反比例函数拓展与提高

合集下载

反比例函数教案设计(篇)

反比例函数教案设计(篇)

反比例函数教案设计(优秀篇)一、教学目标:知识与技能:1. 理解反比例函数的定义及其性质;2. 学会如何求反比例函数的解析式;3. 能够运用反比例函数解决实际问题。

过程与方法:1. 通过观察实例,引导学生发现反比例函数的规律;2. 利用图形计算器,让学生直观地感受反比例函数的图像和性质;3. 培养学生运用数学知识解决实际问题的能力。

情感态度与价值观:1. 培养学生对数学的兴趣和好奇心;2. 培养学生勇于探索、积极思考的科学精神;3. 培养学生合作交流、解决问题的能力。

二、教学重点与难点:重点:1. 反比例函数的定义及其性质;2. 反比例函数的图像特征。

难点:1. 反比例函数解析式的求解;2. 反比例函数在实际问题中的应用。

三、教学过程:环节一:导入新课1. 利用实例引入反比例函数的概念;2. 引导学生发现反比例函数的规律;3. 提问:什么是反比例函数?它有哪些特点?环节二:自主探究1. 学生利用图形计算器,观察反比例函数的图像;2. 学生总结反比例函数的性质;3. 学生分组讨论,探讨反比例函数的解析式求解方法。

环节三:课堂讲解1. 教师讲解反比例函数的定义及其性质;2. 教师示范求解反比例函数解析式;3. 教师举例说明反比例函数在实际问题中的应用。

环节四:巩固练习1. 学生完成课后练习题;2. 学生互相讨论,解决练习题中的问题;3. 教师点评并讲解练习题。

环节五:课堂小结1. 学生总结本节课所学内容;2. 教师强调反比例函数的重要性和应用价值;3. 学生分享学习心得和感悟。

四、教学评价:1. 课后练习题的完成情况;2. 学生对反比例函数的理解程度;3. 学生在实际问题中运用反比例函数的能力。

五、教学资源:1. 反比例函数的PPT;2. 图形计算器;3. 课后练习题及答案。

六、教学策略:1. 采用问题驱动的教学方法,引导学生主动探索反比例函数的定义和性质;2. 利用信息技术工具,如图形计算器,直观展示反比例函数的图像,增强学生对函数概念的理解;3. 通过实际问题的引入,让学生体会反比例函数在生活中的应用,提高学生解决实际问题的能力;4. 注重学生合作交流,鼓励学生分组讨论,培养学生的团队协作精神;5. 及时反馈,针对学生的掌握情况,调整教学进度和方法。

九年级数学上册《反比例函数的应用》教案、教学设计

九年级数学上册《反比例函数的应用》教案、教学设计
布置适量的练习题,让学生在练习中巩固所学知识,提高解决问题的能力。同时,关注学生的个体差异,给予针对性的指导和鼓励。
6.小组合作,拓展提高
设置小组合作任务,让学生在合作中探讨反比例函数的更深入问题,如反比例函数与一次函数、二次函数的关系等。培养学生团队合作精神和创新能力。
7.课堂小结,总结提升
在课堂尾声,引导学生对所学知识进行总结,梳理反比例函数的定义、性质和应用。教师进行点评,强调重点,突破难点。
1.请同学们完成课本第十章第3节后的练习题,特别是第1、3、5、7、9题,这些题目涵盖了反比例函数的基本概念和性质,通过练习,加深对反比例函数的认识。
2.结合生活实际,设计一个反比例函数的应用问题,并尝试自己解决。这个问题可以涉及行程、面积、比例分配等方面,要求学生在解决过程中明确反比例函数的应用步骤和关键点。
九年级数学上册《反比例函数的应用》教案、教学设计
一、教学目标
(一)知识与技能
1.理解反比例函数的概念,掌握反比例函数的一般形式,了解常数k的几何意义。
2.能够绘制反比例函数的图像,掌握反比例函数图像的对称性、渐近线等性质。
3.学会运用反比例函数解决实际生活中的问题,如行程问题、面积问题等。
(二)过程与方法
(五)总结归纳,500字
1.教师引导学生回顾本节课所学内容,总结反比例函数的定义、图像性质和应用。
2.强调反比例函数在实际问题中的应用,让学生认识到数学知识在生活中的重要性。
3.提醒学生课后复习,巩固所学知识。
4.布置课后作业,适当拓展,提高学生的自主学习能力。
五、作业布置
为了巩固学生对反比例函数的理解和应用,特布置以下作业:
3.加强师生互动,关注学生的个体差异,给予每个学生足够的关注和指导。

