人教版高一必修5第二章数列求和
高中数学人教A版必修5数列数列求和(二)PPT课件
解得
,
或
,
舍 解得 ,即数列 的通项公式
;
,
数列 的前 n 项和
高中数学 人教A版 必修5 数列数 列求和 (二)P PT课件
.Hale Waihona Puke 高中数学 人教A版 必修5 数列数 列求和 (二)P PT课件
练习:已知数列 的前 n 项和 Ⅰ 求 的通项公式;
.
Ⅱ记
,求数列 的前 n 项和.
解: Ⅰ 数列 的前 n 项和
通项是什么?
=2(1-n+1 1)=n2+n1.
高中数学人教A版必修5数列数列求和 (二)P PT课件
高中数学 人教A版 必修5 数列数 列求和 (二)P PT课件
练习:在各项均为正数的等比数列
中,
求等比数列 的通项公式;
,且 ,
成等差数列.
若数列 满足
,求数列 的前 n 项和 .
解: 设数列列
的公比为 q,
,可得
;
时,
上式对
也成立,则
,
Ⅱ
则数列 的前 n 项和为
.
高中数学 人教A版 必修5 数列数 列求和 (二)P PT课件
,
;
高中数学人教A版必修5数列数列求和 (二)P PT课件
裂项相消法求和法(拆项法):
适用于分式的形式把一项拆成两个分式差的形式,然后再求和.
也就是将数列的每一项拆成二项或多项使数列中的项出现有规律的 抵消项,进而达到求和的目的。
归纳小结
(1)公式法.
(2)分组化归法.将该数列的通项变形后,每一项拆成两项或多项,重新分组,将一般数列
求和化为特殊数列求和.
(3)并项求和法.(4)错位相减法.(5)倒序相加法.
高中数学 第二章 数列 2.5 等比数列的前n项和 第2课时 数列求和课件 新人教A版必修5
(2)由(1)可得 bn=2n+n, 所以 b1+b2+b3+…+b10 =(2+1)+(22+2)+(23+3)+…+(210+10) =(2+22+23+…+210)+(1+2+3+…+10) =2(11--2210)+(1+120)×10 =(211-2)+55 =211+53=2 101.
第二章 数列
第 2 课时 数列求和
第二章 数列
1. 能 由 简 单 的 递 推 公 式 求 出 数 列 的 通 项 公 式. 2.掌握数列求和的几种基本方法.
1.基本求和公式 (1)等差数列的前 n 项和公式 Sn=n(a12+an)=na1+n(n2-1)d. (2)等比数列的前 n 项和公式 当 q=1 时,Sn=_n_a_1_; 当 q≠1 时,Sn=a1(11--qqn)=a11--aqnq.
求和时易忽视两边同 除以-3
(1)一般地,如果数列{an}是等差数列,{bn}是等比数列,求数 列{an·bn}的前 n 项和时,可采用错位相减法. (2)用错位相减法求和时,应注意 ①要善于识别题目类型,特别是等比数列公比为负数的情形更 值得注意; ②在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对 齐”,以便于下一步准确写出“Sn-qSn”的表达式; ③应用等比数列求和公式必须注意公比 q≠1 这一前提条件,如 果不能确定公比 q 是否为 1,应分两种情况讨论.
探究点二 裂项相消法求和
(2015·高考全国卷Ⅰ改编)数列{an}满足 a1=3,an+1=an +2. (1)求{an}的通项公式; (2)设 bn=ana1n+1,求数列{bn}的前 n 项和. [解] (1)由 a1=3,an+1=an+2, 所以{an}是首项为 3,公差为 2 的等差数列,通项公式为 an =2n+1.
