六年级奥数 计算题

合集下载

小学六年级奥数计算训练题(1)

小学六年级奥数计算训练题(1)

小学六年级奥数计算训练题(1)姓名一、直接写出得数。

=-531213 =-21411 =+3232 =⨯4343 =÷43412 =+3221 =-2154 =+32321 =⨯85412 =÷41181 =⨯103213 =+21141 =+541109 =-51531 =⨯21322 =÷2152 =÷5352 =+5153 =-811431 =+3291 =⨯5454 =⨯7273 =÷10121 =-83211 =-31313 =+21211 =÷5352 =÷211321 =⨯5352 =⨯21232 =-4183 =+103531 =+313211 =⨯9495 =÷41213 =⨯43213 =÷3295 =+313211 =+211103 =-52521 =-9298 =÷321212 =⨯511521 =÷2141 =-21411 =+4381 =-211531 =÷3131 =÷5453=÷311321 =⨯321911 =+431411 =-5152 =+212611 =⨯541212 =÷21131 =⨯214322 =-65211 =-2185 =⨯21421二、脱式计算。

(能简便的必须简便计算) 1. 134993715134993715⨯÷⨯ 2. 560÷⎪⎭⎫ ⎝⎛⨯-5512213. 83634632346321125.023463⨯+⨯+⨯4. 124123123123÷5.30120112161211-----6. 50491431321211⨯++⨯+⨯+⨯ 7.187959718592187⨯+⨯-⨯ 8. 7217561542133011209127651-+-+-+-9.141327131225437325213⨯+⨯-⨯+⨯-⨯ 10. 1281641321161814121++++++11.141414141414131313131313++++ 12.++++++20202020202020202020202049194919491919491949194913.25020201191312021250⨯+-⨯ 14. 655161544151433141⨯+⨯+⨯15. 72375231673722316÷+⨯+⨯ 16. 13811137138137139⨯+⨯三、解决问题。

六年级数学奥数计算题100道

六年级数学奥数计算题100道

题1、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?题2、有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?题3、有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?题4、用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?题5、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天?题6、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元,如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问:有多少千克大西瓜?题7、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?题8、某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?9\一根绳,第一次用去二分之一,第二次用去剩下的二分之一,依次类推,5次后还剩这根绳子的几分之几?1、甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。

这时两人钱相等,求乙的存款答案取40%后,存款有9600×(1-40%)=5760(元)这时,乙有:5760÷2+120=3000(元)乙原来有:3000÷(1-40%)=5000(元)2、由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。

再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,巧克力是奶糖的60/40=1。

小学六年级分数奥数题100道及答案(完整版)

小学六年级分数奥数题100道及答案(完整版)

小学六年级分数奥数题100道及答案(完整版)1. 一个分数,分母比分子大25,分子、分母同时除以一个相同的数后得4/9,原来的分数是多少?答案:20/45。

思路:9-4=5,25÷5=5,分子是4×5=20,分母是9×5=45。

2. 把一根绳子平均分成5 段,每段长6 米,这根绳子长多少米?答案:30 米。

思路:5×6=30(米)。

3. 有一堆煤,第一天用去1/4,第二天用去余下的1/3,还剩下12 吨,这堆煤原有多少吨?答案:24 吨。

思路:第二天用去总数的(1-1/4)×1/3=1/4,剩下总数的1-1/4-1/4=1/2,所以总数为12÷1/2=24 吨。

4. 一桶油,第一次用去1/5,第二次比第一次多用去20 千克,还剩下22 千克,这桶油原来有多少千克?答案:50 千克。

思路:设这桶油原来有x 千克,x-1/5x-(1/5x+20)=22,解得x=50。

5. 某班男生人数是女生人数的4/5,女生比男生多5 人,这个班共有多少人?答案:45 人。

思路:设女生人数为x,x-4/5x=5,解得x=25,男生人数为20,全班人数为45 人。

6. 一本书,第一天看了全书的1/3,第二天看了余下的1/2,还剩下40 页没看,这本书共有多少页?答案:120 页。

思路:第二天看了全书的(1-1/3)×1/2=1/3,剩下全书的1-1/3-1/3=1/3,所以全书有40÷1/3=120 页。

7. 一条公路,已经修了全长的2/5,再修60 米,就正好修了全长的一半,这条公路长多少米?答案:300 米。

思路:设公路长x 米,1/2x-2/5x=60,解得x=300。

8. 小明看一本书,第一天看了全书的1/5,第二天看了25 页,两天共看了全书的3/10,这本书共有多少页?答案:125 页。

思路:设全书有x 页,1/5x+25=3/10x,解得x=125。

小学六年级奥数难题100道及答案(完整版)

小学六年级奥数难题100道及答案(完整版)

