初中数学总复习知识点

合集下载

初中数学知识点总结

初中数学知识点总结

初中数学知识点总结一、基本知识㈠、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

初中数学知识点全总结(完美打印版)

初中数学知识点全总结(完美打印版)

初中数学知识点全总结(完美打印版)初中数学知识点全总结(完美打印版)有理数一、知识框架二.知识概念1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a 也不一定是正数;?不是有理数;(2)有理数的分类: ① ②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ? a+b=0 ? a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:或;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数> 0,小数-大数< 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .。

(完整版)初中数学知识点归纳总结(精华版)

(完整版)初中数学知识点归纳总结(精华版)

第一章 有理数考点一、实数的概念及分类 (3分)1、实数的分类 正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数:32,7,3π+8,sin60o . 第二章 整式的加减考点一、整式的有关概念 (3分)1、单项式只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如c b a 235-是6次单项式。

考点二、多项式 (11分)1、多项式几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项.第三章 一元一次方程考点一、一元一次方程的概念 (6分)1、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项。

第四章 图形的初步认识考点一、直线、射线和线段 (3分)1、点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点。

②点在直线外,或者说直线不经过这个点。

2、线段的性质(1)线段公理:所有连接两点的线中,线段最短。

也可简单说成:两点之间线段最短。

(2)连接两点的线段的长度,叫做这两点的距离。

(3)线段的中点到两端点的距离相等。

(4)线段的大小关系和它们的长度的大小关系是一致的。

3、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线.线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。

初三数学知识点总结归纳(4篇)

初三数学知识点总结归纳(4篇)

初三数学知识点总结归纳初三数学复习五大方法初三新学期数学知识点一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。

半圆周也是弧。

(1)劣弧:小于半圆周的弧。

(2)优弧:大于半圆周的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是对称图形。

2、垂径定理。

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。

圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5、夹在平行线间的两条弧相等。

6、设⊙O的半径为r,OP=d。

初三数学知识点总结归纳(二)1.数的分类及概念数系表:说明:分类的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。

(表为:x0)性质:若干个非负数的和为0,则每个非负数均为0。

3.倒数:①定义及表示法②性质:A.a1/a(a1);B.1/a中,aC.04.相反数:①定义及表示法②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(三要素)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

初中数学总复习知识点整理(最全)

初中数学总复习知识点整理(最全)

初中数学总复习知识点整理(最全)知识点分类
1. 整数
1.1 整数的概念
1.2 整数的进位与退位
1.3 整数的加减法
1.4 整数的乘法
1.5 整数的除法
2.分数
2.1 几个基本概念
2.2 分数的基本性质2.3 分数的加减法
2.4 分数的乘法
2.5 分数的除法
3. 小数
3.1 小数的概念
3.2 小数与分数的转化3.3 小数的加减法
3.4 小数的乘法
3.5 小数的除法
4.代数
4.1 代数式的概念和性质4.2 代数式的加减法
4.3 代数式的乘法
4.4 公式和方程
4.5 解一元一次方程
5. 轴对称与余弦定理5.1 轴对称的基本概念5.2 轴对称的性质
5.3 用轴对称解题
5.4 余弦定理的概念和性质
5.5 用余弦定理解题
6.勾股定理与三角函数
6.1 勾股定理的概念和性质
6.2 在平面直角坐标系中应用勾股定理6.3 用勾股定理解决实际问题
6.4 三角函数的定义和性质
6.5 用三角函数解决实际问题
知识点重点
- 整数的进位与退位
- 分数的加减法
- 代数式的乘法
- 解一元一次方程
- 用轴对称解题
- 用余弦定理解题
- 用勾股定理解决实际问题- 用三角函数解决实际问题知识点易错点
- 乘方与加减混淆
- 分数的错位相乘
- 代数式乘法计算错误
- 方程解错
- 三角函数概念混淆
- 勾股定理和余弦定理运用错误
- 计算精度不足
以上是初中数学的总复习知识点整理,祝您考试顺利!。

初中数学知识点全面总结(完整版)

初中数学知识点全面总结(完整版)

