不定方程和解不定方程应用题经典
《不定方程》专题教师版
不定方程精选题型(第一课时)一.例题精析:例1.一个水池装一个进水管和三个同样的出水管,先打开进水管,等水池存一些水后再打开出水管(进水管不关闭).若同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,则5分钟后水池空.那么出水管比进水管晚开40分钟.【分析】设出水管比进水管晚开x分钟,进水管的速度为y,出水管的速度为z,再根据进水量=出水量列出方程求解即可.解:例2.某果蔬饮料由果汁、疏菜汁和纯净水按一定质量比配制而成,纯净水、果汁、蔬菜汁的价格比为1:2:2,因市场原因,果汁、蔬菜汁的价格涨了15%,而纯净水的价格降了20%,但并没有影响该饮料的成本(只考虑购买费用),那么该种饮料中果汁与蔬菜汁的质量和与纯净水的质量之比为2:3.【分析】设纯净水、果汁、蔬菜汁的价格为a,2a,2a,设纯净水、果汁、疏菜汁按一定质量比为x:y;z,根据因市场原因,果汁、蔬菜汁的价格涨了15%,而纯净水的价格降了20%,但并没有影响该饮料的成本(只考虑购买费用),可列出方程求解.解:例3.某班有若干人参加一次智力竞赛,共a、b、c三题,每题或者得满分或者得0分.其中题a、题b、题c满分分别为20分、30分、40分.竞赛结果,每个学生至少答对了一题,三题全答对的有1人,只答对其中两道题的有15人,答对题a的人数与答对题b的人数之和为29,答对题a的人数与答对题c的人数之和为25,答对题b的人数与答对题c的人数之和为20,则这个班参赛同学的平均成绩是51分.【分析】设答对a的人数为x,答对b的人数为y,答对c 的人数为z,根据题意可得三元一次方程组,解出可得出x、y、z的值,进而算出参加竞赛的总人数,让总分数除以总人数即为竞赛的平均成绩.解:例4.山脚下有一个池塘,山泉以固定的流量向池塘里流淌,现在池塘中有一定的水,若一台A型抽水机1小时刚好抽完,若两台A型抽水机20分钟刚好抽完,若三台A型抽水机同时抽12分钟可以抽完.【分析】设池塘中的水有a,山泉每小时的流量是b,一台A 型抽水机每小时抽水量是x.根据一台A型抽水机则1小时后正好能把池塘中的水抽完,得x=a+b;根据用两台A型抽水机则20分钟正好把池塘中的水抽完,得×2x=a+b,用x表示a和b.设若用三台A型抽水机同时抽,则需要t小时恰好把池塘中的水抽完,再进一步根据3tx=a+bt求解解:二.课堂精练:1.古人对付秋燥的饮食良方:“朝朝淡盐水,晚晚蜂蜜水”.秋天即将来临时,某商人抓住商机购进甲、乙、丙三种蜂蜜,已知销售每瓶甲蜂蜜的利润率为10%,每瓶乙蜂蜜的利润率为20%,每瓶丙蜂蜜的利润率为30%.当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,商人得到的总利润率为20%.那么当售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时,这个商人得到的总利润率为.2.我校创造节插花艺术比赛中同学们制作了若干个甲、乙、丙三种造型的花篮.甲种花篮由9朵玫瑰花、16朵水仙花和10朵百合花搭配而成,乙种花篮由6朵玫瑰花、8朵水仙花搭配而成.丙种花篮由6朵玫瑰花、12朵水仙花和10朵百合搭配而成.这些花篮一共用了240朵玫瑰花,300朵百合花,则水仙花一共用了朵.3.冬季降至,贫困山区恶劣的地理环境加之其落后的交通条件,无疑将使得山区在漫长冬季里物资更加匮乏,“让冬天不冷让爱心永驻”,重庆市公益组织心驿家号召全市人民为贫困山区的孩子们捐赠过冬衣物,本次捐赠共收集了11600件棉衣、7500件羽绒服及防寒服若干,自愿者将所有衣物分成若干A、B、C类组合,由自愿者们分别送往交通极其不便利的各个山区,一个A类组合含有60件棉衣,80件防寒服和50件羽绒服;一个B类组合含有40件棉衣,40件防寒服;一个C类组合含有40件棉衣,60件防寒服,50件羽绒服;求防寒服一共捐赠了件.三.课后巩固:1.某超市销售水果时,将A、B、C三种水果采用甲、乙、丙三种方式搭配装箱进行销售,每箱的成本分别为箱中ABC三种水果的成本之和,箱子成本忽略不计.甲种方式每箱分别装A、B、C三种水果6kg,3kg,1kg,乙种方式每箱分别装A、B、C三种水果2kg,6kg,2kg.甲每箱的总成本是每千克A成本的12.5倍,每箱甲的销售利润率为20%,每箱甲比每箱乙的售价低25%,丙每箱在成本上提高40%标价后,打八折销售获利为每千克A成本的1.2倍,当销售甲、乙、丙三种方式的水果数量之比为2:3:3时,则销售的总利润率为.2.2018年9月,为鼓励学生努力学习,将来为国家作出更大贡献,重庆二外设立了“力宏奖学金”其中科技创新发明奖共有60人获奖,原计划一等奖5人,二等奖15人,三等奖40人,后来经校长会研究决定,在奖项总奖金不变的情况下,各顶级获奖人数实际调整为:一等奖10人,二等奖20人,三等奖30人.调整后一等奖每人奖金降低80元,二等奖每人奖金降低50元,三等奖每人奖金降低30元.调整前二等奖每人奖金比三等奖每人奖金多70元,则调整后一等奖每人奖金比二等奖每人奖金多元.3.A,B,C三种大米的售价分别为40元/kg、50元/kg、70元/kg,其中B,C两种大米的进价为40元/kg、50元/kg,经核算,三种大米的总利润相同,且A,B两种大米的销售量之和是C种大米之和的6倍,则A种大米的进价是.不定方程精选题型(第二课时)一.例题精析:例 1. 有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本10本,圆珠笔1支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需 1.05元.【分析】等量关系为:3×铅笔的单价+7×练习本的单价+1×圆珠笔的单价=3.15;4×铅笔的单价+10×练习本的单价+1×圆珠笔的单价=4.2,把两个方程相减后乘3,再让第2个方程减去得到的方程可得购铅笔、练习本、圆珠笔各1件共需的钱数.例2.晨光文具店有一套体育用品:1个篮球,1个排球和1个足球,一套售价300元,也可以单独出售,小攀同学共有50元、20元、10元三种面额钞票各若干张.如果单独出售,每个球只能用到同一种面额的钞票去购买.若小面额的钱的张数恰等于另两种面额钱张数的乘积,那么所有可能中单独购买三个球中所用到的钱最少的一个球是60元.【分析】设50元、20元、10元的钞票分别有x、y、z张,然后根据总售价列出一个方程,再根据三者之间的关系列出一个方程组成三元一次方程组,整理消掉z,再根据x、y都是整数讨论求解即可.例3.一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶,在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间,过了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上客车;再过t 分钟,货车追上了客车,则t=15.【分析】由于在某一时刻,货车在前,小轿车在后,客车在货车与小轿车的中间,所以设在某一时刻,货车与客车、小轿车的距离均为s千米,小轿车、货车、客车的速度分别为a、b、c(千米/分),由过了10分钟,小轿车追上了客车可以列出方程10(a﹣b)=s,由又过了5分钟,小轿车追上了货车列出方程15(a﹣c)=2s,由再过t分钟,客车追上了货车列出方程(t+10+5)(b﹣c)=s,联立所有方程求解即可求出t的值.例4.一次数学比赛,有两种给分方法:一种是答对一题给5分,不答给2分,答错不给分;另一种是先给40分,答对一题给3分,不答不给分,答错扣1分,用这两种方法评分,某考生都得81分,这张试卷共有22题.【分析】此题可以设答对a题,未答b题,答错c题未知数,列出方程组,进行推理可得:5a+2b=81①,40+3a﹣c=81②,由①②推出a的取值范围,并确定处a 的值,从而推出b、c的值,解决问题.二.课堂精练:1.某超市分两次购进一批月饼礼盒.第一次购买了A、B两种月饼礼盒,用去17670元;第二次购买了C、D两种月饼礼盒,用去11310元,其中A、B两种月饼礼盒的数量分别与C、D两种礼盒的数量相等,且A种月饼礼盒与D种礼盒的进价相同,B种月饼礼盒与C种礼盒的进价相同.若A、B两种礼盒的进价之和为315元,则该超市购进的这批礼盒一共有盒.2.我国的经济总量已居世界第二,人民富裕了,很多家庭都拥有多种车型.小明家有A、B、C三种车型,已知3辆A型车的载重量与4辆B型车的载重量之和刚好等于2辆C型车的载重量;4辆B型车的载重量与1辆C型车的载重量之和刚好等于6辆A型车的载重量,现有一批货物,原计划用C型车5次可全部运完,由于C型车另有运输任务,现在安排A型车单独装运9次,余下的货物由B型车单独装运刚好可以全部运完,则B型车需单独装运次(每辆车每次都满载重量).3.今年是天猫双十一创立以来的第11年,现在,已经彻底改变了中国人这一天的生活.某商家为迎接双十一活动准备购进一批服装,清理库存有A,B,C三种服装,其中服装C的数量为总库存数的,根据市场预测再购进A,B,C三种服装的数量之比为5:4:7,则购进后A的总数量为购进后三种服装总量的,B的新购数量与购进后三种服装总数量之比为2:17,则购进后B的总数量与购进后C的总数量之比为.三.课后巩固:1.春节即将来临时,某商人抓住商机购进甲、乙、两三种糖果,已知销售甲糖果的利润率为10%,乙糖果的利润率为20%,丙糖果的利润率为30%,当售出的甲、乙、丙糖果重量之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙糖果重量之比为3:2:1时,商人得到的总利率为20%.那么当售出的甲、乙、丙糖果重量之比为5:1:1时,这个商人得到的总利润率为.2.育德文具厂生产的一种文具套装深受学生喜爱,已知该文具套装一套包含有1个笔袋,2只笔,3个笔记本,巅峰文具超市向该厂订购了一批文具套装,需要厂家在15天内生产完该套装并交货.育德文具厂将员工分为A、B、C三个组,分别生产笔袋、笔、笔记本,他们于某天零点开始工作,每天24小时轮班连续工作(假设每小时工作效率相同),若干天后的零点A组完成任务,再过几天后(不少于一天)的中午12点B组完成低务,再过几天(不少于一天)后的6时C组完成任务.已知A、B、C三个组每天完成的任务数分别是270个、360个、360个,则巅峰文具超市一共订购了套文具套装.3.某水稻种植中心培育了甲、乙、丙三种水稻,将这三种水稻分别种植于三块大小各不相同的试验田里.去年,三种水稻的平均亩产量分别为300kg,500kg,400kg,总平均亩产量为450kg,且丙种水稻的的总产量是甲种水稻总产量的4倍,今年初,研究人员改良了水稻种子,仍按去年的方式种植,三种水稻的平均亩产量都增加了.总平均亩产量增长了20%,甲、丙两种水稻的总产量增长了30%,则乙种水稻平均亩产量的增长率为.不定方程精选题型(第三课时)一.例题精析:例1.购买甲7件,乙3件,丙4件商品共需25元.若购买甲5件,乙1件,丙商品2件共需13元.那么购买甲乙丙商品各一件需6元.【分析】先设一件甲商品x元,乙y元,丙z元,然后根据题意列出方程,再解方程即可.例2.2015年5月18日华中旅游博览会在汉召开.开幕式上用到甲、乙、丙三种造型的花束,甲种花束由3朵红花、2朵黄花和1朵紫花搭配而成,乙种花束由2朵红花和2朵黄花搭配而成,丙种花束由2朵红花、1朵黄花和1朵紫花搭配而成.这些花束一共用了580朵红花,150朵紫花,则黄花一共用了430朵.【分析】题中有两个等量关系:甲种盆景所用红花的朵数+乙种盆景所用红花的朵数+丙种盆景所用红花的朵数=580朵,甲种盆景所用紫花的朵数+丙种盆景所用紫花的朵数=150朵.据此可列出方程组,设步行街摆放有甲、乙、丙三种造型的盆景分别有x盆、y盆、z盆,用含x的代数式分别表示y、z,即可求出黄花一共用的朵数.例3.重庆修建园博园期间,需要A、B、C三种不同的植物,如果购买A种植物3盆、B种植物7盆、C种植物1盆,需付人民币315元;如果购买A种植物4盆、B种植物10盆、C种植物1盆,需付人民币420元;某人想购买A、B、C各1盆,需付人民币105元.【分析】设A种植物x元一盆、B种植物y元一盆、C种植物z元一盆,就可以得出3x+7y+z=315,4x+10y+z=420,再由这两个方程构成方程组,再解这个不定方程组求出其解即可.例4.一家小吃店原有三个品种的馄饨,其中菜馅馄饨售价为3元/碗,鸡蛋馅馄饨售价为4元/碗,肉馅馄饨售价为5元/碗,现该店新增了由上述三个品种搭配而成的混合馄饨,每碗都有10个馄饨.那么共有3种搭配得到定价是3.8元的混合馄饨(每种馄饨至少有一个).【分析】设菜馅馄饨x个,鸡蛋馅馄饨y个,鸡蛋馅馄饨z 个,根据题意列出方程组,解方程组即可.二.课堂精练:1.过年了,甲、乙、丙三人相约去买坚果,甲买了3袋A 坚果、3袋B坚果和1袋C坚果,乙买了4袋A坚果、1袋B坚果和1袋C坚果,丙买了3袋B坚果和7袋C坚果.三人结账时发现:甲和乙总共消费200元,丙比乙多消费100元,如果A、B、C三种坚果各3袋组合成坚果礼盒出售,每种坚果均可在原价的基础上打九折,则每盒坚果礼盒的售价是元.2. 