金属自由电子气理论

合集下载

6.1电子气的费米能和热容量

6.1电子气的费米能和热容量

均势能的势场中运动); (3)价电子服从费米—狄拉克分布。
g n e( EEF ) kBT 1
2.费米分布函数
在热平衡时,能量为E的状态被电子占据的概率是
1 f ( E ) e(EEF ) kBT 1
EF---费米能级(等于这个系统中电子的化学势),它的意 义是在体积不变的条件下,系统增加一个电子所需的自由能。 它是温度T和晶体自由电子总数N的函数。
2




3 5
EF0

π2 4
(kBT )2 EF0
2.每个电子对热容量的贡献
CV


E T
V

π2 2
kB
kBT EF0

π2 2

T TF0
kB
TF0 EF0 kB
CV

π2 2

T TF0
kB
在常温下晶格振动对热容量的贡献的量级为J/mol·k2而
第六章 金属自由电子论
电子气的费米能和热容量 接触电势差 玻尔兹曼方程 驰豫时间的统计理论 金属电导率
§6.1 电子气的费米能和热容量
自由电子气(自由电子费米气体):自由的、无相互作用 的 、遵从泡利原理的电子气。
一 费米能量
1.模型(索末菲)ห้องสมุดไป่ตู้
(1)金属中的价电子彼此之间无相互作用;
(2)金属内部势场为恒定势场(价电子各自在势能等于平
kBT TF0
2


当温度升高时,EF 降低。
在金属熔点以下,T<< TF0 , EF与 EF0 差别不大。
二 金属中电子气的热容量
1.每个电子的平均能量

金属自由自由电子气体模型及基态性质

金属自由自由电子气体模型及基态性质

所以,费米波矢kF为:
kF 3
32 N32n
V
n为电子密度
从而,相关的电子的费米能量F 、费米动量 pF、费米速 度F、费密温度TF等都可以表示为电子密度n的函数,这也就 是前面我们所提到的自由电子气体模型可用电子密度n来描 述,而且,n是仅有的一个独立参量的原因。
F022m kF2
2(32n)23
; 2m
pFkF;vFm kF;TFkF B
2.能态密度
(1)定义: 若在能量 E ~E d E范围内存在Z个单电子态,
lim 则能态密度N()定义为: N()E 0 Z d dZ
(2)计算: 在k空间,代表点均匀分布,则求出能量分别为E和E+E两个
等能面之间的相体积,乘以代表点密度和自旋因子2,便得到能量间隔在 E~E+E范围内的电子态数目Z
三维情形,可想象成L3的立方体在三个方向平移,填满 了整个空间,从而当一个电子运动到表面时并不被反射回来, 而是进入相对表面的对应点。
波函数为行波,表示当一个电子运动到表面时并不被反 射回来,而是离开金属,同时必有一个同态电子从相对表面 的对应点进入金属中来。
二者的一致性,表明周期性边条件的合理性
EdE
E
ky
ds
dk
22Vπ3
E
ds
k
d
kx
能态密度:
N() dZ d
V ds
22π3 E k
例1:求金属自由电子气的能态密度
法1. 金属中自由电子的能量
2k 2 2m
2 2m(kx 2ky 2kz2)
N() dZ d
22Vπ3
E
ds
k
d 2k dk
m

第十六讲金属中自由电子气模型

第十六讲金属中自由电子气模型

- - -( 7)
3(z L) = 3(z)
用 通 解 的 前 一 种 表 示 , 分 别 假 定 波 沿 x,y,z 负 方 向 传 播 , 可 得
波矢:
kx =
2n x L
ky
=
2n y L
kz
=
2n z L
( 8)






(n :ψ
x, (x
ny, ,y,z
n )
z
为正 = 1(
负整
x ) 2 (
此时费密-狄喇克统计分布为 (见图 p112 图 6.3)
1
lim T 0
f ( E ,T ) 0
E (0) E (0)
其 中 μ (0)为 绝 对 零 度 时 的 化 学 势 。
- - (17)
电 子 气 基 态 :能 量 在 μ (0)以 下 的 状 态 全 被 电 子 占 满 ,能 量超 过 μ (0)
第十六讲 金属中自由电子气模型
第六章 金属电子论 问题:对金属中相互作用、运动着的大量电子,怎样进行理论处理?
如何从理论上说明电子对金属优良的电导、热导和比热的贡献? 如何从电子的运动状态解释电子热发射、光电效应和场电子发 射等重要现象? 本章用 量子的电子气体模型: 金属中的价电子组成电子气体(就象气体分
见 p112 图 6.3 f(E,T) ~ E 曲线
T > 0,

kBT
f
(,T
)
1 2
范围内,f (E,T )从 1下降到 0
由能态密度公式(13)
g(E) CE1/ 2
和公式(14)
C 4 ( 2m)3/ 2
h2