初中数学知识点全面总结(完整版)初中数学知识点全面总结(完整版)1. 数字与代数- 自然数:1,2,3,...- 整数:包括自然数及其负数和0- 有理数:可以表示为两个整数的比值的数- 实数:包括有理数和无理数- 代数运算:加法、减法、乘法、除法- 代数式:可以含有数、字母和运算符号的式子2. 几何与图形- 点、线、面:几何学的基本概念- 直线和线段:由无数个点连成的图形- 角度:由两条射线共享一个端点而形成的图形- 三角形:有三条边和三个角的图形- 四边形:有四条边和四个角的图形- 圆和圆周:由一条曲线上的所有点组成的图形3. 数据和统计- 数据收集:通过调查、观察或实验来获得数据- 数据处理:整理、分类和统计数据的过程- 平均数:一组数值的中间值- 概率:事件发生的可能性4. 函数与方程- 函数:将一个或多个输入值关联到一个输出值的规则- 线性函数:图像为一条直线的函数- 一次方程:含有未知数的等式,且未知数的最高次数为1 - 二次函数:含有未知数的等式,且未知数的最高次数为2 - 不等式:包含不等关系的方程式5. 测量与几何变换- 长度、面积和体积的测量- 几何变换:平移、旋转、翻转和对称6. 概率与统计- 抽样调查:通过从整体中选取一部分作为样本来进行调查- 频率分布表:将数据按一定规则整理并统计出现频率- 相对频率:某一事件发生的频率与总次数之比- 抽样误差:由于样本选择不足而引起的统计结果误差以上是初中数学的主要知识点总结,希望对你有帮助!(注意:每个知识点只是简短介绍,具体内容还需进一步研究和理解。

)。

最全初中数学知识点总结及公式(可打印)

最全初中数学知识点总结及公式(可打印)

最全初中数学知识点总结及公式(可打印)最全初中数学知识点总结1.菱形的定义:一组相邻边相等的平行四边形称为菱形。

2、菱形的性质:⑴ 矩形具有平行四边形的一切性质;⑵ 菱形的四条边都相等;⑶ 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

⑷ 菱形是轴对称图形。

提示:利用菱形的性质可证得线段相等、角相等,它的对角线互相垂直且把菱形分成四个全等的直角三角形,由此又可与勾股定理联系,可得对角线与边之间的关系,即边长的平方等于对角线一半的平方和。

3.因式分解的定义:把一个多项式变换成几个代数表达式的乘积,叫做这个多项式的因式分解。

4、因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④因式分解与整式乘法的关系:m(a+b+c)5.公因式:多项式的每一项所包含的公因式称为这个多项式的每一项的公因式。

6、公因式确定方法:①系数是整数时取各项最大公约数。

②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

7、提取公因式步骤:①确定公因式。

②确定商式③公因式与商式写成积的形式。

8、平方根表示法:一个非负数a的平方根记作,读作正负根号a。

a叫被开方数。

9、中被开方数的取值范围:被开方数a≥010、平方根性质:①一个正数的平方根有两个,它们互为相反数。

②0的平方根是它本身0。

③负数没有平方根开平方;求一个数的平方根的运算,叫做开平方。

11.平方根和算术平方根的区别:定义不同,表述不同,数字不同,取值范围不同。

12、联系:二者之间存在着从属关系;存在条件相同;0的算术平方根与平方根都是013、含根号式子的意义:表示a的平方根,表示a的算术平方根,表示a的负的平方根。

14、求正数a的算术平方根的方法;完全平方数类型:①想谁的平方是数a。

②所以a的平方根是多少。

③用式子表示。

求正数a的算术平方根,只需找出平方后等于a的正数。

初中数学知识点总结及公式1、一元二次方程解法:(1)配方法:(X±a)²=b(b≥0)注:二次项系数必须化为1(2)公式法:aX²+bX+C=0(a≠0)确定a,b,c的值,计算b²-4ac≥0若b²-4ac>0则有两个不相等的实根,若b²-4ac=0则有两个相等的实根,若b²-4ac<0则无解若b²-4ac≥0则用公式X=-b±√b²-4ac/2a注:必须化为一般形式(3)分解因式法①提公因式法:ma+mb=0→m(a+b)=0平方差公式:a²-b²=0→(a+b)(a-b)=0②运用公式法:完全平方公式:a²±2ab+b²=0→(a±b)²=0③十字相乘法2、锐角三角函数定义锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

初中数学知识点总结(最新最全)

初中数学知识点总结(最新最全)