小学六年级奥数难题100道及答案(完整版)1. 一个数的2/3加上4等于这个数的1/2,求这个数。

解:设这个数为x,根据题意可得方程:(2/3)x + 4 = (1/2)x。

解得x = -24。

2. 一个水池,第一天放水1/3,第二天放水1/4,第三天放水1/5,第四天放水1/6,最后剩下15立方米的水,求水池原来有多少立方米的水。

解:设水池原来有x立方米的水,根据题意可得方程:x * (1 - 1/3 - 1/4 - 1/5 - 1/6) = 15。

解得x = 60。

3. 一个长方形的长比宽多4厘米,周长是32厘米,求长方形的长和宽。

解:设长方形的长为x厘米,宽为y厘米。

根据题意可得方程组:x - y = 4;2x + 2y = 32。

解得x = 10,y = 6。

所以长方形的长为10厘米,宽为6厘米。

4. 一个数的3倍减去5等于这个数的2倍加上7,求这个数。

解:设这个数为x,根据题意可得方程:3x - 5 = 2x + 7。

解得x = 12。

5. 一个三角形的三边长分别为a、b、c,已知a + b > c,a + c > b,b + c > a,求三角形的面积。

解:根据海伦公式,三角形的面积S = sqrt[p * (p - a) * (p - b) * (p - c)],其中p = (a + b + c) / 2。

将已知的三边长代入公式即可求得三角形的面积。

6. 一个数的5倍减去8等于这个数的3倍加上12,求这个数。

解:设这个数为x,根据题意可得方程:5x - 8 = 3x + 12。

解得x = 10。

7. 一个正方形的边长增加2厘米,面积增加20平方厘米,求原来正方形的边长。

解:设原来正方形的边长为x厘米,根据题意可得方程:(x + 2)^2 - x^2 = 20。

解得x = 4。

所以原来正方形的边长为4厘米。

8. 一个数的4倍加上6等于这个数的3倍加上18,求这个数。

小学六年级奥数100题

小学六年级奥数100题

小学六年级奥数100题1. 5 * 7 = ____2. 36 ÷ 6 = ____3. 2² = ____4. 8 + 9 ÷ 3 = ____5. 64 ÷ 8 × 2 = ____6. 9 - 3 × 2 + 4 = ____7. 15 ÷ 5 + 7 - 1 = ____8. 16 ÷ 4 × 5 + 3 - 2 = ____9. (3² - 2²) ÷ (3 - 2) = ____10. 3⁴ = ____11. 45 ÷ 9 + 2² = ____12. 5³ - 3³ = ____13. (7 - 4)² - 4² = ____14. 60 ÷ (5 × 2) = ____15. (9 + 3)² ÷ 4² = ____16. 3 × (9 + 3) - 5 × 2 = ____17. 8³ = ____18. 30 ÷ (5 × 3) = ____19. 9 + (4 × 5 - 10) = ____20. (8 + 5)² ÷ 6² = ____21. 4 × (7 + 3 - 2) = ____22. 16 × 3 ÷ 12 = ____23. 12 + 5 × 2 - 8 ÷ 4 = ____24. 2⁵ = ____25. 18 ÷ (6 - 2) + 3 × 2 = ____26. (5² + 2²) ÷ (5 + 2) = ____27. 4 × 3³ = ____28. 7 × 5 - 8 × 3 = ____29. 81 ÷ 27 + 1² = ____30. (3 × 2)² ÷ 6² = ____31. 2⁴ = ____32. 8 ÷ 4 × 3 + 2 = ____33. 7 × (4 - 6 ÷ 2) = ____34. 20 ÷ 5 × 2 + 3 - 1 = ____35. 12 × 6 ÷ 2 + 4 = ____36. 7 × 4 + 9 ÷ (3 + 3) = ____37. 6 × 8 ÷ (3 - 1) = ____38. (9 - 1) ÷ (4 - 2) + 5 = ____39. (6 - 1) × (6 + 3) = ____40. (9 × 7 - 6³) ÷ (3 × 4) = ____41. 5 × (8 + 2) ÷ 10 = ____42. 7 × 6 - 5 + 4³ = ____43. 3⁴ - 2⁴ = ____44. 3² + 2 × 4 - 6 ÷ 3 = ____45. 72 ÷ (4 × 3) + 5 × 2 = ____46. 9 × 5 + 8 ÷ (4 - 1) = ____47. 62 ÷ 15 + 3² = ____48. 5⁴ ÷ 5² = ____49. (7 + 4 - 3) × (9 - 6 + 1) = ____50. 100 ÷ 4 + 3 - 6² = ____51. 8⁴ = ____52. 6 × 4 - 2 × 3 + 1 = ____53. 5 × (6 + 8 - 5) = ____54. 40 ÷ (10 + 5) + 2 × 3 = ____55. 7⁵ = ____56. 6² - 4 + 3 × 2 = ____57. (16 + 5 × 2) ÷ (6 - 2 × 1) = ____58. 2³ + 3 × 7 - 9 ÷ 3 = ____59. 96 ÷ (8 - 4) + 7 × 2 = ____60. 4 × (6 + 2) ÷ 8 = ____61. 81 ÷ (3 × 3) = ____62. 9 × 7 - 8 × 2 = ____63. 5⁶ = ____64. (6 - 2)² - 2 = ____65. 64 ÷ (8 × 2) = ____66. (7 × 4 - 6) ÷ 3 = ____67. 50 ÷ (10 - 2) + 1 = ____68. 8² ÷ 2³ = ____69. 9 × (6 - 2) + 3 = ____70. 100 ÷ 25 × 4 - 1 = ____71. 3⁵ = ____72. 7 + 8 × 4 - 2² = ____73. 49 ÷ 7 + 6 - (1 + 2) = ____74. 2⁷ ÷ 2³ = ____75. 6 × (4 + 5) - 6 × 3 = ____76. 6⁴ = ____77. 80 ÷ (10 ÷ 5) × 2 = ____78. 5 × 4 - 3² + 1 = ____79. 36 ÷ 9 + (5 - 4)² = ____80. 9 × (8 ÷ 4) - 6³ = ____81. (9 + 6) × (7 - 5²) = ____82. 48 ÷ (3 × 4) + 5 × 2 = ____83. 2⁸ = ____84. 7 × 2 + 4 × 9 - 5 = ____85. 51 ÷ (17 ÷ 17) + 5 = ____86. 4⁵ = ____87. 56 ÷ (7 × 2) + 3 × 1 = ____88. 3 × (9 - 7 + 4) = ____89. 2² + (7 - 3) × (6 + 3) = ____90. 8 × 4 - 6 × 2 + 3 = ____91. 6³ = ____92. 5 × 3 + 16 ÷ (2 + 2) = ____93. 4⁶ = ____94. 48 ÷ (3 × 2) + 5 × 4 = ____95. 5 + 2 × (6 - 3)² = ____96. 2⁹ ÷ 2⁶ = ____97. 9 × (7 - 3 + 2) = ____98. 6 × 5 + 12 ÷ 6 - 3² = ____99. 72 ÷ 9 + (3 × 2 - 5) = ____100. 10 × 4 - 3 × (5 + 2) = ____在这100道奥数题中,包含了加减乘除、幂运算和括号等基础数学运算。