高一数学必修五第二章求和
高一数学必修五第二章——数列求和知识归纳:数列求和的主要方法:(1)公式法:等差或等比数列直接运用求和公式计算的方法。
(2)分组求和法:将一个数列拆成若干个简单数列(等差、等比、常数列)然后分别求和的方法。
(3)裂项相消法:将数列的通项分成二项的差的形式,相加消去中间项,剩下有限项再求和的方法。
常用技巧有:①)11(1)(1k n n k k n n +-=+; ②)(11n k n kn k n -+=++③)121121(21)12)(12(1+--=+-n n n n ; ④])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n (4)错位相减法:将一个数列的每一项都作相同的变换,然后将得到的新数列错动一个位置与原数列的各项相减,也即是仿照推导等比数列前n 项和公式的方法。
若}{n a 为等差、}{n b 为等比数列,则求数列}{n n b a 的前n 项和可用此法。
(5)倒序求和法:即仿照推导等差数列前n 项和公式的方法一:公式法:①等差数列求和公式;②等比数列求和公式,特别声明:运用等比数列求和公式,务必检查其公比与1的关系,必要时需分类讨论;例1:等比数列{}n a 的前n 项和21n n S =-,则2232221n a a a a ++++ =____________;练习1.数列}{n a 的通项是21n a n =+,,则数列{}n a 的的前n 项和为( )A .2n B .)1(+n n C .)2(+n n D .)12(+n n二、分组求和:若数列{}n C 的通项公式为n n n b a c +=,其中{}{}n n b a ,中一个是等差数列,另一个是等比数列,求和时一般用分组结合法。
例2: 已知数列{}n a 的通项公式为231n n a n =+-,则数列{}n a 的前n 项和n S =___________;练习2.数列 ,21)12(,,815,413,211n n +-的前n 项和为n S ,则=n SA .n n 2112-+B .12211--+n nC .n n n 21122-+-D .n n n 2112-+-练习3、设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4.(1)求{a n }的通项公式; (2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n .三、裂项相消:将数列的通项分成二项的差的形式,相加消去中间项,剩下有限项再求和的方法。
必修五第二章 数列 复习课【2】求数列前N项和的常用方法【原创】
例1:设等差数列{an},公差为d,求证:{an}的 :设等差数列 ,公差为 ,求证: 的 项和S 前n项和 n=n(a1+an)/2 项和 解:Sn=a1+a2+a3+...+an ① 倒序得: 倒序得: Sn=an+an-1+an-2+…+a1 ② ①+②得: ② 2Sn=(a1+an)+(a2+an-1)+(a3+an-2)+…+(an+a1) 又∵a1+an=a2+an-1=a3+an-2=…=an+a1 ∴2Sn=n(a2+an源自 Sn=n(a1+an)/2
6
类型三、用裂项相消法求数列的前 项和 类型三、用裂项相消法求数列的前n项和
裂项相消法是将数列的一项拆成两项或多项, 裂项相消法是将数列的一项拆成两项或多项,使得前 后项相抵消,留下有限项,从而求出数列的前n项和 项和。 后项相抵消,留下有限项,从而求出数列的前 项和。
例3 求数列 的前n项和 的前 项和Sn 项和
点拨:由推导过程可看出, 点拨:由推导过程可看出,倒序相加法是借助 a1+an=a2+an-1=a3+an-2=…=an+a1,即与首末项等距的两项 , 之和等于首末两项之和的这一等差数列的重要性质来实 现的。 现的。
类型二、用公式法求数列的前n项和 类型二、用公式法求数列的前 项和
对等差数列、等比数列,求前 项和 项和S 对等差数列、等比数列,求前n项和 n,可直接用 等差、等比数列的前n项和公式进行求解 项和公式进行求解。 等差、等比数列的前 项和公式进行求解。运用公式求 注意:首先要注意公式的应用范围,再计算。 解时,要注意:首先要注意公式的应用范围,再计算。 例2:求数列 : 和 Sn 的前n项 的前 项
人教版高中数学必修五第二章 数列求和专题复习教学课件共17页含视频
1 1 1 ( ) k n nk
1 1 1 1 ( ) 2 2n 1 2n 1 (2n 1)(2n 1)
1 1 ( n k n) nk n k
(四)错位相减法
对一个由等差数列及等比数列对应项之积组成的 数列的前n项和,常用错位相减法。
常见类型:
bn 是等差数列,数列 cn 是等比数列 其中数列
an bn cn
三.课内探究
(一)分组求和法
• 例1.
已知函数f ( x) 2 x 3 x 1, 点(n,a n)n N*在f (x)的图像上, 求数列an 的前n项和S n
变式1 • 求数列
1,1 2,1 2 4,...,1 2 4 ... 2 ,... 的前 n 项和Sn
四.课堂小结 • 这节课你都学到了什么?
五.当堂检测
1.数列an 的通项公式为a n 2n 1, 前 n 项和为 Sn , Sn 75 则数列 的前10项和为:_____________ n
n 1 n 1 则数列 , n N 的前n项和S n ___________
(二)分组求和法:
一个数列的通项公式是由若干个等差数列 或等比数列或可求和的数列组成,则求和时可 用分组求和法,分别求和后再相加减. 常见类型:
an bn cn , bn , cn 可用公式法求和
(三)裂项相消法: 把数列的通项拆成两项之差,在求和时中间 的一些项可以相互抵消,从而求得其和.