初中数学知识点总结一、基本知识㈠、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

初中数学知识点归纳整理

初中数学知识点归纳整理

初中数学知识点总结一、基本知识一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

初中数学总复习知识点详解

初中数学总复习知识点详解

初中数学总复习知识点详解第一章:实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆一、 重要概念 1.数的分类及概念 数系表:说明:“分类"的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称.(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。

3.倒数: ①定义及表示法②性质:A 。

a ≠1/a (a ≠±1);B 。

1/a 中,a ≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D 。

积为1。

4.相反数: ①定义及表示法②性质:A 。

a ≠0时,a ≠-a ;B 。

a 与—a 在数实数无理数(无限不循环小数)有理数 正分数 负分数 正整数 0 负整数 (有限或无限循环性数) 整数分数 正无理数 负无理数 0 实数 负数 整数 分数 无理数有理数正数整数 分数 无理数 有理数│a │2a a (a ≥0)(a 为一切实数)轴上的位置;C 。

和为0,商为—1。

5.数轴:①定义(“三要素”)②作用:A 。

直观地比较实数的大小;B.明确体现绝对值意义;C 。

建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数-自然数)定义及表示:奇数:2n —1偶数:2n(n 为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。

②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││"符号. 二、 实数的运算1.运算法则(加、减、乘、除、乘方、开方)2.运算定律(五个-加法[乘法]交换律、结合律;[乘法对加法的] 分配律)3.运算顺序:A 。

高级运算到低级运算;B 。

(同级运算)从“左”到“右"(如5÷51×5);C 。

(完整版)初中数学知识点全总结(齐全)

(完整版)初中数学知识点全总结(齐全)

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (p q≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (aa ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

初中数学知识点归纳总结(精华版)

初中数学知识点归纳总结(精华版)

初中数学知识点归纳总结(精华版)一、实数的概念及分类(3分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数:,+8,sin60o。

第二章整式的加减考点一、整式的有关概念(3分)1、单项式只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如,这种表示就是错误的,应写成。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如是6次单项式。

考点二、多项式(11分)1、多项式几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

第三章一元一次方程考点一、一元一次方程的概念(6分)1、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项。

第四章图形的初步认识考点一、直线、射线和线段(3分)1、点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点。

②点在直线外,或者说直线不经过这个点。

2、线段的性质(1)线段公理:所有连接两点的线中,线段最短。

也可简单说成:两点之间线段最短。

(2)连接两点的线段的长度,叫做这两点的距离。

(3)线段的中点到两端点的距离相等。

(4)线段的大小关系和它们的长度的大小关系是一致的。

3、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。

线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。

逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

考点二、角(3分)1、角的度量:角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“”表示,1度记作“1”,n 度记作“n”。

初中数学知识点总结完整版

初中数学知识点总结完整版

初中数学知识点总结一、基本知识㈠、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0 的绝对值是0。

两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0 相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0 相乘得0。

③乘积为1 的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0 不能作除数。

乘方:求N 个相同因数A 的积的运算叫做乘方,乘方的结果叫幂,A 叫底数,N 叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X 的平方等于A,那么这个正数X 就叫做A 的算术平方根。

②如果一个数X 的平方等于A,那么这个数X 就叫做A 的平方根。

③一个正数有2 个平方根/0 的平方根为0/负数没有平方根。

④求一个数A 的平方根运算,叫做开平方,其中A 叫做被开方数。

立方根:①如果一个数X 的立方等于A,那么这个数X 就叫做A 的立方根。

完整版初中数学知识点归纳总结精华版

完整版初中数学知识点归纳总结精华版

初中数学知识点归纳总结一元一次方程1.概念:含有一个未知数,未知数的最高次数为1,这样的方程叫一元一次方程。

2.形式:ax + b = 0(a、b是常数,且a≠0)3.解法:移项、合并同类项、化简系数二元一次方程1.概念:含有两个未知数,未知数的最高次数为1,这样的方程叫二元一次方程。

2.形式:ax + by = c(a、b、c是常数,且a、b≠0)3.解法:消元法、代入法、行列式法一元一次不等式1.概念:含有一个未知数,未知数的最高次数为1,这样的不等式叫一元一次不等式。

