gps系统的误差来源分析.

合集下载

GPS测量的误差分析

GPS测量的误差分析

最新课件
10
(2)对流层的影响
如第四章所述,对流层折射对观测量的影响可分 为干分量和湿分量两部分。干分量主要与大气 温度和压力有关,而湿分量主要与信号传播路 径上的大气湿度和高度有关。目前湿分量的影 响尚无法准确确定。对流层影响的处理方法:
•定位精度要求不高时,忽略不计。
•采用对流层模型加以改正。
最新课件
17
(2)相对论效应
根据狭义相对论,地面上一个频率为f0的时钟,安装在运
行速度为Vs(已知)的卫星上后,钟频将发生变化,
改变量为: Vs2gm a(a Rm s)
f12 Vcs22 f0
上式中,am为地球平均半径,Rs为卫星轨道平均半径。在 狭义相对论的影响下,时钟变慢。
最新课件
18
根据广义相对论,处于不同等位面的震荡器,其频率f0将 由于引力位不同而产生变化,称引力频移。大小按下
(1)地球自转影响:当卫星信号传播到观测站 时,与地球相固联的协议地球坐标系相对卫星 的瞬时位置已产生旋转(绕Z轴)。若取为地 球的自转速度,则旋转的角度为=ij。 ij为卫星信号传播到观测站的时间延迟。由 此引起卫星在上述坐标系中坐标的变化为:
X 0 sin 0Xj
Ysin
0
0Yj
Z 0
0 0Zj
(4)天线相位中心位置偏差
GPS定位中,观测值都是以接收机天线的相位中 心位置为准,在理论上,天线相位中心与仪器 的几何中心应保持一致。实际上,随着信号输 入的强度和方向不同而有所变化,同时与天线 的质量有关,可达数毫米至数厘米。如何减小 相位中心的偏移,是天线设计的一个迫切问题。
最新课件
16
5. 其它误差来源
• 同步观测值求差:由于同一卫星的位置误差对 不同观测站同步观测量的影响具有系统性。利 用两个或多个观测站上对同一卫星的同步观测 值求差,可减弱轨道误差影响。当基线较短时, 有效性尤其明显,而对精密相对定位,也有极 其重要意义。

GPS定位系统在测绘中的误差及其校正

GPS定位系统在测绘中的误差及其校正

GPS定位系统在测绘中的误差及其校正近年,全球定位系统(GPS)在测绘领域广泛应用,成为现代测绘的重要工具。

然而,GPS定位系统的测量精度不可避免地存在一定的误差,这对于需要高精度测绘数据的应用来说,可能带来一系列问题。

本文将探讨GPS定位系统的误差来源及校正方法,以期提高测绘数据的准确性与可靠性。

一、GPS定位系统误差来源1. 大气层延迟误差:GPS信号在穿过大气层时会发生延迟,导致定位结果产生偏差。

这主要由大气层中的水汽含量、温度、压力等因素所引起。

2. 卫星发射钟误差:GPS卫星发射钟的精确度无法达到理论上的完美,钟的频率可能出现细微偏差,进而影响测量结果。

3. 卫星轨道误差:由于各颗卫星在轨道上的摄动等因素,其运行轨迹不会完全符合理论轨道,从而引起时间误差。

4. 多径效应:接收天线接收到的信号可能会经过多次反射,导致信号延迟,从而产生定位误差。

5. 接收机钟差:GPS接收机内部的时钟精度有限,存在一定的误差,会对定位结果造成影响。

二、GPS定位系统误差的校正方法1. 差分定位法:差分定位法是最常用和最有效的校正方法之一。

它通过同时观测参考站和待测站的GPS信号,利用参考站的已知坐标和观测数据,计算出两个站点间的差异,进而校正待测站点的定位误差。

2. 精密轨道确定法:通过利用卫星轨道参数提供的精密轨道数据,结合接收机的测量结果,计算卫星的真实位置,从而减小轨道误差对定位结果的影响。

3. 多频率接收机技术:多频率接收机可以利用不同频率的信号对多径效应进行抵消,从而提高定位精度。

4. 大气层延迟模型校正:根据大气层的温度、湿度、压力等参数,采用相应的模型对大气层延迟误差进行校正。

5. 时钟差校正:通过与参考源对比,校正接收机内部时钟的误差。

三、GPS定位系统误差校正的应用GPS定位系统的高精度测绘数据广泛应用于地图制作、土地测量、工程测量、导航定位等领域。

对于地图制作来说,GPS定位系统提供的高精度数据能够提高地图的准确性,并为城市规划、交通规划等提供重要依据。

GPS测量中的多路径误差分析与抑制方法

GPS测量中的多路径误差分析与抑制方法

GPS测量中的多路径误差分析与抑制方法GPS(Global Positioning System)是一种通过卫星导航定位的技术,它在现代社会中发挥着重要的作用。

然而,在实际的测量应用中,我们常常会遇到多路径误差的问题。

本文将对GPS测量中的多路径误差进行分析,并介绍一些抑制方法。

一、多路径误差的成因分析多路径误差是指卫星信号在传播过程中,经过反射、折射等导致信号在接收机处反复干涉造成的误差。

主要的成因包括:1. 建筑物和地形:由于建筑物和地形在信号的传播过程中会发生反射或阻挡,导致信号存在多条路径到达接收机,产生多路径误差。

2. 植被和水体:植被和水体也会导致信号的反射,特别是在绿色植被茂盛或水面平坦的地区,多路径误差更加严重。

3. 天气条件:天气条件的变化,特别是雨、雪、雾等天气情况下,会导致信号的散射和延迟,增加多路径误差。

二、多路径误差对GPS测量的影响多路径误差对GPS测量会产生一些负面影响,主要包括以下几个方面:1. 定位误差增大:多路径信号的干扰会使接收机接收到的信号发生偏差,导致定位误差的增大。

2. 高精度测量受限:在需要进行高精度测量的应用中,多路径误差会严重影响测量结果的准确性和精度。

3. 时钟同步误差:GPS接收机的内部时钟由于多路径干扰的影响,可能导致时钟同步误差的增大。

三、多路径误差的抑制方法为了减小或抑制多路径误差的影响,我们可以采取以下一些方法:1. 天线设计优化:通过改变天线的设计和安装方式,减少信号的进入和反射,降低多路径误差的发生。