小学六年级数学奥数题100题附答案(完整版)

小学六年级数学奥数题100题附答案(完整版)

小学六年级数学奥数题100题附答案(完整版)题目1甲、乙两车分别从A、B 两地同时相向而行,在距A 地80 千米处相遇,相遇后两车继续前进,甲车到达B 地、乙车到达A 地后均立即按原路返回,第二次在距B 地60 千米处相遇。

A、B 两地相距多少千米?答案:第一次相遇时,甲、乙两车共行了A、B 两地的距离,其中甲行了80 千米。

第二次相遇时,甲、乙两车共行了A、B 两地距离的3 倍,则甲车行了80×3 = 240 千米。

此时甲行的路程是一个A、B 两地的距离加上60 千米,所以A、B 两地相距240 - 60 = 180 千米。

题目2一项工程,甲单独做12 天完成,乙单独做18 天完成。

两人合作多少天可以完成这项工程的2/3 ?答案:甲的工作效率为1/12,乙的工作效率为1/18,两人合作的工作效率为1/12 + 1/18 = 5/36 。

完成工程的2/3 需要的时间为2/3 ÷5/36 = 24/5 = 4.8 天。

题目3一个分数,分子与分母的和是68,约分后是8/9,原来这个分数是多少?答案:设分子为8x,分母为9x,则8x + 9x = 68,17x = 68,x = 4 。

分子为8×4 = 32,分母为9×4 = 36,原来的分数是32/36 。

题目4在一个周长为62.8 米的圆形花坛周围铺一条 2 米宽的小路,这条小路的面积是多少平方米?答案:花坛的半径:62.8÷3.14÷2 = 10 米加上小路后的半径:10 + 2 = 12 米小路的面积:3.14×(12²- 10²) = 138.16 平方米题目5有浓度为20%的糖水300 克,要使其浓度变为40%,需要加糖多少克?答案:原来糖水中糖的质量:300×20% = 60 克设加糖x 克,(60 + x)÷(300 + x) = 40% ,解得x = 100 克题目6一本书,第一天看了全书的1/4,第二天看了120 页,这时已看的页数与未看的页数比是2:3,这本书共有多少页?答案:已看的页数占全书的2/(2 + 3) = 2/5第二天看的占全书的2/5 - 1/4 = 3/20全书页数:120÷3/20 = 800 页题目7一个长方体的棱长总和是120 厘米,长、宽、高的比是5:3:2,这个长方体的体积是多少立方厘米?答案:一组长、宽、高的和:120÷4 = 30 厘米长:30×5/(5 + 3 + 2) = 15 厘米宽:30×3/(5 + 3 + 2) = 9 厘米高:30×2/(5 + 3 + 2) = 6 厘米体积:15×9×6 = 810 立方厘米题目8甲、乙两个仓库共存粮90 吨,其中甲仓库的存粮是乙仓库的4/5。