人教版九年级数学下册第二十六章26.1.1反比例函数k的几何意义教学设计

人教版九年级数学下册第二十六章26.1.1反比例函数k的几何意义教学设计
2.教师点评:对学生的总结进行点评,强调重点知识。
教师讲解:“大家总结得很好。反比例函数是我们学习函数的重要部分,希望大家能够掌握其定义、性质和几何意义,并在实际问题中灵活运用。”
五、作业布置
为了巩固学生对反比例函数知识的掌握,提高学生的应用能力和思维能力,特布置以下作业:
1.基础知识巩固:
(1)根据反比例函数的定义,求出以下函数的表达式,并说明k的几何意义:y=3/x、y=-2/x、y=5/|x|。
作业要求:
1.学生在完成作业时,要认真思考,规范解答,注意细节。
2.对于实践应用题,要求学生结合反比例函数的性质和几何意义,分析问题,列出方程,并求解。
3.拓展提高题要求学生独立思考,尝试不同的解题方法,锻炼数学思维能力。
4.思考题要求学生在理解反比例函数的基础上,深入思考,形成自己的见解。
2.教学策略:
(1)情境创设:以生活实例或有趣的故事引入反比例函数的学习,激发学生的学习兴趣;
(2)任务驱动:设置具有挑战性的任务,引导学生主动探究反比例函数的性质和应用;
(3)分层教学:针对不同学生的学习需求,设计难易适度的练习题,使每个学生都能在原有基础上得到提高;
(4)反馈与评价:及时关注学生的学习进度,给予有效的反馈和激励,提高学生的学习积极性。
教师提问:“同学们,我们之前学习了正比例函数和一次函数,谁能来说说它们的特点和性质?”
2.创设情境:通过生活中的实例,如物体在反比例力作用下的运动轨迹,引出反比例函数的概念。
教师讲解:“在生活中,我们经常会遇到一些与反比例关系相关的问题。比如,当物体受到一个与速度成反比的阻力时,它的运动轨迹是怎样的呢?这就涉及到我们今天要学习的反比例函数。”
人教版九年级数学下册第二十六章26.1.1反比例函数k的几何意义教学设计

反比例函数教案及教学反思

反比例函数教案及教学反思

反比例函数教案及教学反思一、教学目标知识与技能:1. 理解反比例函数的定义及其性质;2. 学会如何求反比例函数的导数;3. 能够运用反比例函数解决实际问题。

过程与方法:1. 通过观察实例,引导学生发现反比例函数的规律;2. 利用导数研究反比例函数的单调性;3. 运用反比例函数解决实际问题,培养学生的数学建模能力。

情感态度价值观:1. 培养学生对数学的兴趣和好奇心;2. 培养学生勇于探索、积极思考的科学精神;3. 培养学生运用数学知识解决实际问题的能力。

二、教学重点与难点重点:1. 反比例函数的定义及其性质;2. 反比例函数的导数;3. 反比例函数在实际问题中的应用。

难点:1. 反比例函数的导数;2. 反比例函数在实际问题中的应用。

三、教学过程1. 导入:通过展示实际问题,引导学生思考反比例函数的概念。

2. 自主学习:学生通过教材或课外资料,了解反比例函数的定义及其性质。

3. 课堂讲解:讲解反比例函数的定义、性质及求导公式。

4. 课堂练习:学生分组讨论,练习求解反比例函数的导数。

5. 应用拓展:引导学生运用反比例函数解决实际问题。

四、教学方法1. 实例导入:通过展示实际问题,引发学生的兴趣和思考;2. 自主学习:培养学生的独立思考和自主学习能力;3. 课堂讲解:采用讲解、提问、讨论等方式,引导学生理解和掌握知识;4. 课堂练习:分组讨论、互动交流,提高学生的合作能力和解题能力;5. 应用拓展:培养学生运用数学知识解决实际问题的能力。

五、教学反思1. 反思教学内容:检查是否全面讲解了反比例函数的定义、性质和应用;2. 反思教学方法:观察学生的参与程度和理解程度,调整教学方法,提高教学效果;3. 反思教学效果:评估学生对反比例函数知识的掌握程度,发现存在的问题,及时改进教学策略。

六、教学评价1. 课堂提问:通过提问了解学生对反比例函数的理解程度;2. 课堂练习:检查学生求解反比例函数导数的正确性;3. 应用拓展:评估学生运用反比例函数解决实际问题的能力;4. 课后作业:布置有关反比例函数的题目,巩固所学知识。

