为 1200 ,已知弹簧 a 、 b 对证点的作使劲均为F ,则弹簧 c 对证点作使劲的大小可能为( ) A 、 0 B、 F mg C 、 F mg D 、 mg F 【分析】 因为两弹簧间的夹角均为图 3-7-151200,弹簧 a 、 b 对证点作使劲的协力 仍为 F ,弹簧 a 、b 对证点有可能是拉力,也有可能是推力 , 因 F 与 mg 的大小关系不确立,故 上述四个选项均有可能 . 正确答案 :ABCD【答案】 ABCD十、弹簧振子弹簧振子的位移、速度、加快度、动能和弹性势能之间存在着特别关系,弹簧振子类问题往常就是考察这些关系,各物理量的周期性变化也是考察的要点 .【例 13】如图 3-7-16 所示,一轻弹簧与一物体构成弹簧振子,物体在同一竖图 3-7-16直线上的 A 、B 间做简谐运动,O 点为均衡地点 ; C 为 AO 的中点,已知OC h ,弹簧振子周期为 T , 某时辰弹簧振子恰巧经过 C 点并向上运动 , 则此后时辰开始计时,以下说法中正确的选项是 ( )A 、 tT时辰,振子回到 C 点4B 、 t T时间内,振子运动的行程为4h2C 、 t3T时辰,振子的振动位移为8 D 、 t 3T8 时辰,振子的振动速度方向向下【分析】 振子在点 A 、 C 间的均匀速度小于在点 C 、O 间的均匀速度, 时间大于 T,选项 A 、C8 错误 ; 经 T振子运动 O 点以下与点 C 对称的地点,总行程为 4h,选项 B 正确 ; 经 t3T振子在28点 O 、B 间向下运动,选项 D 正确 .【答案】 B D十一、弹簧串、并联组合弹簧串连或并联后劲度系数会发生变化,弹簧组合的劲度系数能够用公式计算,高中物理不要求用公式定量分析,但弹簧串并联的特色要掌握 :弹簧串连时,每根弹簧的弹力相等;原长相同的弹簧并联时,每根弹簧的形变量相等.【例 14】 如图 3-7-17所示,两个劲度系数分别为k 1、k 2 的轻弹簧竖直悬挂,下端用圆滑细绳连结, 并有一圆滑的轻滑轮放在细线上; 滑轮下端挂一重为 G的物体后滑轮降落,求滑轮静止后重物降落的距离.【分析】 两弹簧从形式上看仿佛是并联,但因每根弹簧的弹力相等,故两弹簧实为串连; 两弹簧的弹力均G,可得两弹簧的伸长量分别为x 1G , 图 3-7-1722k 1x 2G ,两弹簧伸长量之和 xx 1 x 2 ,故重物降落的高度为x G( k 1 k 2 )2k 2 : h4k 1k 22【答案】 G(k1k2 )4k1k2。
高中物理经典问题---弹簧类问题全面总结解读
高中物理经典问题---弹簧类问题全面总结解读一:专题训练题1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图7所示。
现让木板由静止开始以加速度a(a <g =匀加速向下移动。
求经过多长时间木板开始与物体分离。
分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx和平板的支持力N 作用。
据牛顿第二定律有:mg-kx-N=ma 得N=mg-kx-ma当N=0时,物体与平板分离,所以此时k a g m x )(-=因为221at x =,所以kaa g m t )(2-=。
2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。
现在给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒力,g=10m/s 2,则F 的最小值是 ,F 的最大值是 。
.分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离开秤盘。
此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。
在0_____0.2s 这段时间内P 向上运动的距离:x=mg/k=0.4m 因为221at x =,所以P 在这段时间的加速度22/202s m tx a == 当P 开始运动时拉力最小,此时对物体P 有N-mg+F min =ma,又因此时N=mg ,所以有F min =ma=240N.当P 与盘分离时拉力F 最大,F max =m(a+g)=360N.3.如图9所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的物体A 、B 。