甲、乙、丙三人到商店去买东西,每人都花了整数元,他们一共花了32元.甲、乙两人花费的差额(即两人所花钱的差的绝对值,下同)是19元,乙、丙两人花费的差额是7元,甲、丙两人花费的差额是12元,则甲花费了21元.【分析】由于19=7+12,则分两种情况:1、甲比乙少19,则乙比丙多7元,甲比丙少12元,2、甲比乙多19,则乙比丙少7元,甲比丙多12元,进而得出答案.3.现有甲、乙、丙三种含铜比例不同的合金.若从甲、乙、丙三种合金中各切下一块重量相等的合金,并将切下来的三块合金放在一起熔炼后就成为含铜量为12%的合金;若从甲、乙、丙三种合金中按3:2:5的重量之比各切取一块,将其熔炼后就成为含铜量为9%的合金.那么若从甲、乙两种合金中按重量之比为2:3各切取一块将其熔炼后的合金的含铜百分比是18%.【分析】设甲合金含铜量为x%、乙合金含铜量为y%、丙合金含铜量为z%.则依据“三块合金放在一起熔炼后就成为含铜量为12%的合金、甲、乙、丙三种合金中按3:2:5的重量之比各切取一块,将其熔炼后就成为含铜量为9%的合金.”列出方程组并解答.三.课后巩固:1.有甲、乙、丙三种货物,若购甲3件,乙7件,丙1件共需630元;若购甲4件,乙10件,丙1件共需840元,现购甲、乙、丙各一件共需210元.【分析】假设购甲每件x元,购乙每件y元,购丙每件z元.列方程组得:,然后求得x+y+z的值.2.有甲、乙、丙三种商品,如果购甲3件、乙2件,丙1件共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需150元钱.【分析】设出购甲、乙、丙三种商品各一件的未知数,建立方程组,整体求解.3.某商店将录音机、钢笔、书包三种物品降价促销.若购买录音机3台,钢笔6支,书包2个,共需302元;若买录音机5台,钢笔11支,书包3个,共需508元.则购买录音机1台、钢笔1支、书包1个共需96元.【分析】设收录机、钢笔和书包三种物品的单价分别为x、y 和z元,继而根据购买收录机3台,钢笔6支,书包2个共需302元,购买收录机5台,钢笔11支,书包3个共需508元,列出方程组,进而求解即可.第一课时参考答案与试题解析1.古人对付秋燥的饮食良方:“朝朝淡盐水,晚晚蜂蜜水”.秋天即将来临时,某商人抓住商机购进甲、乙、丙三种蜂蜜,已知销售每瓶甲蜂蜜的利润率为10%,每瓶乙蜂蜜的利润率为20%,每瓶丙蜂蜜的利润率为30%.当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,商人得到的总利润率为20%.那么当售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时,这个商人得到的总利润率为19%.【分析】设甲、乙、丙三种蜂蜜的进价分别为a、b、c,丙蜂蜜售出瓶数为cx,则当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,甲、乙蜂蜜售出瓶数分别为ax、3bx;当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,甲、乙蜂蜜售出瓶数分别为3ax、2bx;当售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时,甲、乙蜂蜜售出瓶数分别为5ax、6bx;列出方程,解方程求出,即可得出结果.【解答】解:设甲、乙、丙三种蜂蜜的进价分别为a、b、c,丙蜂蜜售出瓶数为cx,由题意得:,解得:,∴===19%,故答案为:19%.2.我校创造节插花艺术比赛中同学们制作了若干个甲、乙、丙三种造型的花篮.甲种花篮由9朵玫瑰花、16朵水仙花和10朵百合花搭配而成,乙种花篮由6朵玫瑰花、8朵水仙花搭配而成.丙种花篮由6朵玫瑰花、12朵水仙花和10朵百合搭配而成.这些花篮一共用了240朵玫瑰花,300朵百合花,则水仙花一共用了440朵.【分析】根据题意,可以列出相应的方程组,然后变形,即可求得水仙花一共用了多少朵.【解答】解:设甲种花篮a个,乙种花篮b个,丙种花篮c个,,化简,得,(①+②)×4,得16a+8b+12c=440,∵水仙花一共用了:16a+8b+12c,∴水仙花一共用了440朵,故答案为:440.3.冬季降至,贫困山区恶劣的地理环境加之其落后的交通条件,无疑将使得山区在漫长冬季里物资更加匮乏,“让冬天不冷让爱心永驻”,重庆市公益组织心驿家号召全市人民为贫困山区的孩子们捐赠过冬衣物,本次捐赠共收集了11600件棉衣、7500件羽绒服及防寒服若干,自愿者将所有衣物分成若干A、B、C类组合,由自愿者们分别送往交通极其不便利的各个山区,一个A类组合含有60件棉衣,80件防寒服和50件羽绒服;一个B类组合含有40件棉衣,40件防寒服;一个C类组合含有40件棉衣,60件防寒服,50件羽绒服;求防寒服一共捐赠了14600件.【分析】根据题意,可以先设A类组合x个,B类组合y 个,C类组合z个,然后根据题意可以列出三元一次方程组,从而可以得到x、z与y的关系,然后即可求得需要防寒服多少件,本题得以解决.【解答】解:设A类组合x个,B类组合y个,C类组合z 个,,化简,得,∴需要的防寒服为:80x+40y+60z=80(280﹣2y)+40y+60(2y﹣130)=22400﹣160y+40y+120y﹣7800=14600,故答案为:14600.4.某超市销售水果时,将A、B、C三种水果采用甲、乙、丙三种方式搭配装箱进行销售,每箱的成本分别为箱中ABC三种水果的成本之和,箱子成本忽略不计.甲种方式每箱分别装A、B、C三种水果6kg,3kg,1kg,乙种方式每箱分别装A、B、C三种水果2kg,6kg,2kg.甲每箱的总成本是每千克A成本的12.5倍,每箱甲的销售利润率为20%,每箱甲比每箱乙的售价低25%,丙每箱在成本上提高40%标价后,打八折销售获利为每千克A成本的1.2倍,当销售甲、乙、丙三种方式的水果数量之比为2:3:3时,则销售的总利润率为23.6%.【分析】分别设每千克A、B、C三种水果的成本为x、y、z,设丙每箱成本为m,然后根据题意将甲、乙、丙三种方式的每箱成本和利润用x表示出来即可求解.【解答】解:设每千克A、B、C三种水果的成本分别为x、y、z,依题意得:6x+3y+z=12.5x,∴3y+z=6.5x,∴每箱甲的销售利润=12.5x•20%=2.5x乙种方式每箱成本=2x+6y+2z=2x+13x=15x,乙种方式每箱售价=12.5x•(1+20%)÷(1﹣25%)=20x,∴每箱乙的销售利润=20x﹣15x=5x,设丙每箱成本为m,依题意得:m(1+40%)•0.8﹣m=1.2x,解得m=10x.∴当销售甲、乙、丙三种方式的水果数量之比为2:3:3时,总成本为:12.5x•2+15x•3+10x•3=100x,总利润为:2.5x•2+5x•3+1.2x•3=23.6x,销售的总利润率为=23.6%,故答案为:23.6%.5.2018年9月,为鼓励学生努力学习,将来为国家作出更大贡献,重庆二外设立了“力宏奖学金”其中科技创新发明奖共有60人获奖,原计划一等奖5人,二等奖15人,三等奖40人,后来经校长会研究决定,在奖项总奖金不变的情况下,各顶级获奖人数实际调整为:一等奖10人,二等奖20人,三等奖30人.调整后一等奖每人奖金降低80元,二等奖每人奖金降低50元,三等奖每人奖金降低30元.调整前二等奖每人奖金比三等奖每人奖金多70元,则调整后一等奖每人奖金比二等奖每人奖金多370元.【分析】设原来一等奖为x元,二等奖为y元,三等奖为z元,则调整后一等奖为(x﹣80)元,二等奖为(y﹣50)元,三等奖为(z﹣30)元.构建方程组,求出x﹣y即可解决问题.【解答】解:设原来一等奖为x元,二等奖为y元,三等奖为z元,则调整后一等奖为(x﹣80)元,二等奖为(y ﹣50)元,三等奖为(z﹣30)元.由题意:,整理得,∴x﹣y=400,∴调整后一等奖每人奖金比二等奖每人奖金多:(x﹣80)﹣(y﹣50)=x﹣y﹣30=370(元),故答案为370.6.A,B,C三种大米的售价分别为40元/kg、50元/kg、70元/kg,其中B,C两种大米的进价为40元/kg、50元/kg,经核算,三种大米的总利润相同,且A,B两种大米的销售量之和是C种大米之和的6倍,则A种大米的进价是35.【分析】可设A种大米的进件是m元/kg,且A种大米销售了xkg,B大米销售了ykg,则C大米销售了(x+y)kg,根据三种大米的总利润相同,列出方程.先解方程得出x =3y,从而求出m的值.【解答】解:设A种大米的进件是m元/kg,且A种大米销售了xkg,B大米销售了ykg,则C大米销售了(x+y)kg,三种大米每千克的利润分别是(40﹣m)元、10元、20元,根据题意知:10y=(40﹣m)x=20×(x+y),即由10y=(x+y),解得x=2y,代入10y=(40﹣m)x中,解得m=35.故答案为:35.第二课时1.某超市分两次购进一批月饼礼盒.第一次购买了A、B 两种月饼礼盒,用去17670元;第二次购买了C、D两种月饼礼盒,用去11310元,其中A、B两种月饼礼盒的数量分别与C、D两种礼盒的数量相等,且A种月饼礼盒与D种礼盒的进价相同,B种月饼礼盒与C种礼盒的进价相同.若A、B两种礼盒的进价之和为315元,则该超市购进的这批礼盒一共有184盒.【分析】根据A、B两种礼盒的进价之和为315元,设A 种月饼礼盒的进价为x元/盒,可以表示B种月饼礼盒的进价,因为A种月饼礼盒与D种礼盒的进价相同,B种月饼礼盒与C种礼盒的进价相同,可以表示C和D礼盒的进价,根据A、B两种月饼礼盒的数量分别与C、D两种礼盒的数量相等,再设两个未知数表示A种月饼礼盒和B种月饼礼盒,列方程组,根据题意可知:只要知道2y+2z的值就可以,因此将方程组相加可得结论.【解答】解:设A种月饼礼盒的进价为x元,则B种月饼礼盒与C种礼盒的进价都是(315﹣x)元,D种月饼礼盒的进价为x元,设购进y盒A种月饼礼盒,z盒B种月饼礼盒,则购进y 盒C种月饼礼盒,z盒D种月饼礼盒,根据题意得:,化简得:,①+②得:315z+315y=28980,y+z=92,∴2y+2z=184,答:则该超市购进的这批礼盒一共有184盒.故答案为:184.2.我国的经济总量已居世界第二,人民富裕了,很多家庭都拥有多种车型.小明家有A、B、C三种车型,已知3辆A型车的载重量与4辆B型车的载重量之和刚好等于2辆C型车的载重量;4辆B型车的载重量与1辆C型车的载重量之和刚好等于6辆A型车的载重量,现有一批货物,原计划用C型车5次可全部运完,由于C型车另有运输任务,现在安排A型车单独装运9次,余下的货物由B型车单独装运刚好可以全部运完,则B型车需单独装运8次(每辆车每次都满载重量).【分析】设每辆A型车满载重量为a,设每辆B型车满载重量为b,设每辆C型车满载重量为c,原计划用C型车5次可全部运完,由于C型车另有运输任务,现在安排A型车单独装运9次,余下的货物由B型车单独装运刚好可以全部运完,则B型车需单独装运x次,根据题意列出方程组解得x便可.【解答】解:设每辆A型车满载重量为a,设每辆B型车满载重量为b,设每辆C型车满载重量为c,原计划用C 型车5次可全部运完,由于C型车另有运输任务,现在安排A型车单独装运9次,余下的货物由B型车单独装运刚好可以全部运完,则B型车需单独装运x次,根据题意得,,②﹣①,得9a=3c,∴a=c,。
小升初专练-数论问题-不定方程的分析求解通用版(含答案)