2.金属自由电子气的Drude模型

2.金属自由电子气的Drude模型
* 离子实的作用仅维持固体结合,维持电中性
• 金属中的价电子就象无相互作用的理想气体, 但模型与理想气体又有所不同:
* 电子气体的浓度比理想气体大三个量级 * 有两种粒子:电子,离子
不是很圆滑,所以再加些限制(基本假定),完 成Drude模型的构造
10.107.0.68/~jgche/ 金属电子气的Drude模型
1、已知的金属性质
模型建立的依据
10.107.0.68/~jgche/
金属电子气的Drude模型
4
为什么研究固体从金属开始?
• 金属最基本物质状态之一,元素周期表中有2/3 是金属元素,应用很广泛,当时对金属的了解 比其他固体多
* 比如,电导、热导、光泽、延展等性能很早开始就 被广泛应用 * 区分非金属,实际上也是从理解金属开始
12
思考——假如你是Drude
• 根据已有线索,如何仿照理想气体建立模型?
* 与理想气体(电中性)还是有些不同!除了碰撞的 瞬间,可以不考虑其他。但现有两种带电粒子
• 不是电中性的,有库仑相互作用?那么
* 电子-电子如何相互作用? * 电子-离子实如何相互作用?
• 还有——电传导(也包括热传导)是个输运过 程,非平衡过程,所以
上讲回顾
• 固体的微观定义
* 固体中的原子在其平衡位置附近作微小振动
• 贯穿课程的主线
* 周期性波在周期性结构中的运动
10.107.0.68/~jgche/
金属电子气的Drude模型
1
本讲内容:建模推演比较修正
• 如何用在1900年左右可以理解和接受的假设、 前提和经典理论,在微观层次上建立研究金属 宏观性质的模型,解释实验观察到的金属的良 好导电和导热现象

金属电子气体理论

金属电子气体理论

一,金属自由电子气体模型1.1 经典电子论特鲁德电子气模型:特鲁德提出了第一个固体微观理论利用微观概念计算宏观实验观测量自由电子气+波尔兹曼统计→欧姆定律电子平均自由程+分子运动论→电子的热导率特鲁德(Paul Drude )模型的基本假设11.自由电子近似:传导电子由原子的价电子提供,离子实对电子的作用可以忽略不计,离子实的作用维持整个金属晶体的电中性,与电子发生碰撞。

2.独立电子近似:电子与电子之间的相互作用可以忽略不计。

外电场为零时,忽略电子之间的碰撞,两次碰撞(与离子实碰撞)之间电子自由飞行(与经典气体模型不同,电子之间没有碰撞,电子只与离子实发生碰撞,这一点我们将在能带论中证明是错误的。

)特鲁德(Paul Drude )模型的基本假设23.玻尔兹曼统计:自由电子服从玻尔兹曼统计。

4.弛豫时间近似:电子在单位时间内碰撞一次的几率为1/τ,τ称为弛豫时间(即平均自由时间)。

每次碰撞时,电子失去它在电场作用下获得的能量,即电子和周围环境达到热平衡仅仅是通过与原子实的碰撞实现的。

特鲁德模型的成功之处——成功解释了欧姆定律欧姆定律E j ρ=(或j E σ=),其中E 为外加电场强度、ρ为电阻率、j 为电流密度。

202()1I j nev ne Sj E eEt m v v E j m ne eE m v m τρτστρ⎧==-⎪⎧=⎪⎪-⎪⎪=+⇒⇒=⎨⎨⎪⎪==⎪⎪⎩=-⎪⎩r1.2.经典模型的另一困难:传导电子的热容根据理想气体模型,一个自由粒子的平均热量为3/2B k T ,故333(),222A B e U U N k T RT C R T ∂====∂33/29v ph e C C C R R =+=+≈(卡/molK.)但金属在高温时实验值只有6(卡/molK.),即3v C R ≈。

1.3 Sommerfeld 的自由电子论1925年:泡利不相容原理1926年:费米—狄拉克量子统计 1927年:索末菲半经典电子论抛弃了特鲁德模型中的玻尔兹曼统计,认为电子气服从费米—狄拉克量子统计得出了费米能级,费米面等重要概念,并成功地解决了电子比热比经典值小等经典模型所无法解释的问题。

第五章:金属的电子理论

第五章:金属的电子理论

dN ( E ) 3 2me 2 dE 2
3/ 2
3/ 2
E1/ 2
V 3 2
V 2me 2 2 2 3N ( E ) 2E
E1/ 2
DOS: number of electrons/unit energy in a range E ~ E + dE
自由电子模型总结
• 即使在金属中,传导电子的电荷分布( charge distribution)收到 离子芯强烈静电势的影响。因此,自由电子模型描述传导电子的运 动特性(kinetic properties)最为合适。传导电子与离子之间的相 互作用将在能带理论中讨论。 • 最简单的金属是碱金属:Li, Na, K, Rb, Cs。在这些单价金属中,N 原子构成的晶体有N 个电子和N 个正离子。 • 自由电子模型产生于在量子理论建立之前。经典Drude模型成功导 出欧姆定律(Ohm’s law),以及电导和热导的关系。但是,由于 使用了Maxwell经典统计分布,它不能解释比热容(heat capacity) 和磁化率(magnetic susceptibility )。后来Sommerfeld在量子理 论基础上重建了该模型。
~ 10eV
1/ 3 2 pF kF 3 N ~ 108 cm / sec vF V me me me
2/3 2 2 2 EF 2 3 N ~ 105 K TF kF kB 2me kB 2me kB V
态密度(Density of states, DOS)
L N (E) 2 2
dN ( E ) L 2me 1 N ( E ) 2me E , D( E ) dE E 2

17.1 自由电子气体模型

17.1 自由电子气体模型

dN
N

F
0
3
F3

3d

3 4
F
单位体积内, 能量区间 E~E+dE 内的状态数
dNE g(E)dE V
g(E)
dNE VdE

(2me )3/2
2 2 3
E1/2
-- 态密度
电子是按能量规则地从低向高排布, 一个态一个电子(泡利不相容原理)
能量区间 E~E+dE 电子数密度
金属自由电子气体模型
平均场近似下,金属原子的价电子是在均
匀的势场中运动,金属表面对电子可近似看作 无限高势垒。(功函数远大于电子动能)
这些价电子称为自由电子。
U