实际问题与反比例函数教案最新

实际问题与反比例函数教案最新

26.2 实际问题与反比例函数(第一、二课时)一、教学目标1、能灵活运用反比例函数的知识解决实际问题。

2、经历“实际问题——建立模型——拓展应用”的过程发展学生分析问题,解决问题的能力。

3、提高学生的观察、分析的能力二、重点与难点重点:运用反比例函数的意义和性质解决实际问题。

难点:从实际问题中寻找变量之间的关系,建立数学模型,教学时注意分析过程,渗透转化的数学思想。

三、教学过程(一)提问引入创设情景活动一:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全,迅速通过这片湿地,他们沿着路线铺了若干块木板,构筑成一条临时通道,从而顺利完成的任务的情境。

(1)当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强P(Pa)将如何变化?(2)如果人和木板反湿地的压力合计600N,那么P是S 的反比例函数吗?为什么?(3)如果人和木板对湿地的压力合计为600N,那么当木板面积为0.2m2时,压强是多少?活动二:某煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室。

(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500 m2,施工队施工时应该向下掘进多深?(3)当施工队施工的计划掘进到地下15m时,碰到了岩石,为了节约资金,公司临时改设计,把储存室的深改为15m,相应的,储存室的底面积改为多少才能满足需要。

(保留两位小数)?(二)应用举例巩固提高例1近视眼镜的度数y(度)与焦距x(m)成反比例,已知400•度近视眼镜镜片的焦距为0.25m.(1)试求眼镜度数y与镜片焦距x之间的函数关系式;(2)求1 000度近视眼镜镜片的焦距.例2如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)写出此函数的解析式;(3)若要6h排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量是5 000m3,那么水池中的水将要多少小时排完?(三)课堂练习:1.A、B两城市相距720千米,一列火车从A城去B城.(1)火车的速度v(千米/时)和行驶的时间t(时)之间的函.数关系是 v=720t(2)若到达目的地后,按原路匀速原回,并要求在3小时内回到A城,则返回的速度不能低于 240千米/小时.,若下底长为2.有一面积为60的梯形,其上底长是下底长的13.x,高为y,则y与x的函数关系是 y=90x(四)小结:谈谈你的收获(五)布置作业(六)板书设计四、教学反思:1.学会把实际问题转化为数学问题,•充分体现数学知识来源于实际生活又服务于实际生活这一原理.2.能用函数的观点分析、解决实际问题,•让实际问题中的量的关系在数学模型中相互联系,并得到解决.26.2 实际问题与反比例函数(第三、四课时)一、教学目标1、学会把实际问题转化为数学问题2、进一步理解反比例函数关系式的构造,掌握用反比例函数的方法解决实际问题3、提高学生的观察、分析的能力二、重点与难点重点:用反比例函数解决实际问题.难点:构建反比例函数的数学模型.三、教学过程(一)创设情境,导入新课公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”:若两物体与支点的距离反比于其重量,则杠杆平衡.也可这样描述:阻力×阻力臂=动力×动力臂.为此,他留下一句名言:给我一个支点,我可以撬动地球!(二)合作交流,解读探究问题:小伟想用撬棍撬动一块大石头,已知阻力和阻力臂不变,•分别是1200N和0.5m.(1)动力F和动力臂L有怎样的函数关系?当动力臂为1.5m时,•撬动石头至少要多大的力?(2)若想使动力F不超过第(1)题中所用力的一半,则动力臂至少要加长多少?思考你能由此题,利用反比例函数知识解释:为什么使用撬棍时,•动力臂越长越省力?联想物理课本上的电学知识告诉我们:用电器的输出功率P (瓦)两端的电压U(伏)、用电器的电阻R(欧姆)有这样的关系.PR= u2,也可写为P= 2uR(三)应用迁移,巩固提高例:在某一电路中,电源电压U保持不变,电流I(A)与电阻R (Ω)之间的函数关系如图所示.(1)写出I与R之间的函数解析式;(2)结合图象回答:当电路中的电流不超过12A时,电路中电阻R•的取值范围是什么?(四)课堂跟踪反馈1.在一定的范围内,•某种物品的需求量与供应量成反比例.•现已知当需求量为500吨时,市场供应量为10 000吨,•试求当市场供应量为16000•吨时的需求量是 •312.5吨.2.某电厂有5 000吨电煤.(1)这些电煤能够使用的天数x(天)与该厂平均每天用煤吨数y(吨)•之间的函数关系是 y=5000;x(2)若平均每天用煤200吨,这批电煤能用是 25 天;(3)若该电厂前10天每天用200吨,后因各地用电紧张,每天用煤300吨,这批电煤共可用是 20 天.(五)小结:谈谈你的收获(六)布置作业(七)板书设计四、教学反思:1.把实际问题中的数量关系,通过分析、转化为数学问题中的数量关系.2.利用构建好的数学模型、函数的思想解决这类问题.3.注意学科之间知识的渗透.26.2实际问题与反比例函数(1)教学目标:1、经历通过实验获得数据,然后根据数据建立反比例函数模型的一般过程,体会建模思想。