2.形式:ax > b(a、b是常数,且a≠0)3.解法:同解一元一次方程,注意不等号的方向4.概念:分式是指形如a/b的表达式,其中a、b是整式,且b≠0。

5.性质:分式的分子、分母同时乘以(或除以)同一个非零整式,分式的值不变。

6.运算:加减乘除、分式的乘方点、线、面1.点:没有长度、宽度、高度的物体。

2.线:只有长度,没有宽度、高度的物体。

3.面:只有长度和宽度,没有高度的物体。

直线方程1.点斜式:y - y1 = k(x - x1)(k是直线的斜率,(x1, y1)是直线上的一点)2.截距式:y = kx + b(k是直线的斜率,b是直线在y轴上的截距)三角形1.概念:由三条线段首尾顺次连接所组成的图形叫三角形。

2.性质:三角形的内角和为180°,三角形的对边相等。

3.分类:不等边三角形、等腰三角形、等边三角形四边形1.概念:由四条线段首尾顺次连接所组成的图形叫四边形。

2.性质:四边形的内角和为360°,四边形的对边相等。

3.分类:矩形、平行四边形、梯形、菱形4.概念:平面上到一个固定点距离相等的所有点的集合叫圆。

5.性质:圆的半径相等,圆心到圆上任意一点的距离相等。

6.公式:圆的周长C = 2πr,圆的面积S = πr²概率与统计1.概念:事件发生的可能性叫概率。

2.求法:列举法、树状图法、列表法3.概念:统计学是研究数据收集、处理、分析、解释的科学。

初中数学知识点归纳总结

初中数学知识点归纳总结

初中数学知识点归纳总结一、整数与有理数整数是自然数、0和负整数的集合。

有理数是整数和分数的集合。

1.1 整数与有理数的运算规律整数和有理数之间的加减乘除遵循以下规律:- 加法:整数加整数仍为整数,有理数加有理数仍为有理数。

- 减法:整数减整数得到有理数。

- 乘法:整数乘整数得到整数,有理数乘有理数得到有理数。

- 除法:整数除整数得到有理数,有理数除有理数得到有理数(除数不能为零)。

1.2 整数与有理数的应用整数与有理数在实际生活中有广泛的应用,比如算账(财务管理)、温度计(气象学)、海拔计(地理学)等。

二、平面图形与空间几何2.1 平面图形的性质与分类平面图形根据边数、角数和对称性质等特点进行分类:- 三角形:根据边长和角度分为等边三角形、等腰三角形和普通三角形。

