传热学-第二章-稳态热传导
传热学(第二章)
(2-32)
热阻
R=
1 1 1 ( 4πλ r r2 1
(2-33)
由球坐标系一般形式的导热微分方程
1 T 1 T 1 T T (λr2 + 2 2 (λ ) + 2 (λ sin θ ) + Φ = ρcp r2 r r) r sin θ r sin θ θ θ τ
2 1
λ1
第二章
导热基本定律及稳态导热
2-3 通过平壁,圆筒壁,球壳和其他变截面物体的导热 通过平壁,圆筒壁,
1 T 1 T T T (λr + 2 (λ ) + (λ ) + Φ = ρcp τ r r r) r z z d dt 简化变为 dr (r dr ) = 0 (2-25)
⒉ 通过圆筒壁的导热 由导热微分方程式(2—12)
⒉ 通过圆筒壁的导热 根据热阻的定义,通过整个圆筒壁的导热热阻为 (2-29) 29) 与分析多层平壁—样,运用串联热阻叠加的原则,可得通过图2-9所示的多层圆筒壁的 导热热流量 2πl(t1 t4 ) Φ= (2-30) ln( d2 / d1) / λ1 + ln( d3 / d2 ) / λ2 + ln( d4 / d3) / λ3 ⒊ 通过球壳的导热 导热系数为常数,无内热源的空心球壁.内,外半径为r1,r2,其内外表面均匀 恒定温度为t1,t2,球壁内的温度仅沿半径变化,等温面是同心球面. 由傅立叶定律得: dt 各同心球面上的热流率q不相等,而热流量Φ相等. Φ = 4πr2λ dr dr Φ 2 = 4πλdt r
的热传导微分方程:
T(r,τ ) τ ρc 当 λ = const 时, 2T(r,τ ) + Φ = p T(r,τ ) λ λ τ [λT(r,τ )] + g(r,τ ) = ρcp
工程热力学与传热学第二章稳态热传导基本概念
2. 常温边界
系统边界温度恒定,即 (T = T_b)
3. 周期性边界
系统边界温度呈周期性变化, 即 (T(x, y, z, t) = T(x + L, y,
z, t))
求解方法
有限差分法
将导热微分方程转化为差 分方程,通过迭代求解温 度分布。
有限元法
将导热微分方程转化为变 分形式,利用有限元离散 化求解温度分布。
在稳态热传导过程中,导热系数和热 阻共同决定了物体内部温度分布的特 性。
当材料的导热系数越大,其对应的热 阻就越小,表示热量传递越容易;反 之,导热系数越小,热阻越大,热量 传递越困难。
04 稳态热传导的实例分析
一维稳态热传导
总结词
一维稳态热传导是热传导在单一方向上的情况,常见于细长物体或薄层材料。
三维稳态热传导
要点一
总结词
三维稳态热传导涉及三个方向的热量传递,常见于球体或 立方体。
要点二
详细描述
在三维稳态热传导中,热量在三个相互垂直的方向上传递 ,常见于球体或立方体等三维物体。三维稳态热传导的温 度分布在不同方向上都是稳定的,其数学模型比一维和二 维情况更为复杂,需要考虑三个方向的热量传递。三维稳 态热传导在解决实际问题时具有重要意义,如地球内部的 热量传递、建筑物的散热分析等。
稳态热传导的重要性
01
02
03
工程应用广泛
稳态热传导在许多工程领 域都有广泛应用,如建筑、 机械、航空航天等。
基础理论支撑
稳态热传导是传热学的基 础理论之一,对于理解更 复杂的传热过程和现象至 关重要。
节能减排
通过掌握稳态热传导规律, 有助于优化能源利用,实 现节能减排。
稳态热传导的应用场景
《传热学》第二章热传导
第二章热传导一、名词解释1.温度场:某一瞬间物体内各点温度分布的总称。
一般来说,它是空间坐标和时间坐标的函数。
2.等温面(线):由物体内温度相同的点所连成的面(或线)。
3.温度梯度:在等温面法线方向上最大温度变化率。
4.热导率:物性参数,热流密度矢量与温度降度的比值,数值上等于1 K/m的温度梯度作用下产生的热流密度。
热导率是材料固有的热物理性质,表示物质导热能力的大小。
5.导温系数:材料传播温度变化能力大小的指标。
6.稳态导热:物体中各点温度不随时间而改变的导热过程。
7.非稳态导热:物体中各点温度随时间而改变的导热过程。
8.傅里叶定律:在各向同性均质的导热物体中,通过某导热面积的热流密度正比于该导热面法向温度变化率。
9.保温(隔热)材料:λ≤0.12 W/(m·K)(平均温度不高于350℃时)的材料。
10.肋效率:肋片实际散热量与肋片最大可能散热量之比。
11.接触热阻:材料表面由于存在一定的粗糙度使相接触的表面之间存在间隙,给导热过程带来额外热阻。
12.定解条件(单值性条件):使微分方程获得适合某一特定问题解的附加条件,包括初始条件和边界条件。
二、填空题1.导热基本定律是_____定律,可表述为。
(傅立叶,)2.非稳态导热时,物体内的_____场和热流量随_____而变化。
(温度,时间)3.导温系数的表达式为_____,单位是_____,其物理意义为_____。
(a=λ/cρ,m2/s,材料传播温度变化能力的指标)4.肋效率的定义为_______。
(肋片实际散热量与肋片最大可能散热量之比。
)5.按照导热机理,水的气、液、固三种状态中_______态下的导热系数最小。
(气)6.一般,材料的导热系数与_____和_____有关。