2. 多天线接收:利用多天线接收系统,可以通过接收到多个信号进行抗干扰和抑制多路径误差。

3. 算法优化:通过改进算法,对接收到的信号进行处理和滤波,提高定位的准确性。

4. 参考站技术:通过设置一个或多个参考站,对GPS信号进行监测和修正,减小多路径误差对定位的影响。

5. 外部传感器的使用:通过与其他传感器(如惯性导航仪)的融合,提高测量的准确性和精度,减少多路径误差的影响。

测绘技术中常见的GPS测量误差及其处理方法

测绘技术中常见的GPS测量误差及其处理方法

测绘技术中常见的GPS测量误差及其处理方法GPS测量误差是测绘技术中常见的一个问题,它会对测量结果的准确性和可靠性产生一定的影响。

本文将从几个方面讨论GPS测量误差及其处理方法,以帮助读者更好地理解和运用GPS测量技术。

一、GPS测量误差的来源GPS测量误差主要来自以下几个方面:1. 星历误差:GPS卫星的轨道预报存在一定的误差,这会导致卫星位置的偏差。

从而引起接收器测量结果的不准确。

2. 电离层延迟:GPS信号在通过电离层时会发生传播速度变化,从而产生延迟。

这种延迟会导致测量结果的偏移。

3. 对流层延迟:GPS信号在通过对流层时也会发生传播速度变化,引起延迟。

这个延迟主要受天气条件的影响,如温度、湿度等,会导致测量误差的增大。

4. 多径效应:GPS信号在传输过程中可能会被建筑物、树林等障碍物反射,形成多个信号路径。

这些反射信号会与直达信号叠加,导致测量结果的偏差。

二、GPS测量误差的处理方法针对GPS测量误差,我们可以采取以下几种方法进行处理:1. 差分GPS测量:差分GPS测量是一种通过同时测量参考站和待测站的方式,消除大部分GPS测量误差的方法。

通过获取参考站与待测站之间的差异,可以得到相对准确的测量结果。

2. 排除异常值:在大量的GPS测量数据中,可能存在一些异常值,这些异常值可能是由于设备故障或环境因素引起的。

通过统计学方法,可以识别和排除这些异常值,提高测量数据的可靠性。

3. 数据平滑处理:由于GPS测量误差的存在,测量数据可能存在一定的波动和不稳定性。

通过对数据进行平滑处理,可以减小误差对结果的影响,得到更加平稳的测量结果。

4. 多基线处理:对于需要测量较大区域的工程,使用多个基准站进行GPS测量可以提高精度和可靠性。

通过基线向量之间的相互比较和校验,可以减小误差的累积效应。

5. 校正模型:根据GPS测量误差的特点,可以建立相应的校正模型。

通过对误差进行建模和拟合,可以对测量结果进行修正,提高准确性。

gps测量坐标误差有多大

gps测量坐标误差有多大

GPS测量坐标误差有多大GPS(全球定位系统)是一种利用卫星定位技术来获取地理位置信息的系统。

它广泛应用于导航、地理测量、军事和民用等领域。

然而,由于多种原因,GPS测量坐标会存在一定的误差。

误差来源GPS测量坐标的误差主要来自以下几个方面:1.卫星误差:卫星的精密轨道、钟差和天线相位中心等因素都会对测量结果产生影响。

虽然GPS系统会采取一系列措施来校正这些误差,但仍然无法完全消除。

2.大气延迟:由于GPS信号在穿过大气层时会受到大气介质的影响,导致信号传播速度发生变化。

这种大气延迟会导致测量结果与真实位置之间产生误差。

3.多路径效应:当GPS信号在到达接收机之前与建筑物、树木等障碍物发生反射后再次达到接收机时,会产生多路径效应。

这种效应会导致信号的传播路径变长,进而引起测量误差。

4.接收机误差:包括接收机的硬件设备、信号处理以及观测条件等因素,都会对测量结果产生影响。

接收机的性能越好,产生的误差就越小。

误差类型在GPS测量过程中,常见的误差类型包括:1.精度误差:指GPS测量结果与真实位置之间的差异。

通常以水平误差和垂直误差来衡量。

水平误差是指实际测量结果与真实位置在水平方向上的差距,垂直误差则是指在垂直方向上的差距。

2.相对误差:指同一测量点在不同时间或不同接收机进行测量时产生的误差。

相对误差可以通过对同一位置进行多次测量,并对结果进行比对来评估。

3.绝对误差:指GPS测量结果与真实位置之间的绝对差距。

由于无法得知真实位置,所以无法直接获得绝对误差。

通常通过测量点的相对误差和已知参考点的坐标来间接获得。

误差量化为了评估GPS测量坐标误差的大小,通常采用以下方法进行量化:1.信号强度指示(Signal Strength Indicator,SSI):SSI是衡量GPS信号强度的指标,通常以百分比或分贝表示。

信号强度越高,误差越小。

2.几何精度因子(Geometric Dilution of Precision,GDOP):GDOP是一种衡量卫星几何配置对GPS测量结果精度影响的量化指标。

GPS定位误差的产生原因分析与减小方法

GPS定位误差的产生原因分析与减小方法

GPS定位误差的产生原因分析与减小方法引言:在现代社会,全球定位系统(Global Positioning System,GPS)已经成为了人们生活中不可或缺的一部分。

无论是导航、交通监控还是地理信息系统等领域都离不开GPS定位技术。

然而,随着GPS定位的广泛应用,人们也逐渐发现定位误差问题的存在。

本文将从GPS定位误差产生的原因入手,探讨解决这一问题的方法。

一、GPS定位误差的原因分析:1. GPS系统误差:GPS系统本身存在着一些系统误差,例如卫星钟差、伪距观测误差、大气延迟等。

这些误差会直接影响到GPS定位的准确性。

2. 空间几何因素:GPS定位需要至少4颗卫星进行定位计算,卫星的位置和空间几何分布对定位精度有着重要影响。

当卫星分布不均匀或存在遮挡物时,会导致定位误差增大。

3. 电离层和大气影响:电离层和大气中的湿度、温度等因素都会对GPS信号产生影响,导致信号传播延迟或折射,从而引起定位误差。

4. 载波相位等伪距测量误差:GPS定位是通过测量卫星发射的信号和接收器接收的信号之间的时间差来计算位置的。

然而,由于载波相位的波长较短,测量精度更高,但受到多普勒效应的影响,会产生伪距测量误差。

二、减小GPS定位误差的方法:1. 多路径效应抑制:多路径效应是指GPS信号在传播过程中发生反射、散射等现象,致使接收器接收到多个信号,在信号合成过程中引入误差。