小结:对于不能由等差数列、等比数列 的前n项和公式直接求和的问题,一般需 要将数列通项的结构进行合理拆分,转 化成若干个等差数列、等比数列的求和。
高一人教A版必修五数学课件:2.5.2 混合数列求和 (共12张PPT)
1 n+
n+1,Sn=10,则
n
等于(
)
A.90
B.119
C.120
D.121
答案 C
解析
an=
1 n+
n+1=
n+1-
n,
∴Sn=( 2-1)+( 3- 2)+…+( n+1- n)= n+1-1=10, ∴n+1=121,故 n=120.
等比数列
课堂达标检测
等比数列
3.在数列{an}中,已知 Sn=1-5+9-13+17-21+…+(-1)n-1(4n-3),n∈N*,
等比数列
题型三 错位相减求和
等比数列
例 3 已知{an}是各项均为正数的等比数列,{bn}是等差数列,
且 a1=b1=1,b2+b3=2a3,a5-3b2=7. (1)求{an}和{bn}的通项公式; (2)设 cn=anbn,n∈N*,求数列{cn}的前 n 项和.
错位相减求和主要适用于:
{an}是等差数列,{bn}是等比数列, 求数列{anbn}的前 n 项和.
+ 2×2n-1 -(2n-1)×2n
=2n+1-3-(2n-1)×2n=-(2n-3)×2n-3,
所以 Sn=(2n-3)·2n+3,n∈N*.
题型四 并项求和
例 4 求和:Sn=-1+3-5+7-…+(-1)n(2n-1). 解 当 n 为偶数时,Sn=(-1+3)+(-5+7)+…+[(-2n+3)+(2n-1)= ] 2·n2=n. 当 n 为奇数时,
∴Tn=n·3n,n∈N*.
解 (1)设数列{an}的公比为 q,数列{bn}的公差为 d,由题意 q>0. 由已知,有2qq4-2-33dd==102, , 消去 d,整理得 q4-2q2-8=0.
人教版高一数学必修5--第二章数列总结资料
人教版高一数学必修5第二章数列总结1、数列的基本概念(1)定义:按照一定的次序排列的一列数叫做数列.(2)通项公式:如果数列{a n }的第n 项a n 与n 之间的函数关系可以用一个公式表示,这个公式就叫做这个数列的通项公式.(3)递推公式:如果已知数列{a n }的第一项(或前几项),且任何一项a n 与它前一项a n -1(或前几项)间的关系可用一个公式来表示,那么这个公式就叫做这个数列的递推公式. 通项公式与递推公式,是给出一个数列的两种主要方法.2、主要公式(1)通项公式a n 与前n 项和公式S n 间的关系:a n =⎩⎪⎨⎪⎧S 1 n =1S n -S n -1n ≥2.(2)等差数列a n =a 1+(n -1)d =a m +(n -m )d . S n =12n (a 1+a n ),S n =na 1+12n (n -1)d . A =a +b2(等差中项). (3)等比数列a n =a 1q n -1,a n =a m ·q n -m . S n =⎩⎪⎨⎪⎧na 1 q =1a 1-a n q 1-q=a 11-q n1-q q ≠1.G =±ab (等比中项).3.主要性质(1)若m +n =p +q (m 、n 、p 、q ∈N *), 在等差数列{a n }中有:a m +a n =a p +a q ; 在等比数列{a n }中有:a m ·a n =a p ·a q .(2)等差(比)数列依次k 项之和仍然成等差(比).专题一 数列的通项公式的求法1.观察法 根据下面数列的前几项,写出数列的一个通项公式. (1)1,1,57,715,931,…;2.定义法等差数列{a n }是递增数列,前n 项和为S n ,且 a 1,a 3,a 9成等比数列,S 5=a 25.求数列{a n }的通项公式. 3.前n 项和法(1)已知数列{a n }的前n 项和S n =n 2+3n +1,求通项 a n ;(2)已知数列{a n }的前n 项和S n =2n +2,求通项 a n . 4.累加法已知{a n }中,a 1=1,且a n +1-a n =3n (n ∈N *),求通项 a n . 5.累乘法已知数列{a n },a 1=13,前n 项和S n 与a n 的关系是S n =n (2n -1)a n ,求通项a n . 6.辅助数列法已知数列{a n }满足a 1=1,a n +1=3a n +2(n ∈N *).求数列{a n }的通项公式. 7.倒数法已知数列{a n }中,a 1=1,a n +1=a na n +1(n ∈N *).求通项a n .专题二 数列的前n 项和的求法 1.分组转化求和法如果一个数列的每一项是由几个独立的项组合而成,并且各独立项也可组成等差或等比数列,则该数列的前n 项和可考虑拆项后利用公式求解. 