0
内部 外部
如果考虑立方体形状,N个自由电子好象 是装在三维盒子里的气体。
L L
每个电子都要满足驻波条件
L

nx 2
x
kxL nx
dN E V

g(E)dE 0
E EF E EF
小于费米能量,电子数 = 状态数 小于费米能量态,电子占据几率 1
大于费米能量态,电子占据几率 0
f(E) 1
T=0
0 系统 T = 0
EF E
编者: 安宇
§1 自由电子气体按能量的分布
金属中的电子受到周期排布的晶格上离子 库仑力的作用。
一晶 维格 晶、 体点

U(x)
21
21
考虑电子受离子与其它电子的(2) 电子的运动有隧道效应
(1) 蕊电子 (2) 价电子
价电子的势垒穿透概率较大 在整个固体中运动, 称为共有化电子
(2,1,1) (1,2,1) (1,1,2)

金属自由电子经典理论

金属自由电子经典理论

金属自由电子经典理论
• 金属中的正离子形成的电场是均匀的,价电子不被原子所 束缚,可以在整个金属中自由地运动,形成自由电子。这 些电子起着导电和导热的作用,他们的行为像理想气体一 样,故被称作自由电子气体,其运动规律遵循经典力学气 体分子的运动定律。 • 在没有外电场作用时,金属中的自由电子沿着各方向运动 的几率相同,故不产生电流。当施加外电场后,自由电子 获得附加速度,于是便沿外电场方向发生定向迁移,从而 形成电流。自由电子在定向迁移过程中,因不断与正离子 发生碰撞,使电子的迁移受阻,因而产生了电阻。
金属自由电子经典理论的产生背景
18世纪末: 1、人们已熟悉金属导电和导热特性,但是还不具备解释这 些传导电子是如何形成和运动的理论基础。 2、1897年汤姆逊发现金属中存在电子(e/m测定)。
3、分子运动论处理理想气体十分成功。
金属自由电子经典理论的提出
•1900年,特鲁德首先将金属中的价电子与理想气体类比,提 出了金属电子气理论,即认为金属中存在有自由电子气体。 •1904年,洛伦兹将麦克斯韦-玻尔兹曼统计分布规律引入电 子气,据此就可用经典力学定律对金属自由电子气体模型作 出定量计算. •这样就构成了特鲁德-洛伦兹自由电子气理论,称为经典自 由电子理论.
金属中自由电子在电场中的运动
当金属中有电流时,每个自由电子都因受到电场力的作用而 加速,即在无规则的热运动上叠加一个定向运动。
自由电子在运动过程中频繁的与晶格碰撞,碰后电子向各个 方向运动的几率相等,因此可认为每个电子在相邻两次碰撞 间做初速度为零的匀加速直线运动。 大量自由电子的统计平均,就是以平均定向漂移速度逆着电 场线方向漂移。
电导率σ的推导
设导体内的恒定电场为 ,则电子的加速度为
v0 电子两次碰撞的时间间隔为t,上次碰撞后的初速度为

金属的电子论 6-1

金属的电子论 6-1
6
经典理论的局限性
★金属中存在着电子,根据自由电子论,
金属的电导率电子密度n,
但为什么电子密度较大的二价金属(如Be、Mg、 Zn、 Cd等)和三价金属(如Al、In等)的电导 率反而低于一价金属(如Cu、Ag、Au等)? ★自由电子论无法解释为什么有些金属的Hall系数 会大于0(如Al、In、Zn、Cd等);
第六章
金属电子论
第一讲
费米统计和电子热容量;
功函数和接触电势。
1
金属(Metal)在固体研究中有特殊的地位。金属是极 好的导电体和导热体(Electrical and heat conductors), 有延展性(Ductile)并有光亮的表面。这些金属性质的 解释极大地推动了现代固体物理的发展。 实际上,从十九世纪末到现在,金属研究一直处 在固体研究的中心。对金属的研究导致了能带论的 提出,最后在能带论的基础上,建立了对包括金属,半 导体,绝缘体的固体电性质的统一的理论.并由此发 展出整个电子工业的理论基础.
11
2. T=0 K 时电子的分布
T=0 K 时,电子的分布函数为 f(E) =
EF
0
f(E) T=0 1
{0
kF 2m
2 2
1
E EF0 E > EF0
0
—— 费米能
0
EF0
E
kF
2mEF
2
—— 费米半径
PF k F m V F —— 费米动量
12
vF
kF m
从量子力学的观点看,电子是费米子(fermion)应服 从Fermi-Dirac统计而不是经典的Maxwell统计。 Fermi-Dirac统计指出,在量子态上的平均占据数为:

金属自由电子气理论

金属自由电子气理论

金属自由电子气理论特鲁德电子气模型:特鲁德提出了第一个固体微观理论利用微观概念计算宏观实验观测量自由电子气+波尔兹曼统计→欧姆定律 电子平均自由程+分子运动论→电子的热导率特鲁德(Paul Drude )模型的基本假设11.自由电子近似:传导电子由原子的价电子提供,离子实对电子的作用可以忽略不计,离子实的作用维持整个金属晶体的电中性,与电子发生碰撞。

2.独立电子近似:电子与电子之间的相互作用可以忽略不计。

外电场为零时,忽略电子之间的碰撞,两次碰撞(与离子实碰撞)之间电子自由飞行(与经典气体模型不同,电子之间没有碰撞,电子只与离子实发生碰撞,这一点我们将在能带论中证明是错误的。