- 四边形:根据四边的边长、角度和对角线的相交情况分类,如正方形、长方形和平行四边形等。

2.2 空间几何的基本概念空间几何研究的是三维物体的性质和变换等。

其中的基本概念有:- 点:在空间中没有大小,只有位置的标志。

- 线:由无限多的点组成,没有宽度和厚度。

- 面:由无限多的线组成,有宽度和厚度。

- 体:由无限多的面组成,有长度、宽度和高度。

三、代数方程与函数3.1 一元一次方程与不等式一元一次方程和一元一次不等式是代数学中基本的方程和不等式,其一般形式为ax+b=0和ax+b>0。

3.2 二次函数二次函数是指以自变量的平方最高次数为2的函数。

- 二次函数的图像是抛物线,可以开口向上或向下。

- 二次函数的顶点坐标是(xv, yv),其中xv=-b/2a,yv=f(xv)。

- 二次函数的轴对称线方程为x=-b/2a。

四、数据统计与概率4.1 数据的收集与处理数据统计的基本流程包括数据的收集、整理和分析等。

- 数据的收集:通过调查、实验、观察等方式获得数据。

- 数据的整理:对获得的数据进行整理,比如制表、绘制图表等。

- 数据的分析:对整理后的数据进行分析,得出结论和推断。

初中数学总复习知识点非常全面

初中数学总复习知识点非常全面

初中数学总复习知识点非常全面一、数的性质与关系1.整数、有理数、实数的概念、性质,R*的意义2.数轴的表示与意义3.绝对值的概念及性质二、整数的运算1.加减运算法则2.乘法法则、带余除法及整除的概念3.约数与倍数的概念4.公因数与最大公因数、公倍数与最小公倍数5.互质数的概念与判定法则三、有理数的运算1.有理数的概念与性质2.有理数的四则运算3.混合运算、带分数与有理数的比较与计算四、根与指数1.开方的概念与计算2.平方根、立方根的性质3.指数的概念与性质4.指数幂的运算与意义五、代数式及简单方程1.代数式的概念及常见形式2.代数式的四则运算3.一元一次方程的概念与解法4.解一元一次方程的三种基本方法六、分数与分数运算1.分数的概念、性质及表示方法2.分数的四则运算3.分数与小数的相互转化4.倒数、比例、直接与反比例关系七、平面图形的认识1.点、线、面、角的基本概念2.三角形、四边形、多边形的认识与性质3.平行线与垂直线的关系4.同位角、对顶角、内错角的性质八、相似与全等1.相似形的概念及性质2.相似三角形的判定、性质与计算3.勾股定理与勾股数的概念与应用4.三角形全等的判定、性质与计算九、圆的认识与应用1.圆的基本概念与性质2.圆周长与面积的计算3.弧的概念与计算4.扇形、梯形、菱形的面积计算十、平移与旋转1.平移的概念与性质2.旋转的概念与性质3.平移与旋转的运算与应用十一、统计与概率1.数据的搜集与整理2.数据图的绘制与分析3.概率的概念与计算十二、函数与方程1.函数的概念、图象与性质2.线性函数与非线性函数的概念与性质3.一元一次方程组的概念与解法4.一元一次不等式的概念与解法这些知识点涵盖了初中数学的主要内容,复习时应注意梳理思路,系统学习。

初中数学知识点归纳全

初中数学知识点归纳全

第一章《有理数》总复习一、本章知识结构图正整数负整数整数正分数负分数分数有理数数轴比较大小有理数的运算加法减法交换律结合律分配律乘法除法乘方点与数的对应一、基本概念1、正数与负数①表示大小②在实际中表示意义相反的量③带“-”号的数并不都是负数1.正数、负数和零的概念正数负数零象1、2.5、、48等大于零的数叫正数象-1、-2.5,,-48等小于零的数叫负数0叫做零,0既不是正数也不是负数12﹒引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,不能被2整除的数是奇数,3﹒到现在为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。

4﹒通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。

分数和小数的区别:分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的。

如圆周率就不能表示成分数。

5. 数0既不是正数,也不是负数,0是正数与负数的分界。

0的意义已不仅是表示“没有”.2、数轴⎧①三要素正方向单位长度定义三要素应用数形结合规定了原点、正方向、单位长度的直线叫数轴原点正方向单位长度帮助理解有理数的概念,每个有理数都可用数轴上的点表示,但数轴上的点并非都是有理数比较有理数大小,数轴上右边的数总比左边的数要大1.数轴的概念(1)规定了原点、正方向和单位长度的直线叫做数轴.这里包含两个内容:一是数轴的三要素:原点、正方向、单位长度缺一不可.二是这三个要素都是规定的.(2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.2.数轴的画法(1)画直线(一般画成水平的)、定原点,标出原点“O”.(2)取原点向右方向为正方向,并标出箭头.(3)选适当的长度作为单位长度,各点。

初中数学知识点总结归纳

初中数学知识点总结归纳

初中数学知识点总结归纳一、数与代数1. 有理数- 整数与分数- 正数、负数、零- 绝对值- 有理数的加、减、乘、除运算- 有理数的比较大小2. 整数的性质- 素数与合数- 奇数与偶数- 整数的因数与倍数- 质因数分解3. 代数表达式- 单项式与多项式- 同类项与合并同类项- 代数式的加减运算4. 一元一次方程- 方程的建立与解法- 方程的解与根- 含字母系数的方程5. 二元一次方程组- 代入法与消元法- 方程组的解与无穷多解、无解6. 不等式与不等式组- 不等式的基本性质- 解一元一次不等式- 解一元一次不等式组7. 函数的概念与性质- 函数的定义- 函数的表示方法:表格、图像、解析式- 函数的简单性质:定义域、值域、单调性、奇偶性二、几何1. 平面图形- 点、线、面的基本性质- 角的概念:邻角、对顶角、同位角- 直线与角的关系:平行线、相交线2. 三角形- 三角形的基本性质- 等边三角形、等腰三角形、直角三角形的性质- 三角形的内角和与外角性质3. 四边形- 平行四边形的性质- 矩形、菱形、正方形的性质- 梯形的性质4. 圆的基本性质- 圆的定义与性质- 圆的对称性- 圆周角与圆心角的关系5. 面积与体积的计算- 平面图形的面积计算:三角形、四边形、圆- 空间图形的体积计算:长方体、立方体、圆柱、圆锥6. 相似与全等- 全等图形的判定条件- 相似图形的判定条件- 相似三角形的性质三、统计与概率1. 统计- 数据的收集与整理- 频数与频率- 统计图表的绘制与解读:条形图、折线图、饼图2. 概率- 随机事件的概念- 概率的计算方法- 简单事件的概率四、应用题1. 列方程解应用题- 根据问题描述建立方程- 解方程得到答案2. 几何应用题- 利用几何知识解决实际问题- 计算面积、体积等3. 统计与概率应用题- 分析数据,得出结论- 计算可能性与概率以上是对初中数学知识点的总结归纳。