小升初专练-数论问题-不定方程的分析求解【知识点归纳】1.不定方程的定义:不定方程,是指未知数的个数多于方程个数,且未知数受到某些限制(如要求是有理数、整数或正整数等等)的方程或方程组.2.一般是求解一次不定方程:关于ax+by=c的不定方程,(a,b)为a,b的最大公约数,如果有整数特解(x0,y0),则该方程所有整数解为:x=x0-kb÷(a,b),y=y0+ka÷(a,b),k为整数.例如:37x+107y=25的一组整数特解为(-8,3),(37,107)=1则其所有整数解:x=-8-107ky=3+37k.【经典题型】例1:某电视台在黄金时段的2分钟广告时间内,计划播长度为15秒和30秒的两种广告.15秒的广告每播一次收费0.6万元,30秒的广告每播一次收费1万元.若要求每种广告播放不少于两次,则电视台在播放时收益最大的播放方式是( )A、15秒的广告播放4次,30秒的广告播放2次B、15秒的广告播放2次,30秒的广告播放4次C、15秒的广告播放2次,30秒的广告播放3次D、15秒的广告播放3次,30秒的广告播放2次分析:本题中的等量关系:15秒×次数+30×次数=2×60,根据这个等量关系列出方程,然后再根据“要求每种广告播放不少于2次,则电视台在播放时收益最大”这个要求分析解的情况.解:设15秒的广告播x次,30秒的广告播y次.则15x+30y=120,因为每种广告播放不少于2次,所以x=2,y=3,或x=4,y=2;当x=2,y=3时,收益为:2×0.6+3×1=4.2(万元);当x=4,y=2时,收益为4×0.6+1×2=4.4(万元),所以电视台在播放时收益最大的播放方式是:15秒的广告播放4次,30秒的广告播放2次.故选:A.点评:解题关键是弄清题意,找到合适的等量关系,合理分析得出结论.一.填空题1.假期时,22名同学相约去划船,小船限乘4人,大船限乘6人,如果每条船都坐满,可以租 条小船和 条大船.2.现在有5角和1元硬币若干枚,面值总和共10元,5角和1元硬币各有 、 枚(写出所有可能).3.有127个乒乓球分装在大、小两种盒子里,大盒每盒装13个,小盒每盘装5个至少需要 个大盒子才能恰好把这些球装完4.小名准备去商店买3支装和5支装的铅笔64支,共有 种不同的买法.5.、都是自然数,如果,则 .6.两位老师带着40位同学去公园划船,大船每条坐4人,小船每条坐3人.租 条大船和 条小船正好坐满.(两种船都租).7.将一根长为374厘米的合金铝管截成若干根36厘米和24厘米两种型号的短管,加工损耗忽不计,问:剩余部分的管子最少是 厘米.8.二元一次方程有 个解,则正整数范围内的解是 .9.旅游团有29人到旅馆住宿,住3人间和2人间(每个房间不能有空床位),有 种不同的安排.10.一个质数的3倍与另一个质数的2倍之和等于200,这两个质数的和是 .11.如果一个长方形的长、宽都是整数(长与宽不相等).且周长与面积的数值相等,那么这个长方形的面积的数值等于 .12.数学测试卷有20道题.做对一道得7分;做错一道扣4分;不答得0分.张红得了100分,她有 道题没答.13.1分、2分、5分的硬币共20枚,总值0.50元,其中2分的硬币至少有 枚.14.每张方桌放有12个盘子,每张圆桌放有13个盘子,若共有盘子122个,则圆桌和方桌共有 张.15.晶晶有5元和2元两种人民币若干张.她要拿37元,有 种不同的拿法.16.若和均为质数,且,则 , .17.小强买彩色笔枝,付元,都是非0自然数),营业员说:“你如果多买8枝,我就总共收你8元,这相当于每买10枝你就可以便宜1元.”那么 枝, 元.18.月季花每盆5元,茉莉花每盆3元,如果两种花都买,买 盆月季花和 盆茉莉花共用27元...x y 133515x y +=x y +=27x y +=p q 3513135p q +=p =q =a m (a m a =m =19.某电视台在每天晚上黄金时段的3分钟内插播时长为20秒和40秒的两种广告,20秒广告每次收费7000元,40秒广告每次收费12000元,若要求每种广告播放不少于2次,且电视台选择益最大的播放式式,则在这一天黄金时段3分钟内插播广告的最大收益是 元.20.现有2元和5元的人民币,要凑成100元钱,有 种凑法.二.解答题21.16名同学去划船,可以怎样租船?先借助表格思考,再按要求填空.方案序号座位数正好坐满14条0条16234522.有19人到宾馆住宿,有三人间和两人间两种房型,本着节约的原则,每个房间不能有空床位,请你在如表中填写具体的安排.三人间间两人间间23.你玩过抱团游戏吗?游戏规则:可6人抱一堆,也可4人抱一堆.如果有38人,怎样抱团刚好一人也不剩下.请用自己的方式找出所有可能的方案,做到不重复、不遗漏.24.学校28名学生去公园划船,有两种船可供选择,小船每条可坐4人,大船每条可坐6人,如果每条船都坐满,可以怎样租船?请设计租船方案,并填入下表.租船方案大船小船方案一 条 条方案二 条 条//方案三 条 条25.解方程.①;②求方程的正整数解.26.小明要买一本49元的书,他手上有贰元和伍元的纸币各10张.请问他有几种付钱方法?(不用找钱)27.一群林场工人与学生一起在去年冬天挖好的坑中植树,平均1名林场工人1小时可植树15棵,1名学生1小时可植树11棵.但是,当树苗与肥料运来时,林场工人的五分之一和学生的五分之一必须停止植树去帮助卸运树苗和肥料.这天,共植树8小时,其中第一小时和最后一小时有树苗,肥料运来,结果共植树3382棵.那么林场工人和学生的人数分别是多少?28.晓丽有50元和20元的纸币若干张,她要拿出270元,有多少种不同的拿法?29.点燃的蜡烛每分钟燃烧的长度一定,长为的蜡烛,六点燃10分钟,还剩下,设点燃分钟,蜡烛还剩下,求:(1)与之间的表达式;(2)此蜡烛点燃20分钟后还剩下多少?(3)几分钟能燃烧完?30.某人打靶,8发打了53环,全部命中在10环、7环和5环.他命中10环、7环和5环各几发?31.38人去划船,有两种船可租.一种小船限坐4人,另一种小船可坐6人,有多少种不同的安排?(正好坐满)32.王老师在新华书店购买《童话精选》和《科学家的故事》一共用了116元钱.这两种书各买了多少本?33.取哪些整数时,关于的方程的解介于2和5之间?34.已知、是正整数,的度数等于,的度数等于,且、互为补角,求、所能取的所有值的和.35.某地收取电费的标准是:每月用电不超过50度,每度收5角;如果超过50度,超出部分按每度411154220x ⨯-=7543x y +=21cm 18cm x ycm y x k x 332x k x -=+x y 1∠35x +2∠32y -1∠2∠x y8角收费.某月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?36.有两轮车和三轮车,共有31个轮子,两轮车和三轮车各几辆?小升初专练-数论问题-不定方程的分析求解参考答案一.填空题1.解:,即可以租1条大船和4条小船;,即可以租3条大船和1条小船;答:可以租1条大船和4条小船,或可以租3条大船和1条小船.答案:4(或(或.2.解:设5角硬币有枚,1元硬币有枚,为偶数,如果,则;如果,则;如果,则;如果,则;如果,则;如果,则;如果,则;如果,则;如果,则;如果,则;如果,则;答案:、2、4、6、8、10、12、14、16、18、;、9、8、7、6、5、4、3、2、1、.3.解:设大盒有个,小盒有个,226144=⨯+⨯226341=⨯+⨯1)13)x y 0.510x y +=100.5y x=-x 0x =10y =2x =9y =4x =8y =6x =7y =8x =6y =10x =5y =12x =4y =14x =3y =16x =2y =18x =1y =20x =0y =(020)(100)x y 135127x y +=127513yx -=因为都是整数,所以必须是13的倍数,所以,是这个方程的整数解,即大盒有9个,小盒有2个。
二元一次方程组第4讲竞赛—不定方程、方程组应用题
二元一次方程组——不定方程、方程组应用题1、若一个方程中出现两个或更多个未知数,则称该方程为不定方程。
这个“不定方程”是指方程解的不确定性。
2、若一个方程组中未知数的个数比方程的个数多,则称该方程组为不定方程组。
这个不定也是指方程组的解的不确定。
3、形如ax+by=c (a 、b 、c 都是整数,且ab ≠0)的方程称为二元一次不定方程,二元一次不定方程是最简单的不定方程。
一些复杂的不定方程(组)常常转化为二元一次不定方程问题加以解决,设a 、b 、c 、d 为整数,则不定方程ax+by=c 有如下两个重要命题:(1)若(a ,b )=d ,且d 不能整除c ,则不定方程ax+by=c 没有整数解。
(2)若00,x y 是方程ax+by=c 且(a ,b )=1的一组整数解(称特解),则00x x bt y y at =+⎧⎨=-⎩(t 为整数)是方程的全部整数解(称通解)。
4、解不定方程方程(组)没有固定的方法,需要根据方程(组)的特点进行恰当的变形,并且灵活运用:奇偶性、 整数的整除性质、分离整系数、穷举、不等式分析等方法。
5、求整系数不定方程ax+by=c 的整数解,通常有以下几个步骤:(1)判断有无整数解(2)求一个特解(3)写出通解(4)由整数t 同时要满足条件(不等式组),代入(2)中表达式,写出不定方程的正整数解。
6、解不定方程组的基本方法:(1)视某个未知数为常数,将其他未知数用这个未知数的代数式表示(2)通过消元,将问题转化为不定方程求解(3)运用整体思想方法求解。
【练习1】判断下列不定方程是否有整数解,若有求出其通解①2x+4y=7 ②2x+5y=1【练习2】求不定方程31x+23y=185的整数解。
【练习3】①求方程7x+4y=100的正整数解: ②求方程6x+22y=90的非负整数解【练习4】求方程组102518x y z x y z ++=⎧⎨++=⎩的非负整数解。
【练习5】求方程3x-y-6z=2的整数解。
2018小学奥数专题一:不定方程的经典题型以及解题方法
2018小学奥数专题一:不定方程的经典题型以及解题方法不定方程的概念:当方程的个数比方程中未知数的个数少时,我们就称这样的方程为不定方程。
如5x-3y=9就是不定方程。
这种方程的解是不确定的。
如果不加限制的话,它的解有无数个;如果附加一些限制条件,那么它的解的个数就是有限的了。
如5x-3y=9中,如果限定x、y的解是小于5的整数,那么解就只有x=3,Y=2这一组了。
因此,研究不定方程主要就是分析讨论这些限制条件对解的影响。
不定方程的解法:解不定方程时一般要将原方程适当变形,把其中的一个未知数用另一个未知数来表示,然后再一定范围内试验求解。
解题时要注意观察未知数的特点,尽量缩小未知数的取值范围,减少试验的次数。
对于有3个未知数的不定方程组,可用削去法把它转化为二元一次不定方程再求解。
解答应用题时,要根据题中的限制条件(有时是明显的,有时是隐蔽的)取适当的值。
不定方程的经典例题:例题一:一个商人将弹子放进两种盒子里,每个大盒子装12个,每个小盒子装5个,恰好装完。
如果弹子数为99,盒子数大于9,问两种盒子各有多少个?解题方法:两种盒子的个数都应该是自然数,所以要根据题意列出不定方程,再求出它的自然数解。
设大盒子有x个,小盒子有y个,则12x+5y=99(x>0,y>0,x+y>9), y=(99-12y)÷5经检验,符合条件的解有(X=12,Y=15)和(X=7,Y=3),所以,大盒子有2个,小盒子有15个,或大盒子有7个,小盒子有3个。
例题二:买三种水果30千克,共用去80元。
其中苹果每千克4元,橘子每千克3元,梨每千克2元。
问三种水果各买了多少千克?解题方法:设苹果买了x千克,橘子买了y千克,梨买了(30-x -y)千克。
根据题意得:4x+3y+2×(30-x-y)=82x=10-y/2由式子可知:y<20,则y必须是2的倍数,所以y可取2、4、6、8、10、12、14、16、18。
18题不定方程专题汇总(答案)
1.小明今年五一节去三峡广场逛水果超市,他分两次购进了A 、B 两种不同单价的水果.第一次购买A 种水果的数量比B 种水果的数量多50%,第二次购买A 种水果的数量比第一次购买A 种水果的数量少60%,结果第二次购买水果的总数量比第一次购买水果的总数量多20%,且第二次购买A 、B 水果的总费用比第一次购买A 、B 水果的总费用少10%(两次购买中A 、B 两种水果的单价不变),则B 种水果的单价与A 种水果的单价的比值是______. 【答案】12【分析】根据水果数量的等量关系,可设第一次购买B 种水果数量为x 个,用x 分别表示第一次购买A 种水果的数量和第二次购买两种水果的数量.再分别设两种水果的单价为a 元和b 元,根据两次购买价钱的等量关系列方程,所列方程中x 是可以约去的,化简即得到a 与b 的数量关系. 【详解】解:设第一次购买B 种水果数量为x ,∴第一次购买A 种水果的数量为:3(150%)2x x +=, ∴第二次购买A 种水果数量为:3323(160%)2255x xx -==, ∴第二次购买水果的总数量为:356()(120%)3225x x xx ++==, ∴第二次购买B 种水果个数为:312355x x x -=,设A 种水果单价为a 元,B 种水果单价为b 元,依题意得:3312()(110%)255a x bx a xb x +-=+, 化简得:2a b =∴12b a =, B ∴水果的单价与A 水果的单价的比值是12,故答案为:12. 【点睛】本题考查了一次方程的应用,在缺少确切数值的情况下,可先假设等量关系中的关键量为未知数,再列方程化简求值.2.为了适合不同人群的口味,某商店对苹果味、草莓味、牛奶味的糖果混合组装成甲、乙两种袋装进行销售.甲种每袋装有苹果味、草莓味、牛奶味的糖果各10颗,乙种每袋装有苹果味糖果20颗,草莓味和牛奶味糖果各5颗.甲、乙两种袋装糖果每袋成本价分别是袋中各类糖果成本之和.已知每颗苹果味的糖果成本价为0.4元,甲种袋装糖果的售价为23.4元,利润率为30%,乙种袋装糖果每袋的利润率为20%.若这两种袋装的销售利润率达到24%,则该公司销售甲、乙两种袋装糖果的数量之比是__________. 【答案】5:9 【分析】根据题意,先求出1颗草莓味和1颗牛奶味糖果的成本之和,然后求出乙种糖果的成本价,然后设甲种糖果x 袋,乙种糖果y 袋,通过利润的关系,列出方程,解方程,即可求出甲、乙两种糖果数量之比. 【详解】解:设1颗草莓味糖果m 元,1颗牛奶味糖果n 元,则,10(0.4)(130%)23.4m n ++⨯+=,解得: 1.4m n +=,∴甲种糖果的成本价:10(0.4 1.4)18⨯+=元∴乙种糖果的成本价:200.45()85 1.415m n ⨯++=+⨯=元, 设甲种糖果有x 袋,乙种糖果有y 袋,则,1830%1520%(1815)24%x y x y •+•=+•,解得:59x y =;∴该公司销售甲、乙两种袋装糖果的数量之比是59. 故答案为59. 【点睛】本题考查了二元一次方程的应用,利润、成本价与利润率之间的关系的应用,理解题意得出等量关系是解题的关键. 