)特鲁德(Paul Drude )模型的基本假设23.玻尔兹曼统计:自由电子服从玻尔兹曼统计。

4.弛豫时间近似:电子在单位时间内碰撞一次的几率为1/τ,τ称为弛豫时间(即平均自由时间)。

每次碰撞时,电子失去它在电场作用下获得的能量,即电子和周围环境达到热平衡仅仅是通过与原子实的碰撞实现的。

特鲁德模型的成功之处——成功解释了欧姆定律欧姆定律E j ρ=(或j E σ=),其中E 为外加电场强度、ρ为电阻率、j 为电流密度。

202()1I j nev ne S j E eEt m v v E j m ne eE m v m τρτστρ⎧==-⎪⎧=⎪⎪-⎪⎪=+⇒⇒=⎨⎨⎪⎪==⎪⎪⎩=-⎪⎩2.经典模型的另一困难:传导电子的热容根据理想气体模型,一个自由粒子的平均热量为3/2B k T ,故333(),222A B e U U N k T RT C R T ∂====∂33/29v ph e C C C R R =+=+≈(卡/molK.)但金属在高温时实验值只有6(卡/molK.),即3v C R ≈。

4.2 Sommerfeld 的自由电子论1925年:泡利不相容原理 1926年:费米—狄拉克量子统计 1927年:索末菲半经典电子论抛弃了特鲁德模型中的玻尔兹曼统计,认为电子气服从费米—狄拉克量子统计得出了费米能级,费米面等重要概念,并成功地解决了电子比热比经典值小等经典模型所无法解释的问题。

金属电子论

金属电子论

k
的取值范围? 的取值范围?
( )的解, 波函数 ψ (r ) 虽然是方程 2)的解,它还应满足边界条件
v
为方便,在处理晶体的问题时,通常取周期性边界条件 为方便,在处理晶体的问题时,通常取周期性边界条件 v ψ (r ) 满足: 即要求 满足:
ψ ( x + L, y , z ) = ψ ( x , y , z ) ψ ( x , y + L, z ) = ψ ( x , y , z ) ψ ( x , y , z + L ) = ψ ( x, y , z )
这样( ) 这样(3)和(4)就可以具体写为: )就可以具体写为:
v v v v k = k x ex + k y e y + k z ez
1 i ( k x x x + k y y y + k z z ) (5) v ψ (r ) = 1 / 2 e V 2 2 2 2 2 2 h (k x + k y + k z ) h k E= = (6) 2m 2m
§5.1金属自由电子模型 金属自由电子模型
由于不考虑带正电的离子对电子的库仑吸引作用, 由于不考虑带正电的离子对电子的库仑吸引作用,但 整块金属是点中性的,即正负电荷总量相等, 整块金属是点中性的,即正负电荷总量相等,虽然相 互间又没有作用,但正电荷毕竟存在, 互间又没有作用,但正电荷毕竟存在, 可以把正电荷看成是一种均匀的连续电荷分布, 可以把正电荷看成是一种均匀的连续电荷分布,以保持总 体的电中性, 体的电中性,相互独立的电子是在均匀分布的正电荷背景 中运动。因为正电荷均匀分布的, 中运动。因为正电荷均匀分布的,对电子产生的静电场是 常数, 常数,即电子无论在晶体中的哪个位置所感受到的正电荷 产生的势场作用都相同,不会受到力的作用。 产生的势场作用都相同,不会受到力的作用。 这样,自由电子气模型可以进一步表述为: 这样,自由电子气模型可以进一步表述为:是一种均匀 分布的正电荷背景中自由运动的电子气。可以形象地称 分布的正电荷背景中自由运动的电子气。 凝胶模型,正电荷背景相当于一种凝胶, 为凝胶模型,正电荷背景相当于一种凝胶,电子是在凝 胶介质中自由运动。 胶介质中自由运动。

金属导电的微观解释

金属导电的微观解释

金属导电的微观解释涉及到金属的电子结构和电子运动。

金属的导电性质主要归因于其特殊的电子排布和电子运动方式。

1. 自由电子模型:金属的电子结构可以通过自由电子模型来描述。

在金属晶格中,金属原子的外层电子几乎是自由移动的,形成了被称为“电子海”的电子云。

这些自由电子不受特定原子核束缚,可以在整个金属结构中自由移动。

2. 电子的漂移:当外部电场施加在金属上时,自由电子将受到电场的作用力。

根据牛顿的第二定律,受力的电子将产生加速度。

然而,由于金属中电子的质量非常小,所以在实际情况下,电子受到的阻尼较小,加速度较大。

3. 电子的碰撞:自由电子在金属晶格中会与金属离子和其他自由电子发生碰撞。

这些碰撞会导致电子的散射,但由于电子海中有大量自由电子,导致整体上电流的流动方向保持不变。

4. 导电性的来源:由于自由电子的高度流动性,它们可以在电场作用下形成电流。

这就是金属的导电性质的基本来源。

而金属晶格中的离子网络对电子的碰撞提供了一些阻力,但这种阻力相对较小,不会阻止电流的形成。

综合来看,金属导电的微观解释可以概括为:在金属中,存在大量自由移动的电子,它们受到外部电场的作用,形成电流,而金属晶格中的离子提供了一些散射阻力,但整体上电子仍能在金属中自由传导,从而表现出良好的导电性。