物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g =10m/s 2 ,求:(1)此过程中所加外力F 的最大值和最小值。
高中物理弹簧问题专题
弹簧类问题的研究一、命题趋向与考点轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见,引起足够重视。
二、知识概要与方法㈠弹簧问题的处理办法1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应。
在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。
2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变。
因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k = —(21kx 22 —21kx 12),弹力的功等于弹性势能增量的负值。
弹性势能的公式E p =21kx 2,高考不作定量要求,可作定性讨论。
因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。
㈡弹簧类问题的分类1.弹簧的瞬时问题弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。
2.弹簧的平衡问题这类题常以单一的问题出现,涉及到的知识是胡克定律,一般用f =kx 或△f =k △x 来求解。
3.弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。
4.弹力做功与动量、能量的综合问题在弹力做功的过程中弹力是个变力,并与动量、能量联系,一般以综合题出现。
有机地将动量守恒、机械能守恒、功能关系和能量转化结合在一起。
高考物理 弹簧类模型的最值问题 专题辅导 不分版本
弹簧类模型的最值问题在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。
一、最大、最小拉力例1. 一个劲度系数为k =600N/m 的轻弹簧,两端分别连接着质量均为m =15kg 的物体A 、B ,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F 在物体A 上,使物体A 开始向上做匀加速运动,经0.5s ,B 物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g =10m/s 2)。
求此过程中所加外力的最大和最小值。
图1解析:开始时弹簧弹力恰等于A 的重力,弹簧压缩量∆l mgk m ==025.,0.5s 末B 物体刚要离开地面,此时弹簧弹力恰等于B 的重力,∆∆l l m '.==025,故对A 物体有2122∆l at =,代入数据得a m s =42/。
刚开始时F 为最小且F ma N N min ===15460×,B 物体刚要离开地面时,F 为最大且有F mg mg ma max --=,解得F mg ma N max =+=2360。
二、最大高度例2. 如图2所示,质量为m 的钢板与直立弹簧的上端连接,弹簧下端固定在地面上,平衡时弹簧的压缩量为x 0。
一物体从钢板正上方距离为30x 的A 处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动,已知物块质量也为m 时,它们恰能回到O 点,若物体质量为2m 仍从A 处自由下落,则物块与钢板回到O 点时还有向上的速度,求物块向上运动到达的最高点与O 点的距离。
图2解析:物块碰撞钢板前作自由落体运动,设v 0表示物块与钢板碰撞时的速度,则:v gx 006=①物块与钢板碰撞后一起以v 1速度向下运动,因碰撞时间极短,碰撞时遵循动量守恒,即:mv mv 012= ②刚碰完时弹簧的弹性势能为E p ,当它们一起回到O 点时,弹簧无形变,弹性势能为0,根据机械能守恒有:E m v mgx p +=1222120() ③设v 2表示质量为2m 的物块与钢板碰撞后开始向下运动的速度,由动量守恒有:2302mv mv = ④ 碰撞后,当它们回到O 点时具有一定速度v ,由机械能守恒定律得: E m v mgx m v p +=+12331232202()() ⑤ 当质量为2m 的物块与钢板一起回到O 点时两者分离,分离后,物块以v 竖直上升,其上升的最大高度:h v g=22 ⑥解①~⑥式可得h x =2。