反比例函数教案(优秀6篇)

反比例函数教案(优秀6篇)

反比例函数教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!反比例函数教案(优秀6篇)作为一无名无私奉献的教育工作者,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。

反比例函数教案(优秀3篇)

反比例函数教案(优秀3篇)

反比例函数教案(优秀3篇)反比例函数教案篇一一、直接导入法所谓的直接导入法,就是指教师在开始上课的时候就向学生说明该堂课的学习目的、要求和内容等,将本堂课的学习任务、程序向学生交代,并点明本堂课的课题和重点。

运用直接导入法,开门见山地导入,学习的重点突出,主题也比较鲜明,还能节省时间,不仅能够快速地将学生的思维定向,还易于激起学生的学习兴趣,快速地进入教学。

案例“用单位圆中的线段表示三角函数值”师:之前我们学习了三角函数的定义,你们还记得是怎样定义的吗?生:是用两条线段的比值来定义三角函数的数值的。

师:是的,但是用两条线段的比值来定义有很多不方便的地方,如果我们只用一条线段来表示,就显得方便多了,这就是我们今天这堂课要学习的内容。

通过直接导入法进行课堂教学的导入,不但明确了该堂课的主题,还说明了该堂课的学习背景是在前面学习的基础上来延伸的。

二、复习导入法复习导入法就是指所谓的“温故而知新”,通过挖掘前后知识点之间的联系来导入新课,降低学生对新知识的陌生感和恐惧感,让学生能快速地将新的知识点融入到原有的知识结构当中,降低学生对新知识点的认知难度。

复习导入法的思路是通过对与新课内容有关的旧知识的复习来分析新旧知识的联系,并从该联系和新课内容的主题来进行导入设计,学生去思考,再由教师点题导入新课。

案例“反函数”师:前面我们已经学习了函数的基础知识,具体有哪些知识点呢?那么还记得吗?生:记得,主要有函数的定义、函数的定义域、值域等。

师:对,但是,你们有没有注意到有这样的一种比较特殊的函数呢?若存在这样两个函数f(x)=2x-1,f′(x)=0.5x+0.5,它们之间有什么关系呢?我们先来作图看看(如图),由图可见,这两个函数是关于直线y=x对称的,像这样的两个函数我们就说这两个函数互为反函数。