求和:S n =112+214+318+…+(n +12n ).2.裂项求和法对于裂项后明显有能够相消的项的一类数列,在求和时常用“裂项法”,分式的求和多利用此法.可用待定系数法对通项公式进行拆项,相消时应注意消去项的规律,即消去哪些项,保留哪些项,常见的拆项公式有:(1)1n n +k =1k ·(1n -1n +k ); (2)若{a n }为等差数列,公差为d , 则1a n ·a n +1=1d (1a n -1a n +1); (3)1n +1+n=n +1-n 等.3.错位相减法若数列{a n }为等差数列,数列{b n }是等比数列,由这两个数列的对应项乘积组成的新数列为{a n b n },当求该数列的前n 项的和时,常常采用将{a n b n }的各项乘以等比数列{b n }的公比q ,然后错位一项与{a n b n }的同次项对应相减,即可转化为特殊数列的求和,所以这种数列求和的方法称为错位相减法.已知数列{a n }中,a 1=3,点(a n ,a n +1)在直线y =x +2上. (1)求数列{a n }的通项公式; (2)若b n =a n ·3n ,求数列{b n }的前n 项和T n . 4.分段求和法如果一个数列是由各自具有不同特点的两段构成,则可考虑利用分段求和. 已知数列{a n }的前n 项和为S n ,且a n +S n =1(n ∈N *). (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =3+log 4a n ,设T n =|b 1|+|b 2|+…+|b n |,求T n .附注:常用结论1)1+2+3+...+n =2)1+3+5+...+(2n-1) =3)三、等差、等比数列的对比(1)判断数列的常用方法看数列是不是等差数列有以下三种方法:①②2()③(为常数).看数列是不是等比数列有以下四种方法:①②(,)③(为非零常数).④正数列{}成等比的充要条件是数列{}()成等比数列.等差数列等比数列定义公式1.2.1.2.性质1.,称为与的等差中项1.,称为与的等比中项2.若(、、、),则3.,,成等差数列4. 2.若(、、、),则3.,,成等比数列4. ,(3)在等差数列{}中,有关Sn 的最值问题:1),时,有最大值;,时,有最小值;2)最值的求法:①若已知,可用二次函数最值的求法();②若已知,则最值时的值()可如下确定或。
高中数学人教版必修5课件:第二章 数列前n项和的求法(2课时) (共16+11张PPT)1
Sn
a1(1 qn ) 1q
(2)当q=1时, Sn = na1
5、错项相减法:
• 若在数列{an·bn}中,{an}成等差数列,{bn}成等比 数列,求和时一般在已知和式的两边都乘以组成 这个数列的等比数列的公比;然后再将得到的新 和式和原和式相减,转化为同倍数的等比数列求 和,这种方法就是错位相减法。
当 a=1时,S=1+2+3+…+n n(n 1)
2
当 a≠1时,(1-a)S= 1 an -naSn
1 a
n(n 1)
S
1
(1
2
an a)2
na n 1 a
a 1 a 1
1 an (1 a )2
na n 1 a
知识盘点
• 4、倒序相加法:
• 5、错项相减法:
课后作业
播下一个行动,收获一种习惯;播下一种习惯,收获一种性格;播下一种性格,收获一种命运。思想会变成语言,语言会变成行动,行动会变成习惯,习惯会变成性格。性 制,会变成生活的必需品,不良的习惯随时改变人生走向。人往往难以改变习惯,因为造习惯的就是自己,结果人又成为习惯的奴隶!人生重要的不是你从哪里来,而是你 时侯,一定要抬头看看你去的方向。方向不对,努力白费!你来自何处并不重要,重要的是你要去往何方,人生最重要的不是所站的位置,而是所去的方向。人只要不失去 这个世界唯一不变的真理就是变化,任何优势都是暂时的。当你在占有这个优势时,必须争取主动,再占据下一个优势,这需要前瞻的决断力,需要的是智慧!世上本无移 是:山不过来,我就过去。人生最聪明的态度就是:改变可以改变的一切,适应不能改变的一切!亿万财富不是存在银行里,而是产生在人的思想里。你没找到路,不等于 什么,你必须知道现在应该先放弃什么!命运把人抛入最低谷时,往往是人生转折的最佳期。谁能积累能量,谁就能获得回报;谁若自怨自艾,必会坐失良机人人都有两个 一个是心门,成功的地方。能赶走门中的小人,就会唤醒心中的巨人!要想事情改变,首先自己改变,只有自己改变,才可改变世界。人最大的敌人不是别人,而是自己, 1、烦恼的时候,想一想到底为什么烦恼,你会发现其实都不是很大的事,计较了,就烦恼。