每个部分都包含了关键的概念、性质、公式和解题方法。

初中数学知识点总结归纳(完整版)

初中数学知识点总结归纳(完整版)

初中数学知识点总结归纳(完整版)很多同学在复习初中数学时,因为没有对之前的知识进行梳理记忆,导致整体的复习效率不高。

下面是由编辑为大家整理的“初中数学知识点总结归纳(完整版)”,仅供参考,欢迎大家阅读本文。

初中数学知识点总结归纳1、菱形的定义:有一组邻边相等的平行四边形叫做菱形。

2、菱形的性质:⑴ 矩形具有平行四边形的一切性质;⑵ 菱形的四条边都相等;⑶ 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

⑷ 菱形是轴对称图形。

提示:利用菱形的性质可证得线段相等、角相等,它的对角线互相垂直且把菱形分成四个全等的直角三角形,由此又可与勾股定理联系,可得对角线与边之间的关系,即边长的平方等于对角线一半的平方和。

3、因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

4、因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④因式分解与整式乘法的关系:m(a+b+c)5、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

6、公因式确定方法:①系数是整数时取各项最大公约数。

②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

7、提取公因式步骤:①确定公因式。

②确定商式③公因式与商式写成积的形式。

8、平方根表示法:一个非负数a的平方根记作,读作正负根号a。

a叫被开方数。

9、中被开方数的取值范围:被开方数a≥010、平方根性质:①一个正数的平方根有两个,它们互为相反数。

②0的平方根是它本身0。

③负数没有平方根开平方;求一个数的平方根的运算,叫做开平方。

11、平方根与算术平方根区别:定义不同、表示方法不同、个数不同、取值范围不同。

12、联系:二者之间存在着从属关系;存在条件相同;0的算术平方根与平方根都是013、含根号式子的意义:表示a的平方根,表示a的算术平方根,表示a的负的平方根。

14、求正数a的算术平方根的方法;完全平方数类型:①想谁的平方是数a。

中考数学必背知识点(完整版)

中考数学必背知识点(完整版)

中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的,分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成q p 的,形式,其中p 、q 是互质的,整数,这是有理数的,重要特征。

2、无理数:初中遇到的,无理数有三种:开不尽的,方根,如2、34;特定结构的,不限环无限小数,如1.101001000100001……;特定意义的,数,如π、45sin °等。

3、判断一个实数的,数性不能仅凭表面上的,感觉,往往要经过整理化简后才下结论。

二、实数中的,几个概念1、相反数:只有符号不同的,两个数叫做互为相反数。

(1)实数a 的,相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的,倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的,绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的,绝对值是一个非负数,从数轴上看,一个实数的,绝对值,就是数轴上表示这个数的,点到原点的,距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的,实数进行数性(正、负)确认,再去掉绝对值符号。

4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的,平方根,a 叫a 的,算术平方根。

(2)正数的,平方根有两个,它们互为相反数;0的,平方根是0;负数没有平方根。

(3)立方根:3a 叫实数a 的,立方根。

(4)一个正数有一个正的,立方根;0的,立方根是0;一个负数有一个负的,立方根。

三、实数与数轴1、数轴:规定了原点、正方向、单位长度的,直线称为数轴。

原点、正方向、单位长度是数轴的,三要素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学总复习知识点一、代数1.数的分类及概念:整数和分数统称有理数(有限小数和无限循环小数),像3,π,∙∙∙叫无理数;有理数和无理数统称实数。

下列各数2π,0,39,0.3·,tan45°,227,……,0)12(-中无理数有___________2.自然数(0和正整数);奇数2n-1、偶数2n 、质数、合数。