(种类,温度)7.保温材料是指_____的材料.(λ≤0.12 W/(m·K)(平均温度不高于350℃时))8.已知材料的导热系数与温度的关系为λ=λ0(1+bt),当材料两侧壁温分别为t1、t2时,其平均导热系数可取下的导热系数。
传热学-学习课件-2-5 具有内热源的一维稳态导热
主讲老师:王舫 适用专业:能源与动力工程专业
传热学 Heat Transfer
第二章 稳态热传导
2-1 导热基本定律 2-2 导热问题的数学描写 2-3 典型一维稳态导热问题的分析解 2-4 通过肋片的导热 2-5 具有内热源的一维导热问题 2-6 多维稳态导热的求解
三、通过含内热源实心圆柱体的导热
①数学描写
一维,稳态,有均匀内热源,导热系数λ为 常数,外侧为第一类边界
②求解
1 r
d dr
r
dt dr
Φ
0;
r 0, dt 0; dr
r rw , t tw
t
Φ
r
rw
传热学 Heat Transfer
2
tw
d 2t dx2
Φ
/
0
x 0, dt 0 dx
x , t tw
例 题2-9
传热学 Heat Transfer
已知:
1 14 mm
2 6 mm &=1.5 107 W/m3
1 35 W m K 2 100 W m K
h 3 500 W m2 K tf 150 ℃
利用两个边界得出圆柱体内的温度分为:
Φ
t tw 4
rw2 r 2
由傅里叶定律可得出壁面处的热流量:
r
2 w
l
Φ
由能量守恒法则,可直接得到上式。
t1 r
rw
传热学 Heat Transfer
Thanks
传热学 Heat Transfer
传热学课件第 二 章 稳 态 热传导
d2t d x2
m 2 t t f
1
通过肋壁的导热
一、等截面直肋的导热
4.求解:
4>.引入过余温度:<1>式变为 <4> 5>.解微分方程得温度场 <4>式为一个二阶线性齐次常微分方程,它的通解为: =C1emx+C2e-mx <5> 将边界条件<2>、<3>代入<5>即得肋片沿H方向的温度分布:
通过圆筒壁的导热
一、已知第一类边界条件
据傳里叶定律并整理后可得热流量的表达式: 1 ln d2 2l d1 式中的分母即为长度为l的圆筒壁的导热热阻。 单位为:℃/W 实际工程多采用单位管长的热流量ql来计算热流量:
t w1 t w 2
ql
Q l
t w1 t w 2
d ln d2 2 1 1
通过平壁的导热
二、已知第三类边界条件:
q
q
t f 1 t f 2
1 1 h1 h2
也可写作:q=k(tf1-tf2) (请牢记K的物理意义!) 对于冷热流体通过多层平壁的导热,可写作:
t f 1 t f 2
1 h1
i 1
n
i 1 i h2
若已知传热面积A,则热流量为:
e m x H e m x H 0 e mH e mH
d 2 m 2 d x2
or :
0
或写作:
0
ch mx H ch mH
expmx H exp mx H expmH exp mH
1
h21d x 0
传热学
华北电力大学
传热学 Heat Transfer
2、温度梯度
• 定义:沿等温面法线方向上的温度增量与法向 距离比值的极限。温度梯度表示为:
t t grad t n lim n n 0 n n
式中,n
是等温面法线方向上的单位矢量。
华北电力大学
传热学 Heat Transfer
华北电力大学
传热学 Heat Transfer
沿x 轴方向导入与导出微元体净热量
Φx Φx dx
同理可得:
t dxdydz x x
沿 y 轴方向导入与导出微元体净热量
Φy Φy dy
t dxdydz y y
t ( ) Φ 0 x x
华北电力大学
传热学 Heat Transfer
三、其它坐标系中的导热微分方程式
1. 圆柱坐标系(r, , z)
x r cos ; y r sin ; z z
t 1 t 1 t t c (r ) 2 ( ) ( ) r r r r z z
(3)微元体内热源生成的热量
ΦV Φdxdydz
5. 导热微分方程的基本形式
t t t t c ( ) ( ) ( ) Φ x x y y z z
非稳态项
华北电力大学
三个坐标方向净导入的热量
内热源项
传热学 Heat Transfer
传热学 Heat Transfer
利用两个边界条件
t
x 0, t t1 x , t t2
c2 t1 t 2 t1 c1
t1 t 2
传热学 第2章 稳态导热
t t t t c Φ x x y y z z
3、常物性且稳态:
2t 2t 2t Φ a 2 2 2 0 x y z c
如果边界面上的热流密度保持为常数,则 q | w 常数 当边界上的热流密度为零时,称为绝热边界条件
t t qw 0 0 n w n w
18
(3)第三类边界条件 给出了物体在边界上与和它直接接触的流体之 间的换热状况。 根据能量守恒,有:
返回
2.1.1 各类物体的导热机理
气体:气体分子不规则热运动时相互碰撞的结果,高温的气体分子运 动的动能更大 固体:自由电子和晶格振动 对于导电固体,自由电子的运动在导热中起着重要的作用,电的良导 体也是热的良导体 对于非导电固体,导热是通过晶格结构的振动,即原子、分子在其平 衡位置附近的振动来实现的
返回
2.2.2 定解条件