为了减小多路径效应,可以利用天线设计和信号处理技术,选择适合的接收天线和增加抗多路径干扰的算法。

2. 差分定位:差分定位是通过引入一个参考站与基准站的距离进行辅助定位,利用参考站的精确位置和信号传播速度信息来对GPS定位结果进行修正。

差分定位可以大幅度减小系统误差和信号传播误差的影响,提高定位精度。

3. 增加卫星数量和分布:通过增加卫星数量和改善卫星的空间分布,可以提高GPS定位的可见卫星数目和几何配置,从而减小定位误差。

可以使用卫星信噪比、可视卫星数等指标来优选卫星,并避开存在遮挡物的区域。

GPS测量的误差来源及其影响解析

GPS测量的误差来源及其影响解析

GPS测量的误差来源及其影响解析首先,卫星系统误差是由于GPS卫星系统本身存在的误差引起的。

这些误差主要包括星历误差、钟差误差和轨道偏移误差等。

星历误差是由于卫星轨道位置和速度参数的不准确性引起的,会导致卫星位置计算的误差。

钟差误差是由于卫星钟的不稳定性引起的,会导致卫星时间计算的误差。

轨道偏移误差是由于卫星轨道本身存在的变化引起的,会导致卫星位置计算的误差。

这些卫星系统误差会影响到GPS定位的准确性和精度。

接收机误差是由于GPS接收机自身存在的误差引起的。

这些误差主要包括接收机电路噪声、时钟稳定性、多径干扰等。

接收机电路噪声会影响到接收机对GPS信号的接收和处理过程,从而影响到定位的精度。

时钟稳定性误差是由于接收机内部时钟不稳定引起的,会导致定位结果的时钟误差。

多径干扰误差是由于信号在传播过程中经过反射、散射等现象引起的,会导致接收机接收到的信号中出现额外的信号路径,从而影响到定位的准确性。

大气误差是由于GPS信号在大气中的传播过程中受大气密度、湿度、折射等因素的影响引起的。

大气误差主要包括对流层延迟和电离层延迟两部分。

对流层延迟是由于大气密度的变化引起的,会导致GPS信号传输的时间延迟。

电离层延迟是由于电离层中电子密度的变化引起的,同样会导致GPS信号传输的时间延迟。

这些大气误差会导致定位的误差,尤其在高纬度地区或者大气环境变化较大的地方影响更加明显。

多径效应误差是由于GPS信号在传播过程中与地面或建筑物等物体发生反射,从而导致额外的信号路径引起的。

这些额外的信号路径会导致接收机接收到的信号中出现多个不同的信号,从而影响到定位的准确性和精度。

钟差误差是由于GPS卫星钟本身存在的不准确性引起的。

由于卫星钟的不稳定性,会导致卫星发射的信号中存在时间偏差,从而影响到定位的准确性。

信号传输延迟误差是由于GPS信号在传输过程中受到信号传输速度的影响引起的。

由于信号传输速度不是无限大,会导致GPS信号传输的时间延迟,从而影响到定位的准确性。

卫星导航系统的误差分析及其纠正方法

卫星导航系统的误差分析及其纠正方法

卫星导航系统的误差分析及其纠正方法卫星导航系统是现代化的导航方式之一,已成为人们旅行、航空、海洋、地质勘探等领域中必不可少的工具之一。

但是,由于各种外在因素的影响,卫星导航系统的精度不可避免地会受到误差的干扰,从而影响到实际使用效果。

因此,本文将针对卫星导航系统的误差分析及其纠正方法进行探讨。

误差来源卫星导航系统的误差来源主要有以下几种:1.天气因素:天气条件的变化,如雷暴、降雨等,会对信号传输造成干扰,导致误差出现。

2.电离层:电离层会对信号产生折射、延迟等影响,从而影响卫星导航系统的精度。

3.卫星轨道误差:卫星轨道的非理想性和不稳定性会使得卫星发射的信号的时间和位置出现误差。

4.接收机性能问题:接收机的性能问题也会影响卫星导航系统的精度。

接收机信噪比的大小,接收机灵敏度等问题都可能产生误差。

误差分析为了消除误差对卫星导航系统的影响,需要对误差进行分析。

对于卫星导航系统而言,误差分析主要分为两个方面:一是对误差进行分析,二是根据误差分析结果采取相应的纠正措施。

误差分析的第一步就是对误差进行排查。

根据误差来源的不同,采用不同的方法进行分析。

对于电离层误差,可以利用多路径组合技术进行处理。

对于卫星轨道误差,可以利用多源数据融合方法进行处理。

对于接收机性能问题,可以采用时差差分技术或载波相位差分技术进行处理。

误差纠正误差纠正方法可以大致分为两类。

一类是通过信息处理技术对误差进行纠正,例如利用多路径组合技术降低电离层误差、利用多源数据融合方法降低卫星轨道误差等。

另一类是通过通信技术对误差进行纠正,例如利用差分定位技术对接收机性能问题进行纠正。

差分定位技术是最为常见的一种误差纠正技术。

它可以通过在同一时刻同时接收多个卫星信号,然后将它们之间的差异作为误差的补偿,从而提高卫星导航系统的定位精度。

差分定位技术的准确性取决于差分基线的长度和稳定性。

如果差分基线长度较短,误差的补偿也相对较小。

但如果差分基线长度过长,则信号会受到多路径影响,从而导致误差更大。