科学记数法:na 10⨯(1≤a <10,n 是整数),有效数字。

用科学计数法表示:=_____________ 0000=_______________ ≈___________(精确到十分位) ,≈___________(精确到百万位)≈__________(保留两个有效数字),000≈___________(保留三个有效数字) 近似数万是精确到______位,有_______个有效数字3.(1)倒数积为1(0没有倒数);(2)相反数和为0,商为-1;(3)绝对值是距离,非负数。

21-的相反数是________, 21-的倒数是__________ 4.数轴:(1)①定义(“三要素”);②点与实数的一一对应关系。

5非负数:正实数与零的统称。

(表为:x ≥0) (1)常见的非负数有:(2)性质:若干个非负数的和为0,则每个非负数均为0。

0)2y (y x 42=+++则y x =________6.去绝对值法则:正数的绝对值是它本身,零的绝对值是零;负数的绝对值是它的相反数。

2)23(-=________, 数轴上的点A 到原点的距离是6,则点A 表示的数为________7.实数的运算:加、减、乘、除、乘方、开方;运算法则,定律,顺序要熟悉。

计算:(1)022060cos 8|32|)23()2()13(+-⋅++-÷--(2)先化简:)212(112aa a a a a +-+÷--,再在-2,-1,0,1,2中选取一个数作为a 的值代入求值:8.代数式,单项式,多项式。

整式,分式。

根式单项式8z y x 3232的次数是____,系数是____, 若11x 2x 2+-+有意义,则x 的取值范围是______9. 同类项。

合并同类项(系数相加,字母及字母的指数不变)。

下列运算中正确的是( )A .2325a a a +=B .22(2)(2)4a b a b a b +-=-C .23622a a a ⋅=D .222(2)4a b a b +=+10. 算术平方根: )0a (a ≥ (正数a 的正的平方根); 平方根:)0a (a ≥±64的平方根为_________,64-的立方根为_________11. (1)最简二次根式:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式;(2)同类二次根式:化为最简二次根式以后,被开方数相同的二次根式; (3)分母有理化:化去分母中的根号。

下列运算正确的是( ). A .32a a =.223(2)3-=-⨯.1a a a=1882-= 12.因式分解方法:把一个多项式化成几个整式的积的形式A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法。

(1)y y x 92-=__________, 322363x x y xy -+=_______________, 6x 5x 2+-=_________13.指数:n 个a 连乘的式子记为n a 。

(其中a 称底数,n 称指数, na 称作幂。

) 正数的任何次幂为正数;负数的奇次幂为负数,负数的偶次幂为正数。

14. 幂的运算性质:①a ma n=a m+n; ②a m÷a n=a m-n; ③(a m )n=a mn;④( ab )n=a n b n; ⑤n n n ba )b a (=下列计算正确的是( ). A.632a a a =⋅ B.()832a a = C.326a a a =÷ D.()6223b a ab =下列运算正确的是( )去分母 分式方程 整式方程 A .(3xy 2)2=6x 2y 4 B .24122x x =- C .(-x )7÷(-x )2=-x 5 D .(6xy 2)2÷3xy =2xy 3=÷-⋅-543a )a ()a (______, ===-n 3m 2m n x ,3x ,2x 则________15.分式的基本性质:16.乘法公式:用于化简:(a+b )(a-b )=a 2-b 2; (a+ b)2= a 2+2ab+b 2;用于因式分解:a 2-b 2=(a+b )(a-b ); a 2+2ab+b 2= (a+ b)217.算术平方根的性质:① a a 2=;② )0a (a )a (2≥= ;③ b a ab ⋅=(a ≥0,b ≥0); ④ba ba= (a ≥0,b >0)18.方程基本概念:方程、方程的解(根)、方程组的解、解方程组 1.一元一次方程:最简方程ax=b(a ≠0);解法。

2.二元一次方程的解有无数多对。

3.二元一次方程组:①代入消元法;②加减消元法。

4.一元二次方程:(1)一般形式:)0a (0c bx ax 2≠=++的求根公式)0ac 4b (a2ac 4b b x 222,1≥--±-=(2)常用方法①直接开平方法; ②配方法; ③公式法; ④因式分解法。

(3)根的判别式:ac 4b 2-=∆当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根; 当△<0,方程没有实数根。

(4)根与系数的关系:a b x x -=+21 , ac x x =⋅21 例:方程0122=-+x kx 无实根,则k 的取值范围是______ 若1x 、2x 是方程0132=--x x 的两根, 则1221x x x x +=_____________=-+1222132x x x __________ (5)分式方程: ; 分式方程有增根,必须要检验。