那么判断一个函数是否存在反函数的条件有哪些呢?我们可以从前面学习过的函数的基础知识来总结。

生:(讨论、总结)函数的定义域和值域是一一映射的,且与反函数在相应的区间单调性是一致的。

反比例函数教案汇总

反比例函数教案汇总

反比例函数教案汇总一、教学内容本节课的教学内容选自人教版高中数学必修②,反比例函数。

具体章节为第二章函数第三节反比例函数。

本节课主要介绍了反比例函数的定义、性质及其图像,包括反比例函数的定义域、值域、单调性、奇偶性等。

二、教学目标1. 理解反比例函数的定义,掌握反比例函数的性质。

2. 能够绘制反比例函数的图像,并分析其特点。

3. 能够运用反比例函数解决实际问题,提高数学应用能力。

三、教学难点与重点重点:反比例函数的定义、性质及其图像。

难点:反比例函数的图像特点,以及如何运用反比例函数解决实际问题。

四、教具与学具准备教具:多媒体教学设备、黑板、粉笔。

学具:教材、笔记本、彩色笔。

五、教学过程1. 实践情景引入:以生活中常见的比例关系为例,如商店打折时,商品的原价与折扣价成反比例关系。

引导学生思考反比例关系在实际生活中的应用。

2. 反比例函数的定义:讲解反比例函数的定义,引导学生通过实例理解反比例函数的概念。

3. 反比例函数的性质:讲解反比例函数的性质,包括定义域、值域、单调性、奇偶性等,并通过例题进行解释。

4. 反比例函数的图像:5. 随堂练习:布置一些有关反比例函数的练习题,让学生独立完成,巩固所学知识。

6. 例题讲解:选取一些典型的例题,讲解如何运用反比例函数解决实际问题,提高学生的数学应用能力。

7. 作业布置:布置一些有关反比例函数的作业题,让学生课后巩固所学知识。

六、板书设计板书反比例函数的定义、性质及其图像特点,方便学生课后复习。

七、作业设计1. 请简要描述反比例函数的定义及其性质。

2. 绘制反比例函数y=k/x的图像,并分析其特点。

3. 给出一个实际问题,运用反比例函数解决。

八、课后反思及拓展延伸拓展延伸:研究反比例函数在实际生活中的应用,如测量、经济学等领域。

重点和难点解析一、反比例函数的定义反比例函数是数学中的一种基本函数形式。

具体来说,形如y=k/x 的函数称为反比例函数,其中k是常数,x不等于0。

北师大版九年级上数学《第6章 反比例函数》教案教案

北师大版九年级上数学《第6章 反比例函数》教案教案

北师大版九年级上数学《第6章反比例函数》教案教案一. 教材分析《第6章反比例函数》是北师大版九年级上数学的重要内容,本章主要让学生了解反比例函数的定义、性质及图象,掌握反比例函数的计算方法,并能解决一些实际问题。

通过本章的学习,学生能更好地理解函数的概念,培养其数学思维能力。

二. 学情分析九年级的学生已经学习了函数、方程等基础知识,具备一定的逻辑思维能力和数学解题技巧。

但部分学生对抽象的函数概念理解不够深入,对反比例函数的图象和性质认识不足。

因此,在教学过程中,需要关注学生的认知差异,引导学生从实际问题中发现反比例函数的规律,提高其数学应用能力。

三. 教学目标1.理解反比例函数的定义,掌握反比例函数的计算方法。

2.了解反比例函数的性质和图象,能运用反比例函数解决实际问题。

3.培养学生的数学思维能力,提高其数学素养。

四. 教学重难点1.反比例函数的定义和性质。

2.反比例函数图象的特点。

3.反比例函数在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例引入反比例函数,激发学生的学习兴趣。

2.引导发现法:引导学生发现反比例函数的规律,培养学生独立思考的能力。

3.合作学习法:分组讨论,共同探究反比例函数的应用,提高学生的团队协作能力。

4.实践操作法:让学生动手绘制反比例函数的图象,加深对反比例函数的理解。

六. 教学准备1.准备相关的生活实例和图片,用于导入和巩固环节。

2.准备反比例函数的图象和性质的PPT,用于呈现和讲解。

3.准备一些实际问题,用于拓展环节。

4.准备黑板和粉笔,用于板书。

七. 教学过程1.导入(5分钟)利用生活实例引入反比例函数的概念,如:在一定时间内,行驶的路程与速度成反比。

引导学生从实际问题中发现反比例函数的规律,激发学生的学习兴趣。

2.呈现(15分钟)利用PPT展示反比例函数的图象和性质,讲解反比例函数的定义和计算方法。

让学生直观地感受反比例函数的特点,理解反比例函数的概念。

反比例函数教案设计(篇)

反比例函数教案设计(篇)

反比例函数教案设计(优秀篇)一、教学目标:1. 知识与技能:(1)理解反比例函数的定义,掌握反比例函数的一般形式;(2)学会用图像和解析式表示反比例函数;(3)能够运用反比例函数解决实际问题。

2. 过程与方法:(1)通过观察实例,引导学生发现反比例函数的规律;(2)利用信息技术工具,绘制反比例函数的图像,观察其特点;(3)运用反比例函数解决生活中的实际问题,提高学生的应用能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣,提高学生学习数学的积极性;(2)培养学生合作探究的精神,提高学生的团队协作能力;(3)培养学生运用数学知识解决实际问题的能力,增强学生的实践能力。

二、教学重点与难点:1. 教学重点:(1)反比例函数的定义及其一般形式;(2)反比例函数的图像特点;(3)反比例函数在实际问题中的应用。

2. 教学难点:(1)反比例函数图像的绘制;(2)反比例函数在实际问题中的灵活运用。

1. 导入新课:(1)引导学生回顾正比例函数的知识,为新课的学习做好铺垫;(2)通过展示实例,引导学生发现反比例函数的规律。

2. 自主探究:(1)让学生根据实例,总结反比例函数的定义及其一般形式;(2)引导学生利用信息技术工具,绘制反比例函数的图像,观察其特点;(3)组织学生进行小组讨论,分享各自的学习心得。