高中物理高考二轮复习弹簧类问题难点探究思考
德钝市安静阳光实验学校弹簧类问题难点探究思考在中学阶段,凡涉及的弹簧都不考虑其质量,称之为"轻弹簧",这是一种常见的理想化物理模型弹簧类问题多为综合性问题,涉及的知识面广,要求的能力较高,是高考的难点之一.●难点提出1.(99年全国)如图2-1所示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为A.11k gm B.12k g m C.21k gm D.22k gm 图2—1 图2—22.如图2-2所示,劲度系数为k 1的轻质弹簧两端分别与质量为m 1、m 2的物块1、2拴接,劲度系数为k 2的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现施力将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了______,物块1的重力势能增加了________.3.质量为m 的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上.平衡时弹簧的压缩量为x 0,如图2-3所示.一物块从钢板正上方距离为3x 0的A 处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连.它们到达最低点后又向上运动.已知物块质量为m 时,它们恰能回到O 点.若物块质量为2m ,仍从A 处自由落下,则物块与钢板回到O 点时,还具有向上的速度.求物块向上运动到达的最高点与O 点的距离.●案例探究[例1]如图2-4,轻弹簧和一根细线共同拉住一质量为m 的物体,平衡时细线水平,弹簧与竖直夹角为θ,若突然剪断细线,刚刚剪断细线的瞬间,物体的加速度多大?错解分析:对弹簧模型与绳模型瞬态变化的特征不能加以区分,误认为"弹簧弹力在细线剪断的瞬间发生突变"从而导致错解.解题方法与技巧:弹簧剪断前分析受力如图2-5,由几何关系可知: 弹簧的弹力T =mg /cos θ 细线的弹力T ′=mg tan θ细线剪断后由于弹簧的弹力及重力均不变,故物体的合力水平向右,与T ′等大而反向,∑F =mg tan θ,故物体的加速度a =g tan θ,水平向右.[例2]A 、B 两木块叠放在竖直轻弹簧上,如图2-6所示,已知木块A 、B 质量分别为0.42 kg 和0.40 kg ,弹簧的劲度系数k =100 N/m ,若在木块A 上作用一个竖直向上的力F ,使A 由静止开始以0.5 m/s 2的加速度竖直向上做匀加速运动(g =10m/s 2).(1)使木块A 竖直做匀加速运动的过程中,力F 的最大值; 图2-3图2-4图2-5图2-6(2)若木块由静止开始做匀加速运动,直到A、B分离的过程中,弹簧的弹性势能减少了0.248 J,求这一过程F对木块做的功.状态的综合分析能力.B级要求.错解分析:此题难点和失分点在于能否通过对此物理过程的分析后,确定两物体分离的临界点,即当弹簧作用下的两物体加速度、速度相同且相互作用的弹力N =0时 ,恰好分离.解题方法与技巧:当F=0(即不加竖直向上F力时),设A、B叠放在弹簧上处于平衡时弹簧的压缩量为x,有kx=(m A+m B)gx=(m A+m B)g/k ①对A施加F力,分析A、B受力如图2-7对A F+N-m A g=m A a ②对B kx′-N-m B g=m B a′③可知,当N≠0时,AB有共同加速度a=a′,由②式知欲使A匀加速运动,随N减小F增大.当N=0时,F取得了最大值F m,即F m=m A(g+a)=4.41 N又当N=0时,A、B开始分离,由③式知,此时,弹簧压缩量kx′=m B(a+g)x′=m B(a+g)/k ④AB共同速度v2=2a(x-x′)⑤由题知,此过程弹性势能减少了W P=E P=0.248 J设F力功W F,对这一过程应用动能定理或功能原理W F+E P-(m A+m B)g(x-x′)=21(mA+m B)v2 ⑥联立①④⑤⑥,且注意到E P=0.248 J可知,W F=9.64×10-2 J●锦囊妙计一、高考要求1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k=-(21kx22-21kx12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p=21kx2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.