应用题也不例外。

解方程:(1)2660x x --=(配方法) (2)01322=--x x (公式法) (3)211=-++xx x x 19.不等式:(1)一元一次不等式的解、解一元一次不等式。

(乘除负数要变方向) (2)一元一次不等式组的解、解一元一次不等式组(在数轴上表示解集)20.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系; 1.坐标平面内的点与一个有序实数对之间是一一对应的。

2.点的坐标的特征: (1)各象限内点的坐标特征:(2)x 轴上的点y=0;y 轴上的点x=0;一、三象限角平分线:y=x ;二、四象限角平分线:y=-x 。

(3)P(a, b)关于x 轴对称P ’(a, -b); 关于y 轴对称P ’’(a, -b);关于原点对称P ’’’(-a, -b). 3.坐标系内的距离:(1)点到坐标轴的距离: (2)两点之间的距离:)y ,x (A 11 ),(22y x B 则AB=221221)y y ()x x (-+-4.中点坐标:)y ,x (A 11 )y ,x (B 22则线段AB 的中点M (2y y ,2x x 2121++) 21. 函数1.正比例函数、一次函数、反比例函数2.二次函数 1、 二次函数)0(2≠++=a c bx ax y(1) 顶点)44,2(2a b ac a b --(2)对称轴a b x 2-= (2) 最值:当x=a2b-时a 4b ac 4y 2-=最值(5)增减性 2、 平移原则:把解析式化为顶点式,“左+右-;上+下-”。

3、 二次函数与二次方程:△>0 一元二次方程有两个不相等实根 抛物线与x 轴有两个交点 △=0 一元二次方程有两个相等实根 抛物线与x 轴有一个交点 △>0 一元二次方程无实根 抛物线与x 轴没有交点4、①a ~开口方向,大小;②b ~对称轴与y 轴,左同右异;③c ~与y 轴的交点上正下负;④b 2-4ab ~与x 轴的交点个数;⑤b a ±2~对称轴与常数1±比;⑥a+b+c ~点看(1, a+b+c);a-b+c ~点看(-1, a-b+c)。

(1) 直线2++=k kx y 不经过第三象限,则k 的取值范围是__________________ (2) 如图,一次函数y 1=k 1x+b 1与y 2=k 2x+b 2的图象相交于A(2,1),则不等式(k 2-k 1)x+b 2-b 1>0的解集为_____________________(3) △AOB 的面积为2,则此双曲线的解析式为___________________(4) 将抛物线5)1(22++-=x y 上3右2平移后所得到的抛物线为________________ (5) 抛物线3522-+=x x y 的对称轴为________,顶点坐标为_________与x 轴的交点坐标为___________________(6) 抛物线c bx ax y ++=2的对称轴为直线x=2,与x 轴的一个交点坐标为(–1,0)则一元二次方程02=++c bx ax 的解为_______________________若a>0,则一元二次不等式02>++c bx ax 的解为______________________(7) 抛物线322--=x x y ,当-4≤x ≤2时,y 最大=_______y 最小=____________(8)如图所示,二次函数y=ax 2+bx+c 的图象开口向上,图象经过点(-1,2)和(1,0)且与y 轴交于负半轴,下列所给出结论:①a>0;②b>0;③c>0;④a+b+c=0,⑤ abc<0;⑥ 2a+b>0; ⑦a+c=1; ⑧a>1其中正确的结论的序号是二、几何22.(1)两点之间,线段最短(两点之间线段的长度,叫做这两点之间的距离); (2)点到直线之间,垂线段最短(点到直线的垂线段的长度叫做点到直线之间的距离); (3)两平行线之间的垂线段处处相等(这条垂线段的长度叫做两平行线之间的距离); (4)同平行于一条直线的两条直线平行(传递性); (5)同垂直于一条直线的两条直线平行。

23.中垂线:性质:在垂直平分线上的点到该线段两端点的距离相等;判定:到线段两端点距离相等的点在这线段的垂直平分线上。

24.角平分线:性质定理:角平分线上的点到该角两边的距离相等;判定定理:到角的两边距离相等的点在该角的角平分线上。

25.同角或等角的余角(或补角)相等。

相关文档
最新文档