导热微分方程式是能量守恒定律在导热过程中的应用,是一切导热 过程的共性,是通用表达式。 完整数学描述:导热微分方程 + 定解条件 定解条件包括初始条件和边界条件两大类,稳态问题无初始条件 初始条件:初始时刻的状态表示为: =0,t =f (x,y,z)
边界条件: 给出了物体在边界上与外界环境之间在换热上的联系或相互作用
2、推导基本方法:傅里叶定律 + 能量守恒定律 在导热体中取一微元体
进入微元体的总能量+微元体内热源产生的能量-离开微元体的总能量= 微元体内储存能的增加
11
Ein Eg Eout Es
d 时间段内:
Ein Φx Φy Φz d Eiout Φxdx Φy dy Φz dz d
传热学第2章-1
t f (x, y, z, )
2. 等温线,等温面
1) 定义:同一瞬间温度相等的各点连成的线或面称为 等温线(Isotherm)或等温面(Isothermal surface)。
5/41
2)特点:
传热学 Heat Transfer 第5版
(1)等温线(面)不能相交(同一点不可能有两个温度);
(1768-1830)
9/41
传热学 Heat Transfer 第5版
1. 导热基本定律的文字表达
在导热现象中,单位时间内通过给定截面的热量, 正比于垂直于该截面方向上的温度变化率和截面面 积,方向与温度梯度相反。
2. 导热基本定律的数学表达
q gradt t n
A
Φ
c
a c
称为热扩散率(Thermal diffusivity)
或导温系数,单位:m2/s,是物性参数;
2.λ=constant 并且t x 2
2t y 2
2t z 2
)
a2t
Laplace算子
28/41
传热学 Heat Transfer 第5版
4/41
传热学 Heat Transfer 第5版
按温度场随空间与时间的变化特性,可以区分为:
稳态温度场 t f (x, y, z) 非稳态温度场
t f (x, y, z, )
一维温度场 二维温度场 三维温度场
t f (x)
t f (x, )
t f (x, y)
t f (x, y, )
传热学 Heat Transfer 第5版
代入能量平衡式, (1)+(2)=(3) 得导热微分方程的基本形式
传热学第二章稳态热传导
h h
t f t f ( )
五、 热扩散系数 (thermal diffusivity)
a
物体导热能力 c 物体蓄热能力
从导热方程看:
a
t
温度变化快 扯平能力强
故,a 是评价温度变化速度的一个指标
2.3 通过平壁及圆筒壁的一维稳态导热
一、通过单层平壁的导热
0 , 则 2. Φ
t a 2 t
2
3. 稳态:
Φ a t 0 c
,则
0 4. 稳态且 Φ
t 0
2
三、其它正交坐标
1、柱坐标: (cylinder coordinate)
x r cos ; y r sin ; z z
2 t 1 t 1 2 t 2 t t a 2 2 2 2 r r r z c r
p
各类物质导热系数的范围
导热机理
气体:分子热运动 t
金属 非金属
固体:自由电子和晶格振动
t 晶格振动 阻碍自由电子运动
液体的导热机理不清
固体> 液体 > 气 ; 取决于物质的种类和温度
热绝缘(保温)材料 insulation material:<0.2W/(mK) (50
(2)固体的热导率
(a) 金属的热导率
金属 12~418W (m K)
纯金属的导热:依靠自由电子的迁移和晶格振动; 金属导热与导电机理一致,良导体也是良导热体。
银 铜 金 铝
T
10K:Cu 12000 W (m K) 15K : Cu 7000 W (m K)
传热学
2.气体辐射对波长有选择性。
3.气体辐射在整个容器内进行
七、固体表面的换热情况 1. 固体表面与固体相接触——单纯导热。
2. 固体表面与液体相接触——对流换热。
2. 固体表面与气体相接触——复合换热。
第九章
传热过程与换热器
一、传热过程 ——热流体通过固体壁面将热量传递 给冷流体。 1.平壁
i 1 1 h1 λi h2 i t f1 t f 2 Φ do 1 1 1 ln hi d i l 2l di hod o l
W
四、影响对流换热的因素
1.流动原因——强迫对流、自然对流。
2.流动状态——层流、紊流。
3.流体物性——、、、、v 、Cp等。 4.流体相变——凝结、沸腾。 5.壁面形状
五、四个准则数
ul ul 惯性力 1)雷诺数 Re 粘性力
2)普朗特数
Pr a c p 动量扩散率 c p 热量扩散率
K fi
1 1 1 hi h0 0
A0 肋化系数 Ai
; 肋壁效率 0 查表。
*加装肋片的目的和注意事项
二、换热器 1.对数平均温差
t ' t" 顺流、逆流: t m t ' ln t "
叉流、复杂流: t m t m逆 温差修正系数 f P、R t 2 "t 2 ' t1 't1 " P ;R t1 't 2 ' t 2 "t 2 '
第五章
对流换热
一、热对流与对流换热的定义与机理 二、速度边界层和热边界层
1.速度边界层——从速度为零的壁面到速度达 到主流速度的99%的流体薄层。 2.热边界层——从壁面过余温度(t-tw)为零, 到流体过余温度为来流过余温度的99 % 的 流体薄层 3.