●歼灭难点1.如左图所示,小球在竖直力F作用下将竖直弹簧压缩,若将力F撤去,小球将向上弹起并离开弹簧,直到速度变为零为止,在小球上升的过程中A.小球的动能先增大后减小B.小球在离开弹簧时动能最大C.小球的动能最大时弹性势能为零D.小球的动能减为零时,重力势能最大2.(00年春)一轻质弹簧,上端悬挂于天花板,下端系一质量为M的平板,处在平衡状态.一质量为m的均匀环套在弹簧外,与平板的距离为h,如图右所示.让环自由下落,撞击平板.已知碰后环与板以相同的速度向下运动,使弹簧伸长.A.若碰撞时间极短,则碰撞过程中环与板的总动量守恒B.若碰撞时间极短,则碰撞过程中环与板的总机械能守恒C.环撞击板后,板的新的平衡位置与h的大小无关D.在碰后板和环一起下落的过程中,它们减少的动能等于克服弹簧力所做的功3.如图2-10所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A 沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中A.动量守恒,机械能守恒B.动量不守恒,机械能不守恒C.动量守恒,机械能不守恒D.动量不守恒,机械能守恒4.如图2-11所示,轻质弹簧原长L,竖直固定在地面上,质量为m的小球从距地面H高处由静止开始下落,正好落在弹簧上,使弹簧的最大压缩量为x,在下落过程中,空气阻力恒为f,则弹簧在最短时具有的弹性势能为E p=________.5.(上海)如图9-12(A)所示,一质量为m的物体系于长度分别为l1、l2的两根细线上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,物体处于平衡状态.现将l2线剪断,求剪断瞬时物体的加速度.(1)下面是某同学对该题的一种解法:解:设l1线上拉力为T1,l2线上拉力为T2,重力为mg,物体在三力作用下保持平衡:T1cosθ=mg,T1sinθ=T2,T2=mg tanθ剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度.因为mg tanθ=ma,所以加速度a=g tanθ,方向在T2反方向.你认为这个结果正确吗?请对该解法作出评价并说明理由.(2)若将图A中的细线l1改为长度相同、质量不计的轻弹簧,如图2-12(B)所示,其他条件不变,求解的步骤与(1)完全相同,即a=g tanθ,你认为这个结果正确吗?请说明理由.*6.如图2-13所示,A、B、C三物块质量均为m,置于光滑水平台面上.B、C间夹有原已完全压紧不能再压缩的弹簧,两物块用细绳相连,使弹簧不能伸展.物块A以初速度v0沿B、C连线方向向B运动,相碰后,A与B、C粘合在一起,然后连接B、C的细绳因受扰动而突然断开,弹簧伸展,从而使C与A、B图2-10图2-11图2—12分离,脱离弹簧后C 的速度为v 0.(1)求弹簧所释放的势能ΔE .(2)若更换B 、C 间的弹簧,当物块A 以初速v 向B 运动,物块C 在脱离弹簧后的速度为2v 0,则弹簧所释放的势能ΔE ′是多少?(3)若情况(2)中的弹簧与情况(1)中的弹簧相同,为使物块C 在脱离弹簧后的速度仍为 2v 0,A 的初速度v 应为多大?参考答案: [难点提出] 1.C 2.21k m 2(m 1+m 2)g 2;(2211k k )m 1(m 1+m 2)g 23.21x 0[歼灭难点] 1.AD 2.AC 3.B4.分析从小球下落到压缩最短全过程 由动能定理:(mg -f )(H -L +x )-W 弹性=0W 弹性=E p =(mg -f )(H -L +x )5.(1)结果不正确.因为l 2被剪断的瞬间,l 1上张力的大小发生了突变,此瞬间T 2=mg cos θ,a =g sin θ(2)结果正确,因为l 2被剪断的瞬间、弹簧l 1的长度不能发生突变、T 1的大小和方向都不变. 6.(1)31mv 02(2)121m (v -6v 0)2 (3)4v 0。
2022年高考物理专题复习-弹簧问题总结
弹簧问题总结总的来讲有三个方向的问题:受力、运动、能量。
细分如下1:弹簧的两种形态讨论2:位移与初末形变量的关系3:瞬时加速度问题形变量4:分离临界问题5:简谐运动(对称性)6:弹簧的运动过程分析7:弹簧的能量综合分析决弹簧问题的一般方法解决与弹簧相关的问题,一定要抓住几个关键状态:原长、平衡位置、初末形变量。