小学六年级简单奥数练习题及答案

小学六年级简单奥数练习题及答案

小学六年级简单奥数练习题及答案欢迎参加小学六年级简单奥数练习题。

本次练习题包括选择题和解答题两部分,共计10道题目。

选择题请直接在下面的括号内写出你的答案,解答题请用笔写在本子上。

选择题:1. 已知一辆车每小时行驶60公里,问它行驶1小时半需要多少公里?()。

A. 90公里B. 75公里C. 70公里D. 80公里2. 小明参加了一个自行车比赛,他骑了10km,用时30分钟。

求他的平均速度是多少?()。

A. 15 km/hB. 20 km/hC. 30 km/hD. 35 km/h3. 有一家餐厅共有40张桌子,每张桌子上可以坐6个人,现在有150个顾客,问这家餐厅是否能够容纳所有的顾客?()。

A. 可以B. 不可以4. 如果9个苹果的重量等于3个桔子的重量,那么3个苹果的重量等于几个桔子的重量?()。

A. 1个B. 3个C. 9个D. 27个5. 一个矩形花坛的长是12米,宽是8米,求它的周长和面积分别是多少?()。

A. 周长36米,面积96平方米B. 周长28米,面积96平方米C. 周长24米,面积80平方米D. 周长20米,面积80平方米解答题:6. 小明参加了一个长跑比赛,起点到终点的距离是500米。

他以每分钟3.6米的速度跑完全程,他用了多少时间?请写出详细的计算过程。

7. 一个长方形花坛的长度是15米,宽度是10米,小明要在花坛四周铺上一圈砖,每块砖的尺寸是0.3米×0.6米。

他需要多少块砖?请写出详细的计算过程。

8. 甲数是丙数的两倍,乙数是甲数的一半,丙数是5。

请计算乙数。

9. 某商店有一些苹果,销售员告诉小明:“如果你买3个苹果,还需要付5元;如果你买5个苹果,还需要付9元。

”请问小明购买9个苹果需要付多少元?10. 一个三角形的底边长是8米,高是6米,求它的面积。

请写出计算过程。

答案:1. D2. A3. B4. C5. A6. 500 ÷ 3.6 = 138.88 (分钟)所以,小明用了约138.88分钟。

6年级奥数题20道题

6年级奥数题20道题

20 道六年级奥数题一、分数应用题1. 一桶油,第一次用去这桶油的1/4,第二次用去余下的2/3,还剩10 千克,这桶油原来有多少千克?解:把这桶油原来的重量看作单位“1”。

第一次用后剩下 1 - 1/4 = 3/4,第二次用去余下的2/3,即用去了3/4×2/3 = 1/2,此时还剩 1 - 1/4 - 1/2 = 1/4,对应10 千克,所以这桶油原来有10÷1/4 = 40 千克。

二、比例问题2. 甲、乙两数的比是3:4,乙、丙两数的比是5:6,求甲、丙两数的比。

解:甲:乙= 3:4 = 15:20,乙:丙= 5:6 = 20:24,所以甲:丙= 15:24 = 5:8。

三、工程问题3. 一项工程,甲单独做12 天完成,乙单独做18 天完成,现在甲、乙合作,中途甲休息了几天,结果共用了9 天完成,甲休息了几天?解:设甲休息了x 天。

乙工作了9 天,完成的工作量是1/18×9 = 1/2。

甲工作了(9 - x)天,完成的工作量是1/12×(9 - x)。

两人完成的工作量之和为单位“1”,可列方程1/12×(9 - x)+1/2 = 1,解得x = 3。

四、行程问题4. 甲、乙两车同时从A、B 两地相对开出,相遇时甲、乙两车所行路程的比是5:4,已知甲每小时行45 千米,乙行完全程要8 小时,A、B 两地相距多少千米?解:相遇时时间相同,路程比等于速度比,所以乙的速度是45×4/5 = 36 千米/小时。