固体物理学 自由电子论

固体物理学 自由电子论
自由电子费米气体 (金属自由电子论)
§1. 金属自由电子论的物理模型 1.Drude的金属自由电子论
Drude的经典理论将自由电子看 作是经典离子气体,服从波尔兹曼分 布(速度分布),与中性稀薄气体一样 去处理,认为电子之间无相互作用, 同时也不考虑原子实势场的作用,这 样一个简单的物理模型处理金属的许 多动力学问题是很成功的。
f ( T )D( )d N
0
当T《 TF时:
u
F
[1
2
12
(
kBT
F
)2
]
0(kB
T
F
)4
与处理点阵振动的热能相仿,由
电子气的轨道密度D(ε)可求出电子气
的内能,轨道密度定义为:
在能量ε附近,单位能量间隔中
的轨道数定义为轨道密度度,在dε能
量间隔中的轨道数为D(ε)dε,色散
关系为:
2 k 2
k2
2 2m
(k2x
k
2 y
kz2 )
这就是色散关系,能量随波矢的变化是抛物
线函数。
对于一个三维晶体,需要的量子数为:
(1)波矢k(三个分量kx、ky、kz)
(2)自旋量子数
ms
1 2
给定了 k 就确定了能级,k 代表同能级上
自旋相反的一对电子轨道。
在波矢空间自由电子的等能面是一个球面
εk
2 2m
此时 k(r) eikr (省去了归一化常数), 波矢 Kx.K y.KZ 取一系列分立值:
kx
2π L
nx
ky
2π L
ny
0. 1. 2......
kz
2π L
nz
将 (r) eikr ei(k xxk y yk zz) k 代回薛定锷方程可求出能级:

固体物理讲义第六章

固体物理讲义第六章

第六章金属电子论主要内容:金属自由电子气的量子理论●电子气的能量状态●费米-狄拉克统计●电子气的热容量●金属电导率、功函数、热电子发射金属电导和热导的宏观规律●欧姆定律(1821年):●维德曼-弗兰茨定律(1853年)在不太低的温度下,金属的热导率和电导率的之比正比于温度,其比例常数的值不依赖于具体的金属(该常数称为洛伦茨常数)6.1自由电子气的量子理论金属由两部分构成:●位于晶格的离子实(ion core,由原子核和内层电子构成,在形成晶体时,离子实的变化可以忽略)●价电子(valence electron),价电子游历于固定的离子实周围,弥散于金属内部的全部空间,构成自由电子气(electron gas)自由电子气模型的基本假定:①独立电子假设:忽略电子与电子之间的库仑排斥相互作用。

②自由电子假设:忽略电子和离子之间库仑吸引相互作用。

③金属中传导电子是服从量子力学规律费米子,其能态由薛定谔方程决定。

电子在每个能态上的分布由费米-狄拉克统计决定。

一、电子气的能量状态索末菲提出,金属中传导电子能量状态(称为单电子的本征态),可以从在一定深度的势阱中运动的粒子的能态估算。

为了计算方便,通常设势径的深度是无限的(即金属外电子的势能为无穷大)E jσ=几个定性的结论●在T=0K时,k空间费米球中的量子态全部被电子占满,费米球外的量子态是空态。

●当温度T>0K时,由于热激发,费米面附近的电子可能跃迁到费米球以上的空态。

●只有费米面附件的电子才能导电和导热,●决定金属许多性质只是在费米面附近的那一小部分电子。

(在绝对零度时,波矢空间费米球中的量子态全部被电子占满,费米球外的量子态全部是空态。

由于泡利原理和没有激发能量,所有电子都被限制在费米面以下,有时形象地描述为电子被冻结在费米海中。

费米球深处的电子由于泡利原理的限制,如果没有足够的能量是不可能跃迁到费米球以上的。

或者说参与导电和导热的电子,其能量约等于费米能量,速度约等于费米速度。

金属自由电子理论

金属自由电子理论

金属自由电子理论Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】第四章金属自由电子理论1.金属自由电子论作了哪些假设得到了哪些结果解:金属自由论假设金属中的价电子在一个平均势场中彼此独立,如同理想气体中的粒子一样是“自由”的,每个电子的运动由薛定谔方程来描述;电子满足泡利不相容原理,因此,电子不服从经典统计而服从量子的费米-狄拉克统计。

根据这个理论,不仅导出了魏德曼-佛兰兹定律,而且而得出电子气对晶体比热容的贡献是很小的。

2.金属自由电子论在k空间的等能面和费米面是何形状费米能量与哪些因素有关解:金属自由电子论在k空间的等能面和费米面都是球形。

费米能量与电子密度和温度有关。

3.在低温度下电子比热容比经典理论给出的结果小得多,为什么解:因为在低温时,大多数电子的能量远低于费米能,由于受泡利原理的限制基本上不能参与热激发,而只有在费米面附近的电子才能被激发从而对比热容有贡献。