传热学-第2章稳态热传导-习题课
12. 图中所示为纯铝制作的圆锥形截面。其圆形截面
直径为D=ax1/2,其中a=0.5m1/2。小端位于
x1=25mm处,大端位于x2=125mm处,端部温度 分别为T1=600K和T2=400K,周侧面隔热良好。 (1)作一维假定,推导用符号形式
表示的温度分布T(x)的表示式,
画出温度分布的示意图。 (2)计算传热热流量Q。
习题课 一维稳态导热 — 肋片
14. 采用套管式热电偶温度计测量管道内的蒸汽温度,
套管长H=6cm,直径为1.5cm,壁厚为2mm,
导热系数为40W/(m.K),温度计读数为240℃。
若套管根部温度为100℃,
V
蒸汽与套管壁的换热系数
为140W/(m2.K)。
如果仅考虑套管的导热,
t0
试求管道内蒸汽的真实温度。
习题课 一维稳态导热 — 圆筒壁
9. 蒸汽管道的外直径d1=30mm,准备包两层厚度都是 15mm的不同材料的热绝缘层。a种材料的导热系数 λa=0.04W/(m.K),b种材料的导热系数 λb=0.1W/(m.K)。 若温差一定,试问从减少热损失的观点看下列两种方案: (1)a在里层,b在外层; (2)b在里层,a在外层;哪一种好,为什么?
习题课傅立叶定律和导热微分方程应用如图所示的墙壁其导热系数为50wmk厚度为50mm在稳态情况下墙壁内一维温度分布为t2002000x1墙壁两侧表面的热流密度
传热学
第 2 章 稳态热传导 习题课
习题课 傅立叶定律和导热微分方程应用
1. 如图所示的墙壁,其导热系数为50W/(m.K),
厚度为50mm,在稳态情况下墙壁内一维温度
习题课 变导热系数和变截面稳态导热
10. 某炉壁由厚度为250mm的耐火粘土制品层和 厚500mm的红砖层组成。内壁温度为1000℃, 外壁温度为50℃。耐火粘土的导热系数为
传热学-第2章稳态热传导-习题课
保温材料的应用范围广泛,不 仅可以用于民用建筑,还可用 于工业和商业建筑等领域。
电子元件散热方案
随着电子技术的不断发展,电子元件的功率密度越来越高,散热问题越 来越突出。
电子元件的散热方案包括自然散热、强制风冷、液冷等,需要根据电子 元件的发热量、使用环境和可靠性要求等因素选择合适的散热方案。
良好的散热方案能够有效地降低电子元件的工作温度,提高其稳定性和 寿命。
稳态热传导通常发生在物体内部,当 热量传递速率与热量生成速率相平衡 时,物体内部温度分布达到稳定状态 。
稳态热传导的物理模型
01
稳态热传导的物理模型通常采用 一维导热模型,即温度随空间坐 标的变化而变化,忽略时间因素 对温度分布的影响。
02
在一维导热模型中,温度分布可 以用一维偏微分方程来描述,该 方程基于傅里叶导热定律和能量 守恒原理。
02
解析
首先,我们需要计算平壁的传热量,然后根据传热量和平壁的热导率计
算平壁的温度变化。由于平壁是稳态热传导,所以温度分布是线性的。
03
答案
平壁的另一面的温度升高了20℃。
习题二解析
题目
一圆筒壁,内径为1m,长度为2m,加热功率为50W,材料的热导率为0.02W/m·℃,求圆 筒壁的另一面的温度升高了多少?
常见问题解答
问题2
如何求解一维稳态热传导问题?
解答
一维稳态热传导问题可以通过分离变量法求解。首先将温度表示为x的函数,然后根据傅里叶定律和 边界条件建立方程,最后求解方程得到温度分布。在求解过程中,需要注意初始条件和边界条件的处 理。
下节课预告
重点内容
非稳态热传导的基本概念、扩散 方程的建立和求解、初始条件和 边界条件的处理。
传热学考研题库【章节题库】(稳态热传导)【圣才出品】
四、简答题 1.何谓肋片效率?采用加装肋片来强化换热,对肋片的选材、肋片的形状和肋片效率 有何要求? 答:肋片效率是指肋片的实际散热量与假设整个肋片温度都与肋根温度相同时的理想散 热量之比。肋片效率的主要影响因素有: (1)肋片材料的热导率:热导率愈大,肋片效率愈高; (2)肋片高度:肋片愈高,肋片效率愈低;
12.扩展表面中的导热问题可以按一维问题处理的条件是什么?有人认为只要扩展表面 细长,就可按一维问题处理,你同意这种观点吗?