我们要知道,所有发生的一切都是该发生的,都是因缘。顺利的就感恩,不顺 寒潭,雁过而潭不留影;风吹疏竹,风过而竹不留声。”修行者的心境,就是“过而不留”。忍得住孤独;耐得住寂寞;挺得住痛苦;顶得住压力;挡得住诱惑;经得起折腾 得起责任;1提得起精神。闲时多读书,博览凝才气;众前慎言行,低调养清气;交友重情义,慷慨有人气;困中善负重,忍辱蓄志气;处事宜平易,不争添和气;对已讲 远,修身立正气;居低少卑怯,坦然见骨气;卓而能合群,品高养浩气淡然于心,自在于世间。云淡得悠闲,水淡育万物。世间之事,纷纷扰扰,对错得失,难求完美。若 陷于计较的泥潭,不能自拔。若凡事但求无愧于心,得失荣辱不介怀,自然落得清闲自在。人活一世,心态比什么都重要。财富名利毕竟如云烟,心情快乐才是人生的至宝 在脚踏实地的道路上;我们的期待在哪里?在路上,在勤劳勇敢的心路上;我们的快乐在哪里?在路上,在健康阳光的大道上;我们的朋友在哪里?在心里,在真诚友谊的 己负责;善于发现看问题的角度;不满足于现状,别自我设限;勇于承认错误;不断反省自己,向周围的成功者学习;不轻言放弃。做事要有恒心;珍惜你所拥有的,不要 美;不找任何借口。与贤人相近,则可重用;与小人为伍,则要当心;只满足私欲,贪图享乐者,则不可用;处显赫之位,任人唯贤,秉公办事者,是有为之人;身处困境 任;贫困潦倒时,不取不义之财者,品行高洁;见钱眼开者,则不可用。人最大的魅力,是有一颗阳光的心态。韶华易逝,容颜易老,浮华终是云烟。拥抱一颗阳光的心态 心无所求,便不受万象牵绊;心无牵绊,坐也从容,行也从容,故生优雅。一个优雅的人,养眼又养心,才是魅力十足的人。容貌乃天成,浮华在身外,心里满是阳光,才 随流水宁。心无牵挂起,开阔空净明。幸福并不复杂,饿时,饭是幸福,够饱即可;渴时,水是幸福,够饮即可;裸时,衣是幸福,够穿即可;穷时,钱是幸福,够用即可 困时,眠是幸福,够时即可。爱时,牵挂是幸福,离时,回忆是幸福。人生,由我不由天,幸福,由心不由境。心是一个人的翅膀,心有多大,世界就有多大。很多时候限 也不是他人的言行,而是我们自己。人心如江河,窄处水花四溅,宽时水波不兴。世间太大,一颗心承载不起。生活的最高境界,一是痛而不言,二是笑而不语。无论有多 幸福在于祥和,生命的祥和在于宁静,宁静的心境在于少欲。无意于得,就无所谓失去,无所谓失去,得失皆安谧。闹市间虽见繁华,却有名利争抢;田园间无争,却有柴 最终不过梦一场。心静,则万象皆静。知足者常在静中邂逅幸福。顺利人生,善于处理关系;普通人生,只会使用关系;不顺人生,只会弄僵关系。为人要心底坦荡,不为 不为假象所惑。智者,以别人惨痛的教训警示自己;愚者,用自己沉重的代价唤醒别人。对人多一份宽容,多一份爱心;对事多一份认真,多一份责任;对己多一点要求, 可满,乐不可极,警醒自己。静能生慧。让心静下来,你才能看淡一切。静中,你才会反观自己,知道哪些行为还需要修正,哪些地方还需要精进,在静中让生命得到升华 心静下来,你才能学会放下。你放下了,你的心也就静了。心不静,是你没有放下。静,通一切境界。人与人的差距,表面上看是财富的差距,实际上是福报的差距;表面 人品的差距;表面上看是气质的差距,实际上是涵养的差距;表面上看是容貌的差距,实际上是心地的差距;表面上看是人与人都差不多,内心境界却大不相同,心态决定 一件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运,有时候其 一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往是失败的开 光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏实。知恩 为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运,有时候其实没什么道 就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往是失败的开始;寒冷 长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏实。以平常心观不 面前,平常心就是勇敢;在利诱面前,平常心就是纯洁;在复杂的环境面前,平常心就是保持清醒智慧。平常心不是消极遁世,而是一种境界,一种积极的人生。不仅要为 价值的人而努力。命运不是机遇,而是选择;命运不靠等待,全靠争取。成熟就是学会在逆境中保持坚强,在顺境时保持清醒。时间告诉你什么叫衰老,回忆告诉你什么叫 的赞许时,心灵才会真的自由。你没那么多观众,别那么累。温和对人对事。不要随意发脾气,谁都不欠你的。