3. 课堂讲解:(1)讲解反比例函数的定义及其一般形式;(2)讲解反比例函数的图像特点;(3)讲解反比例函数在实际问题中的应用。

4. 巩固练习:(1)设计练习题,让学生巩固反比例函数的知识;(2)鼓励学生运用反比例函数解决实际问题,提高学生的应用能力。

5. 小结与拓展:(1)对本节课的内容进行总结,加深学生对反比例函数的理解;(2)布置课后作业,让学生进一步巩固反比例函数的知识。

四、教学评价:1. 学生对反比例函数的定义、一般形式和图像特点的掌握程度;2. 学生运用反比例函数解决实际问题的能力;3. 学生在课堂上的参与程度、合作意识和团队协作能力。

苏科版初二下册数学 11.2 反比例函数的图像与性质 教案(教学设计)

苏科版初二下册数学 11.2  反比例函数的图像与性质 教案(教学设计)

3.连线:怎样连线?这与画一次函数图象些区别?三、自主展示1.说一说反比例函数y=x6的图象与一次函数63+=xy的图象有什么区别?2.根据你所画的反比例函数y=x6的图象,说说它有哪些特征?3、自主画图y=x6-的图象,说说它有哪些特征?讨论交流,从图象的形状,增减性。

双曲线的两支分别在第一、三象限,在每个象限内,y随x的增大而减少;双曲线的两支分别在第二、四象限,在每个象限内,y随x的增大而增大。

四、概括与归纳一般地,反比例函数y=xk(k≠0,k为常数),的图象是双曲线。

当k>0时,双曲线的两支分别在第一、三象限,在每个象限内,y随x的增大而减少;当k<0时,双曲线的两支分别在第二、四象限,在每个象限内,y随x的增大而增大。

理解识记,互相提问。

五、例题教学例1、y=(m-2)25mx-.(1)当m取何值时,它是反比例函数?(2),先说出图象经过哪些象限,y随x如何变化?再画图象。

(3)判断点P(1,-4),(2,-2)是否在图象上(4)求当21≤x≤2时,函数y的取值范围.[拓展]甲乙两地相距100km,一辆火车从甲地开往乙地,把火车到达乙地所用的时间y(h)表示为汽车的平均速度x(km/h)的函数,则这个函数的图象大致是()学生尝试解题,师生共同纠错学生交流,如何画实际问题的图象,是一个“残图”。

初三数学九年级下册《反比例函数》导学案

初三数学九年级下册《反比例函数》导学案

第26章 反比例函数26.1.1反比例函数的意义【学习目标】1、 经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。

2、 理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系式3、 让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用 【学习重点】理解反比例函数的意义,确定反比例函数的解析式 【学习难点】反比例函数的解析式的确定 【学法指导】自主、合作、探究【自主学习,基础过关】 一、自主学习: (一)复习巩固1.在一个变化的过程中,如果有两个变量x 和y ,当x 在其取值范围内任意取一个值时, y ,则称x 为 ,y 叫x 的 .2.一次函数的解析式是: ;当 时,称为正比例函数.3.一条直线经过点(2,3)、(4,7),求该直线的解析式. 以上这种求函数解析式的方法叫: . (二)自主探究提出问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?(1)京沪线铁路全程为1463km ,乘坐某次列车所用时间t (单位:h )随该列车平均速度v (单位:km/h )的变化而变化;(2)某住宅小区要种植一个面积为1000m 2的矩形草坪,草坪的长为y 随宽x 的变化; (3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S (单位:平方千米/人)随全市人口n (单位:人)的变化而变化.1、上面问题中,自变量与因变量分别是什么?三个问题的函数表达式分别是什么? (1) (2) (3)2、这三个函数关系式可以叫正比例函数吗?可以叫一次函数吗? (三)归纳总结:1、三个函数表达式:v t 1262=、xy 1000=、S =n 41068.1⨯有什么共同特征?你能用一个一般形式来表示吗?2、对于函数关系式xy 1000=,完成下表:3、类比一次函数的概念给上述新的函数下一个恰当的定义 讨论:1、反比例函数xky =中自变量x 在分式的什么位置?自变量的取值范围是什么?2、你能再举出两个反比例函数关系的实例吗?写出函数表达式,与同伴进行交流。