答:(1)扩展表面中的导热问题可以按一维问题处理的条件是扩展表面细长,且导热 系数大。
(2)不同意,表面传热系数相对较小的条件下( hd 0.01 )才可以按一维问题来处
2 / 49
圣才电子书 十万种考研考证电子书、题库视频学习平台
(3)肋片厚度:肋片愈厚,肋片效率愈高; 表面传热系数:出傅里叶导热定律表达式,并说明式中各量和符号的物理意义。
答: q gradt t n 。其中 q 是热流密度矢量; 是导热系数,它表示物质导 n
答:两平壁内的温度分布相同。因为对于常物性、无内热源的无限大平壁的稳态导热, 第一类边界条件下其温度分布仅取决于边界温度,而与材料的导热系数无关。
4.冬天阳光照射的中午晒棉被,试从传热的角度解释晚上睡觉时还会暖和的原因。 答:晚上睡觉时还会暖和的原因:棉被经日晒变得蓬松,空气进入到棉被中,而空气的 导热系数较小,相当于增加了导热热阻,因而睡觉时还觉得暖和。
9.一维无限大平壁的导热问题,两侧给定的均为第二类边界条件,能否求出其温度分
4 / 49
圣才电子书
布?为什么?
十万种考研考证电子书、题库视频学习平台
答:(1)一维无限大平壁的导热问题,两侧给定的均为第二类边界条件,不能求出其
传热学-第2章
在导热体中取一微元体 热力学第一定律:
Q U W
W 0, Q U
d 时间内微元体中: [导入与导出净热量]+ [内热源发热量] = [热力学能的增加]
1、导入与导出微元体的净热量 d 时间内、沿 x 轴方向、经 x 表面导入的热量:
dQx qx dydz d
t t1
n i
x
i 1
t tn1
t1 t2 t3 t4
热阻:
r1
1 , , rn n 1 n
第二章 稳态热传导
三层平壁的稳态导热
30
q
t1 t n 1
由热阻分析法:
ri
i 1
n
t1 t n 1
i i 1 i
n
问:现在已经知道了q,如何计算其中第 i 层的右侧壁温?
第一章复习
(1) 导热
傅里叶定律:
(2) 对流换热 牛顿冷却公式: (3) 热辐射
斯忒藩-玻耳兹曼定律 :
dt Φ A dx
Aht
A T 4
(4) 传热过程
(t f 1 t f 2 ) (t f 1 t f 2 ) Φ 1 1 Rh1 R Rh 2 Ah1 A Ah2
多层、第三类边条
tf1
q
tf1 tf 2 1 n i 1 h1 i 1 i h2
h1 t2 t3
h2 tf2
W 单位: 2 m
传热系数? tf1
?
t1 t2 t3 t2
? tf2
32
三层平壁的稳态导热
第二章 稳态热传导
一台锅炉的炉墙由三层材料叠合而成.最里面的是耐火黏土砖,厚 115MM;中间是B级硅藻土砖,厚125MM;最外层为石棉板,厚 70MM.已知炉墙内外表面温度分别为485℃ 和60 ℃ , 试求每平方 米炉墙的热损失及耐火黏土砖和硅藻土砖分界面上的温度。 解:各层的导热系数可根据估计的平均温度从手册中查出。第一 次估计的平均温度不一定正确,待算得分界面温度时,如发现不 对,可重新假定每层的平均温度。经几次试算,逐步逼近,可得 合理的数值。这里列出的是几次试算后的结果: W 3 0.116 /(m K ) W 1 1.12W /(m K ) 2 0.116 /(m K )
第二章-稳态热传导
传热学 Heat Transfer
Shanghai Jiao Tong University
2-2 导热问题的数学描述 温度场
导热微分方程
t f ( x, y, z, )
傅立叶定律
热流量
热流密度
导热微分方程的推导:傅立叶定律 + 能量守恒定律 导入导出微元体的净热流量+ 微元体内热源生成热= 微元体内能的增量 导入热流量 导出热流量 内热源生成热
第一类 第二类 第三类 导热问题的数学描述= 导热微分方程+定解条件
稳态导热:给定边界条件即可。 非稳态导热:给定初始条件和边界条件。
SJTU-OYH
传热学 Heat Transfer
Shanghai Jiao Tong University
2-2 导热问题的数学描述 第一类边界条件(Dirichlet条件):给定边界上的温度值。 稳态导热: 非稳态导热: 第二类边界条件(Neumann条件):给定边界上的热流密度值。 稳态导热: 非稳态导热: 特例:绝热边界
SJTU-OYH
传热学 Heat Transfer
Shanghai Jiao Tong University
2-3 典型一维稳态导热分析解 通过多层平壁的导热
热阻分析法
热流密度
q
t1 t n 1
t1
ri
i 1
n
t1 t n 1
i i 1 i
n
n为层数
t2
t3 t4
温度分布 第一层:
x
y
z
xdx
dxdydz
y dy
z dz
内能增量
t c dxdydz
SJTU-OYH
《传热学》第2章_稳态热传导
2021/5/23
第2章 稳态热传导
例2-2 一锅炉炉壁有三层材料组成,最里面的是耐火粘土砖,厚115mm,
中间层是硅藻土砖,厚125mm;最外面是石棉板,厚70mm,已知墙
壁内外表面的温度为495 ℃和60 ℃,试求每平方米炉强的热损失及分界
面上的温度。
假设:1. 一维问题;2. 稳态导热;3. 无接触热阻(界面紧密接触)
1,2,,导3 热系数
面温度t1,t4。
,1,两2,外3表