两地距离为36×8 = 288 千米。

五、浓度问题5. 在浓度为10%的盐水中加入20 克盐,浓度变为12%,原来盐水有多少克?解:设原来盐水有x 克。

可列方程(x×10% + 20)÷(x + 20)= 12%,解得x = 800。

六、图形问题6. 一个圆形花坛的周长是25.12 米,在花坛周围修一条宽1 米的小路,求小路的面积。

小学六年级奥数题库

小学六年级奥数题库

小学六年级奥数题库1、停车场共停24辆车,其中汽车有4个轮子,摩托车有3个轮子,车轮共86个,求汽车和摩托车各几辆?2、一辆汽车共坐50人,其中部分人买A种票,每张0.80元,另一部分买B种票,每张0.30元,售票员统计买A种票比B种票多收18元,求买A种票和B 种票各几个人买?3、十元币和五元币共45张,合计350元,求十元币和5元币各几张?4、数学考试共有5题,全班52人参加,共做对181道题,已知每人至少做对一题,对一题的有7人,5题全对有6人,做对二题和三题的人数一样多,求做对4题有几人?5、买4元8元10元的笔记本58本,用去468元,已知4元和8元笔记本数量一样多,三种笔记本各买了几本?6、数学测试原卷共15题,对一题得8分,做错倒扣4分,小英得了72分,她做对了几题?7、买故事书50本,连环画30本,一共花310元,每本故事书比连环画多3元,求故事书和连环画各几元?8、小明骑车晴天每天行35千米,雨天每天行22千米,13天共行403千米,求共有雨天几天?9、六年级数学竞赛共20题,做一题5分,不写或写错扣3分,小建得了60分,他做对了几道题?10、工人植树晴天每天栽20棵,雨天每天栽12棵,几天共栽112棵,平均每天栽14棵,求共有几个雨天?11、小明用40元买14张贺年卡和明信片,贺年卡每张3元5角,明信片每张2元5角,贺年卡和明信片各几张?12、小王用汽车运了500个花瓶,每个运费40元,损坏一个倒赔200元,小王共得了8000元,损坏了几个瓶子?13、有一桶油,用大瓶装要72个瓶子,用小瓶装要90个瓶子,已知每个小瓶比大瓶少装4kg,求这桶油多少kg?14、有大小鸡蛋共100个,大鸡蛋每个6角,小鸡蛋每个4角,已知大鸡蛋比小鸡蛋多卖12元,大小鸡蛋各几个?15、4轮车小车和6轮车小车共18辆96个轮子,两种小车各有几辆?16、鸡兔共40只,110只脚,鸡兔各几只?17、两轮自行车和三轮摩托车共32辆6个轮子,求自行车和摩托车各多少量?18、小红家有鸡和兔35只,100只脚,鸡兔各几只?19、动物园中养龟和鹤共84只,240条腿,求龟鹤各几只?20、小明养了鸡和兔共24只,60条腿,求鸡兔各几只?21、ABCDE参赛,AB平均95分,CDE平均85分,5个平均分是多少?22、小明9次考试成绩分别为:92,88,84,96,99,81,100,80,90问平均分是多少分?23、小红7次考试分别为:96,95,89,90,91,100,97问7次平均分?24、小明第一次考了82分,第二次85分,第三次84分,第四次89分,第五次分数比五次平均分多9.6分,问第五次考多少分?25、小明做题,第一周做了83道,第二周做了74道,第三周做了71道,第四周做64道,第五周做的比前四周平均多4道,问第五周做了几道?26、小华7次考试分别得98,87,94,100,95,96,93.6,求每次考试的平均分?27、小明5次考试竞赛的平均分是91分,第六次考了96分,求6次得考试平均成绩?28、小亮游泳第一次游325米,第二次游的比两次游的平均多8米,小亮第2次游了几米?29、5个学生平均考94分,其中3个学生平均为92分,求另2个人的平均成绩?30、农机站有960kg的柴油,用了6天还剩240kg,照这样算剩下的柴油还可以用几天?31、小梅做跳绳练习,第一次跳了67下,第二次跳了76下,她要想三次平均成绩达到80下,跳多少下?32、两人的身高是123cm,另外四人的身高平均132cm,求6人平均身高?33、小刚计划4天做15道题,结果4天多做了9道题,平均每天做了多少道?34、一班有40人,二班有42人,三班有45人,开学后,又转来11个学生,怎么分才能使每班人数相等?35、小华8次测验得:99,92,79,85,95,86,94,90求每次的平均分?36、小明6次数学测验分别得88,89,95,87,97,96分求每次测验得平均分?37、小明今年13岁,小聪9岁,当两人年龄和是40岁时,两人各是多少岁?38、林下小学购买的排球是篮球的3倍,排球比篮球多18只,购买的排球和篮球各有多少只?购买的排球和篮球共有多少只?39、有大小两个书架,大书架上书的本数是小书架上的4倍,如果从大书架上取出150本放到小书架上,这时,两书架上的书的本数相等。