初中数学教学课例《反比例函数的图象与性质》课程思政核心素养教学设计及总结反思

初中数学教学课例《反比例函数的图象与性质》课程思政核心素养教学设计及总结反思
师:列表之后,我们得到了几组 x、y 的对应值, 即几组有序实数对,如何用直角坐标系中的点把它们表 示出来呢?也就是如何描点?
生:以表中 x 的值作为点的横坐标,y 的值作为点 的纵坐标依次描点。(①学生描点、②教师利用多媒体 课件演示描点的动画过程。
【设计目的】:让学生独立描点,观察描出的点的 位置。培养学生细心的良好品质。
(三)总结反思,拓展升华 回顾一下本节课所学内容,本节课你学到了什么? 有哪些收获? 生:①画反比例函数的图象的方法;②知道了反比 例函数的图象是双曲线,当 k>0 时,双曲线的两个分支 分别位于一、三象限,y 随 x 的增大而减小;当 k<0 时, 双曲线的两个分支分别位于二、四象限,y 随 x 的增大
教材分析 函数的图象是一条直线的基础之上进一步研究的。同
时,反比例函数的图象也与众不同。针对教材及学生的
实际情况,本节课的设计是让学生多动手去探索规律。
教学重点:掌握反比例函数的画图。
教学难点:反比例函数三种表示方法的相互转换。
(一)知识与技能
1、进一步熟悉画函数图象的主要步骤,会画反比
例函数的图象。
想。学生通过
动手画图、动脑思考、小组合作等方式进行学习,
归纳出反比例函
课例研究综
数图象的性质,学生感到轻松容易的掌握了,反比

例函数的图象与
性质,激发了学生的学习兴趣。
3、针对本节课内容我设计一系列有梯度的问题,
并采取小组合
4、作形式。课堂气氛活跃,学生学习热情比较高,
课堂学习效
果较好。
5、课堂训练过程中采取生生合作,培养学生合作
而增大;③反比例函数的图象不与坐标轴有交点;④反
比例函数的图象是中心对称图形;

六年级数学下册教案-第4单元:5反比例-人教版

六年级数学下册教案-第4单元:5反比例-人教版

六年级数学下册教案第4单元:5反比例人教版教案:六年级数学下册教案第4单元:5反比例人教版一、教学内容本节课的教学内容来自人教版六年级数学下册第4单元,主要包括反比例的概念、反比例函数的性质以及反比例函数的图像。

具体章节内容如下:1. 反比例的概念:引导学生理解反比例函数的定义,即当两个变量的乘积为常数时,这两个变量成反比例关系。

2. 反比例函数的性质:通过实例讲解反比例函数的性质,包括对称性、单调性以及在各个象限的符号特点。

3. 反比例函数的图像:引导学生绘制反比例函数的图像,并观察图像的形状、位置以及与坐标轴的交点。

二、教学目标通过本节课的学习,使学生能够掌握反比例函数的概念,理解反比例函数的性质,并能够绘制反比例函数的图像。

三、教学难点与重点重点:反比例函数的概念、性质和图像。

难点:反比例函数图像的绘制和性质的理解。

四、教具与学具准备教具:黑板、粉笔、反比例函数图像的示例图。

学具:学生用书、练习本、铅笔、橡皮。

五、教学过程1. 实践情景引入:创设一个实际情境,例如商场打折,商品的原价和折扣成反比例关系,让学生思考如何表示这种关系。

3. 性质讲解:通过示例和讲解,让学生了解反比例函数的性质,包括对称性、单调性以及在各个象限的符号特点。

4. 图像绘制:引导学生根据反比例函数的性质,绘制出反比例函数的图像,并观察图像的形状、位置以及与坐标轴的交点。

5. 例题讲解:选取几个典型例题,讲解如何利用反比例函数解决实际问题,如速度、路程和时间的关系。

6. 随堂练习:让学生独立完成课后练习题,巩固所学知识。

六、板书设计板书设计如下:反比例函数:y = k/x (k为常数)性质:1. 对称性2. 单调性3. 符号特点图像:1. 形状2. 位置3. 与坐标轴的交点七、作业设计1. 作业题目:(1)判断下列函数是否为反比例函数,并说明理由。

a. y = 2/xb. y = 5 x(2)绘制反比例函数y = 1/x的图像,并观察图像的形状、位置以及与坐标轴的交点。

数学反比例教研活动记录(3篇)

数学反比例教研活动记录(3篇)