把这些关键状态的图形画出来,找到定性和定量的关系,进行分析。
机械能包括动能、重力势能和弹性势能。
其中弹性势能的计算式高中不要求掌握,但要知道——对一根确定的弹簧,形变量越大,弹性势能越大;形变量相同时,弹性势能相同。
对于分离临界问题:两个相互接触的物体被弹簧弹出,这两个物体在什么位置恰好分开?这属于临界问题。
“恰好分开”既可以认为已经分开,也可以认为还未分开。
认为已分开,图9-12甲 那么这两个物体间的弹力必然为零;认为未分开,那么这两个物体的速度、加速度必然相等。
同时利用这两个结论,就能分析出当时弹簧所处的状态。
特点:1.接触;2.还没分开所以有共同的速度和加速度;3.分离的接触面/点弹力为零。
一、 受力分析问题1、如图9-12甲所示,两木块A 、B 的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,两弹簧分别连接A 、B ,整个系统处于平衡状态.现缓慢向上提木块A ,直到下面的弹簧对地面的压力恰好为零,在此过程中A 和B 的重力势能共增加了( )A .(m 1+m 2)2g 2k 1+k 2B .(m 1+m 2)2g 22(k 1+k 2)C .(m 1+m 2)2g 2(k 1+k 2k 1k 2) D .(m 1+m 2)2g 2k 2+m 1(m 1+m 2)g 2k 12、如图所示,a 、b 、c 为三个物块,M 、N 为两个轻质弹簧,R 为跨过光滑定滑轮的轻绳,它们均处于平衡状态.则:( )A.有可能N 处于拉伸状态而M 处于压缩状态B.有可能N 处于压缩状态而M 处于拉伸状态C.有可能N 处于不伸不缩状态而M 处于拉伸状态D.有可能N 处于拉伸状态而M 处于不伸不缩状态3、如图所示,小球P 、Q 质量均为m ,分别用轻弹簧b 和细线c 悬挂在天花板下,再用另一细线d、e与左边的固定墙相连,静止时细线d、e水平,b、c与竖直方向夹角均为θ=37?。
高中物理对一类弹簧模型问题的思考与解析
对一类弹簧模型问题的思考与解析李峰 杨新璆〔广西柳州市柳铁一中, 广西 柳州 545007〕注:本文在《中学物理教学参考》发表当一个物体的系统包含弹簧时,我们就把与这样的系统有关的问题称之为弹簧类问题,由于弹簧的弹力与弹簧的形变量成正比,因此与弹簧有关的物理过程一般也是变力作用的过程,所以凡弹簧问题多是一些综合性强,物理过程又比较复杂的问题。
因此弹簧问题多年以来一直是高考命题的热点,从近几年高考的弹簧类问题设置的特点来看,涉及的力学规律较多,多考查学生的综合分析能力。
下面的这一类弹簧问题对培养学生的综合分析物理问题能力很有帮助。
而在弹簧类问题中我们却又很容易忽略。
笔者查阅了很多资料都没有关于此类弹簧模型的归纳和讲解,下面就从一道习题出发对此类问题进行分析和解答。
[例1] 如下图,一个弹簧台秤的秤盘质量和弹簧质量都可以不计,盘内放一个物体P 处于静止。
P 的质量为12kg ,弹簧的劲度系数k=800N/m 。
现给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速运动。
在前0.2s 内F 是变化的,在0.2s 以后F 是恒力,那么F 的最小值是多少,最大值是多少?[解析]解题的关键是要理解前0.2s F 是变力,0.2s 后F 的恒力的隐含条件。
即在0.2s 前物体受力和0.2s 以后受力有较大的变化。
其本质原因就是因为弹簧的弹力在发生变化导致称盘给物体P 的支持力N 发生变化。
从而在前0.2s 内F 是变化的。
当支持力N=0时〔即在0.2s 以后〕F 是恒力。
以物体P 为研究对象。
物体P 静止时受重力G 、称盘给的支持力N 。
因为物体静止,∑F=0N=G ①N=kx 0 ②设物体向上匀加速运动加速度为a 。
此时物体P 受重力G ,拉力F 和支持力N′对物体P 由牛顿第二定律有: F+ N′-G=ma ③当0.2s 后物体所受拉力F 为恒力,即为P 与盘脱离,即弹簧无形变,设0~0.2s 内物体的位移为x 0。
2023届高考物理一轮复习课件:第五讲 实验 探究弹簧弹力与形变量的关系
一、弹簧模型: k由弹簧的材料、匝数、面积决定
1.F=kX ∆F=k∆X 思考:必须
理想 实际 测出原长吗? 如何克服弹
簧本身重力
k
的影响?
第五讲 实验:探究弹簧弹力与形变量的关系 一、弹簧模型: k由弹簧的材料、匝数、面积决定
1.F=kX ∆F=k∆X 思考:必须测出 原长吗?