假设各层之间接触良好,可以近似地认
t2
t3 t4
为接合面上各处的温度相等
x 0
❖
第一类边界条件:
x
n i1
i
t t1 t tn1
t1
t2
t3
t4
❖
热阻:
2021/5/23
r1
1 1
....r.n.nn
三层平壁的稳态导热
关键点:界面热流密度、传热量处处相同
0时( n t)wf2()
3. 规定了边界上物体与周围流体间的表面传热系数及周围流体的 温度,称为第三类边界条件。第三类边界条件可表示为
( n t)wh(twtf )
2021/5/23
第2章 稳态热传导
4. 如果导热物体表面与温度为Te的外界环境只发生辐射传热,称为
辐射边界条件。可表示为
T nTw 4Te4
更多的热量;2. 分母是单位体积的物体温度升高1℃所需要的
热量。a越大,表示物体内部温度扯平的能力越大。
2. 等号左边一项为非稳态项,也就是热力学能增量
3. 等号右边三项为通过界面的导热而使微元体增加的能量
4. 公式最后一项为源项
工程热力学与传热学 第二章 稳态热传导 基本概念
对于微元体,按照能量守恒定律,在任一时间间隔内有以下热 平衡关系: 导人微元体的总热流量十微元体内热源的生成热 =导出微元体的总热流量十微元体热力学能(即内能)的增量 (a) 式(a)中其他两项的表达式为 ∂t dx ⋅ dy ⋅ dz ⋅ d τ 微元体热力学能的增量= dU = c ρ 微元体内热源的生成热=
这是笛卡儿坐标系中三维非稳态导热微分方程的一般形式。
导热微分方程式——温度随时间和空间变化的一般关系。 它对导热问题具有普遍适用的意义。
∂t ∂ 2t ∂ 2t ∂ 2t ρC p = λ ( 2 + 2 + 2 ) + qv ∂τ ∂x ∂y ∂z
最为简单的是一维温度场的稳定导热微分方程为:
d2t dx2 = 0
dt = c1 dx t = c1x + c 2
c 2 = t1 c1 = t 2 − t1
δ
∴t =
t 2 − t1
δ
x + t1
(2)根据傅里叶定律,得到:
q = −λ dt t 2 − t 1 t1 − t 2 = −λ = δ dx δ
λ
分析:(和电路分析类比 分析:(和电路分析类比) :(和电路分析类比)
可类比:
t1 − t 2 q= Rλ
(I = ∆V V1 − V2 = ) R R
导热热阻
δ Rλ = λ
热流密度
q
温差 t1 − t 2
t1 − t 2 q= Rλ
(二)多层平壁: 如左图所示三层平壁,各层厚度分别为
δ1δ2δ3 ,导热系数为λ1λ2λ3,两侧 壁面的温度为t1和t4,求其温度场。 求解步骤: (1)画出串联热阻图
用傅理叶定律求解 在半径r处取一厚度为dr长度为l米的薄圆筒壁。则 根据傅里叶定律,边界条件r=r1,t=t1;r=r2,t=t2。 我们得:
传热学-2 导热基本定律和稳态导热
2-2 导热微分方程和定解条件
2 圆柱坐标系中的导热微分方程:
c t
1 r
(r
r
t ) r
1 r2
(
t ) ( z
t ) & z
3 球坐标系中的导热微分方程:
2-2 导热微分方程和定解条件
1 笛卡尔坐标系中微元平行六面体
热力学第一定律(能量守恒定律):
W 0
d V U W U z
单位时间内微元体中: [导入+导出净热量] + [内热源发热量] = [热力学能的增加]
y
zdz
x
dz
dx
y
z
ydy xdx
dy x
2-2 导热微分方程和定解条件
tw1
Φ
tw2
R 1 ln d2 2l d1
2-3 一维稳态导热
第一次积分
r
dt dr
c1
t c1㏑r c2
tw1 c1㏑r1 c2;
tw2 c1㏑r2 c2
第二次积分 应用边界条件
c1
tw2 tw1
㏑r2 / r1
;
c2
tw1
tw2
tw1
㏑r1
㏑r2 / r1
获得两 个系数
t
t1
注意:①上式对稳态和非稳n态均使用; ②导热现象依 gradt 的存在而存在, 若 gradt=0,则 q=0; ③“-”不能少,“-”表示 q与 gradt 方向相
反, 若无,则违反热二定律。
2-1 导热基本定律和热导率
05第二章稳态热传导4
hl l
肋壁的对流换热量为:
hl chml m Ac 0 m Ac 0 m h chml l shml m
(3)肋端绝热
当 x0 , 当 xl ,
0
d 0 dx x l
肋壁内的温度布为
e mx e mx 0 2 ml 1 e 1 e 2 ml
固体接触热阻
1 Rt 2 1 A 2 A
t1 t2
w
Rt : 接触热阻
q
t
热流密度:
t1 t2 q 1 2 r1 rl r2 Rl A t1 t2
1
2
图2-18 固体表面间的 实际接触情况
t w1 t w2 q w m2 rl
2
2 49
(2)形状因子法
导热形状参数 根据导热基本定律,考虑到稳定温度场,各向同性体 dt A dn 分离变量,如果是单一法线方向,可得
n2
n1
t2 t1 dt (t t ) dn dt 2 1 t2 t2 t1 A
t2
n2
得温度分布:
2 x2 t f t 2 h
2 43
任一位置处的热流密度: dt 2 44 q x dx 由此可见,与无内热源平壁解相比,热流密度不再是常数, 温度分布也不是直线而是抛物线,这都是内热源引起的.