GPS测量中坐标纠正与误差分析

GPS测量中坐标纠正与误差分析

GPS测量中坐标纠正与误差分析GPS(Global Positioning System,全球定位系统)已经成为现代测量领域中不可或缺的工具。

通过接收卫星发射的信号,GPS可以准确测量出地球上某一点的经纬度坐标。

然而,在实际应用中,由于多种因素的影响,GPS测量的坐标可能存在一定的误差。

因此,对GPS测量中的坐标进行纠正与误差分析,对于提高测量精度和可靠性至关重要。

首先,我们需要了解GPS测量中可能存在的误差来源。

一般来说,GPS测量误差主要包括:卫星钟差、电离层延迟、大气延迟、多径效应、接收机钟差、观测数据产生与处理中的误差等。

卫星钟差指的是卫星发射信号的时间与卫星自身的时间存在一定的偏差,导致测量结果不准确。

电离层延迟是由于卫星信号在经过大气电离层时受到电离层的影响,造成信号传播速度变化,从而引起测量误差。

大气延迟是由于信号经过大气层时受到大气密度变化的影响,导致测量结果出现偏移。

多径效应指的是卫星信号在传播过程中,除了直接到达接收机外,还存在与地面或建筑物反射后到达接收机的信号,这些多路径信号会导致测量结果产生误差。

接收机钟差是指接收机内部时钟与GPS系统时间存在一定的差异,也会影响到测量结果的精度。

针对以上误差来源,我们可以采取一系列纠正措施来提高GPS测量的准确性。

首先,卫星钟差可以通过测量多颗卫星的信号并进行差分处理来纠正。

差分GPS技术能够消除卫星钟差对测量结果的影响,提高测量的准确性。

其次,电离层延迟和大气延迟可以通过接收机和卫星信号之间的差分处理来消除。

接收机将两颗卫星的信号之间的差异作为电离层和大气延迟的参考,从而进行纠正。

此外,采用多路径抑制技术可以降低多径效应对测量结果的影响。

这种技术包括选择合适的接收机和天线,减少信号的反射和干扰。

最后,接收机钟差可以通过接收机内部的校正机制进行补偿。

除了进行误差纠正,我们还需要进行误差分析,了解测量结果的可信程度和误差范围。

误差分析是通过对测量数据进行统计分析,得出误差的概率分布和置信区间。

卫星导航系统中的定位误差分析与纠正方法

卫星导航系统中的定位误差分析与纠正方法

卫星导航系统中的定位误差分析与纠正方法卫星导航系统是一种基于卫星和接收机的无线电导航系统,可为用户提供位置信息和时间信息。

目前世界上最著名的卫星导航系统是GPS系统。

卫星导航系统广泛应用于航空、航海、汽车等领域,但定位误差一直是制约卫星导航系统精度的主要因素之一。

因此,有效的定位误差分析和纠正方法对于提高卫星导航系统的精度具有重要意义。

一、定位误差的来源在实际应用中,定位误差的来源主要包括以下几个方面:1.多径效应:在卫星导航中,信号从卫星到接收机会经过大气层、地面及建筑物等障碍物的反射,形成多条路径,导致信号到达接收机时时间不同,从而影响信号的接收强度和相位,引起定位误差。

2.大气延迟:卫星信号在传播至地面接收机过程中,会和大气层中的水汽、离子层等物质发生作用,形成信号的延迟和衍射,造成定位误差。

3.时钟误差:由于卫星时钟和接收机时钟存在差异,导致信号的到达时间和时间标准存在误差,引起定位误差。

4.卫星轨道误差:卫星的轨道参数可能存在变化,导致卫星位置计算的误差,进而影响到距离计算和定位精度。

二、定位误差分析方法为了解决卫星导航系统中的定位误差问题,需要对误差源进行定位误差分析。

常用的定位误差分析方法包括以下几种:1.测量方法:通过测量不同地点的接收机接收到相同卫星的时间和位置,验证不同地点的定位误差,并对误差进行分析。

2.数据处理方法:用多条卫星信号计算一个接收机的位置,在数据处理时通过加权、差分、平均等方法消除干扰信号,提高数据质量,减小定位误差。

3.数学模型方法:通过数学建模描述误差的产生过程,并用模型对误差进行分析和预测。

三、定位误差纠正方法为了改善卫星导航系统的定位精度,需要对定位误差进行纠正,常用的纠正方法包括以下几种:1.差分方法:通过使用同时接收同一组卫星数据的两个接收机进行差分计算,除去通用误差项,提高单个接收机的定位精度。

2.观测矩阵法:利用卫星信号和接收机位置观测数据,建立观测矩阵,最小二乘法求解参数,实现对定位误差的纠正。

GPS定位中的误差来源

GPS定位中的误差来源

1、与GPS卫星有关的因素(1)SA干扰误差美国政府从其国家利益出发,通过降低广播星历精度(ε技术)、在GPS信号中加入高频抖动等方法,人为降低普通用户利用GPS进行导航定位时的精度(目前已经取消)。

(2)卫星星历误差在进行GPS定位时,计算在某时刻GPS卫星位置所需的卫星轨道参数是通过各种类型的星历提供的,但不论采用哪种类型的星历,所计算出的卫星位置都会与其真实位置有所差异,这就是所谓的星历误差。