3.“八月十五月儿圆,中秋月饼香又甜”,每中秋,皓月当空,阖家团聚,品饼赏月,谈天说地,尽享天伦之乐.今年中秋节前夕某商场结合当地情况,决定启动一笔专项资金用于月饼进货,经过一段时间,该商场已购进的京式、广式、苏式月饼总价之比为2:3:4,根据市场需求,将把余下的资金继续购进这三种月饼,经测算需将余下资金的13购买京式月饼,则京式月饼的总价将达到这三种月饼总价的415.为了使广式月饼总价与苏式月饼的总价达到9:13,则该商场还需购买的广式月饼总价与苏式月饼的总价之比是_____. 【答案】3:5 【分析】由题意设已购进京式月饼价格2m ,剩余资金为n ,根据题意列出方程进行解答即可. 【详解】解:设已购进京式月饼价格2m ,剩余资金为n ,由题意可得:可得:①()1429315m n m n +=+,解得:n=6m , ②23a b n +=,可得:a+b=4m , ③1349(2)113m a m b m n m n m +++=+-+=, ④(3m+a ):(4m+b )=9:13,93135342222m a m a m m b m b m +==+==,,,,∴a :b=3:5,答:该商场还需购买的广式月饼总价与苏式月饼的总价之比是3:5. 故答案为:3:5. 【点睛】本题考查多次方程问题,解题的关键是根据题意列出多个方程得出其关系式解答.4.为了适合不同人群的需求,某公司对每日坚果混合装进行改革.甲种每袋装有10克核桃仁,10克巴旦木仁,10克黑加仑;乙种每袋装有20克核桃仁,5克巴旦木仁,5克黑加仑.甲乙两种袋装干果每袋成本价分别为袋中核桃仁、巴旦木仁、黑加仑的成本价之和.已知核桃仁每克成本价0.04元,甲每袋坚果的售价为5.2元,利润率为30%,乙种坚果每袋利润率为20%,若这两种袋装的销售利润率达到24%,则该公司销售甲、乙两种袋装坚果的数最之比是____. 【答案】13∶30 【分析】根据题意,先求出1克巴旦木和1克黑加仑的成本之和,然后求出乙种干果的成本,再设甲种干果x 袋,乙种干果y 袋,通过利润的关系,列出方程解方程即可求出甲、乙两种干果数量之比. 【详解】解:设1克巴旦木成本价m 元,和1克黑加仑成本价n 元,根据题意得 10(0.04 +m+n) ×(1+30%)=5.2 解得:m+n=0.36甲种干果的成本价:10×(0.04+0.36)=4 乙种干果的成本价:20×0.04+5×0.36=2.6乙种干果的售价为:2.6×(1+20 %)=3.12设甲种干果有x袋,乙种干果有y袋,则(4x+2.6y)(1+24 %)=5.2x+3.12y解得:1330 xy=故答案为:该公司销售甲、乙两种袋装坚果的数最之比是13∶30.【点睛】本题考查了二元一次方程的应用,利用利润、成本价与利润率之间的关系列出方程,理解题意得出等量关系是解题的关键.5.某科技公司推出一款新的电子产品,该产品有三种型号.通过市场调研后,按三种型号受消费者喜爱的程度分别对A型、B型、C型产品在成本的基础上分别加价20%,30%,45%出售(三种型号的成本相同).经过一个季度的经营后,发现C型产品的销量占总销量的37,且三种型号的总利润率为35%.第二个季度,公司决定对A型产品进行升级,升级后A产品的成本提高了25%,销量提高了20%;B、C产品的销量和成本均不变,且三种产品在二季度成本基础上分别加价20%,30%,45%出售,则第二个季度的总利润率为______.【答案】34%【分析】由题意得出A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A型、B型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意列出方程组,解得13x zy z⎧=⎪⎨⎪=⎩;第二个季度A产品成本为(1+25%)a=54a,B、C的成本仍为a,A产品销量为(1+20%)x=65x,B产品销量为y,C产品销量为z,则第二个季度的总利润率为:5620%30%45%455645a x ay aza x ay az⨯⨯++⨯++=34%.【详解】解:由题意得:A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A型、B型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意得:20%ax30%ay45%az35%a(x y z)3(x y z)z7++=++⎧⎪⎨++=⎪⎩,解得:13x z y z⎧=⎪⎨⎪=⎩,第二个季度A产品的成本提高了25%,成本为:(1+25%)a=54a,B、C的成本仍为a,A产品销量为(1+20%)x=65x,B产品销量为y,C产品销量为z,∴第二个季度的总利润率为:5620%30%45%455645a x ay aza x ay az⨯⨯++⨯++=0.30.30.451.5x y zx y z++++=10.30.30.45311.53z z zz z z⨯++⨯++=34%,故答案为:34%.【点睛】本题考查了利用二元一次方程组解实际问题,正确理解题意,设出未知数列出方程组是解题的关键.6.某商店新进一批衬衣和数对暖瓶(一对为2件),暖瓶的对数正好是衬衣件数的一半,每件衬衣的进价是40元,每对暖瓶的进价是60元(暖瓶成对出售),商店将这批物品以高出进价10%的价格售出,最后留下了17件物品未卖出,这时,商店发现卖出物品的总售价等于所有货物总进价的90%,则最初购进这批暖瓶_____对.【答案】22.【分析】设购进暖瓶x对,则有2x只暖瓶,衬衫2x件,留下的17件物品中有a只暖瓶,(17﹣a)件衬衫,根据这批物品的售价数恰好等于买进这批物品所花的钱数的90%可列出方程,根据x、a的取值范围分别讨论求适合题意的解即可.即可得到这17件物品是什么及它们的价值.【详解】设购进暖瓶x对,则有2x只暖瓶,衬衫2x件,留下的17件物品中有a只暖瓶,(17﹣a)件衬衫,∵每件衬衣的进价是40元,每对暖瓶的进价是60元,商店将这批物品以高出进价10%的价格售出,∴暖瓶每只售价为30×(1+10%)=33(元),衬衫每件售价为40×(1+10%)=44(元),∴总售价为=33×(2x﹣a)+44(2x﹣17+a)=154x+11a﹣748(元),根据题意得:154x+11a﹣748=90%(40×2x+60x),整理得:28x+11a=748,∵a为偶数,且17﹣a≥0,∴a为2,4,6,8,10,12,14,16,当a=2,x的值为分数,不合题意;当a=4,x的值为分数,不合题意;当a=6,x的值为分数,不合题意;当a=8,x的值为分数,不合题意;当a=10,x的值为分数,不合题意;当a=12,x=22,当a=14,x的值为分数,不合题意;当a=16,x的值为分数,不合题意;∴即只有当a=12,x=22时符合题意.答:最初购进这批暖瓶22对,故答案为:22.【点睛】本题考查二元一次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再根据实际情况求解.7.小明同学为筹备缤纷节财商体验活动,准备在商店购入小商品A和B,已知A和B的单价和为25元,小明计划购入A的数量比B的数量多3件,但一共不超过28件.现商店将A的单价提高20%,B打8折出售,小明决定将A、B的原定数量对调,这样实际花费比原计划少6元.已知调整前后的价格和数量均为整数,求小明原计划购买费用为_____元.【答案】311【分析】设小商品A的单价为x元/件,则B商品的单价为(25-x)元/件,计划购买小商品Aa件,则B商品为(a-3)件,根据等量关系:实际花费只比计划少6元,列出方程,再根据整数的性质求解即可.【详解】解:设小商品A的单价为x元/件,则B商品的单价为(25﹣x)元/件,计划购买小商品Aa件,则B商品为(a﹣3)件,(1+20%)x(a﹣3)+0.8a(25﹣x)+6=xa+(25﹣x)(a﹣3),解得x=77.4 3.8 30.8aa-+,由题意得:a+a﹣3≤28a≤16.5,∵x和a都是整数,∴当a=14时,x=12,小明原计划购买费用为:xa+(25﹣x)(a﹣3)=14×12+13×11=311.故答案为311【点睛】本题考查了一元一次方程的应用,准确理解题意列出方程是解题的关键.8.今年年初,受新冠肺炎疫情的影响,人们对病毒的防范意识加强,市面上的洗手液也备受欢迎,小王计划购进A型、B型、C型三种洗手液共50箱,其中B型洗手液数量不超过A型洗手液数量,且B型洗手液数量不少于C型洗手液数量的一半.已知A型洗手液每箱60元,B型洗手液每箱80元,C型洗手液每箱100元.在价格不变的条件下,小王实际购进A型洗手液是计划的56倍,C型洗手液购进了12箱,结果小王实际购进三种洗手液共35箱,且比原计划少支付1240元,则小王实际购进B型洗手液_____箱.【答案】8【分析】设小王计划购进A型洗手液x箱,B型洗手液y箱,则计划购进C型洗手液(50﹣x﹣y)箱,实际购进A型洗手液5 6x箱,B型洗手液(35﹣12﹣56x)箱,根据实际比原计划少支付1240元,即可得出关于x,y的二元一次方程组,结合x,y均为正整数即可得出x,y的值,再由y≤x,y≥12(50﹣x﹣y)可确定x,y的值,将其代入(35﹣12﹣56x)中即可求出结论.【详解】解:设小王计划购进A型洗手液x箱,B型洗手液y箱,则计划购进C型洗手液(50﹣x﹣y)箱,实际购进A型洗手液56x箱,B型洗手液(35﹣12﹣56x)箱,依题意,得:60x+80y+100(50﹣x﹣y)﹣[60•56x+80(35﹣12﹣56x)+100×12]=1240,整理,得:7x+6y=216,∴y=36﹣76x.∵x,y均为正整数,∴x为6的倍数,∴629xy=⎧⎨=⎩,1222xy=⎧⎨=⎩,1815xy=⎧⎨=⎩,248xy=⎧⎨=⎩,301xy=⎧⎨=⎩.又∵y≤x,y≥12(50﹣x﹣y),∴1815 xy=⎧⎨=⎩,∴35﹣12﹣56x=8.故答案为:8.【点睛】本题考查了二元一次方程的应用及整数解的情况,根据题意列出等量关系和整数解的情况判断解得情况.9.国庆期间某外地旅行团来重庆的网红景点打卡,游览结束后旅行社对该旅行团做了一次“我最喜爱的巴渝景点”问卷调查(每名游客都填了调查表,且只选了一个景点),統计后发现洪崖洞、长江索道、李子坝轻轨站、磁器口榜上有名.其中选李子坝轻轨站的人数比选磁器口的少8人;选洪崖洞的人数不仅比选磁器口的多,且为整数倍;选磁器口与洪崖洞的人数之和是选李子坝轻轨站与长江索道的人数之和的5倍;选长江索道与洪崖洞的人数之和比选李子坝轻轨站与磁器口的人数之和多24人.则该旅行团共有_______人. 【答案】48 【分析】设选洪崖洞的有a 人,选长江索道的有b 人,选李子坝轻轨站的有c 人,选磁器口的有d 人,根据题意可列出4个方程,然后整理得到不含c 的两个方程,再分情况讨论整数倍x 的值,得到符合题意的解即可. 【详解】解:设选洪崖洞的有a 人,选长江索道的有b 人,选李子坝轻轨站的有c 人,选磁器口的有d 人, 根据题意可列方程: c=d ﹣8,a=xd (x >1,且为整数), d+a=5(b+c ), b+a=c+d+24, 整理可得:283727d ba b=-⎧⎨=-⎩, 当x=2时,解得b=16,d=﹣20,不符合题意,舍去;当x=3时,解得b=6,d=10,a=30,c=2,则旅行团共有6+10+30+2=48人; 当x >3时,求得的b 均为负数,不符合题意. 故答案为48. 【点睛】本题主要考查列方程,解多元一次方程,解此题的关键在于根据题意准确列出方程.10.某中学去年举办竞赛,颁发一二三等奖各若干名,获奖人数依次增加,各获奖学生获得的奖品价值依次减少(奖品单价都是整数元),其中有3人获得一等奖,每人获得的奖品价值34元,二等奖的奖品单价是5的倍数,获得三等奖的人数不超过10人,并且获得二三等奖的人数之和与二等奖奖品的单价相同.今年又举办了竞赛,获得一二三等奖的人数比去年分别增加了1人、2人、3人,购买对应奖品时发现单价分别上涨了6元、3元、2元.这样,今年购买奖品的总费用比去年增加了159元.那么去年购买奖品一共花了__________元. 【答案】257 【分析】根据获奖人数依次增加,获得二三等奖的人数之和与二等奖奖品的单价相同,以及二等奖奖品单价为5的倍数,可知二等奖的单价为10或15,分别讨论即可得出答案. 【详解】设二等奖人数为m ,三等奖人数为n ,二等奖单价为a ,三等奖单价为b ,根据题意列表分析如下:∵今年购买奖品的总费用比去年增加了159元∴()()()()4402332343=159⨯++++++-⨯--m a n b ma nb 整理得322389+++=m a n b∵310<<≤m n ,m n a +=,a 为5的倍数 ∴a 的值为10或15 当=10a 时,4m =,6n =代入322389+++=m a n b 得3421026389⨯+⨯+⨯+=b , 解得15=>b a 不符合题意,舍去; 当=15a 时,有3种情况:①5m =,10n =,代入322389+++=m a n b 得35215210389⨯+⨯+⨯+=b ,解得8=<b a ,符合题意此时去年购买奖品一共花费334515108257⨯+⨯+⨯=元 ②6m =,9n =,代入322389+++=m a n b 得3621529389⨯+⨯+⨯+=b ,解得233=b ,不符合题意,舍去 ③7m =,8n =,代入322389+++=m a n b 得3721528389⨯+⨯+⨯+=b ,解得223b =,不符合题意,舍去 综上可得,去年购买奖品一共花费257元 故答案为:257. 