小学六年级奥数题100道及答案

小学六年级奥数题100道及答案

小学六年级奥数题100道及答案Part 1 warm up1.甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。

2. 小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。

如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。

问:小明家到学校多远?(第六届《小数报》数学竞赛初赛题第1题)解:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟。

这时每分钟必须多走25米,所以总共多走了24×25=600米,而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600÷6=100米。

总路程就是=100×30=3000米。

3. 小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?解:画示意图如下.第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了3.5×3=10.5(千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是10.5-2=8.5(千米).每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离(3+2+2)倍的行程.其中张走了3.5×7=24.5(千米),24.5=8.5+8.5+7.5(千米).就知道第四次相遇处,离乙村8.5-7.5=1(千米).答:第四次相遇地点离乙村1千米.4. 哥哥有12枚5分硬币,妹妹有10枚2分硬币,哥哥给妹妹几枚5分硬币,两人的钱数相等?解答:5×12=60(分) 2×10=20(分) (60-20)÷2=20(分) 20÷5=4(枚)5.阿香去吃午饭,发现附近的中餐厅有9个,西餐厅有3个,日式餐厅有2个,他准备找一家餐厅吃饭,一共有多少种不同的选择?解答:9+3+2=14(种)6.用400个棋子摆放了5层空心方阵,最内层每边有几个棋子?解答:400÷5=80(个) 80-8-8=64(个) 64÷4+1=17(个)7.用棋子摆方阵恰好摆成每边为20的实心方阵,若改为4层空心方阵,最外层每边应放几枚?解答:20×20=400(个) 400+8×(1+2+3)=448(个)448÷4=112(个) 112÷4+1=29(个)8.一把钥匙只能开一把锁,现有10把钥匙和10把锁,最少要试验多少次就一定能使全部的钥匙和锁相匹配?解答:从最不利的情形考虑。

小学六年级奥数试题(8篇)

小学六年级奥数试题(8篇)

小学六年级奥数试题(8篇)小学六年级奥数试题(8篇)在学习和工作的日常里,我们都经常看到试题的身影,试题可以帮助参考者清楚地认识自己的知识掌握程度。

你知道什么样的试题才算得上好试题吗?以下是小编整理的小学六年级奥数试题,仅供参考,欢迎大家阅读。

小学六年级奥数试题11、(鸡兔同笼问题)小丽买回0.8元一本和0.4元一本的练习本共50本,付出人民币32元。

0.8元一本的练习本有多少本?2、(年龄问题)5年前父亲的年龄是儿子的7倍。

15年后父亲的年龄是儿子的二倍,父亲和儿子今年各是多少岁?3、(盈亏问题)王老师发笔记本给学生们,每人6本则剩下41本,每人8本则差29本。

求有多少个学生?有多少个笔记本?4、(还原问题)便民水果店卖芒果,第一次卖掉总数的一半多2个,第二次卖掉剩下的一半多1个,第三次卖掉第二次卖后剩下的一半少1个,这时只剩下11个芒果。

求水果店里原来一共有多少个芒果?5、(置换问题)学校买回6张桌子和6把椅子共用去192元。

已知3张桌子的价钱和5把椅子的价钱相等,每张桌子和每把椅子各是多少元?6、(安排)烤面包的架子上一次最多只能烤两个面包,烤一个面包每面需要2分钟,那么烤三个面包最少需要多少分钟?7、(油和桶问题)一桶油连桶共重18千克,用去油的一半后,连桶还重9.75千克,原有油多少千克?桶重多少千克?8、(和倍)青青农场一共养鸡、鸭、鹅共12100只,鸭的只数是鸡的2倍,鹅的只数是鸭的4倍,问鸡、鸭、鹅各有多少只?9、(鸡兔同笼)实验小学举行数学竞赛,每做对一题得9分,做错一题倒扣3分,共有12道题,小旺得了84分,小旺做错了几道题?10、(相遇问题)甲、乙两人同时从相距20xx米的两地相向而行,甲每分钟行55米,乙每分钟行45米,如果一只狗与甲同时同向而行,每分钟行120米,遇到乙后,立即回头向甲跑去,遇到甲再向乙跑去。

这样不断来回,直到甲和乙相遇为止,狗共行了多少米?小学六年级奥数试题2标有A、B、C、D、E、F、G记号的七盏灯顺次排成一行,每盏灯安装着一个开关,现在A、C、D、G四盏灯亮着,其余三盏灯是灭的。

小学六年级奥数题100道及答案解析(完整版)

小学六年级奥数题100道及答案解析(完整版)