(3)卫星钟差卫星钟差是GPS卫星上所安装的原子钟的钟面时与GPS标准时间的误差。

(4)卫星信号发射天线相位中心偏差卫星信号发射天线相位中心偏差是GPS卫星上信号发射天线的标称相位中心与其真实相位中心之间的差异。

2、与传播路径有关的因素(1) 电离层延迟由于地球周围的电离层对电磁波的折射效应,使得GPS信号的传播速度发生变化,这种变化称为电离层延迟。

(2) 对流层延迟对于地球周围的对流层对电磁波的折射效应,使得GPS信号的传播速度发生变化,这种变化称为对流层延迟。

(3) 多路径效应于接收机周围环境的影响,使得接收机所接收到的卫星信号中还包含有反射和折射信号的影响,这就是所谓的多路径效应。

3、接收机有关的因素(1) 接收集钟差接收机钟差是GPS接收机所使用的钟的钟面时与GPS标准时之间的差异。

(2) 接收机天线相位中心偏差收机天线相位中心偏差是GPS接收机天线的标称相位中心与其真实的相位中心之间的差异。

(3) 接收机软件和硬件造成的误差在进行GPS定位时,定位结果还会受到诸如处理与控制软件和硬件等的影响。

(4)天线相对旋转产生的相位增加效应4、其它(1)GPS控制部分人为或计算机造成的影响由于GPS控制部分的问题或用户在进行数据处理时引入的误差等。

(2)数据处理软件的影响数据处理软件的算法不完善对定位结果的影响。

(3)固体潮、极潮和海水负荷的影响(4)相对论效应。

卫星钟和地面钟由于存在相对运动,从地面观测,卫星钟走得慢,影响电磁波传播时间的测定。

GPS在测绘监测中的误差分析与矫正

GPS在测绘监测中的误差分析与矫正

GPS在测绘监测中的误差分析与矫正GPS(全球定位系统)是一项广泛应用于测绘监测领域的技术,它通过利用卫星发射的信号来确定地球上某一特定位置的方法。

然而,尽管GPS在测绘监测中被广泛使用,但它并不完全准确。

本文将讨论GPS在测绘监测中的误差分析及其矫正方法。

首先,我们来分析GPS在测绘监测中可能存在的误差源。

GPS信号传输存在天体误差、大气延迟、多径效应、接收机钟差等因素。

其中,天体误差是指由于卫星的轨道偏差、钟差和钟漂等因素引起的误差。

而大气延迟则是由于信号穿过大气层时受到折射、散射等影响造成的误差。

此外,由于信号在反射物体上发生反射形成多径效应,进一步影响了GPS的准确性。

最后,接收机的钟差也会导致GPS定位的误差。

为了矫正GPS在测绘监测中的误差,有许多方法可供选择。

一种常用的方法是增加接收站数量,利用多个接收站同时进行观测,以减小误差。

对于在空间范围较广的大型工程测绘中,采用分区域、多基准站联测等方法,可以提高测量的精度和可靠性。

此外,采用差分GPS技术也是一种有效矫正误差的方法。

差分GPS技术是通过同时观测一个已知坐标的基准站与待测站的GPS信号,通过计算两者之间的差异来矫正误差。

除了以上方法外,还可以利用精密测量设备来校正GPS的误差。

例如,采用地面控制点辅助校正GPS测量结果,通过与实测的地面控制点进行比对,对GPS 测量数据进行修正。

此外,利用罗盘、加速度计等传感器的数据,可以对GPS测量数据进行滤波处理,降低误差。

另外,由于大气延迟是GPS误差的重要来源之一,准确地估计和矫正大气延迟对于提高GPS的精度至关重要。

目前,常用的方法包括无电离层组合、双差改正模型和基于天然气象模型的组合等。

其中,无电离层组合通过组合GPS的L1和L2频率的载波相位观测值,可以消除掉电离层延迟的影响。

而双差改正模型则是通过对两个接收机之间的差分观测值进行改正,消除大气延迟的影响。

此外,为了提高GPS的测量精度,还可以使用RTK(实时动态测绘)技术。

gps测量仪器坐标允许误差多少

gps测量仪器坐标允许误差多少

GPS测量仪器坐标允许误差多少随着科技的不断进步,全球定位系统(GPS)在现代测量领域中得到了广泛的应用。

GPS测量仪器被广泛用于地球测量、地理定位和导航等各个领域。

然而,由于各种因素的影响,GPS测量仪器的坐标测量并非完全准确,会存在一定的误差。

因此,我们需要了解GPS测量仪器坐标允许的误差范围,以确保测量结果的合理性和可靠性。

误差来源GPS测量仪器的坐标误差主要来源于以下几个方面:1.系统误差:这是由于GPS系统本身的缺陷或不完善引起的误差,包括卫星轨道计算、钟差、大气延迟等。

2.接收机误差:由于接收机硬件和软件的限制造成的误差,例如信号传输延迟、测量计算算法等。

3.环境误差:这是由于接收机周围的环境条件引起的误差,例如天线高度、地形、建筑物、电磁干扰等。

允许误差范围在实际测量中,为了保证数据的准确性和可靠性,GPS测量仪器的坐标误差需要在一定范围内控制。

具体的允许误差范围取决于测量应用的需求和精度要求。

在通常情况下,GPS测量仪器的坐标允许误差可分为两个层面来考虑:绝对误差和相对误差。

•绝对误差:绝对误差表示测量结果与真实值之间的差距,用于评估测量的准确性。

绝对误差通常以米(m)为单位进行表示,常见的绝对误差要求可以达到几米到几十米之间。

•相对误差:相对误差表示同一区域内两个点之间的差异,用于评估测量的可靠性。

相对误差通常以百分比的形式进行表示,常见的相对误差要求可以达到几个百分点到几十个百分点之间。

需要注意的是,坐标测量的精确性要求因不同的应用而异。

例如,对于地理定位和导航应用,较大的绝对误差可以接受,但对于土地测量和工程测量等精确度要求较高的应用,则需要较小的误差范围。

误差控制方法为了控制和减小GPS测量仪器的坐标误差,一些常用的方法和技术如下:1.差分GPS测量:通过使用两个或多个测站接收机同时观测,利用基准站提供的准确坐标进行差分计算,可以有效消除大气延迟等误差,提高测量精度。

2.使用更多的卫星:增加接收机可见卫星数量,可以提高测量的可靠性和精度,因为更多的卫星可以提供更好的几何分布,减少误差影响。

GPS系统误差来源的分析

GPS系统误差来源的分析

GPS系统误差来源的分析
GPS系统误差是由于多种因素造成的,包括卫星、接收器、地球大气和多路径等因素,以下对GPS系统误差造成的主要因素进行分析:
1、卫星误差
卫星的误差是指由于卫星本身的问题引起的误差,如卫星钟的不精确、卫星发射时钟的偏差、卫星轨道偏差等。

这些误差会导致GPS系统中的卫星发射的信号存在一定的偏差,从而影响到GPS接收器的测量结果。

2、接收器误差
接收器误差是指GPS接收器本身的问题引起的误差。

这些误差包括接收器的精度问题、接收器的干扰问题(来自天线等),以及接收器内部噪声的影响等。

这些误差会影响到GPS接收器的测量精度和正确性。

3、地球大气误差
GPS信号经过大气层时,由于大气层的折射和散射等现象,会引起信号的传播速度和方向发生一定的变化。

这些变化会影响GPS信号的传播时间、相位和干涉等,从而影响到GPS接收器的测量精度和准确性。

4、多路径误差
多路径误差是指GPS信号在传播过程中,由于反射或折射等现象,从两个或多个路径到达接收器,从而形成多径信号。

这些多径信号与原始信号相互干扰,导致GPS接收器无法正确地估计信号的到达时间和信号的相位,因此会导致GPS系统中的误差。

综上所述,GPS系统误差来源较为复杂,涉及卫星、接收器、地球大气和多路径等多个因素,因此需要GPS接收
器和算法的不断改进和优化,以提高GPS系统的测量精度和信号准确性。