【点睛】本题考查了方程与不等式的综合应用,难度较大,根据题意推出a 的取值,然后分类讨论是解题的关键.11.一年之计在于春,春天,是万物复苏的开始,是播种的季节,小刘准备在自家农田种植一批新鲜蔬菜,经过市场调研,他了解到,丝瓜籽每包3元,茄子籽每包4元,白菜籽1元7包,且蔬菜籽必须整包购买,小刘计划购买这三种蔬菜籽共100包(三种均有购买),经过计算,恰好需要m 元.其中购买丝瓜籽的数量不少于3包且不超过6包,购买茄子籽的数量不超过19包.实际购买时,由于商家储存的蔬菜籽数量有限,小刘并末购满100包,其中购买白菜籽支付10元,购买丝瓜籽的实际数量是计划数量的两倍,购买茄子籽若干包,这样小刘实际支付比计划少12元,则小刘实际购买三种蔬菜籽共_____包.【答案】84.【分析】设计划买丝瓜籽数量为a包,茄子籽b包,白菜籽c包,则3≤a≤6,0≤b≤19,c为7的倍数,且均为整数,根据题意,a+b+c=100,分情况列出所有可能的a,b,c,再分别计算出各种条件下的计划支付价格m,设实际购买丝瓜数量为x包,茄子籽y包,则实际:6≤x≤12,0≤y≤19,且x仅能为6、8、10、12(对应的a分别为3、4、5、6),进而求出符合条件的整数x和y的值,最后求出共计买的包数.【详解】设计划买丝瓜籽数量为a包,茄子籽b包,白菜籽c包,则3≤a≤6,0≤b≤19,c为7的倍数,且均为整数,根据题意,a+b+c=100,分情况列出所有可能的a,b,c,具体如下:①a=3时,b=13,c=84或b=6,c=91,②a=4时,b=12,c=84或b=5,c=91,③a=5时,b=11,c=84或b=4,c=91,④a=6时,b=10,c=84或b=3,c=91,再分别计算出各种条件下的计划支付价格m,设实际购买丝瓜数量为x包,茄子籽y包,则:实际:6≤x≤12,0≤y≤19,且x仅能为6、8、10、12(对应的a分别为3、4、5、6),∵10元买白菜籽,∴10×7=70(包),又∵实际支付比计划少12元,3x+4y+70=m﹣12,⑤∴将x=6、8、10、12分别代入⑤式,计算得符合条件的整数y,经计算,x=10,y=4时,符合上述所有不等式,∴共计买10+4+70=84(包).故答案为:84.【点睛】本题考查了三元一次方程的应用,解决本题的关键是根据题意求整数解.12.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为____元.【答案】1230.【分析】设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .根据题意得到关于a ,b ,c 方程组,根据a ,b ,c 均为正整数,求解即可.【详解】设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .由题意得()()2502107025105012020503010420a b c a b c a b c ++=⎧⎪⎨++-++=⎪⎩, 即25217251942a b c b c ++=⎧⎨+=⎩, 其整数解为42372521231225a n b n c n =-⎧⎪=-⎨⎪=-⎩(其中n 为整数),又∵a ,b ,c 均是正整数,易得n =1.所以546a b c =⎧⎪=⎨⎪=⎩.∴150a +60b +40c =150×5+60×4+40×6=1230.故答案为:1230.另解:由上9b +c =42,得知b =1,2,3,4.列举符合题意的解即可.【点睛】本题考查了求方程组的正整数解,根据题意得到方程组,求出方程组的整数解是解题关键.解题时注意题目中隐含条件a ,b ,c ,均为正整数.13.已知每件A 奖品价格相同,每件B 奖品价格相同,老师要网购A,B 两种奖品16件,若购买A 奖品9件、B 奖品7件,则微信钱包内的钱会差230元;若购买A奖品7件、B奖品9件,则微信钱包的钱会剩余230元,老师实际购买了A奖品1件,B奖品15件,则微信钱包内的钱会剩余__________元.【答案】1610【解析】【分析】设A奖品价格为x元/个,B奖品价格为y元/个,微信钱包金额为z元,根据题意可得9x+7y=z+230,7x+9y=z-230,从而得到8x+8y=z,x-y=230,从而得到结论.【详解】设A奖品价格为x元/个,B奖品价格为y元/个,微信钱包金额为z元,根据题意得:{9x+7y=z+230①7x+9y=z−230②,由①+②得:16x+16y=2z,即8x+8y=z,则微信钱包金额刚好可以买8个A产品和8个B产品,由①-②得:2x-2y=460,即x-y=230,则A的价格比B的价格多230元,∴x+15y=8x+8y-7(x-y)=z-7×230=z-1610,∴微信钱包内的钱会剩余1610元.【点睛】考查了方程组的应用,解题关键是求得微信钱包金额刚好可以买8个A产品和8个B产品和A的价格比B的价格多230元,再将x+15y变形成=8x+8y-7(x-y)的形式.14.2019年秋,重庆二外初2021级将开启“大阅读”活动,为了充实书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去699元;语文组购买了A、B两种文学书籍若干本,用去6138元,已知A、B的数量分别与甲、乙的数量相等,且甲种书与B种书的单价相同,乙种书与A种书的单价相同.若甲种书的单价比乙种书的单价多7元,则乙种书籍比甲种书籍多买了__________本.【答案】777【分析】设乙种书与A种书的单价为x元,则甲种书与B种书的单价为(x+7)元,甲种书与A种书的数量为a本,乙种书与B 种书的数量为b本,根据单价乘以数量等于总价,建立方程组,整理即可得出b-a的值.【详解】设乙种书与A种书的单价为x元,则甲种书与B种书的单价为(x+7)元,设甲种书与A种书的数量为a本,乙种书与B种书的数量为b本,由题意得:()()()()76991761382 a x bxax b x⎧++=⎪⎨++=⎪⎩()()21-得775439-=b a∴777-=b a故答案为:777.【点睛】本题考查方程组的应用,熟练掌握单价乘以数量等于总价,建立方程组是解题的关键.15.某厂家以A 、B 两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A 原料、1.5千克B 原料;乙产品每袋含2千克A 原料、1千克B 原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A 原料和B 原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为_____元.【答案】5750【解析】【分析】根据题意设甲产品的成本价格为b 元,求出b ,可知A 原料与B 原料的成本和40元,然后设A 种原料成本价格x 元,B 种原料成本价格(40﹣x )元,生产甲产品m 袋,乙产品n 袋,列出方程组得到xn =20n ﹣250,最后设生产甲乙产品的实际成本为W 元,即可解答【详解】∵甲产品每袋售价72元,则利润率为20%.设甲产品的成本价格为b 元, ∴72-b b=20%, ∴b =60,∴甲产品的成本价格60元,∴1.5kgA 原料与1.5kgB 原料的成本和60元,∴A 原料与B 原料的成本和40元,设A 种原料成本价格x 元,B 种原料成本价格(40﹣x )元,生产甲产品m 袋,乙产品n 袋,根据题意得:10060(240)50060(802)m n m x x n m n x x +≤⎧⎨++-+=+-+⎩, ∴xn =20n ﹣250,设生产甲乙产品的实际成本为W 元,则有W =60m +40n +xn ,∴W =60m +40n +20n ﹣250=60(m +n )﹣250,∵m +n ≤100,∴W ≤6250;∴生产甲乙产品的实际成本最多为5750元,故答案为5750;【点睛】此题考查不等式和二元一次方程的解,解题关键在于求出甲产品的成本价格16.王老师在期中考试过后,决定给同学们发放奖品.他到对面 one way 文具店看了一下,准备买一些钢笔和笔记本,再给班级购买一个中考倒计时电子显示屏,经预算总共需要1501元,其中电子显示屏的价格为41元.当他付款时才发现他把钢笔和笔记本的单价弄反了,由于王老师购物金额超过1000元,文具店免费赠送了一个电子显示屏.这样实际付款后预算资金还剩余100多元(剩余资金为整数),正好能再购买1支钢笔和1个笔记本,王老师计划购买__________件奖品.【答案】20【分析】首先设购买x 支钢笔和y 个笔记本,每支钢笔a 元,每个笔记本b 元,然后根据题意列出方程组,根据整数解即可得解.【详解】设购买x 支钢笔和y 个笔记本,每支钢笔a 元,每个笔记本b 元,4115011501bx ay ax by a b ++=⎧⎨+++=⎩①② +①②,得()()2961a b x a b y a b +++++=29611x y a b+=-+ ∴100200a b +<<∴x y +可取的整数为14、15、16、17、18、19、20、21、22、23、24、25、26、27、28∵()(),x y a b ++为整数∴20x y +=即王老师计划购买20件奖品.【点睛】此题主要考查列二元一次方程组解实际问题的运用,解题关键是找到等量关系建立方程.17.近日天气晴朗,某集团公司准备组织全体员工外出踏青.决定租用甲、乙、丙三种型号的巴士出行,甲型巴士每辆车的乘载量是乙型巴士的3倍,丙型巴士每辆可乘坐36人.现在旅游公司有甲、乙、丙型巴士若干辆,预计给该集团公司安排申型、丙型巴士共计8辆,其余员工安排乙型巴士,每辆巴士均满载,这样乘坐乙型巴士和丙型巴士的员工共296人.临行前,突然有若干人因特殊原因请假,这样一来刚好可以减少租用一辆乙型包士,且有一辆乙型巴士多出两个空位,这样甲、乙两种型号巴士共计装载178人;则该集团公司共有________名员工.【答案】416【分析】设甲型巴士a 辆,乙型巴士b 辆,丙型巴士(8-a )辆,乙型巴士乘载量为x 人,由题意列出方程,由整数解的思想可求解.【详解】解:设甲型巴士a 辆,乙型巴士b 辆,丙型巴士(8-a )辆,乙型巴士乘载量为x 人,由题意可得:36(8)2963(1)1782xb a xa x b +-=⎧⎨+-=+⎩, 解得:x=1723631a a --, ∵1≤a ≤7,且a 为整数,∴168a x =⎧⎨=⎩(不合题意舍去),220a x =⎧⎨=⎩,38a x =⎧⎨=⎩(不合题意舍去), ∴2036(82)296b +⨯-=,∴b=4,∴总人数=2×60+4×20+36×6=416(人)故答案为:416.【点睛】本题考查了三元一次方程组的应用,根据题意,正确列出方程,利用整数解的思想解决问题是本题的关键. 18.某餐厅以A 、B 两种食材,利用不同的搭配方式推出了两款健康餐,其中,甲产品每份含200克A 、200克B ;乙产品每份含200克A 、100克B .甲、乙两种产品每份的成本价分别为A 、B 两种食材的成本价之和,若甲产品每份成本价为16元.店家在核算成本的时候把A 、B 两种食材单价看反了,实际成本比核算时的成本多688元,如果每天甲销量的4倍和乙销量的3倍之和不超过120份,那么餐厅每天实际成本最多为______元.【答案】824【分析】先求出100克A 原料和100克B 原料的成本和,再设100克A 原料的成本为m 元,则100克B 种原料的成本为(8)m -元,生产甲产品x 份,乙产品y 份,根据题意列方程求出【详解】解:∵甲产品每份含200克A 、200克B ,甲产品每份成本价为16元∴100克A 原料和100克B 原料的成本为8元设100克A 原料的成本为m 元,则100克B 种原料的成本为(8)m -元,生产甲产品x 份,乙产品y 份,根据题意可得出:。
小学奥数 列不定方程解应用题 精选例题练习习题(含知识点拨)
列不定方程解应用题教学目标1、熟练掌握不定方程的解题技巧2、能够根据题意找到等量关系设未知数解方程3、学会解不定方程的经典例题知识精讲一、知识点说明历史概述不定方程是数论中最古老的分支之一.古希腊的丢番图早在公元3世纪就开始研究不定方程,因此常称不定方程为丢番图方程.中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,公元5世纪的《张丘建算经》中的百鸡问题标志着中国对不定方程理论有了系统研究.宋代数学家秦九韶的大衍求一术将不定方程与同余理论联系起来.考点说明在各类竞赛考试中,不定方程经常以应用题的形式出现,除此以外,不定方程还经常作为解题的重要方法贯穿在行程问题、数论问题等压轴大题之中.在以后初高中数学的进一步学习中,不定方程也同样有着重要的地位,所以本讲的着重目的是让学生学会利用不定方程这个工具,并能够在以后的学习中使用这个工具解题。