小学六年级奥数题100道及答案解析(完整版)1. 一种商品先提价10%,再降价10%,现价与原价相比()A. 提高了B. 降低了C. 不变D. 无法确定答案:B解析:假设原价为100 元,提价10%后价格为100×(1 + 10%) = 110 元,再降价10%,价格为110×(1 - 10%) = 99 元,所以现价比原价降低了。

2. 一个圆的半径扩大3 倍,它的面积扩大()倍。

A. 3B. 6C. 9D. 27答案:C解析:圆的面积= π×半径²,半径扩大3 倍,面积扩大3²= 9 倍。

3. 甲数的2/3 等于乙数的3/4,甲数()乙数。

A. 大于B. 小于C. 等于D. 无法比较答案:A解析:设甲数×2/3 = 乙数×3/4 = 1,可得甲数= 3/2,乙数= 4/3,3/2 > 4/3,所以甲数大于乙数。

4. 把20 克盐放入200 克水中,盐和盐水的比是()A. 1:10B. 1:11C. 10:1D. 11:1答案:B解析:盐20 克,盐水= 20 + 200 = 220 克,盐和盐水的比是20:220 = 1:115. 一个三角形三个内角的度数比是1:2:3,这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定答案:B解析:三个内角分别为180×1/(1 + 2 + 3) = 30°,180×2/(1 + 2 + 3) = 60°,180×3/(1 + 2 + 3) = 90°,是直角三角形。

6. 要反映某地气温变化情况,应绘制()统计图。

A. 条形B. 折线C. 扇形D. 以上都可以答案:B解析:折线统计图能清晰反映数据的变化情况。

7. 一个圆柱和一个圆锥等底等高,它们的体积相差18 立方厘米,圆锥的体积是()立方厘米。

小学六年级奥数计算题及答案

小学六年级奥数计算题及答案

小学六年级奥数计算题及答案小学六年级奥数计算题及答案 11、a、b是一圈形道路的一条直径的两个端点,现有甲、乙两人分别从、两点同时沿相反方向绕道匀速跑步(甲、乙两人的速度未必相同),假设当乙跑完100米时,甲、乙两人第一次相遇,当甲差60米跑完一圈时,甲、乙两人第二次相遇,那么当甲、乙两人第十二次相遇时,甲跑完几圈又几米?解答:【分析】甲、乙第一次相遇时共跑圈,乙跑了100米;第二次相遇时,甲、乙共跑1.5圈,则乙跑了100×3=300米,此时甲差60米跑一圈,则可得0.5圈是300-60=240米,所以一圈是480米。

第一次相遇时甲跑了240-100=140米,以后每次相遇甲又多跑140×2=280米,所以第十二次相遇时甲共跑了140+280×11=3220米,即跑了6圈340米。

2、原来将一批水果按100%的利润定价出售,由于价格过高,无人购买,不得不按38%的利润重新定价,这样出售了其中的40%,此时因害怕剩余水果会变质,不得不再次降价,售出了全部水果。

结果实际获得的总利润是原来利润的30.2%,那么第二次降价后的价格是原来定价的百分之几?答案与解析:8%×40%+x%×(1-40%)=30.2%x%=25%(1+25%)÷(1+100%)=62.5%二次降价后的价格是原来定价的百分之几,则需要求出第二次是按百分之几的利润定价。

设第二次降价是按x%的利润定价的。

小学六年级奥数计算题及答案 21.小明每天早上6: 50离开家,7: 20到达学校。

老师要求他明天提前6分钟到校。

如果明天早上6: 50小明离开家,他必须按照老师的要求比平时多走25米才能按时到校。

问:小明的家离学校有多远?解:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟。

这时每分钟必须多走25米,所以总共多走了24×25=600米,而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600÷6=100米。

小学六年级奥数训练试卷六及其答案

小学六年级奥数训练试卷六及其答案

小学六年级奥数训练试卷六及其答案小学六年级奥数训练试卷六一、计算题:1、计算:625×8×25×125×5×1282、计算:(1-1/11)×(1-2/12)×…×(1-10/20)二、填空题1、一个工人将零件装进两种盒子中,每个大盒子装12只零件,每个小盒子装5只零件,恰好装完。

如果零件一共是99只,盒子个数大于10,这两种盒子分别有几个?2、纯循环小数0.abc写成最简分数时,分子与分母之和是58,求这个循环小数。

3、一只猴子摘了一堆桃子,第一天它吃了这堆桃子的七分之一,第二天它吃了余下桃子的六分之一,第三天它吃了余下桃子的五分之一,第四天它吃了余下桃子的四分之一,第五天它吃了余下桃子的三分之一,第六天它吃了余下桃子的二分之一,这时还剩12只桃子,那么第一天和第二天猴子所吃桃子的总数是多少只?4、已知A×15/(3a+5)中的a是一个自然数,为了使这个分数成为可约分数,a最小是多少?5、已知/B=xxxxxxx/C=15.2/D×14.8,A、B、C、D四个数中最大的是多少?三、解答题:1、甲、乙两车分别同时从A、B两城相向行驶6小时后可在途中某处相遇。