4.驰豫时间的物理意义是什么它与哪些因素有关解:驰豫时间的物理意义是指电子在两次碰撞之间的平均自由时间,它的引入是用来描写晶格对电子漂移运动的阻碍能力的。

驰豫时间的大小与温度、电子质量、电子浓度、电子所带电量及金属的电导率有关。

5.当2块金属接触时,为什么会产生接触电势差解:由于2块金属中的电子气系统的费米能级高低不同而使热电子发射的逸出功不同,所以这2块金属接触时,会产生接触电势差。

6.已知一维金属晶体共含有N 个电子,晶体的长度为L ,设0=T K 。

试求:(1)电子的状态密度;(2)电子的费米能级;(3)晶体电子的平均能量。

解:(1)该一维金属晶体的电子状态密度为:dE dk dk dZ dE dZ E ⋅==)(ρ …………………………(1) 考虑在k 空间中,在半径为k 和dk k +的两线段之间所含的状态数为:dk L dk dZ π=∆=k 2 (2)又由于 mk E 222 = 所以 mk dk dE 2 = (3)将(2)和(3)式代入(1)式,并考虑到每个状态可容纳2个自旋相反的电子,得该一维金属晶体中自由电子的状态密度为:Em LE 22)( πρ= …………………………(4) (2)由于电子是费米子,服从费米—狄拉克统计,即在平衡时,能量为E 的能级被电子占据的几率为: 11)(+=-T K E E B Fe E f (5)于是,系统中的电子总数可表示为:⎰∞=0)()(dE E E f N ρ (6)由于0=T K ,所以当0F E E >,有0)(=E f ,而当0F E E ≤,有1)(=E f ,故(6)式可简化为:⎰=00)(FE dE E N ρ =⎰0022FE dE E m L π=240F mE L π 由此可得: 222208mL N E Fπ= …………………………(7) (3)在0=T K 时,晶体电子的平均能量为: ⎰∞=00)()(1dE E E Ef N E ρ=dE Em L E N FE 22100⎰⋅ π=230)(232F E m N L π=022223124F E mL N = π 7.限制在边长为L 的正方形中的N 个自由电子,电子的能量为)(2),(222y x y x k k mk k E += 。

金属自由电子气模型

金属自由电子气模型
这里涉及dt的二次项,是个二阶小量,可以略去。
(1.2.2)式在一级近似下为
p(t
dt)
p(t)
F (t)dt
P(t)
dt
(1.2.3)
更简练的形式为
dp(t)
F (t )
P(t)
dt
(1.2.4)
引入外场作用下电子的漂移速度(Drift velocity)d
m
d d
(t)
F (t)
• 作为研究金属特性的Drude模型在1900年提出,现在仍 然被用来迅速了解金属及其它一些材料的特性。这个 模型后来经过稍许修改就取得了巨大成功。
1. Drude模型
1)传导电子和芯电子
Na: K L M 1s 2s2p 3s 281
Na 蒸汽 3s 轨道半径 0.19 nm Na 固体 最近邻原子间距 0.365 nm
传导电子密度 n:单位体积的传导电子数
原子数/mole: N0 = 6.022 ∙ 1023,Avogadro常数 mole数/cm3: ρm/A, 其中 m是金属的质量密度(g/cm3),A 是元素的原子量
n
N0
Zm
A
6.022 1023
Zm
A
Z是每个原子贡献的价电子(传导电子)数目
对于金属,n的典型值为1022-1023/cm3。这个值要比理想 气体的密度高上千倍3源自0.22rs a0
1014 sec .
(1.2.10)
其a0为中玻,尔为半金径属。电阻率,rs为一个所占据体积的等效球半径,
金属Cu的室温电阻率ρ=1.56∙10-6Ohm-cm, τ=2.7 ∙10-14 sec
3)金属中电子的平均自由程
l = v0τ ; 而 mv02/2 =3kBT/2

高中化学金属晶体与离子晶体

高中化学金属晶体与离子晶体

物质结构与性质金属晶体与离子晶体一、金属共同的物理性质容易导电、导热、有延展性、有金属光泽等二、金属的结构1.“电子气理论”(自由电子理论)金属原子脱落来的价电子形成遍布整个晶体的“电子气”,被所有原子所共用,从而把所有的原子维系在一起。

2.金属键:这种金属原子间由于电子气产生的作用(在金属晶体中,金属阳离子和自由电子之间的较强的相互作用)。

3、金属晶体:通过金属键作用形成的单质晶体金属键强弱判断:阳离子所带电荷多、半径小-金属键强,熔沸点高。

三、金属晶体的结构与金属性质的内在联系金属为什么易导电?在金属晶体中,存在着许多自由电子,这些自由电子的运动是没有一定方向的,但在外加电场的条件下自由电子就会发生定向运动,因而形成电流,所以金属容易导电。

金属为什么易导热?金属容易导热,是由于自由电子运动时与金属离子碰撞把能量从温度高的部分传到温度低的部分,从而使整块金属达到相同的温度。

金属为什么具有较好的延展性?金属晶体中由于金属离子与自由电子间的相互作用没有方向性,各原子层之间发生相对滑动以后,仍可保持这种相互作用,因而即使在外力作用下,发生形变也不易断裂。

1、金属晶体的形成是因为晶体中存在A.金属离子间的相互作用B .金属原子间的相互作用C.金属离子与自由电子间的相互作用D.金属原子与自由电子间的相互作用2.金属能导电的原因是A.金属晶体中金属阳离子与自由电子间的相互作用较弱B .金属晶体中的自由电子在外加电场作用下可发生定向移动C .金属晶体中的金属阳离子在外加电场作用下可发生定向移动D .金属晶体在外加电场作用下可失去电子3、下列叙述正确的是A.任何晶体中,若含有阳离子也一定含有阴离子B .原子晶体中只含有共价键C.离子晶体中只含有离子键,不含有共价键D .分子晶体中只存在分子间作用力,不含有其他化学键4、为什么碱金属单质的熔沸点从上到下逐渐降低,而卤素单质的熔沸点从上到下却升高?四、金属晶体的密堆积结构1.下列有关金属元素特征的叙述中正确的是A.金属元素的原子只有还原性,离子只有氧化性B.金属元素在化合物中一定显正价C.金属元素在不同化合物中的化合价均不同D.金属单质的熔点总是高于分子晶体2.关于ⅠA族和ⅡA族元素的下列说法中正确的是A.同一周期中,ⅠA族单质的熔点比ⅡA族的高B.浓度都是0.01mol·L-1时,氢氧化钾溶液的pH比氢氧化钡的小C.氧化钠的熔点比氧化镁的高D.加热时碳酸钠比碳酸镁易分解关于离子晶体1、离子键2、成键的微粒:3、成键的本质:4、成键的条件:5.常见的离子化合物1、活泼的金属元素(IA、IIA)和活泼的非金属元素(VIA、VIIA)形成的化合物。