二、运用不定方程解应用题步骤1、根据题目叙述找到等量关系列出方程2、根据解不定方程方法解方程3、找到符合条件的解模块一、不定方程与数论【例 1】把2001拆成两个正整数的和,一个是11的倍数(要尽量小),一个是13的倍数(要尽量大),求这两个数.【巩固】甲、乙二人搬砖,甲搬的砖数是18的倍数,乙搬的砖数是23的倍数,两人共搬了300块砖.问:甲、乙二人谁搬的砖多?多几块?【巩固】现有足够多的5角和8角的邮票,用来付4.7元的邮资,问8角的邮票需要多少张?【例 2】用十进制表示的某些自然数,恰等于它的各位数字之和的16倍,则满足条件的所有自然数之和为___________________.模块二、不定方程与应用题【例 3】有两种不同规格的油桶若干个,大的能装8千克油,小的能装5千克油,44千克油恰好装满这些油桶.问:大、小油桶各几个?【例 4】在一次活动中,丁丁和冬冬到射击室打靶,回来后见到同学“小博士”,他们让“小博士”猜他们各命中多少次.“小博士”让丁丁把自己命中的次数乘以5,让冬冬把自己命中的次数乘以4,再把两个得数加起来告诉他,丁丁和冬冬算了一下是31,“小博士”正确地说出了他们各自命中的次数.你知道丁丁和冬冬各命中几次吗?【巩固】某人打靶,8发共打了53环,全部命中在10环、7环和5环上.问:他命中10环、7环和5环各几发?【例 5】某次聚餐,每一位男宾付130元,每一位女宾付100元,每带一个孩子付60元,现在有13的成人各带一个孩子,总共收了2160元,问:这个活动共有多少人参加(成人和孩子)?【巩固】单位的职工到郊外植树,其中有男职工,也有女职工,并且有13的职工各带一个孩子参加.男职工每人种13棵树,女职工每人种10棵树,每个孩子都种6棵树,他们一共种了216棵树,那么其中有多少名男职工?【例 6】张师傅每天能缝制3件上衣,或者9件裙裤,李师傅每天能缝制2件上衣,或者7件裙裤,两人20天共缝制上衣和裙裤134件,那么其中上衣是多少件?【巩固】小花狗和波斯猫是一对好朋友,它们在早晚见面时总要叫上几声表示问候.若是早晨见面,小花狗叫两声,波斯猫叫一声;若是晚上见面,小花狗叫两声,波斯猫叫三声.细心的小娟对它们的叫声统计了15天,发现它们并不是每天早晚都见面.在这15天内它们共叫了61声.问:波斯猫至少叫了多少声?【例 7】甲、乙两人生产一种产品,这种产品由一个A配件与一个B配件组成.甲每天生产300个A配件,或生产150个B配件;乙每天生产120个A配件,或生产48个B配件.为了在10天内生产出更多的产品,二人决定合作生产,这样他们最多能生产出多少套产品?【巩固】某服装厂有甲、乙两个生产车间,甲车间每天能生产上衣16件或裤子20件;乙车间每天能生产上衣18件或裤子24件.现在要上衣和裤子配套,两车间合作21天,最多能生产多少套衣服?【例 8】有一项工程,甲单独做需要36天完成,乙单独做需要30天完成,丙单独做需要48天完成,现在由甲、乙、丙三人同时做,在工作期间,丙休息了整数天,而甲和乙一直工作至完成,最后完成这项工程也用了整数天,那么丙休息了天.【例 9】实验小学的五年级学生租车去野外开展“走向大自然,热爱大自然”活动,所有的学生和老师共306人恰好坐满了5辆大巴车和3辆中巴车,已知每辆中巴车的载客人数在20人到25人之间,求每辆大巴车的载客人数.【巩固】实验小学的五年级学生租车去野外开展“走向大自然,热爱大自然”活动,所有的学生和老师共306人恰好坐满了7辆大巴车和2辆中巴车,已知每辆中巴车的载客人数在20人到25人之间,求每辆大巴车的载客人数.【巩固】每辆大汽车能容纳54人,每辆小汽车能容纳36人.现有378人,要使每个人都上车且每辆车都装满,需要大、小汽车各几辆?【巩固】小伟听说小峰养了一些兔和鸡,就问小峰:“你养了几只兔和鸡?”小峰说:“我养的兔比鸡多,鸡兔共24条腿.”那么小峰养了多少兔和鸡?【例 10】一个家具店在1998年总共卖了213张床.起初他们每个月卖出25张床,之后每个月卖出16张床,最后他们每个月卖出20张床.问:他们共有多少个月是卖出25张床?【例 11】五年级一班共有36人,每人参加一个兴趣小组,共有A、B、C、D、E五个小组.若参加A组的有15人,参加B组的人数仅次于A组,参加C组、D组的人数相同,参加E组的人数最少,只有4人.那么,参加B组的有_______人.【例 12】将一群人分为甲乙丙三组,每人都必在且仅在一组.已知甲乙丙的平均年龄分为37,23,41.甲乙两组人合起来的平均年龄为29;乙丙两组人合起来的平均年龄为33.则这一群人的平均年龄为.【例 13】14个大、中、小号钢珠共重100克,大号钢珠每个重12克,中号钢珠每个重8克,小号钢珠每个重5克.问:大、中、小号钢珠各有多少个?【巩固】袋子里有三种球,分别标有数字2,3和5,小明从中摸出12个球,它们的数字之和是43.问:小明最多摸出几个标有数字2的球?【例 14】公鸡1只值钱5,母鸡一只值钱3,小鸡三只值钱1,今有钱100,买鸡100只,问公鸡、母鸡、小鸡各买几只?【巩固】小明玩套圈游戏,套中小鸡一次得9分,套中小猴得5分,套中小狗得2分.小明共套了10次,每次都套中了,每个小玩具都至少被套中一次,小明套10次共得61分.问:小明至多套中小鸡几次?【例 15】开学前,宁宁拿着妈妈给的30元钱去买笔,文具店里的圆珠笔每支4元,铅笔每支3元.宁宁买完两种笔后把钱花完.请问:她一共买了几支笔?【巩固】小华和小强各用6角4分买了若干支铅笔,他们买来的铅笔中都是5分一支和7分一支的两种,而且小华买来的铅笔比小强多.小华比小强多买来铅笔多少支.【例 16】蓝天小学举行“迎春”环保知识大赛,一共有100名男、女选手参加初赛,经过初赛、复赛,最后确定了参加决赛的人选.已知参加决赛的男选手的人数,占初赛的男选手人数的20%;参加决赛的女选手的人数,占初赛的女选手人数的12.5%,而且比参加初赛的男选手的人数多.参加决赛的男、女选手各有多少人?【巩固】今有桃95个,分给甲、乙两班学生吃,甲班分到的桃有29是坏的,其他是好的;乙班分到的桃有316是坏的,其他是好的.甲、乙两班分到的好桃共有几个?【例 17】甲、乙两人各有一袋糖,每袋糖都不到20粒.如果甲给乙一定数量的糖后,甲的糖就是乙的2倍;如果乙给甲同样数量的糖后,甲的糖就是乙的3倍.甲、乙两人共有多少粒糖?【巩固】有两小堆砖头,如果从第一堆中取出100块放到第二堆中去,那么第二堆将比第一堆多一倍.如果相反,从第二堆中取出若干块放到第一堆中去,那么第一堆将是第二堆的6倍.问:第一堆中的砖头最少有多少块?【例 18】甲乙丙三个班向希望工程捐赠图书,已知甲班有1人捐6册,有2人各捐7册,其余都各捐11册,乙班有1人捐6册,3人各捐8册,其余各捐10册;丙班有2人各卷4册,6人各捐7册,其余各捐9册。
小学奥数 不定方程与不定方程组 精选练习例题 含答案解析(附知识点拨及考点)
不定方程与不定方程组教学目标1.利用整除及奇偶性解不定方程2.不定方程的试值技巧3.学会解不定方程的经典例题知识精讲一、知识点说明历史概述不定方程是数论中最古老的分支之一.古希腊的丢番图早在公元3世纪就开始研究不定方程,因此常称不定方程为丢番图方程.中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,公元5世纪的《张丘建算经》中的百鸡问题标志着中国对不定方程理论有了系统研究.宋代数学家秦九韶的大衍求一术将不定方程与同余理论联系起来.考点说明在各类竞赛考试中,不定方程经常以应用题的形式出现,除此以外,不定方程还经常作为解题的重要方法贯穿在行程问题、数论问题等压轴大题之中.在以后初高中数学的进一步学习中,不定方程也同样有着重要的地位,所以本讲的着重目的是让学生学会利用不定方程这个工具,并能够在以后的学习中使用这个工具解题。
二、不定方程基本定义1、定义:不定方程(组)是指未知数的个数多于方程个数的方程(组)。
2、不定方程的解:使不定方程等号两端相等的未知数的值叫不定方程的解,不定方程的解不唯一。
3、研究不定方程要解决三个问题:①判断何时有解;②有解时确定解的个数;③求出所有的解三、不定方程的试值技巧1、奇偶性2、整除的特点(能被2、3、5等数字整除的特性)3、余数性质的应用(和、差、积的性质及同余的性质)例题精讲模块一、利用整除性质解不定方程【例 1】求方程2x-3y=8的整数解【考点】不定方程 【难度】2星 【题型】解答【解析】 方法一:由原方程,易得 2x =8+3y ,x =4+32y ,因此,对y 的任意一个值,都有一个x 与之对应,并且,此时x 与y 的值必定满足原方程,故这样的x 与y 是原方程的一组解,即原方程的解可表为:342x ky k⎧=+⎪⎨⎪=⎩,其中k 为任意数.说明 由y 取值的任意性,可知上述不定方程有无穷多组解. 方法二:根据奇偶性知道2x 是偶数,8为偶数,所以若想2x -3y =8成立,y 必为偶数,当y =0,x =4;当y =2,x =7;当y =4,x =10……,本题有无穷多个解。
小学奥数 不定方程 知识点+例题+练习 (分类全面)
例7、某地收取电费的标准是:若每月用电不超过50千瓦时,则每千瓦时收0.5元;若超过50千瓦时,则超出部分按每千瓦时0.8元收费。某月甲用户比乙用户多交3.3元电费,这个月甲、乙各用了多少千瓦时电?
巩固、求方程 的整数解。
巩固、求不定方程 的最小整数解
例2、一个珠宝商将珍珠放进两种盒子里,每个大盒子装12个,每个小盒子装ห้องสมุดไป่ตู้个,恰好装完。如果珍珠数为99,盒子数大于9,问两种盒子各有多少个?
巩固、甲级铅笔7角钱一枝,乙级铅笔3角钱一枝,小华用六元钱恰好可以买两种不同的铅笔共几枝?
巩固、小华和小强各用64元买了若干枝铅笔,他们买来的铅笔中都是5元一枝和7元一枝的两种,而且小华买来的铅笔比小强多,小华比小强多买来多少枝?
教学过程
不定方程知识要点和基本方法
1、当方程(组)中未知数的个数多于方程的个数时,称这个方程(组)为不定方程(组)
2、一个不定方程总有无穷多组解,但更多的情况是讨论一个不定方程的整数解或正整数解,此时,它可能仍有无穷多组解,也可能只有有限组解,甚至可能无解
例1、求方程 的整数解
巩固、求方程 的整数解。
2、有两种不同规格的油桶若干个,大的能装8千克油,小的能装5千克油,44千克油恰好装满这些油桶。问:大、小油桶各几个?
3、设A和B都是自然数,且满足 + = ,求A+B的值。
4、甲、乙二人植树,甲每天植18棵,乙每天植21棵,两人共植了135棵树。问:甲、乙二人各干了几天?
巩固、某地收取水费的标准是:若每月用电不超过50吨,则每吨收0.5元;若超过50吨,则超出部分按每千瓦时0.45元收费。某月小明家比小刚家多交3.3元水费,这个月小明家、小刚家各用了多少吨水?
不定方程和解不定方程应用题经典
不定方程———研究其解法方程,这个词对于同学们来说,再熟悉不过了,它在数学中占了很大的一个板块,许多题目都可以通过方程来得到答案,那么自然而然,它的解法就尤为重要了。
然而,我今天想为大家介绍的是一种特殊的方程——不定方程,因为它往往有多个或无数个解,他的解法相对较多较难,以下就是关于不定方程的一些问题。
一、不定方程是指未知数的个数多于方程个数的方程,其特点是往往有不唯一的解。
二、不定方程的解法 1、筛选试验法根据方程特点,确定满足方程整数的取值范围,对此范围内的整数一一加以试验,筛去不合理的值。
如:方程x ﹢y ﹢z = 100共有几组正整数解?解:当x = 1时y ﹢z = 99,这时共有98个解:(y ,z)为(1,98) (2,97)……(98,1)。
当x = 2时y ﹢z = 98,这时共有97个解:(y ,z)为(1,97) (2,96)……(97,1)。
……当 x = 98时,y ﹢z = 2,这时有一个解。
∵ 98﹢97﹢96﹢……﹢1= 29998⨯= 4851∴ 方程x ﹢y ﹢z = 100共有4851个正整数解。
2、表格记数法如:方程式4x ﹢7 y =55共有哪些正整数解。
解:× × × × √ √ ∴ 方程4x ﹢7 y =55的正整数解有x = 5 x = 12y = 5 y = 1 3、分离系数法如: 求7x ﹢2 y =38的整数解 解: y =2738X -=19-3x-21x令 t=21x x=2 t则 y=22738t⨯-=19-7t2t >019-7t >0 (t 为整)→ 275>t >0 t=2,1当 t=2时, x=2×2=4 x=4y=19-7×2=5 y =5当 t=1时, x=2×1=2 x=2y=19-7×1=12 y=12第四十周 不定方程专题简析:当方程的个数比方程中未知数的个数少时,我们就称这样的方程为不定方程。
金微微-公考中不定方程的解法
公考中不定方程的解法华图教育金微微不定方程问题一直以来是公考中的热点题型,值得各位考生关注,而不定方程中由于题目中给出的信息比较少,所以对考生来说是一类不容易把握的题目,下面笔者就和大家探讨一下公考中不定方程的解法。
一、不定方程—求具体未知数【例1】装某种产品的盒子有大、小两种,大盒每盒能装11个,小盒每盒能装8个,要把89个产品装入盒内,要求每个盒子都恰好装满,需要大、小盒子各多少个?( )A.3,7B.4,6C.5,4D.6,3【答案】A【解析】本题目是不定方程问题。