3.某同学在做“探究弹力和弹簧伸长量的关系”的实验中,所用实验装置 如图甲所示,所用钩码质量均为30 g。他先测出不挂钩码时弹簧的自然 长度,再将5个钩码逐个挂在弹簧的下端,每次都测出相应的弹簧总长度, 并将数据填在表中。实验中弹簧始终未超过弹性限度,取g=10 m/s2。
x=l-l0得出弹簧的形 变量x。 2.必备的实验器材
铁架台、刻度尺、弹簧、钩码(若干)。 3.通用的数据处理方法 (1)图像法;(2)列表法;(3)函数法
4.共同的注意事项 (1)所挂钩码不要过重,不能超出弹簧的弹性限度。 (2)测量弹簧的长度时,一定要在弹簧竖直悬挂且处于 稳定状态时测量。 (3)连线时要注意一定要使各点均匀分布在直线的两侧。
考法一 实验原理与操作
1.如图甲所示,用铁架台、弹簧和多个质量均为m的钩码,探究在弹性限 度内弹簧弹力与弹簧伸长量的关系。
(1)为完成实验,还需要的实验器材有:刻__度___尺__。
(2)实验中需要测量的物理量有:
_弹___簧___原__长___、___弹___簧___所___受___外__力___与___弹___簧___对___应___的___长__度___________。
B.记下弹簧不挂钩码时其下端在刻度尺上的刻度l0; C.将铁架台固定在桌子上,并将弹簧的一端系在横梁上,在弹簧附近竖
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010-2011学年高中物理弹簧模型问题复习探究弹簧是高中物理中的一种常见的物理模型,几乎每年高考对这种模型有所涉及和作为压轴题加以考查。
它涉及的物理问题较广,有:平衡类问题、运动的合成与分解、圆周运动、简谐运动、做功、冲量、动量和能量、带电粒子在复合场中的运动以及临界和突变等问题。
为了将本问题有进一步了解和深入,现归纳整理如下,使学生在2011年高考中不为求解这类考题而以愁。
一、 物理模型:轻弹簧是不计自身质量,能产生沿轴线的拉伸或压缩形变,故产生向内或向外的弹力。
二、 模型力学特征:轻弹簧既可以发生拉伸形变,又可发生压缩形变,其弹力方向一定沿弹簧方向,弹簧两端弹力的大小相等,方向相反。
三、 弹簧物理问题:1. 弹簧平衡问题:抓住弹簧形变量、运动和力、促平衡、列方程。
2. 弹簧模型应用牛顿第二定律的解题技巧问题:(1) 弹簧长度改变,弹力发生变化问题:要从牛顿第二定律入手先分析加速度,从而分析物体运动规律。
而物体的运动又导致弹力的变化,变化的规律又会影响新的运动,由此画出弹簧的几个特殊状态(原长、平衡位置、最大长度)尤其重要。
(2) 弹簧长度不变,弹力不变问题:当物体除受弹簧本身的弹力外,还受到其它外力时,当弹簧长度不发生变化时,弹簧的弹力是不变的,出就是形变量不变,抓住这一状态分析物体的另外问题。
(3) 弹簧中的临界问题:当弹簧的长度发生改变导致弹力发生变化的过程中,往往会出现临界问题:如“两物体分离”、“离开地面”、“恰好”、“刚好”……这类问题找出隐含条件是求解本类题型的关键。
3. 弹簧双振子问题:它的构造是:一根弹簧两端各连接一个小球(物体),这样的装置称为“弹簧双振子”。
本模型它涉及到力和运动、动量和能量等问题。
本问题对过程分析尤为重要。
四.实例探究: 1.弹簧称水平放置、牵连物体弹簧示数确定【例1】物块1、2放在光滑水平面上用轻弹簧相连,如图1所示。
今对物块1、2分别施以相反的水平力1F 、2F ,且12F F ,则: A . 弹簧秤示数不可能为1FB . 若撤去1F ,则物体1的加速度一定减小C . 若撤去2F ,弹簧称的示数一定增大D . 若撤去1F ,弹簧称的示数一定减小【解析】对物块1、2进行整体分析:1212F F a m m -=+,方向向左;对物块1进行分析:设弹簧弹力为F ,11F F m a -= 解得:211212m F m F F m m +=+12F F 1F F ∴,故A 对,无论是撤去1F 或2F ,F 均变小故D 对C 错,撤去1F ,可能合外力变大,故B 错,即正确答案为A 、D【点评】对于轻弹簧处于加速状态时要运用整体和隔离分析,再用牛顿第二定律列方程推出表达式进行比较讨论得出答案。
若是平衡时弹簧产生的弹力和外力大小相等。
主要看能使弹簧发生形变的力就能分析出弹簧的弹力。