2.多维导热问题
s
x
t0
x dx
x dx
l 1
H
图2-11 肋片的典型结构
3、对等截面直肋的分析解
1)物理问题: 如图所示
2)简化假定: (1)一维 f x t (2)稳态 0 (3)无内热源 0 (4)导热系数 const
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
t 1 t 1 t t ( r ) 2 ( ) ( ) qv r r r r z z
球坐标系 (r, ,F)
t r 1 t q r 1 t q r sin qr
x r sin cos ; y sin r sin ; z cos r
a.必须有温差;
b.物体直接接触;
c.依靠分子、原子及自由电子等微观粒子热运动 而传递热量;
2.热对流:由于流体的宏观运动引起的流体各部分间 发生位移,冷热掺混所导致的热量传递现象。 3.热辐射:物体通过电磁波的形式传递能量的方式称为 辐射,因热的原因发出辐射能的现象称为热辐射。
§2-1 导热基本定律
黄铜 109w/m K 黄铜:70%Cu, 30%Zn
金属的加工过程也会造成晶格的缺陷
合金的导热:依靠自由电子的迁移和晶格的振动;且 主要依靠后者
T
温度升高、晶格振动加强、导热增强
(2) 非金属的导热系数: 非金属的导热:依靠晶格的振动传递热量
T
0.025~3W (m C)
非稳态,常物性,无内热源:
稳态,常物性,有内热源:
稳态,常物性,无内热源:
圆柱坐标系 (r, F, z)
t r 1 t q r t q z z qr
x r cos ; y r sin ; z z
c
t 1 t t q gradt t i j k r z r
一、导热微分方程式 (Heat Diffusion Equation)
理论基础:傅里叶定律 + 热力学第一定律
在导热体中任取一平行六面体微 元
单位时间内,由内热源产生的能量
单位时间内,微元体热力学能净增量
热力学第一定律:
z
Q U W W 0, Q U
导入热量-导出热量+内热源发热量=系统热力学能的增量
定义:导热是由温度不同的两物体,或者同一物体中温度不同的两部分之 间,直接接触时由微观粒子的热运动而引起的能量转移过程。 本章的论述重点是建立在这一微观现象基础上的宏观现象,对导热的微观 机理的研究超出了本书的研究范围。
温度场(Temperature field)
某 时 刻 , 空 间 所 有 点 温 度 分 布 的 集 合 , 又 叫 温 度 分 布 ( temperature distribution)。温度场是时间和空间的函数,即:
(2)第二类边界条件
给定物体边界上热流密度的分布及变化规律称为第二类 边界条件。 由傅里叶定律:
t q n w
n:壁面法线方向
第二类边界条件相当于已知任何时刻物体边界法向温度梯度值
稳态导热: q f (r )
非稳态导热:
t q0 绝热边界面(特例): n w
q
t q f ( r , ) n w
☺ 温度是标量,但温度梯度是矢量,指向温度增加最快的方向; 热流密度是矢量,方向正好与温度梯度相反。
二、导热基本定律
1822 年,法国数学家傅里叶( FOURIER )在实验研究的基础 上,发现导热基本规律 —— 傅利叶定律 导热基本定律一般性表述:单位时间内通过给定截面的导热热
流量,正比于该截面的法向温度变化率(温度梯度),方向与 温升方向相反。
热流量的形式:
三、导热系数 (Thermal conductivity)
导热系数表征物质导热能力大小(需实验测定) 稳态法(傅里叶定律)
非稳态法
影响导热系数的因素:物质的种类、温度、湿度、压力、密度等
金属 非金属; 固相 液相 气相
不同材料的导热系数 有些天然材料(石英石、木材)和人造材料(复合板), 其密度和导热系数沿各方向不同,属于非均各向异性材料
导热微分方程式不适用范围——非傅里叶导热过程: 极短时间、产生极大的热流密度的热量传递现象,如激光加 工过程 极低温度(接近于0K)时的导热问题
二、定解条件
定解条件(几何,物性,初始,边界) 导热问题完整的数学描述 导热微分方程 导热微分方程描写物体的温度随时间和空间变化的关系,没有 涉及具体、特定的导热过程;是针对普适情况的通用表达式。 对特定的导热过程:需要得到满足该过程的补充说明条件,即 单值性条件:获得唯一解的补充条件。
稳态温度场:温度的空间分布不随时间而改变(Steady temperature field)
非 稳 态 温 度 场 : 温 度 的 空 间 分 布 随 时 间 而 改 变 (Transient/unsteady temperature field)
等温面与等温线
等温面(isothermal surface) :某一时刻、温度场中所有温度相同的 点连接起来所构成的面
思考:每两条相邻等温线间温差相等时,其疏密可直观反映热流密度的大小?