现在很痛苦,等过阵子回头看看,会发现其实那都不算事。 有绝交,才有至交学会宽容伤害自己的人,因为他们很可怜,各人都有自己的难处,大家都不容易。学会放弃,拽的越紧,痛苦的是自己。低调,取舍间,必有得失。不要 面前没人爱听那些借口。慎言,独立,学会妥协的同时,也要坚持自己最基本的原则。付出并不一定有结果。坚持可能会导致失去更多过去的事情可以不忘记,但一定要放 个最好的打算和最坏的打算。做一个简单的人,踏实而务实。不沉溺幻想。不庸人自扰。不说谎话,因为总有被拆穿的一天。别人光鲜的背后或者有着太多不为人知的痛苦 不管学习什么,语言,厨艺,各种技能。注意自己的修养,你就是孩子的第一位老师。孝顺父母。不只是嘴上说说,即使多打几个电话也是很好的。爱父母,因为他们给了 无私的人。
人教A版高中数学必修五2.5.2 数列求和的几种方法课件
我们把这种类型的数列称为“A G”型。
此类方法类似于等比数列求和的公式的
推导方法,叫做错位相减法。
A*G 错位相减法
如果一个数列的各项是由一个等差数列和一个等比数列的对应 项之积构成的,那么这个数列的前n项和即可用此法来求.
【错位相减法】设 {an}的前n项和为Sn,an=n·2n,则Sn=
解析:∵Sn=1·21+2·22+3·23+…
2S 89 S 89 2
例题1. 求和 (1)2 (x 2) (x2 3) (xn1 n)( x 0)
分析:原式=(1+2+3+…+n)+( x0 x1 x2 xn )
[解]原式=
1 x n1 1x
n(n1) (x≠1)
2
n(n+3)/2
(x=1)
我们把这种类型的数列称为“A+G”型。
指出下列求和的方法:
1.求
1 1
4
, 4
1
7
,
,
1
的和
(3n-2)(3n+1)
用裂项求和法.an
1 3
(1 3n
2
1) 3n 1
2.求 1 , 1 , 1 + 1+ 2 2 3 3 4
+ n 1 n 1 的前n项和Sn
用裂项求和法.an n 1 n
3.求1 2,23, ,n (n+1)的和
+n·2n
①
∴2Sn=
1·22+2·23+3·24+…+(n-1)·2n+n·2n+1②
21-2n
① -②得-Sn=2+22+23+…+2n-n·2n+1=
-n·2n+1
(推荐)人教版高一数学必修5-第二章数列总结
人教版高一数学必修5第二章数列总结1、数列的基本概念(1)定义:按照一定的次序排列的一列数叫做数列.(2)通项公式:如果数列{a n }的第n 项a n 与n 之间的函数关系可以用一个公式表示,这个公式就叫做这个数列的通项公式.(3)递推公式:如果已知数列{a n }的第一项(或前几项),且任何一项a n 与它前一项a n -1(或前几项)间的关系可用一个公式来表示,那么这个公式就叫做这个数列的递推公式. 通项公式与递推公式,是给出一个数列的两种主要方法.2、主要公式(1)通项公式a n 与前n 项和公式S n 间的关系:a n =⎩⎪⎨⎪⎧S 1 n =1S n -S n -1 n ≥2. (2)等差数列 a n =a 1+(n -1)d =a m +(n -m )d . S n =12n (a 1+a n ),S n =na 1+12n (n -1)d .A =a +b 2(等差中项). (3)等比数列a n =a 1q n -1,a n =a m ·q n -m . S n =⎩⎪⎨⎪⎧ na 1 q =1a 1-a n q 1-q=a 11-q n 1-q q ≠1.G =±ab (等比中项).3.主要性质(1)若m +n =p +q (m 、n 、p 、q ∈N *),在等差数列{a n }中有:a m +a n =a p +a q ;在等比数列{a n }中有:a m ·a n =a p ·a q .(2)等差(比)数列依次k 项之和仍然成等差(比).专题一 数列的通项公式的求法1.观察法 根据下面数列的前几项,写出数列的一个通项公式.(1)1,1,57,715,931,…; 2.定义法等差数列{a n }是递增数列,前n 项和为S n ,且 a 1,a 3,a 9成等比数列,S 5=a 25.求数列{a n }的通项公式.3.前n 项和法(1)已知数列{a n }的前n 项和S n =n 2+3n +1,求通项 a n ;(2)已知数列{a n}的前n项和S n=2n+2,求通项a n. 4.累加法已知{a n}中,a1=1,且a n+1-a n=3n(n∈N*),求通项a n. 5.累乘法已知数列{a n },a 1=13,前n 项和S n 与a n 的关系是S n =n (2n -1)a n ,求通项a n . 6.辅助数列法已知数列{a n }满足a 1=1,a n +1=3a n +2(n ∈N *).