GPS系统误差来源的分析

GPS系统误差来源的分析

GPS系统误差来源的分析GPS系统有多种误差来源,这些误差来源可能导致GPS位置的不准确性、不确定性和不稳定性。

在进行GPS测量和数据分析时,应该考虑这些误差来源,以便更精确地分析和解释GPS数据。

以下是GPS系统主要的误差来源:1. 大气误差大气误差源于电离层和对流层中的厚度、密度和温度变化。

这些变化可能导致信号延迟或散射,从而引起时间和位置的不准确性。

大气误差可以通过GPS接收机的接收数据来识别,并使用差分GPS技术来减少其影响。

2. 星历误差星历误差是由于GPS卫星的轨道和时钟不稳定所造成的。

GPS系统需要知道卫星的位置和时间,否则会导致定位误差。

星历误差可以通过接收多颗卫星的信号来识别并校正。

3. 信号多径效应信号多径效应是指GPS信号从地面或其他障碍物反射回接收机的现象。

这些反射信号穿过了不同的路径,导致信号延迟和干扰,从而使定位误差增大。

信号多径效应可以通过反射面建模、多路径分离技术和扰动算法来减少其影响。

4. 接收机内部误差接收机内部误差可能包括时钟漂移、硬件噪声和信号干扰等。

这些误差可能导致接收机误差增加,从而影响GPS定位精度。

接收机内部误差可以通过选用高精度接收机和时钟标定来减少其影响。

5. 人为误差人为误差是指由于操作人员的技能水平、环境条件和其他因素所造成的误差。

例如,使用不正确的参数进行数据处理、固定接收机在不稳定的地面上等。

人为误差可以通过训练操作人员和提高GPS接收站的环境条件来减少其影响。

总之,GPS系统的误差来源多种多样,需要综合考虑各种误差来源,并使用适当的技术来减少其影响,以实现更精确的GPS测量和数据分析。

卫星导航定位系统误差来源解析

卫星导航定位系统误差来源解析

卫星导航定位系统误差来源解析卫星导航定位系统,如全球定位系统(GPS)、伽利略等,已经成为现代社会中至关重要的定位与导航工具。

然而,任何一个定位系统都不可避免地存在误差。

这些误差源可以分为多个来源,包括卫星钟差、大气层延迟、多路径效应、接收机噪声以及人为因素等。

这篇文章将对卫星导航定位系统误差的来源进行解析,以帮助读者更好地理解和应用这些定位系统。

首先,卫星钟差是卫星导航定位系统中常见的误差源之一。

任何一个时间测量都需要一个准确的时钟。

然而,卫星的原子钟并非完美,会存在一定的误差。

当卫星发射后,由于各种因素的作用,如温度变化、重力影响等,卫星钟的频率可能会发生微小的变化。

这种变化对定位系统的精度有着直接的影响。

其次,大气层延迟是导致卫星导航定位系统误差的重要因素之一。

由于地球大气层的存在,导航信号在传播过程中会受到大气层中的影响,从而导致延迟。

大气层延迟在定位系统中会引起距离测量误差,因为卫星发射的信号需要经过大气层才能到达接收机。

不同的大气层条件(如湿度、温度等)会对导航信号的传播速度产生影响,从而引起定位误差。

另外,多路径效应也是导致卫星导航定位系统误差的重要来源之一。

当信号在传播过程中遇到障碍物,如建筑物或地形起伏时,信号可以发生反射、绕射以及散射等现象。

这些现象会导致信号在接收机处形成多个路径,从而引起接收机接收到多个信号,即多径效应。

多径效应会对定位系统的精度和稳定性产生直接的影响,因为它引入了额外的时延以及信号衰减,导致接收机测量的距离和角度产生误差。

此外,接收机噪声也会对卫星导航定位系统的精度产生影响。

接收机本身存在噪声源,例如热噪声和脉冲干扰等。

这些噪声会使接收机对卫星发射的信号进行失真,从而影响定位系统的可靠性和精度。

最后,人为因素也是卫星导航定位系统误差的重要来源之一。

人为因素包括使用者的使用误差、接收机的校准问题以及操作不当等。

这些因素可能导致定位系统的测量结果出现偏差,从而影响导航的精确性。

GPS测量仪的误差来源与误差控制方法

GPS测量仪的误差来源与误差控制方法

GPS测量仪的误差来源与误差控制方法GPS(全球定位系统)测量仪在现代测量领域得到了广泛应用。

它可以通过卫星信号精确定位和测量地球上的点的坐标,但是在实际使用中,GPS测量仪的测量结果往往会存在一定的误差。

这些误差可能来自多个方面,包括天线、大气、仪器本身等。

本文将探讨GPS测量仪的误差来源以及常用的误差控制方法。

首先,天线是GPS测量仪误差的一个重要来源。

天线的信号接收性能直接影响着测量仪的定位和测量精度。

天线的位置安装不准确、天线高度不均匀等因素都可能导致测量误差的产生。

因此,在进行GPS测量时,我们应该注意天线的安装位置和高度均匀性,保证接收到的信号质量良好,从而减小天线引起的误差。

其次,大气也是GPS测量仪误差的一个重要来源。

大气中的湿度、温度、压强等因素都会对GPS信号的传播速度产生影响,从而导致测量误差的产生。

尤其是在测量距离时,大气对信号的传播速度影响较大。

为了减小大气误差,常用的方法是通过测量两条不同频率的信号,从而计算出大气延迟,进而对测量结果进行修正。

此外,GPS测量仪本身存在的仪器误差也会对测量结果产生影响。

仪器误差包括系统定位误差、时钟误差等。

系统定位误差是由于接收机的硬件和软件系统造成的,通常是由于系统设计和实现上的不完善所致。

时钟误差是由于GPS测量仪内部时钟的不精确而引起的。

为了控制仪器误差,可以采用多种策略,例如使用高精度的GPS测量仪、定期进行仪器校准等。

除了上述误差来源外,还有一些其他的误差可能会对GPS测量仪的结果产生影响。

例如,接收机所处的环境条件,如振动、电磁干扰等都可能对测量结果产生干扰。

此外,人为误差也是不能忽视的因素,比如操作人员的技术水平、测量过程中的操作失误等都可能导致测量误差的产生。

为了控制GPS测量仪的误差,可以采取一系列的方法。

首先,对于天线安装位置和高度均匀性的要求应该严格控制,以减小天线引起的误差。

其次,通过多台GPS测量仪同时进行测量,可以通过求解多个测量结果的平均值来减小系统定位误差和时钟误差。

GPS测量的误差来源及其消除方法

GPS测量的误差来源及其消除方法

GPS测量的误差来源及其消除方法GPS(Global Positioning System)是一种全球定位技术,通过接收卫星信号来确定地理位置的方法。