甲车因途中发生故障抛锚,修理2.5小时后才继续行驶。

因此,从出发到相遇经过7.5小时。

那么,甲车从A城到B城共用了多少小时?2、一根竹笋从发芽到长大,如果每天长高一倍,经过10天长到40分米。

求当竹笋长到2.5分米时,经过了多少天?3、两个圆柱形的水桶,甲桶的高等于乙桶的2倍,而乙桶的直径等于甲桶直径的2倍。

问甲桶的容积A与乙桶的容积B之间究竟哪一个大?4、四个一样的长方形和一个小的正方形(如图)拼成了一个大正方形,大正方形的面积是49平方米,小正方形的面积是4平方米,问长方形的短边长度是几米?5、大、小两水池都未注满水,如果从XXX抽水将大池灌满,则小池还剩水10吨;如果从大池抽水将小池灌满,则大池还剩水20吨,已知大池容积是小池容积的1.2倍,两池中共有水多少吨?1.两人第一次相遇时,XXX比XXX走了一倍的路程,即XXX走了60分钟,XXX走了30分钟。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在小学数学奥林匹克竞赛中,计算题占有一定的分量,特别是总决赛中还单独设立了计算竞赛(共25题)。

因此有必要掌握灵活、多变的解题方法,合理地运用运算性质、定律、法则,以达到熟练、灵活、正确地解答四则混合运算的目的,也为更好地解答其他竞赛题服务。

现就几年的教学经验积累,介绍几种数学竞赛计算题的常用解法。

一、分组凑整法:
例1.3125+5431+2793+6875+4569
解:原式=(3125+6875)+(4569+5431)+2793
=22793
例2.100+99-98-97+96+95-94-93+……+4+3-2
解:原式=100+(99-98-97+96)+(95-94-93+92)+……+(7-6-5+4)+(3-2)
=100+1=101
分析:例2是将连续的(+ - - +)四个数组合在一起,结果恰好等于整数0,很快得到中间96个数相加减的结果是0,只要计算余下的100+3-2即可。

二、加补数法:
例3:1999998+199998+19998+1998+198+88
解:原式=2000000+200000+20000+2000+200+100-2×5-12
=2222300-22=2222278
分析:因为各数都是接近整十、百…的数,所以将各数先加上各自的补数,再减去加上的补数。

三、找准基数法:
例4.51.2+48.8+52.5+50.9+47.8+52.3-48.2-59.6
解:原式=50×(6-2)+1.2-1.2+2.5+0.9-2.2+2.3+1.8-9.6
=200-4.3=195.7
分析:这些数都比较接近50,所以计算时就以50为基数,把每个数都看作50,先计算,然后再加多或减少,这样减轻了运算的负担。

四、分解法:
例5.1992×198.9-1991×198.8
解:原式=1991×198.9+198.9×1-1991×198.8
=1991×(198.9-198.8)+198.9
=199.1+198.9=398
分析:由于1991与1992、1989与198.8相差很小,所以不妨把其中的任意一个数进行分解,如:198.9=198.8+0.1或198.8=198.9-0.1,多次运用
分析:题目不可能通过通分来计算,可以先把每一个数分解成两个分数差(有时离分为两数和)的形式,再计算。

五、倒数法:
分析:将算式倒数后,就可直接运用运算定律计算,所得商的倒数就是原式的结果。

六、运用公式法:
等差数列求和公式:总和=(首项+末项)×项数÷2
平方差公式:a2-b2=(a+b)(a-b)
13+23+33+43+……+n3=(1+2+3+4……+n)2
例8.100×100-99×99+98×98-97×97+……+2×2-1×1
解:原式=(100+99)(100-99)+(98+97)(98-97)+……+(2+1)(2-1)
=(100+99)×1+(98+97)×1+……+(2+1)×1
=(100+99)+(98+97)+……+(2+1)
=(100+1)×100÷2=5050
分析:这道题直接无法计算,但如果将100×100-99×99为一组,运用平方差公式,就很快能算出每一组的差,最后运用等差数列求和公式计算出结果。

想一想:3988×4012=40002-122,是怎么得到的?
例9.12+22+32+42+……+102
七、有借有还法:
例11.53+63+73+83+93
解:原式=(13+23+33+43+53+……+93)-(13+23+33+43)
=(1+2+3+4+5+……+9)2-(1+2+3+4)2
=452-102=1925
分析:此题借助于公式运算就比较简单,但必须先借来一个13+23+33+43,才可以运用公式计算。

相关文档
最新文档