设大盒子的个数为x,小盒子的个数为y,根据题意:11x+8y=89,在这个方程中不难看出89是奇数、8y是偶数,那么11x 应该为奇数,说明x是偶数,排掉B、D两个选项,A、C中代入任何一个即可,代入A选项,满足题意,所以答案选择A。
【点拨】遇到不定方程问题如果求具体某一个未知数的数值考虑代入排除法,同时结合数字特性,比如奇偶特性。
【例2】某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分别平均地分给各个老师带领,刚好能够分完,且每位老师所带的学生数量都是质数。
后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少人?( )A.36B.37C.39D.41【答案】D【解析】本题目是不定方程问题。
设每个钢琴教师所带学生人数为x,每个拉丁舞教师所带学生人数为y,根据题意:5×x+6×y=76,其中不难看出76、6×y 是偶数,那么5×x应该为偶数,说明x是偶数,x又是质数,那么x=2,依此解得y=11,所以剩下的学员人数=4×2+3×11=41。
选择D。
【点拨】同样是不定方程问题,需要求出未知数的确切数值才能解题,而选项没有提供具体未知数信息时,考虑数字数字特性,本题目利用奇偶特性。
用不定方程解应用题.doc
用不定方程解应用题用不定方程或不定方程组解具体的应用题时,要注意题中的条件限定或其它具体要求,根据实际情况给出符合题目的答案。
例1:求不定方程:6X+8Y=46的自然数解。
<分析与解答>1A、求不定方程的自然数解:3X+8Y=100 X1= X2= X3= X4=Y1= Y2= Y3= Y4=1B、不定方程:2X+5Y=80有()组自然数解。
例2:求下列不定方程的自然数解:(1) 2/3X+1/5Y=10 (2) X+Y+Z=503X+2Y+1/2Z=502A、求下列各不定方程的自然数解:(1)1/3X+3/4Y=10X1= X2= X3=Y1= Y2= Y3=(2) X+Y+Z=257X+9Y+4Z=200X1= X2=Y1= Y2=Z1= Z2=2B、(1)不定方程:1.2X+0.4Y=20,有( )组自然数解。
(2)不定方程组:2X+3Y-4Z=34 的自然数解共有()组, X+Y+Z和的最小值是()。
X+2Y+4Z=66例3:学校准备安装一条42米长的自来水管道,可是仓库里只有3米长和5米长两种同样口径的钢管。
在不截断钢管的情况下,如果尽可能地使用5米长的钢管,那么两种钢管各需要多少根?3A、大桶能盛油5千克,小桶能盛油3千克。
现有花生油50千克,需要大小桶总数最多是大()只,小()只。
3B、小刚问小亮:“你养了几只兔几只鸡?”小亮说:“我养的兔比鸡多,鸡兔一共24条腿,你猜我养了几只兔几只鸡?”小亮养了()只兔和()只鸡。
例4:图书馆王老师去书店购买文艺书,科技书和外语书共55本,其中文艺书比科技书的本数多1倍,外语书只买了十几本。
三种书王老师各买了多少本?<分析与解答>4A、龙游艺术小学组队参加舞蹈、唱歌、演奏比赛的共81人,其中舞蹈的学生比演奏的多1倍,唱歌的人数接近40人。
参加舞蹈比赛的有( )人,参加唱歌比赛的有( )人,参加演奏比赛的有( )人。
4B、水果商店运进苹果、梨和桔子总价值1000元,其中萍果每箱5元,桔子每箱8元,梨每箱10元,桔子的箱数是萍果的3倍,梨大约四十几箱。
人教版小学数学小升初思维拓展(知识梳理+典题精讲+专项训练)专题14-不定方程和不等方程的分析求解
专题14-不定方程和不等方程的分析求解小升初数学思维拓展数论问题专项训练(知识梳理+典题精讲+专项训练)1、不定方程。
(1)不定方程的定义:不定方程,是指未知数的个数多于方程个数,且未知数受到某些限制(如要求是有理数、整数或正整数等等)的方程或方程组.(2)一般是求解一次不定方程:关于ax+by=c 的不定方程,(a,b)为a,b 的最大公约数,如果有整数特解(x 0,y 0),则该方程所有整数解为:x=x 0-kb÷(a,b),y=y 0+ka÷(a,b),k 为整数.2、不等方程。
(1)几个含有同一个未知数的一元一次不等式合在一起,就组成了一个一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做由它们所组成的一元一次不等式组的解集.(2)求不等式组的解集的过程,叫做解不等式组.(3)解一元一次不等式组的步骤:①分别求出不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集.【典例一】某电视台在黄金时段的2分钟广告时间内,计划播长度为15秒和30秒的两种广告.15秒的广告每播一次收费0.6万元,30秒的广告每播一次收费1万元.若要求每种广告播放不少于两次,则电视台在播放时收益最大的播放方式是()A.15秒的广告播放4次,30秒的广告播放2次B.15秒的广告播放2次,30秒的广告播放4次C.15秒的广告播放2次,30秒的广告播放3次D.15秒的广告播放3次,30秒的广告播放2次【分析】本题中的等量关系:15秒⨯次数30+⨯次数260=⨯,根据这个等量关系列出方程,然后再根据“要求每种广告播放不少于2次,则电视台在播放时收益最大”这个要求分析解的情况.【解答】解:设15秒的广告播x 次,30秒的广告播y 次.则1530120x y +=,因为每种广告播放不少于2次,所以2x =,3y =,或4x =,2y =;当2x =,3y =时,收益为:20.631 4.2⨯+⨯=(万元);当4x =,2y =时,收益为40.612 4.4⨯+⨯=(万元),所以电视台在播放时收益最大的播放方式是:15秒的广告播放4次,30秒的广告播放2次.故选:A .【点评】解题关键是弄清题意,找到合适的等量关系,合理分析得出结论.【典例二】地球上的“逃逸速度”是11.2千米/秒,这意味着地球上的物体,如果速度大于11.2千米/秒,它就能脱离地球的影响而飞出去.大到火箭,小到分子的任何物体都适用,现有一个大气分子,太阳辐射把它的速度提高到15千米/秒,已知它与其他分子每碰撞一次,速度依次减少到碰撞前的1920,1819,1718,⋯,则至少碰撞次才能使它不“逃离”地球.【分析】把原来的速度看成单位“1”,碰撞n 次之后的速度是原速度的1918171620202019181720120n n n --⨯⨯⨯⨯⋯⨯=-+;逃逸速度是原速度的:5614.9311.2157520÷=≈;只要2014.932020n -<就不会逃离地球了,求出此时n 的取值.【解答】解:设至少碰撞n 次才能使它不逃离地球:1918171620202019181720120n n n --⨯⨯⨯⨯⋯⨯=-+;11.215÷,5675=,14.9320≈;2014.932020n -<;那么2014.93n -<,5.07n >;n 是整数,n 最小取值就是6;答:至少碰撞6次才能使它不“逃离”地球.故答案为:6.【点评】本题关键是找出碰撞n 次之后的速度是原速度的几分之几的求解方法,以及求出逃逸速度是原速度的几分之几,列出不等方程,求出n 的取值即可.【典例三】一次夏令营活动有21位学生参加,请你安排住宿,住3人间和2人间(每个房间不能有空床位),有多少种不同的安排?(填表并找出答案)3人间2人间答:一共有种不同的安排。
不定方程问题(含答案)
不定方程问题【例1】求方程25=17的自然数解。
x y【练习1】求方程3x+5y=12的自然数解。
【例2】有两种不同规格的油桶若干个,大的能装8千克油,小的能装5千克油,44千克油恰好装满这些油桶.问:大、小油桶各几个?【练习2】小伟听说小峰养了一些兔和鸡,就问小峰:“你养了几只兔和鸡?”小峰说:“我养的兔比鸡多,鸡兔共24条腿.”那么小峰养了多少只兔,多少只鸡?【例3】将426个乒乓球装在三种盒子里. 大盒每盒装25个,中盒每盒装20个,小盒每盒装16个。
现共装了 24 盒,则用了多少个大盒。
【练习3】(1)每辆大汽车能容纳54人,每辆小汽车能容纳36人.现有378人,要使每个人都上车且每辆车都装满,需要大、小汽车各几辆?(2)实验小学的五年级学生租车去野外开展活动,所有的学生和老师共306人恰好坐满了7辆大巴车和2辆中巴车,已知每辆中巴车的载客人数在20人到25人之间,每辆大巴车的载客多少人。
【例4】今有桃95个,分给甲、乙两班学生吃,甲班分到的桃有2是坏的,其9他是好的;乙班分到的桃有3是坏的,其他是好的.甲、乙两班分到的好桃共16有多少个?【练习)不定方程问题【例1】求方程25=17x y +的自然数解。
因为4与10的最大公约数为2,而2|34,两边约去2后,得 2x +5y =17,5y 的个位是0或5两种情况,2x 是偶数,要想和为17,5y 的个位只能是5,y 为奇数即可;2x 的个位为2,所以x 的取值为1、6、11、16…… x =1时,17-2x =15,y =3, x =6时,17-2x = 5,y =1, x =11时,17-2x =17-22,无解 所以方程有两组整数解为:16,31x x y y ==⎧⎧⎨⎨==⎩⎩【练习1】求方程3x +5y =12的自然数解。
由3x +5y =12,3x 是3的倍数,要想和为12(3的倍数),5y 也为3的倍数,所以y 为3的倍数即可,所以y 的取值为0、3、6、9、12…… y =0时,12-5y =12,x =4, x =3时,12-5y =12-15,无解 所以方程的解为:40x y =⎧⎨=⎩【例2】有两种不同规格的油桶若干个,大的能装8千克油,小的能装5千克油,44千克油恰好装满这些油桶.问:大、小油桶各几个?设有大油桶x 个,小油桶y 个.由题意得:8544x y +=可知844x ≤,所以012345x =、、、、、.由于x 、y 必须为整数,所以相应的将x 的所有可能值代入方程,可得3x =时,4y =这一组整数解.【练习2】小伟听说小峰养了一些兔和鸡,就问小峰:“你养了几只兔和鸡?”小峰说:“我养的兔比鸡多,鸡兔共24条腿.”那么小峰养了多少只兔,多少只鸡?设小峰养了x 只兔子和y 只鸡,由题意得: 4224x y += 即:212x y +=,122y x =-这是一个不定方程,其可能整数解如下表所示:由题意x y >,且x ,y 均不为0,所以5x =,2y =,也就是兔有5只,鸡有2只.【例3】将426个乒乓球装在三种盒子里. 大盒每盒装25个,中盒每盒装20个,小盒每盒装16个。
用不定方程解应用题
用不定方程解应用题用不定方程或不定方程组解具体的应用题时,要注意题中的条件限定或其它具体要求,根据实际情况给出符合题目的答案。
例1:求不定方程:6X+8Y=46的自然数解。
<分析与解答>1A、求不定方程的自然数解:3X+8Y=100 X1= X2= X3= X4=Y1= Y2= Y3= Y4=1B、不定方程:2X+5Y=80有()组自然数解。
例2:求下列不定方程的自然数解:(1) 2/3X+1/5Y=10 (2) X+Y+Z=503X+2Y+1/2Z=502A、求下列各不定方程的自然数解:(1)1/3X+3/4Y=10X1= X2= X3=Y1= Y2= Y3=(2) X+Y+Z=257X+9Y+4Z=200X1= X2=Y1= Y2=Z1= Z2=2B、(1)不定方程:1.2X+0.4Y=20,有( )组自然数解。
(2)不定方程组:2X+3Y-4Z=34 的自然数解共有()组, X+Y+Z和的最小值是()。
X+2Y+4Z=66例3:学校准备安装一条42米长的自来水管道,可是仓库里只有3米长和5米长两种同样口径的钢管。
在不截断钢管的情况下,如果尽可能地使用5米长的钢管,那么两种钢管各需要多少根?3A、大桶能盛油5千克,小桶能盛油3千克。
现有花生油50千克,需要大小桶总数最多是大()只,小()只。
3B、小刚问小亮:“你养了几只兔几只鸡?”小亮说:“我养的兔比鸡多,鸡兔一共24条腿,你猜我养了几只兔几只鸡?”小亮养了()只兔和()只鸡。
例4:图书馆王老师去书店购买文艺书,科技书和外语书共55本,其中文艺书比科技书的本数多1倍,外语书只买了十几本。
三种书王老师各买了多少本?<分析与解答>4A、龙游艺术小学组队参加舞蹈、唱歌、演奏比赛的共81人,其中舞蹈的学生比演奏的多1倍,唱歌的人数接近40人。
参加舞蹈比赛的有( )人,参加唱歌比赛的有( )人,参加演奏比赛的有( )人。
4B、水果商店运进苹果、梨和桔子总价值1000元,其中萍果每箱5元,桔子每箱8元,梨每箱10元,桔子的箱数是萍果的3倍,梨大约四十几箱。
不定方程解应用题
3.培养学生分析问题以及灵活运用数学 知识解决实际问题的能力
认真看例题,思考: 怎样找等量关系并列出不定方程?
例:在停车场有一些车,其中汽车有4个轮子,摩 托车有3个轮子,这些车共有20个轮子,那么三轮 摩托车有多少辆?
分析:根据题中条件得到等量关系式: 所有汽车的轮子+所有摩托车的轮子=20个 解:设三轮摩托车有X辆,汽车有y辆 3x+4y=20 解得
解:设23元一枝的钢笔卖出x枝,16元一枝的 钢笔卖出y枝
23x+16y=500 解得
X=12 y=14
12+14=26
答:这两种钢笔共卖出26枝。
2.大盒子每盒装11粒玻璃球,小盒子每盒装8粒玻璃球。 要把89个玻璃球装入盒内,要求每个盒子恰好装满, 需要大、小盒子各多少个?