然而,在实际应用中,我们经常会遇到GPS测量的误差。

这些误差来自于不同的因素,包括大气层延迟、多径效应、钟差等。

为了提高GPS测量的准确性,我们可以采取一些方法来消除这些误差。

首先,我们来看看大气层延迟。

大气层延迟是由于GPS信号在穿越大气层时,受到大气分子的散射和折射影响而产生的延迟。

这种延迟会导致测量结果有一定误差。

为了消除大气层延迟的影响,科学家们发展出了一种称为差分GPS的方法。

差分GPS通过同时观测一个已知位置的基准站和待测站点的GPS信号,利用两者之间的差异来消除大气层延迟的影响。

这种方法可以有效提高GPS测量的准确性。

除了大气层延迟,多径效应也是导致GPS测量误差的重要因素之一。

多径效应是指GPS信号在传播过程中,经过物体的反射导致多个信号到达接收器,使接收器无法准确确定信号的传播路径。

为了克服多径效应,信号处理技术被广泛应用于GPS测量中。

这些技术包括滤波算法、波束形成和合成孔径雷达等。

通过这些技术的应用,可以有效地减小多径效应对GPS测量的影响,提高定位的准确性。

此外,钟差也是导致GPS测量误差的一个重要因素。

GPS系统中的卫星钟的时间并非完全精确,存在着一定的误差。

这种误差会导致卫星信号的传播时间不准确,进而影响到GPS测量的准确性。

为了消除钟差的影响,常用的方法是使用差分测量技术。

差分测量技术通过同时测量一个已知位置的基准站和待测站点的GPS信号,并对两者的测量结果进行差分处理,从而消除钟差的影响。

除了上述方法,还有其他一些方法可以用来消除GPS测量的误差。

例如,通过增加观测站点的数量来提高测量的准确性。

多个观测站点可以提供更多的测量数据,从而减小误差的影响。

此外,改进GPS接收器的硬件和软件也可以有效提高测量的准确性。

改进后的接收器可以提供更准确的测量结果,并且具有更强的抗干扰能力。

GPS定位误差的产生原因分析与减小方法

GPS定位误差的产生原因分析与减小方法

GPS定位误差的产生原因分析与减小方法导言全球定位系统(GPS)已成为现代社会中广泛应用于导航、地理测量和定位等领域的重要技术。

然而,在使用GPS时,我们常会遇到定位误差的问题。

本文将分析GPS定位误差产生的原因,并探讨减小定位误差的方法。

一、多普勒效应引起的频率偏移误差GPS定位是通过接收来自卫星的信号并测量其到达时间来确定位置的。

然而,卫星和接收器之间的运动会引起多普勒效应,导致接收器测量的信号频率偏离真实频率。

这会导致接收器估计的距离与实际距离之间存在误差。

为了减小多普勒效应带来的误差,可以采用快速信号处理算法和精确的频率模型来纠正频率偏移。

二、大气延迟引起的距离误差GPS信号在穿过大气层时会受到大气延迟的影响,从而导致接收器估计的距离与实际距离之间存在偏差。

大气延迟主要由电离层延迟和对流层延迟组成。

为了减小大气延迟带来的误差,可以通过使用多频信号进行差分定位、引入大气误差模型进行修正以及使用增强的大气改正模型来提高定位精度。

三、钟差引起的时间误差卫星和接收器的时钟不可能完全同步,这会导致接收器估计的时间与实际时间之间存在差异。

这个差异会引起接收器估计的距离与实际距离之间的误差。

为了减小时钟差带来的误差,可以使用差分定位技术来修正时间误差,并利用接收器内部的时间校准机制来提高时钟的准确性。

四、多径效应引起的信号衰减误差当GPS信号在传播过程中发生反射或折射时,会产生多径效应,导致接收器接收到的信号变弱或出现多个传播路径,从而影响定位精度。

为了减小多径效应带来的误差,可以采用抗多径干扰技术,如采用天线阵列、时延估计和信号处理算法等来抑制多径干扰。

五、精度限制引起的测量误差GPS接收器自身的精度限制也会导致定位误差。

接收器的硬件设计和信号处理算法的精度限制都会影响最终的定位精度。

为了减小精度限制带来的误差,可以采用高精度的接收器硬件设计和先进的信号处理算法,以提高定位的准确性。

六、综合多种减小误差方法为了进一步提高GPS定位的精度,可以综合应用上述减小误差的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

GPS系统的误差来源分析
摘要:GPS 系统的定位误差直接影响着GPS定位精度,按其产生的来源、性质及对系统的影响等进行了介绍和初步分析,提出了相应的措施以便消除或削弱它们对测量结果的影响。

关键词:GPS误差精度卫星星历电离层对流层
一、GPS 定位技术
GPS 全球卫星定位系统是美国国防部为满足军事部门对海上、陆地和空中设施进行高精度导航和定位的要求而建立的。

该系统具有全球性、全天候、连续性等三维导航和定位能力,并具有良好的抗干扰性和保密性。

它已成为美国导航技术现代化的最重要标志,并被视为20 世纪美国继阿波罗登月计划和航天飞机计划之后的又一重大科技成就。

在航空、航天、军事、交通、运输、资源勘探、通信、气象等几乎所有的领域中,它都被作为一项非常重要的技术手段,用于导航、定时、定位和进行大气物理研究等。

GPS 的主要特点有:
(1)全球覆盖连续导航定位:由于GPS 有24 颗卫星,且分布合理,轨道高达20200km,所以在地球上和近地空间任何一点,均可连续同步地观测4颗以上卫星,实现全球、全天候连续导航定位。

(2)高精度三维定位: GPS 能连续地为各类用户提供三维位置、三维速度和精确时间信息。

GPS提供的测量信息多,既可通过伪码测定伪距,又可测定载波多
普勒频移、载波相位。

(3)抗干扰性能好、保密性强; GPS 采用数字通讯的特殊编码技术,即伪噪声码技术,因而具有良好的抗干扰性和保密性。

二、GPS 定位的误差来源分析
GPS 测量是通过地面接收设备接收卫星传送来的信息,计算同一时刻地面接收设备到多颗卫星之间的伪距离,采用空间距离后方交会方法,来确定地面点的三维坐标。

因此,对于GPS卫星、卫星信号传播过程和地面接收设备都会对GPS 测量产生误差。

主要误差来源可分为:与GPS卫星有关的误差;与信号传播有关的误差;与接收设备有关的误差。

1.与卫星有关的误差
(1)卫星星历误差
卫星星历误差是指卫星星历给出的卫星空间位置与卫星实际位置间的偏差,由于
卫星空间位置是由地面监控系统根据卫星测轨结果计算求得的,所以又称为卫星轨道误差。