求数列{a n }的通项公式.7.倒数法已知数列{a n }中,a 1=1,a n +1=a n a n +1(n ∈N *).求通项a n . 专题二 数列的前n 项和的求法1.分组转化求和法如果一个数列的每一项是由几个独立的项组合而成,并且各独立项也可组成等差或等比数列,则该数列的前n 项和可考虑拆项后利用公式求解.求和:S n =112+214+318+…+(n +12n ). 2.裂项求和法对于裂项后明显有能够相消的项的一类数列,在求和时常用“裂项法”,分式的求和多利用此法.可用待定系数法对通项公式进行拆项,相消时应注意消去项的规律,即消去哪些项,保留哪些项,常见的拆项公式有:(1)1n n +k =1k ·(1n -1n +k); (2)若{a n }为等差数列,公差为d ,则1a n ·a n +1=1d (1a n -1a n +1); (3)1n +1+n =n +1-n 等.3.错位相减法若数列{a n }为等差数列,数列{b n }是等比数列,由这两个数列的对应项乘积组成的新数列为{a n b n },当求该数列的前n 项的和时,常常采用将{a n b n }的各项乘以等比数列{b n }的公比q ,然后错位一项与{a n b n }的同次项对应相减,即可转化为特殊数列的求和,所以这种数列求和的方法称为错位相减法.已知数列{a n }中,a 1=3,点(a n ,a n +1)在直线y =x +2上.(1)求数列{a n }的通项公式;(2)若b n =a n ·3n ,求数列{b n }的前n 项和T n .4.分段求和法如果一个数列是由各自具有不同特点的两段构成,则可考虑利用分段求和.已知数列{a n }的前n 项和为S n ,且a n +S n =1(n ∈N *).(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =3+log 4a n ,设T n =|b 1|+|b 2|+…+|b n |,求T n .附注:常用结论1)1+2+3+...+n =2) 1+3+5+...+(2n-1) =3)三、等差、等比数列的对比(1)判断数列的常用方法看数列是不是等差数列有以下三种方法:①②2()③(为常数).看数列是不是等比数列有以下四种方法:①②(,)③(为非零常数).④正数列{}成等比的充要条件是数列{}()成等比数列.(2)等差数列与等比数列对比小结:等差数列等比数列定义公式1.2.1.2.性质1.,称为与的等差中项2.若(、、、1.,称为与的等比中项2.若(、、、),则),则3.,,成等差数列4. 3.,,成等比数列4. ,(3)在等差数列{}中,有关Sn 的最值问题:1),时,有最大值;,时,有最小值;2)最值的求法:①若已知,可用二次函数最值的求法();②若已知,则最值时的值()可如下确定或。
高中数学人教A版必修5第2章第5节《数列求和》课件
1 2
(1 2
1 4
1 3
1 5
1 4
1 6
1 5
1 7
1 1 1 1 ) n n 2 n 1 n 3
••
•
•
Sn
1 2
(1 2
1 3
n
1
2
1) n3
5 12
2(n
2n 5 2)(n
3)
小规律:
裂项相消时,前面剩几项, 对应后面就剩几项;前面剩 第几项,对应后面就剩倒数 第几项;前后至少各写出两 组数。
解:设等差数列an
的首项为a1
,
公差为d, an
1 an1
的前n项和为Tn
3a1a123dd36
ad1
1 1
an n
1 1 anan1 n(n 1)
1 1 n n1
Tn
11
1 2
1 2
1 3
1 1 n 1
n n 1
1 1 1 11 n 1 n n nn1
常见数列的裂项方法
(1)
(3)2 4 6 (4)12 22 32
(5)13 23 33
2n n(n 1)
n2 n(n 1)(2n 1) 6
n3 n2 (n 1)2 4
二.倒序相加法
适用于:如果一个数列 an 中与首
末两项“等距离”的两项之 和等于首末两项的和。
方法:把数列分别正着写和倒着写再 相加。
1 2
an 2n 1
(2)
1
1
anan1 (2n 1)(2n 1)
1( 1 1 ) 2 2n 1 2n 1
Tn
1 2
(1
1 3
1 3
高一数学必修5课件:数列求和
an(1+2an-1)=an-1(n≥2),求数列{an}的
通项公式.
an
1 2n 1
第十一页,编辑于星期日:二十二点 十九分。
Байду номын сангаас
综合分析法
例5. 已知数列的首项a1 5,前n项
和为Sn ,且Sn1 2Sn n 5(n N *)
证明:an 1是等比数列.