2.绳子与弹簧瞬间力的变化、确定物体加速度【例2】四个质量均为m 的小球,分别用三根绳子和一根轻弹簧相连,处于平衡状态,如图所示。
现突然迅速剪断1A 、1B ,让小球下落。
在剪断轻绳的瞬间,设小球1、2、3、4的加速度分别用1a 、2a 、3a 、4a 表示,则: ( )A .10a =,22a g =,30a =,42a g= B 。
1a g =,2a g =,32a g =,40a =C .10a =,22a g =,3a g =,4a g =D 。
1a g =,2a g =,3a g =,4a g =【解析】首先分析出剪断1A ,1球受到向上的拉力消失,绳2A 的弹力可能发生突变,那么究竟2A 的弹力如何变化呢?我们可用假设法:设2A 绳仍然有张力,则有1a g ,2a g ,故1、2两球则要靠近,导致绳2A 松驰,这与假设的前提矛盾。
故剪断1A 的瞬间,2A 绳张力突变为0,所以12a a g ==,此时绳2A 处于原长但未绷紧状态,球1、2整体做自由落体运动;剪断1B 的瞬间,由于2B 是弹簧,其弹力不能瞬间突变,故其对3、4的拉力不变,仍为mg ,易知32a g =,40a =,故选择B 答案。
【点评】本题属于弹簧模型突变问题讨论。
要抓住弹簧的弹力不能突变,还要会分析轻绳的弹力如何变化,因绳的力会突变,从而分析本题的答案。
【思考探究题】如图所示,A 、B 两物体的质量分别为m和2m 中间用轻质弹簧相连,A 、B 两物体与水平面间的动摩擦因数均为μ,在水平推力F 作用下,A 、B 两物体F一起以加速度a 向右做匀加速直线运动。
当突然撤去推力的瞬间,A 、B 两物体的加速度大小分别为( )A .2a ;aB 。
(2)a g μ+;a g μ+C .23a g μ+;aD 。
a ;23a g μ+【解析】C 。
当A 撤去F 的瞬间受到的合力为F 与原相反,A F a m=,而原来为33F mg a mμ-=,所以有23A a a g μ=+,B 的合力不变即加速度不变,为a ,故选C 答案。
3.弹簧系统放置在斜面上的运动状态分析【例3】如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A 、B ,它们的质量分别为A m 、B m ,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态。
现开始用一恒力F 沿斜面方向拉物块A 使之向上运动,求物块B 刚要离开C 时物块A 的加速度a 和从开始到此时物块A 发生的位移d 。
已知重力加速度为g 。
【解析】令1x 表示未知F 时弹簧的压缩量,由胡克定律和牛顿定律可知:1A m gsim kx θ= ①令2x 表示B 刚要离开C 时弹簧的伸长量,a 表示此时A 的加速度,由胡克定律和牛顿定律可知:2B kx m gsim θ=② 2A A F m gsim kx m a θ--=③ 由②③式可得:()sin A B AF m m g a m θ-+= ④ 由题意 12d x x =+ ⑤由①②⑤式可得 ()sin A B m m g d k θ+=【点评】本例是弹簧模型在运动和力上的应用,求解时要抓住两个关键:“物块B 刚要离开C ”的条件和弹簧由压缩状态变为伸长状态,其形变量与物块A 的位移d 的关系。
【例4】如图,一倾角为θ的斜面固定在水平地面上,一质量为m 有小球与弹簧测力计相连在一木板的端点处,且将整个装置置于斜面上,设木板与斜面的动摩擦因数为μ,m M现将木板以一定的初速度0v 释放,不熟与木板之间的摩擦不计,则( )A .如果0μ=,则测力计示数也为零B .如果tan μθ,则测力计示数大于sin mg θC .如果tan μθ=,则测力计示数等于sin mg θD .无论μ取何值,测力计示数都不能确定【解析】本例是将弹簧模型迁移到斜面上,而且设置了木板与斜面之间的动摩擦因数不同来判断测力计的示数的变化。
依题意可知,当0μ=时,球与木板处于完全失重状态,测力计示数为零;当tan μθ时,球与木板的加速度为sin cos g g θμθ-,隔离分析小球就可知道B 答案正确;同理可分析C 答案正确,从而选择A 、B 、C 答案。