它是一种起始数据误差,其大小取决于卫星跟踪站的数量及空间分布、观测值的数量及精度、轨道计算时所用的轨道模型及定轨软件的完善程度等。

星历误差是GPS 测量的重要误差来源.
(2)卫星钟差
卫星钟差是指GPS卫星时钟与GPS标准时间的差别。

为了保证时钟的精度,GPS 卫星均采用高精度的原子钟,但它们与GPS标准时之间的偏差和漂移和漂移总量仍在1ms~0.1ms以内,由此引起的等效误差将达到300km~30km。

这是一个系统误差必须加于修正。

(3)SA干扰误差
SA误差是美国军方为了限制非特许用户利用GPS进行高精度点定位而采用的降低系统精度的政策,简称SA政策,它包括降低广播星历精度的ε技术和在卫星基本频率上附加一随机抖动的δ技术。

实施SA技术后,SA误差已经成为影响GPS定位误差的最主要因素。

虽然美国在2000年5月1日取消了SA,但是战时或必要时,美国可能恢复或采用类似的干扰技术。

(4)相对论效应的影响
这是由于卫星钟和接收机所处的状态(运动速度和重力位) 不同引起的卫星钟和接收机钟之间的相对误差。

2.与传播途径有关的误差
(1)电离层折射
在地球上空距地面50~100 km 之间的电离层中,气体分子受到太阳等天体各种射线辐射产生强烈电离,形成大量的自由电子和正离子。

当GPS 信号通过电离层时,与其他电磁波一样,信号的路径要发生弯曲,传播速度也会发生变化,从而使测量的距离发生偏差,这种影响称为电离层折射。

对于电离层折射可用3 种方法来减弱它的影响: ①利用双频观测值,利用不同频率的观测值组合来对电离层的延尺进行改正。

②利用电离层模型加以改正。

③利用同步观测值求差,这种方法对于短基线的效果尤为明显。

(2)对流层折射
对流层的高度为40km 以下的大气底层,其大气密度比电离层更大,大气状态也更复杂。

对流层与地面接触并从地面得到辐射热能,其温度随高度的增加而降低。

GPS 信号通过对流层时,也使传播的路径发生弯曲,从而使测量距离产生偏差,这种现象称为对流层折射。

减弱对流层折射的影响主要有3 种措施: ①采用对流层模型加以改正,其气象参数在测站直接测定。

②引入描述对流层影响的
附加待估参数,在数据处理中一并求得。

③利用同步观测量求差。

(3)多路径效应
测站周围的反射物所反射的卫星信号(反射波)进入接收机天线,将和直接来自卫星的信号(直接波) 产生干涉,从而使观测值偏离,产生所谓的“多路径误差”。

这种由于多路径的信号传播所引起的干涉时延效应被称作多路径效应。

减弱多路径误差的方法主要有: ①选择合适的站址。

测站不宜选择在山坡、山谷和盆地中,应离开高层建筑物。

②选择较好的接收机天线,在天线中设置径板,抑制极化特性不同的反射信号。

3.与GPS 接收机有关的误差
(1)接收机钟差
GPS 接收机一般采用高精度的石英钟,接收机的钟面时与GPS 标准时之间的差异称为接收机钟差。

把每个观测时刻的接收机钟差当作一个独立的未知数,并认为各观测时刻的接收机钟差间是相关的,在数据处理中与观测站的位置参数一并求解,可减弱接收机钟差的影响。

(2)接收机的位置误差
接收机天线相位中心相对测站标石中心位置的误差,叫接收机位置误差。

其中包括天线置平和对中误差,量取天线高误差。

在精密定位时,要仔细操作,来尽量减少这种误差影响。

在变形监测中,应采用有强制对中装置的观测墩。

相位中心随着信号输入的强度和方向不同而有所变化,这种差别叫天线相位中心的位置偏差。

这种偏差的影响可达数毫米至厘米。

而如何减少相位中心的偏移是天线设计中的一个重要问题。

在实际工作中若使用同一类天线,在相距不远的两个或多个测站同步观测同一组卫星,可通过观测值求差来减弱相位偏移的影响。

但这时各测站的天线均应按天线附有的方位标进行定向,使之根据罗盘指向磁北极。

(3)接收机天线相位中心偏差
在GPS 测量时,观测值都是以接收机天线的相位中心位置为准的,而天线的相位中心与其几何中心,在理论上应保持一致。

但是观测时天线的相位中心随着信号输入的强度和方向不同而有所变化,这种差别叫天线相位中心的位置偏差。

这种偏差的影响可达数毫米至厘米。

而如何减少相位中心的偏移是天线设计中的一个重要问题。

三、GPS的最新发展与改进
面对导航市场的迅速发展和强大的竞争压力,美国政府不得不作出反映,计划在未来10年内对GPS做一系列的调整和改进。

对GPS的改进将对GPS系统的3个部分进行,其中对星座部分的改进最大。

1.GPS星座的改进
(1)改善星座的分布(2)增强卫星的自主导航能力(3)取消SA政策(4)增加民用频率(5)频率复用(6)增强卫星发射信号的功率
2.地面监控部分的改进
卫星位置的精度直接影响到用户的定位精度,而地面监控站的数量和分布部分地决定了GPS卫星定轨的质量。

目前GPS共有5个监控站,卫星位置的精度为1m~2m。

美国军方正计划将国家制图局(NIMA)的7个GPS监控站纳入目前的控制网,使将来的监控站的分布更加均匀、密度更大,为了计算卫星的位置提供更多的、更及时的高质量观测数据。

预计在未来10年,卫星星历的精度将达到亚米级,甚至达到厘米级,同时,向卫星上传数据的频率也将更高。

3.用户接受部分的改进
由于用户的用途不同,用户接受机的改进也是多样化的。

接收机的硬件部分正朝多样化、小型化、模块化、集成化、操作简单等方向发展,例如出现了一些新的接收机可根据用户的需求用软件设定单频GPS、双频GPS等模式。

接收机的面板上只有一、两个按钮和若干个显示灯组成,可完成接收机的基本操作。

GPS的数据解算软件将基于数据库,朝着图形化、智能化等方向发展。

这些发展的最终的目的是让一般用户更方便的使用GPS。

参考文献
[1] 徐绍铨等.GPS测量原理及应用.武汉测绘科技大学出版社.1998.10.
[2] 张守信等.GPS技术与应用.国防工业出版社.2004.1.
[3] 张小红等.GPS定位技术在不同领域的应用[J].武汉:测绘信息与工程.2001,1.。

相关文档
最新文档