金属自由电子气模型

金属自由电子气模型
2 2 2 = (k x k y ) 2m
求(1)电子态密度(考虑自旋); (2)该系统的费米能(只考虑温度为绝对 零度
北京工业大学 固体物理学
第二节 自由电子气的热性质
费米-狄拉克分布函数 T≠0K时,电子在本征态上的分布服从费 米-狄拉克分布
fi
1 e
( i )/ k BT
vF/108cm/s TF/104K
1.29 1.07 0.86 0.81 0.75 1.57 1.39 1.40 2.25 1.58 1.28 1.83 2.03 1.74 1.90 1.83 1.87 5.51 3.77 2.46 2.15 1.84 8.16 6.38 6.42 16.6 8.23 5.44 11.0 13.6 10.0 11.8 11.0 11.5
T=0 T1


北京工业大学 固体物理学
1、化学势随温度的变化 ① T≠0K,自由电子气单位体积的内能
2 u ( k ) f g( ) f ( )d k 0 V k
② T≠0K,分布函数中的化学势可由电子数 密度算出
2 n V

k
fk g( ) f ( )d 0
北京工业大学 固体物理学
代入
f f I Q( ) ( )d Q( ) ( )( )d 1 f 2 Q( ) ( ) ( )d 2



(**)
(**)第一项积分项等于1 (**)第二项
1 ik (r ) e r V
电子的本征能量:
将波函数代入薛定谔方程,得
k (k ) 2m
2
2

05 金属自由电子气体模型

05 金属自由电子气体模型

ε mol
=
N
A
⎜⎛ ⎝
3 2
k
BT
⎞⎟ ⎠
=
3 RT 2
一价金属:CVe ,mol
=
∂ε mol ∂T
=
3R 2
高温时金属的总比热容:
CV
=
C Ph V ,mol
+ CVe ,mol
= 3R + 3 R ≈ 37.40J / mol ⋅ K 2
实际
Ce V,mol
小于经典值
量子:
CVe
~
T TF
常温下:电子的贡献比例很小
kx
=
2π L
nx
ky
=
2π L
ny
kz
=
2π L
nz
nx , ny , nz--一组整数
自由电子的能量是不连续的,相邻能级相距很近. 5 kv空间与态密度 (k-space) 电 的子 端的 点状 代态 表由 一波 个矢可确 能定 的。kv 在 值。kv空相间邻中 代, 表每 点一 在波 三矢 维坐kv
vy
=

eτ m
Ey
+
ωcτv x
ωc
=
eB m
--回旋频率
vz
=

eτ m
Ez
30
5
Jv = −nevv σ = ne2τ m
σ 0 E x = J x + ωcτJ y σ 0 E y = −ωcτJ x + J y
4.4 霍尔效应和磁阻
长方体样品, 沿x轴施加外电场Ex, 存在电流Jx, 在z轴 加磁场B后, 产生洛仑兹力在负y方向作用到电子上.
+1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属自由电子气理论
特鲁德电子气模型:特鲁德提出了第一个固体微观理论利用微观概念计算宏观实验观测量
自由电子气+波尔兹曼统计→欧姆定律 电子平均自由程+分子运动论→电子的热导率
特鲁德(Paul Drude )模型的基本假设1
1.自由电子近似:传导电子由原子的价电子提供,离子实对电子的作用可以忽略不计,离子实的作用维持整个金属晶体的电中性,与电子发生碰撞。

2.独立电子近似:电子与电子之间的相互作用可以忽略不计。

外电场为零时,忽略电子之间的碰撞,两次碰撞(与离子实碰撞)之间电子自由飞行(与经典气体模型不同,电子之间没有碰撞,电子只与离子实发生碰撞,这一点我们将在能带论中证明是错误的。


特鲁德(Paul Drude )模型的基本假设2
3.玻尔兹曼统计:自由电子服从玻尔兹曼统计。

4.弛豫时间近似:电子在单位时间内碰撞一次的几率为1/τ,τ称为弛豫时间(即平均自由时间)。

每次碰撞时,电子失去它在电场作用下获得的能量,即电子和周围环境达到热平衡仅仅是通过与原子实的碰撞实现的。

特鲁德模型的成功之处——成功解释了欧姆定律
欧姆定律E j ρ=(或j E σ=),其中E 为外加电场强度、ρ为电阻率、j 为电流密度。

202()1I j nev ne S j E eEt m v v E j m ne eE m v m τρτστρ⎧==-⎪⎧=⎪⎪-⎪⎪
=+⇒⇒=⎨⎨⎪⎪==⎪⎪⎩=-⎪⎩
2.经典模型的另一困难:传导电子的热容
根据理想气体模型,一个自由粒子的平均热量为3/2B k T ,故
333
(),222
A B e U U N k T RT C R T ∂====∂
33/29v ph e C C C R R =+=+≈(卡/molK.)
但金属在高温时实验值只有6(卡/molK.),即3v C R ≈。