解:设需要大盒x个,小盒子y个 11x+8y=89
提解:设这个学生出生那一年的年份末两位数字分别为x、y
升
98-(10x+y)=x+y
解得
x=8 y=5 x+y=13
答:这个学生1998年13岁。
学会了“不定方程解应用题”,知道了解答这 类应用题的关键是找题中的等量关系,然后根 据等量关系列不定方程,解答并检验。
课本186页练习八第4、6、8题
解得
x=3 y=7
答:需要大盒子3个,小盒子7个。
小结
今天我们学习了“不定方程解 应用题”,知道了解答这类应用 题的关键是找题中的等量关系, 然后根据等量关系列不定方程,解 答并检验。
当堂训练
1.工人叔叔为158米的地段铺设水管,用的是长17米和长8 米的两种同样粗细的水管,问两种长度的水管各用多少根 (不截断)正好铺满158米的地段?(列式并说出计算过程)
不定方程解应用题 答案
六年级 2011年10月15日例1.不定方程的自然数解。
(1)2x+5y=50 (2)10x+9y=400(1)解:x=5052y-。
x=25,y=0 ; x=20,y=2; x=15,y=4; x=10,y=6; x=5,y=8; x=0,y=10。
(2)解:y=400109x-。
x=4,y=40 x=13,y=30; x=22,y=20; x=31,y=10;x=40,y=0.例2.用不定方程(组)解应用题。
1.采购员去超市买鸡蛋,每个大盒里有23个鸡蛋,每个小盒里有16个鸡蛋(盒子不能打开),采购员要恰好买500个鸡蛋,他一共要买多少盒?解:设买了x大盒,y小盒。
23x+16y=500 解得:x=12,y=14;x+y=26.答:他一共要买26盒。
2.一个工人将99颗弹子装入两种盒子中,每个大盒子装12颗,小盒子装5颗,恰好装完,已知盒子数大于10,两种盒子各有多少?解:设大盒x个,小盒y个。
12x+5y=99且x+y>10解得:x=2,y=15.答:大盒2个,小盒15个。
3.新学期开始了,几个老师带着一些学生去搬全班的100本教科书,已知老师和学生共14人,每个老师能搬12本,每个男生能搬8本,每个女生能搬5本,恰好一次搬完。
问:搬书的老师,男生,女生各有多少人?解:设老师x人,男生y人,女生z人。
x+y+z=1412x+8y+5z=100解得:x=3,y=3,z=8答:搬书的老师3人,男生3人,女生8人。
例3.1.在两位数中,能被其各位数字之和整除,而且除得的商恰好是4的数。
满足上述条件的所有两位数的和是多少?解:设这个两位数是ab。
则ab=4(a+b),a=12b,解得b=2,a=1; b=4,a=2; b=6,a=3; b=8,a=4;这个两位数分别是12,24,36,48;12+24+36+48=120,它们的和是120 。
答:满足上述条件的所有两位数的和是120。
2.有些三位数:①它的各位数字不同且没有数字0;②这个数等于所有由它的各位数字所组成的没有重复数字的两位数的和。
六年级数学思维集训 第二十二章 不定方程
第二十二章不定方程典型题训练1例一个两位数中间加上一个0, 得到的三位数比原两位数的8倍小1。
原来的两位数是多少?1. 一根钢条长4. 6米, 把它锯成每根长0. 7米和0.4米的甲、乙两种产品, 甲、乙两种产品分别锯多少根才能使这根钢条恰好没有剩余?2. 甲地有157吨货物要运往乙地, 大卡车每次运5吨耗油10升, 小卡车每次运2吨耗油5升。
如果想要耗油量最少, 那么大卡车和小卡车应分别运多少次?耗油最少为多少升?3. 有一堆围棋子, 白子枚数是黑子的3倍。
每次拿出7枚白子、4枚黑子, 经过若干次(不到10次) 后, 剩下的白子数是黑子数的11倍。
原来的白子有多少枚?典型题训练2例某工厂为优秀职工发奖金, 一等奖每人1800元, 二等奖每人1200元, 三等奖每人800元。
每种奖都有人领, 共有15名优秀职工领取总数为16000元的奖金, 获一、二、三等奖的职工分别有多少人?1.100头驴驮100袋物品, 一头大驴驮3袋, 一头中驴驮2袋, 两头小驴驮1袋。
如果三种驴至少都有1头, 且小驴不足70头, 那么大驴、中驴、小驴分别有多少头?2. 某工厂共有12间员工宿舍, 可以住80人。
大宿舍每间住8人, 中宿舍每间住7人, 小宿舍每间住5人。
中宿舍和小宿舍共有多少间?3. 有三种卡片, 第一种卡片上画有1朵红花, 第二种卡片上画有5朵红花, 第三种卡片上画有10朵红花, 每种卡片各有100张。
如果要从三种卡片中选出21张, 每种卡片都要选到, 恰好凑出100朵红花。
那么这21张卡片中, 第一、第二、第三种卡片分别有多少张?典型题训练3例一位学生问老师: 今年是2008年, 您的年龄是多少岁? 老师回答学生: 我今年的年龄正好等于我出生那一年的年份的各位数字之和。
老师今年多少岁?1. 一位年轻人2000年时的年龄正好等于他出身年份的数字之和, 这位年轻人2015年多少岁?2. 科学家牛顿生于1643年, 在他发表著名论文《自然定律》时, 他的年龄还不足50岁, 而且正好是那年年份之和的2倍, 这篇论文是哪年发表的?3. 张兵1953年出生, 在今年之前的某年, 他的年龄是9的倍数并且是这一年年份数的各位数字之和, 这一年他多少岁?典型题训练4例某次英语竞赛原定一等奖10人、二等奖20人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不定方程———研究其解法方程,这个词对于同学们来说,再熟悉不过了,它在数学中占了很大的一个板块,许多题目都可以通过方程来得到答案,那么自然而然,它的解法就尤为重要了。
然而,我今天想为大家介绍的是一种特殊的方程——不定方程,因为它往往有多个或无数个解,他的解法相对较多较难,以下就是关于不定方程的一些问题。
一、不定方程是指未知数的个数多于方程个数的方程,其特点是往往有不唯一的解。
二、不定方程的解法 1、筛选试验法根据方程特点,确定满足方程整数的取值范围,对此范围内的整数一一加以试验,筛去不合理的值。
如:方程x ﹢y ﹢z = 100共有几组正整数解?解:当x = 1时y ﹢z = 99,这时共有98个解:(y ,z)为(1,98) (2,97)……(98,1)。
当x = 2时y ﹢z = 98,这时共有97个解:(y ,z)为(1,97) (2,96)……(97,1)。
……当 x = 98时,y ﹢z = 2,这时有一个解。
∵ 98﹢97﹢96﹢ (1)29998⨯= 4851 ∴ 方程x ﹢y ﹢z = 100共有4851个正整数解。
2、表格记数法如:方程式4x ﹢7 y =55共有哪些正整数解。
解:∴ 方程4x ﹢7 y =55的正整数解有x = 5x = 12y = 5 y = 1 3、分离系数法如: 求7x ﹢2 y =38的整数解 解: y =2738X -=19-3x-21x令 t=21x x =2 t则 y=22738t⨯-=19-7t2t >019-7t >0 (t 为整)→ 275>t >0 t=2,1当 t=2时, x =2×2=4 x =4y=19-7×2=5 y =5当 t=1时, x =2×1=2 x =2y=19-7×1=12 y=12第四十周 不定方程专题简析:当方程的个数比方程中未知数的个数少时,我们就称这样的方程为不定方程。
如5x -3y =9就是不定方程。
这种方程的解是不确定的。
如果不加限制的话,它的解有无数个;如果附加一些限制条件,那么它的解的个数就是有限的了。
如5x -3y =9的解有:x =2.4 x =2.7 x =3.06 x =3.6……… y =1 y =1.5 y =2.1 y =3如果限定x 、y 的解是小于5的整数,那么解就只有x =3,Y =2这一组了。
因此,研究不定方程主要就是分析讨论这些限制条件对解的影响。
解不定方程时一般要将原方程适当变形,把其中的一个未知数用另一个未知数来表示,然后再一定范围内试验求解。
解题时要注意观察未知数的特点,尽量缩小未知数的取值范围,减少试验的次数。
对于有3个未知数的不定方程组,可用削去法把它转化为二元一次不定方程再求解。
解答应用题时,要根据题中的限制条件(有时是明显的,有时是隐蔽的)取适当的值。
例1.求3x+4y =23的自然数解。
先将原方程变形,y =23-3x4。
可列表试验求解:X=1 x=5 Y=5 y=2 练习一1、 求3x+2y =25的自然数解。
2、 求4x+5y =37的自然数解。
3、 求5x -3y =16的最小自然数解。
例2求下列方程组的正整数解。
5x+7y+3z=253x-y-6z=2这是一个三元一次不定方程组。
解答的实话,要先设法消去其中的一个未知数,将方程组简化成例1那样的不定方程。
5x+7y+3z=25 ①3x-y-6z=2 ②由①×2+②,得13x+13y=52X+y=4 ③把③式变形,得y=4-x。
因为x、y、z都是正整数,所以x只能取1、2、3.当x=1时,y=3当x=2时,y=2当x=3时,y=1把上面的结果再分别代入①或②,得x=1,y=3时,z无正整数解。
x=2,y=2时,z也无正整数解。
x=3时,y=1时,z=1.所以,原方程组的正整数解为x=1y=1z=1练习2求下面方程组的自然数解。
1、4x+3y-2z=72、7x+9y+11z=683x+2y+4z=21 5x+7y+9z=524、=26-y-6z=2例3一个商人将弹子放进两种盒子里,每个大盒子装12个,每个小盒子装5个,恰好装完。
如果弹子数为99,盒子数大于9,问两种盒子各有多少个?两种盒子的个数都应该是自然数,所以要根据题意列出不定方程,再求出它的自然数解。
设大盒子有x个,小盒子有y个,则12x+5y=99(x>0,y>0,x+y>9)y=(99-12y)÷5经检验,符合条件的解有:x=2 x=7y=15 y=3所以,大盒子有215个,或大盒子有7个,小盒子有3个。
练习3.1、某校6(1)班学生48人到公园划船。
如果每只小船可坐3人,每只大船可坐5人。
那么需要小船和大船各几只?(大、小船都有)2、 甲级铅笔7角钱一枝,乙级铅笔3角钱一枝,小华用六元钱恰好可以买两种不同的铅笔共几枝?3、 小华和小强各用6角4分买了若干枝铅笔,他们买来的铅笔中都是5分一枝和7分一枝的两种,而且小华买来的铅笔比小强多,小华比小强多买来多少枝?例题4买三种水果30千克,共用去80元。
其中苹果每千克4元,橘子每千克3元,梨每千克2元。
问三种水果各买了多少千克?设苹果买了x 千克,橘子买了y 千克,梨买了(30-x -y )千克。
根据题意得: 4x+3y+2×(30-x -y )=82x =10-y2由式子可知:y<20,则y 必须是2的倍数,所以y 可取2、4、6、8、10、12、14、16、练习41、 有红、黄、蓝三种颜色的皮球共26只,其中蓝皮球的只数是黄皮球的9倍,蓝皮球有多少只?2、 用10元钱买25枝笔。
已知毛笔每枝2角,彩色笔每枝4角,钢笔每枝9角。
问每种笔各买几枝?(每种都要买)3、 晓敏在文具店买了三种贴纸;普通贴纸每张8分,荧光纸每张1角,高级纸每张2角。
她一共用了一元两角两分钱。
那么,晓敏的三种贴纸的总数最少是多少张? 例5某次数学竞赛准备例2枝铅笔作为奖品发给获得一、二、三等奖的学生。
原计划一等奖每人发6枝,二等奖每人发3枝,三等奖每人发2枝。
后又改为一等奖每人发9枝,二等奖每人发4枝,三等奖每人发1枝。
问:一、二、三等奖的学生各有几人? 设一等奖有x 人,二等奖有y 人,三等奖有z 人。
则 6x+3y+2z =22 ①9x+4y+z =22 ② 由②×2-①,得12x+5y =22 y =22-12x5x =1 x 只能取1。
Y =2,代入①得z =5,原方程的解为 y =2z =5所以,一等奖的学生有1人,二等奖的学生有2人,三等奖的学生有5人。
练习51、 某人打靶,8发打了53环,全部命中在10环、7环和5环。
他命中10环、7环和5环各几发?2、 篮子里有煮蛋、茶叶蛋和皮蛋30个,价值24元。
已知煮蛋每个0.60元,茶叶蛋每个1元,皮蛋每个1.20元。
问篮子里最多有几个皮蛋?3、 一头猪卖312 个银币,一头山羊卖113 个银币,一头绵羊买12个银币。
有人用100个银币卖了这三种牲畜100头。
问猪、山羊、绵羊各几头?答案: 练11、 x =1 x =3 x =5 x =7y =11 y =8 y =5 y =2 2、 x =3 x =8y =11 y =1 4、 x =5 y =3 练21、 x =1y =3 z =32、 x =3 x =4y =4 y =2 z =1 z =2 3、 x =3y =1 z =1 练31、 设需要小船x 只,大船y 只。
则3x+5y =48,y =48-3x5根据题意,x 可取1、6、11, 方程的解是 x =1 =6 x =11y =9 y =6 y =32、 设买甲级笔x 枝,乙级笔y 枝,则7x+3y =60,y =60-7x3。
x ≤ 不定方程方程的个数少于未知数的个数的方程(或方程组)称为不定方程(或不定方程组)。
它的解是不定的。
如果没有给定不定方程的某种限制条件,那么它就有无限多个解。
本讲中所涉及的不定方程根据题目的要求和实际情况把解局限在一定的范围内,它可能有解,也可能无解,如果有解,也只能是有限个解。
但是,限制的条件,有时很隐蔽,需要我们去认真思考。
例1 工程队要铺78米长的地下排水管道,仓库中有3米和5米长的两种管子,问两种管子各用多少根?例2在一个盒子里装有蟋蟀和蜘蛛若干只,共46只脚,求蟋蟀和蜘蛛各有多少只?例3将601个球分别装在大小两种包装盒里,大盒每盒装5个,小盒每盒装3个。
求使用的包装盒的个数有多少种不同的安排方法?例4将426个乒乓球装在三种盒子里。
大盒每盒装25个,中盒每盒装20个,小盒每盒装16个。
现共装了24盒,求用了多少个大盒?【例5】小李同学把他出生的月份乘以31,再把出生日期乘以12,把他们加起来是170,试求小李生日是哪一天?说明:通过以上例题说明,小学生解不定方程,应该紧紧结合题意及数字特征,灵活运用学习过的知识来确定解的限制范围。
【例6】一个两位数,各位数字和的5倍比原数大10,求这个两位数。
【例7】小明准备到商店买2角钱一支的铅笔和9角钱一支的圆珠笔,两种笔都要买,并且刚好花了4元钱,问小明铅笔与圆珠笔各买了几支?例8有三张扑克牌,牌的数字互不相同,并且都在10以内.把三张牌洗好后,分别发给甲、乙、丙三人.每人记下自己牌的数字,再重新洗牌、发牌、记数.这样反复几次后,三人各自记录的数字和分别为13、15、23.请问这三张牌的数字是什么?例9采购员用一张1万元支票去购物.购单价590元的A种物若干,又买单价670元的B种物若干,其中B种个数多于A种个数,找回了几张100元和几张10元的(10元的不超过9张).如把购A种物品和B种物品的个数互换,找回的100元和10元的钞票张数也恰好相反.问购A物几个,B物几个?例10王虎用100元买油菜籽、西红柿种子和萝卜籽共100包.油菜籽每包3元,西红柿种子每包4元,萝卜籽1元钱7包,问他每种各买了多少包?练习:1.小明问小强:“你养了几只兔和鸡?”小强说:“我养的兔比鸡多,鸡兔共24条腿,你猜猜我养了几只兔和鸡?”2.李明带6元钱到花店买花.如果月季花1元钱一盆,茉莉花8角钱一盆,要把6元钱刚好用完.问能买月季花和茉莉花各多少盆?3.甲种铅笔7分钱一支,乙种铅笔3分钱一支,张明用6角钱恰好买两种不同的铅笔共多少支?4.李大伯下山去小商店买东西.下午1时离开家,先走了一段山路,来到山脚下,又走了一段平路,到了小商店.半小时后,他离开商店沿原路返回家,下午3时半到家.已知平地每小时走4千米,上山每小时走3千米,下山每小时走6千米.请问:李大伯去商店买东西走了多少千米的路?5.大汽车能容纳54人,小汽车能容纳36人,现有378人,问大、小汽车各要几辆才能使每个人都上车且每个车上无空座?6、有一个两位数,加上36以后,十位上的数字与个位上的数字的位置正好交换,求这个两位数。