温度梯度:空间点r处,等温面法线方向上的温度变化率
垂直于等温面(线) 指向温度升高的方向
——各坐标轴上温度变化率与单位向量乘积的矢量叠加
热流密度:单位时间,单位面积上传递的热量。 总是通过等温面上某点指向温度降低的方向。
- T =e (Tw4 Te4) w n w
补充2. 界面处(不考虑接触热阻):同时满足,温度、热流密度连续条件:
T w =T w
- T n =-
w
F
导入微元体的热量Qout: t F x dydz dx x x x
F z
t dxdy z z
F z dz
t F z dydx dz (3) z z z
均匀但各向异性材料——空心砖 细观上非均匀各向异性,但宏观上均匀且各项同性——多 孔结构介质
压制复合木板 (非均各向异性)
空心砖 (均匀各向异性)
多孔结构材料
不同物质导热系数的差异 1、气体的导热系数 气体导热:由于分子的热运动和相互碰撞传递能量
气体 0.006~0.6 W (mK)
Qin Qout Qs U (1)
x 轴方向:
d 时间内、经 x 表面导入的热量Fx:
傅里叶定律
F x
t dydz x x
d 时间内、经 x+dx 表面导出的热量Fx+dx :
泰勒级数:
导入微元体的热量Qin:
x dx t F x dydz x x t t F y dxdz (2) F y dy F y dxdz dy y y y y y
基本规律:
液体 0.07~0.7 W (mK )
T
p
McLaughlin, E., “Theory of the Thermal Conductivity of Fluids,” in R. P. Tye, Ed., Thermal Conductivity, Vol. 2, Academic Press, London, 1969.
第二章
稳态热传导
Steady Heat Conduction
第二章 稳态热传导
主要内容:
1.(掌握)导热的基本定律——傅里叶定律
2.(重点掌握)导热问题的数学描述来自3.(掌握)典型一维导热问题的分析解
4.(掌握)通过肋片的导热
5.(掌握)具有内热源的一维导热问题
6.(了解)多维稳态导热问题的求解
1. 导热:指同一物体各部分或温度不同的两物体间直 接接触时,依靠分子、原子及自由电子等微观粒子热 运动而进行的热量传递的现象。
t 1 t 1 t q gradt t i j k r r sin r
t 1 1 t 1 t 2 t c 2 ( r ) 2 ( sin ) 2 2 ( ) qv r r r r sin r sin
微元体内热源生成热量
(4)
Qin Qout Qs U (1)
导热微分方程一般性表达式:
笛卡尔坐标系内,三维非稳态导热微分方程的一般形式
热扩散系数(thermal diffusivity)
导热系数为常数
a
[m2/s] cp
热扩散系数a反映了导热过程中材料的导热能力( )与沿途物质储热 能力( cp )之间的关系。 a值大,即 值大或( cp) 值小,说明物体的某一部分一旦获得热量, 该热量能在整个物体中很快扩散。 a 表征物体被加热或冷却时,物体内各部分温度趋向于均匀一致的能力, 在同样加热条件下,物体的热扩散率越大,物体内部各处的温度差别越 小。 a反应导热过程动态特性,研究非稳态导热重要物理量。
1、几何条件:给定导热体的几何形状和大小
如:平壁或圆筒壁;厚度、直径等
2、物理条件:给定导热体的物理特征
如:物性参数 、cp 和 的数值,是否随温度变化; 有无内热源、大小和分布;是否各向同性 3、时间条件:说明导热过程随着时间变化的特点
稳态导热过程不需要时间条件 — 与时间无关 对非稳态导热过程必须给出过程开始时刻导热体内的 温度分布
时间条件又称为初始条件(Initial conditions)
4、边界条件(Boundary Condition)
给出导热体边界上温度或传热情况的条件称为边界条件 边界条件一般可分为三类:第一类、第二类、第三类边界条件
(1)第一类边界条件
规定了边界上温度值称为第一类边界条件
稳态导热: tw = f (r) 非稳态导热:>0, tw = f (r,) 例: x 0, t tw1 x , t tw2