4.2 Sommerfeld 的自由电子论
1925年:泡利不相容原理 1926年:费米—狄拉克量子统计 1927年:索末菲半经典电子论
抛弃了特鲁德模型中的玻尔兹曼统计,认为电子气服从费米—狄拉克量子统计得出了费米能级,费米面等重要概念,并成功地解决了电子比热比经典值小等经典模型所无法解释的问题。

量子力学的索末菲模型
1、独立电子近似:所有离子实提供正电背景,忽略电子与电子之间的相互作用。

2、自由电子近似:电子与原子实之间的相互作用也被忽略。

3、采用费米统计以代替玻尔兹曼统计。

传导电子的索末菲模型
一、自由电子模型
电子在一有限深度的方势阱中运动,电子间,电子与原子实之间的相互作用忽略不计
电子按能量的分布遵从Fermi —Dirac 统计 电子的填充满足Pauli 不相容原理 电子在运动中存在一定的散射机制
V=0,薛定谔方程(不考虑自旋)为:【为什么不考虑势阱影响?】
2
2()()2r E r m
ψψ-
∇=
作行波试探解:()ik r
k r ψ⋅=
对应的能量本征值:2
2
()2k E k m
=
K 与未知无关的矢量。

已作归一化处理:2
1|()|V
r dr ψ=⎰
引入周期性边界条件:【为什么用周期性边界条件?】
(,,)(,,)(,,)(,,)(,,)(,,)x L y z x y z x y L z x y z x y z L x y z ψψψψψψ+=⎧⎪+=⎨⎪+=⎩1
23222x y
z
k n L k n L k n L πππ⎧
=⎪⎪

⇒=⎨⎪

=⎪⎩
可见,状态是分立的,(不考虑自旋),在k 空间中每一分立的点代表一个状态。

每个状态在k 空间所占体积为3(2/)L π。

波矢空间
以波矢k 的三个分量x k 、y k 、z k 为坐标轴的空间称为波矢空间或
k 空间。

金属中自由电子波矢:12x k n L π=
,22y k n L π=,32z k n L
π= (1)在波矢空间每个(波矢)状态代表点占有的体积为:3
2L π⎛⎫
⎪⎝⎭
(2)波矢空间状态密度(单位体积中的状态代表点数):3
2L π⎛⎫
⎪⎝⎭
(3)~k k dk +体积单元dk 中的(波矢)状态数为:3
3
02L dZ d k π⎛⎫= ⎪⎝⎭ (4)~k k dk +体积单元dk 中的(波矢)状态数为:3022L dZ π⎛⎫= ⎪⎝⎭
K 空间状态数
对半径为k ,各向同性的波矢分布,被电子占据的状态数为:
3
3324386V Vk k πππ
⋅= 再考虑自旋:3/2
3222233Vk V mE N ππ⎛⎫
== ⎪⎝⎭
对于~k k dk +球壳内电子占据的态数为:2
2
32248V Vk k dk dk πππ
⋅⋅=
费米球和费米面
费米面:在绝对零度下,k 空间中被电子占据与未被占据的分界
面。

以n~2210个/3cm ,代入得0
~5F E eV
基态,T=0K
用泡利不相容原理来处理多体问题 定义费米波矢:3
23F
V N k π
=
,21/321/3(3/)(3)F k N V n ππ== 定义费米能:2
220
22/3(3)22F
F
k E n m m
π=
=
能态密度:E~E+dE 之间单位能量间隔中的能态数 定义能态密度:单位能量的状态数()/N E dN dE = 对于能量低于E 的状态数有:
3/2
2223V mE N π⎛⎫= ⎪⎝⎭
态密度:3/2
1/22223()22dN V m N
N E E dE E
π⎛⎫==⋅⋅=

⎝⎭
电子的能态密度并不是均匀分布的,电子能量越高,能态密度就越大
粒子的平均能量
000
1
1
3()2F
F
E E N
E E N E dE E dE N N
E
=
⋅=



03/23/20
22
1
323()3235
F
E F V m E dE E eV N
π=
=≈⎰
如果把电子比作费米子的理想气体分子,则在绝对零度,电子基态的平均能量相当于T~23077K ,对应于平均速度为
263||110/~1/300B k T
v v m s ∴==
≈⨯光速 定义费米速度1226
F F e k v c m =
≈ 若采用Drude 模型所算出的14210τ-=⨯s ,电子平均自由程:
200F l v A τ=≈,月100个原子间距。

量子统计:Bose —Einstein 统计和Fermi —Dirac 统计 经典统计—Boltzmann 统计:()~exp B E f E k T ⎛⎫- ⎪⎝⎭
量子统计:
Bose —Einstein 统计:
()/1()1
B E k T
f E e
μ-=
-,其中μ是化学势,对光子、声子μ=0
Fermi —Dirac 统计:
()/1()1
B E k T
f E e
μ-=
+,T=0的化学势μ=费米能0
F E =5eV
T=0时,费米能2
202F F
k E m
=
,费米半径F k =,费米动量F F F P k mv ==
在E~E+dE 中的电子数为:()()dN f E N E dE =
系统的自由电子总数为:000
()()()F
E T N f E N E dE N E dE ∞
==−−
−→⎰⎰ 3/23/21/203/2
2223
2(2)()()23F
E F V m V m N E dE E ππ
==⎰
()
2/3
2
2
2/3
22
3322F N E n m V m
ππ⎛⎫==

⎝⎭
n ——自由电子浓度
定义Fermi 温度:0
F
F B
E T k =
物理意义:设想将0
F E 转换成热振动能,相当于多高温度下的振
动能。

金属:F T :4510~10。

相关文档
最新文档