【点评】本例是动力学在弹簧模型中的应用,求解的关键是分析整体的加速度,然后分析小球的受力来确定测力计示数的大小。
4.弹簧中的临界问题状态分析【例5】如图所示,轻弹簧上端固定,下端连接一质量为m 的重物,先由托盘托住m ,使弹簧比自然长度缩短L ,然后由静止开始以加速度a 匀加速向下运动。
已知a g ,弹簧劲度系数为k ,求经过多少时间托盘M 将与m 分开?【解析】当托盘与重物分离的瞬间,托盘与重物虽接触但无相互作用力,此时重物只受到重力和弹簧的作用力,在这两个力的作用下,当重物的加速度也为然后由牛顿a 时,重物与托盘恰好分离。
由于a g ,故此时弹簧必为伸长状态,第二定律和运动学公式求解:根据牛顿第二定律得:mg kx ma -= ① 由①得:()x m g a k-= 由运动学公式有:212L x at += ② 联立①②式有:()212kL m g a at k +-= ③ 解得:x =【点评】本题属于牛顿运动定律中的临界状态问题。
求解本类题型的关键是找出临界条件,同时还要能从宏观上把握其运动过程,分析出分离瞬间弹簧的状态。
我们还可这样探索:若将此题条件改为a g ,情况又如何呢?5.弹簧模型在力学中的综合应用【例6】如图所示,坡度顶端距水平面高度为h ,质量为m的小物块A 从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A 制动,将轻弹簧的一端固定在水平滑道延长线M 处的墙上,一端与质量为2m 的挡板B 相连,弹簧处于原长时,B 恰位于滑道的末湍O 点。
A 与B 碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM 段A 、B 与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g ,求(1) 物块A 在与挡板B 碰撞前的瞬间速度v 的大小;(2) 弹簧最大压缩量为d 时的弹簧势能P E (设弹簧处于原长时弹性势能为零)。
【解析】(1)由机械能守恒定律得:21112m gh m v = ①v =② (2)A 、B 在碰撞过程中内力远大于外力,由动量守恒,有:()112m v m m v '=+③A 、B 克服摩擦力所做的功:()12W m m gd μ=+ ④ 由能量守恒定律,有:()()2121212p m m v E m m gd μ'+=++ ⑤ 解得:()211212p m E gh m m g m m μ=-++d 【点评】本例是在以上几题的基础上加以引深,从平衡到匀变速运动,又由弹簧模型引入到碰撞模型,逐层又叠加,要会识别物理模型,恰当地选择物理规律求解。
【例7】有一倾角为θ的斜面,其底端固定一档板M ,另有三个木块A 、B 和C ,它们的质量分别为A B m m m ==,3C m m =,它们与斜面间的动摩擦因数都相同。
其中木块A 放于斜面上并通过一轻弹簧与档板M 相连,如图所示,开始时,木块A 静止于P 处,弹簧处于原长状态,木块B 在Q点以初速度0v 向下运动,P 、Q 间的距离为L 。
已知木块B 在下滑的过程中做匀速直线运动,与木块A相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点。
若木块A 仍静止放在P 点,木块C 从Q 点处于开始以初速度03v 向下运动,经历同样过程,最后木块C 停在斜面的R 点。
求:(1)A 、B 一起压缩弹簧过程中,弹簧具有的最大弹性势能;(2)A 、B 间的距离L '【解析】(1)木块B 下滑做匀速直线运动,有:sin cos mg mg θμθ= ①B 与A 碰撞前后总动量守恒有:012mv mv = ②设AB 两木块向下压缩弹簧的最大的长度为S ,弹簧具有的最大弹性势能为P E ,压缩过程对AB 由能量守恒定律得:21122sin 2cos 2P mv mgS mgS E θμθ+=+ ③ 联立①②③解得:2014P E mv = ④ (2)木块C 与A 碰撞过程,由动量守恒定律得:012343m v m v '= ⑤碰后AC 的总动能为:221011424kE mv mv ''== ⑥ 由③式可知AC 压缩弹簧具有的最大弹性势能和AB 压缩弹簧具有的最大弹性势能相等,两次的压缩量也相等。