例6.已知数列 an
满足:a1
=
1 2
求数列Sn=12-22+32-42+…+(-1)n-1n2
第三页,编辑于星期日:二十二点 十九分。
7.通项化归: 先将通项公式进行化简,再进行求和。
求数列1,1+2,1+2+3,1+2+3+4,…
的前n项和。
第四页,编辑于星期日:二十二点 十九分。
高一数学必修五第二章
《数列》
递推数列通项公式的求法
第九页,编辑于星期日:二十二点 十九分。
练习1:
已知数列{an}中,
a1
3 5
,
an1
an , 2an 1
求{an}的通项公式. (倒数法)
练习2: 在数列{an}中,a1=2,且 求{an}的通项公式. (平方法)
an1
an2 1, 2
第十页,编辑于星期日:二十二点 十九分。
练习3: 已知数列{an}满足:a1=1,且
形如an1 an f (n)的数列, 若f (n)可求 和,则可用累加消项的方法求通项。
第七页,编辑于星期日:二十二点 十九分。
累乘法
例3. 已知数列 an 满足:a1=1,
an
+1
=
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
?
s n (1 ) ( ) ( )
1 1 n n 1 n 1
1 2
1 2
1 3
1 3
1 4
(
1
n
1 ) n 1
8
练习
数列 an 的通项公式an 1
n (n 2)
,求它的前n项和sn
?
1 1 1 ( ) 2 n n 2
9
知识点3:裂项相消法
· · ·
· · ·
13
随堂练 习
1、数列 2、求和: 3、已知各项不为零的等差数列 · · · , , · · · 的前n项和 · · · ,求证: · · ·
14
3
1 1 1 1 ……的前n项和 例2:求数列 1 ,2 ,3 ,4 2 4 8 16
解:因为an n
1
2n
1 1 1 所以,sn (1 ) (2 ) (3 ) 2 4 8
1 (n n ) 2
=(1+2+3+
1 1 1 n)+( + + + 2 4 8
1 + n ) 2
a 和 bn 均为等差数列,
n
1 如果一个数列 cn 通项公式cn , an bn 且 an bn d(d 为常数) ,则我们往往采用 裂项相消法。
10
1 3 5 2n 1 例5、求和: + + ++ n 2 4 8 2
知识点4:错位相减法 若数列的通项公式为 cn an bn ,其中 an bn 中有一个是等差数列,另一个是等比数列,求和 时一般在已知和式的两边都乘以组成这个数列的 等比数列的公比;然后再将得到的新和式和原和 式相减,转化为同倍数的等比数列求和,这种方 法就是错位相减法。
例3:求和
解:由题 · · ·
6
如果题中的第n项本身就 是一个和式,那么可先将通 项化简再求和
7
想一想
1 1 1 1 例4、求和 1 2 2 3 3 4 n (n 1)
1 1 1 解:an n(n 1) n n 1
1 1 (1 n ) 2 n(n 1) 2 n n 1 2 n 1 1 2 2 2 1 2
4
知识点2:分组结合法
若数列 cn 的通项公式为cn an bn,其中
an ,bn 中一个是等差数列,另一个是等比
数列,求和时一般用分组结合法。
5
想一想
11
1、本节主要讲了4种数列求和方法 公式法 分组结合法 裂项相消法 错位相减法 总结 2、求和时应首先注意观察数列特点和规 律考察此数列,是否是基本数列求和或 者可转化为基本数列求和 3、要熟练运用这些方法,还需要我 们在练习中不断摸索
12
想一想
练习:求通项为 an 3n 3 1 n 的数列的前n项和
题目:数列的求和
1
等差数列的求和公式:
n(a1 an ) 1 sn na1 n(n 1)d 2 2
等比数列的求和公式:
q 1 q 1
2
例1、求和:
a a a a (a 0)
2 3 n
知识点1:公式法(若问题可以转化为等差、等比数列, 则可以直接利用求和公式即可)