第1篇一、活动背景随着新课程改革的不断深入,数学教学也面临着前所未有的挑战。

反比例作为数学中的一个重要概念,其教学方法和策略亟待探讨。

为了提高教师对反比例教学的认识,提升教学质量,我校数学教研组于2021年X月X日开展了数学反比例教研活动。

二、活动目标1. 提高教师对反比例概念的理解和把握;2. 探讨反比例教学的有效策略和方法;3. 促进教师之间的交流与合作,共同提高反比例教学水平。

三、活动内容1. 反比例概念解读活动开始,由教研组长对反比例概念进行解读,从反比例的定义、性质、应用等方面进行了详细的阐述。

同时,结合具体实例,帮助教师更好地理解反比例概念。

2. 反比例教学策略探讨针对反比例教学,教师们展开了热烈的讨论。

以下是部分讨论内容:(1)教师A:在教学中,应注重引导学生从直观图形入手,理解反比例的几何意义。

例如,通过绘制反比例函数的图像,让学生观察图像的变化规律,从而理解反比例的概念。

(2)教师B:在教学过程中,可以运用类比、比较等方法,帮助学生建立反比例与正比例之间的联系。

例如,将反比例与正比例的性质进行对比,引导学生发现它们之间的异同。

(3)教师C:反比例在实际生活中的应用非常广泛,教学中应注重联系生活实际,让学生体会数学的应用价值。

例如,讲解反比例在实际生活中的应用案例,如电功率、速度与时间等。

(4)教师D:针对不同层次的学生,教师应采取分层教学策略,关注学生的个体差异。

对于基础薄弱的学生,要注重基础知识的教学,逐步提高他们的学习兴趣;对于基础较好的学生,可以适当拓展教学内容,培养他们的创新思维。

3. 反比例教学案例分析活动期间,教师们分享了各自在教学过程中遇到的问题及解决方法。

以下为部分案例分析:(1)教师E:在教学反比例函数图像时,部分学生难以理解图像的变化规律。

针对这一问题,我采用了多媒体教学手段,通过动画演示反比例函数图像的变化过程,帮助学生更好地理解。

(2)教师F:在讲解反比例在实际生活中的应用时,发现学生难以将所学知识应用于实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【教学标题】反比例函数复习与拓展(2)学案【教学目标】通过本章的复习使学生掌握相关的知识,同时养成数形结合的思考形式和思考方法,代数式、方程、函数、图形、直角坐标系结合起来进行思考,互相解释、互相补充,对于整个中学数学的应用能力打下良好的基础.培养学生的应用意识.【重点难点】重点:本章的重点是反比例函数的概念、图象和性质,图象是直观地描述和研究函数的重要工具.用以加深学生对所学知识的理解和融会贯通.难点:本章的难点是对反比例函数及其图象和性质的理解和掌握【教学内容】1.反比例函数定义:函数y=kx(k是常数,k≠0)叫做反比例函数,k叫做比例系数.反比例函数的自变量的取值范围是x≠0一切的实数.2.反比例函数y=kx (k≠0)的图象是双曲线,其图象和性质如下表:反比例函数y=kx (k≠0)k的符号k>0 k<0图象性质①x的取值范围是x≠0, y的取值范围是y≠0.②当k>0时,函数图象的两个分支分别在第一、第三象限。

在每个象限内,y随x的增大而②。

①x的取值范围是x≠0,y的取值范围是y≠0.②当k<0时,函数图象的两个分以分别在第二、第四象限。

在每个象限内,y随x的增大而③。

反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点.温馨提示:反比例函数图象的位置和增减性都与比例系数k的符号有关;反之,由双曲线的位置或函数的增减性也可以判断k的符号,反比例函数的增减性只能在同一个个象限内讨论.如点A(-1,y1),B(-2,y2),C(1,y3)在双曲线y=-2x上,求y1、y2、y3的大小时,必须考虑这三点是不是在一个象限,不在一个象限时不能使用反比例函数的性质。

在这三点中,A、B两点在一个象限内,可以使用反比例函数的性质,判断y1、y2的大小,另外一点C 则不可以。

3.反比例函数解析式的确定。

要确定反比例函数的解析式,首先设y=x k ,在y=xk 中,k 是一个不等于零的常数,只要k 的值确定了,反比例函数的解析式也就确定了.也就是说确定一个反比例函数关系的关键是求得非零常数k 的值.因此,一般地只要知道一组x 、y 的对应值或双曲线上一点的坐标,代入解析式中,即由k=xy 求出k 的值.所以只要将图象上一点的坐标代入y=kx 中即可求出k 值。

4.反比例函数中系数的几何意义设P(x ,y)是反比例函数y=kx 图象上任意一点,过点P 作x 轴(或y 轴)的垂线,垂足为A ,则△OPA 的面积=12OA ·PA=12|xy|=12|k|,这就是系数k 的几何意义。

【例题讲解】例1.已知y=3y 1-2y 2,且y 1与x 2成正比例,y 2与x 成反比例,若x 1时,y =1;x =2时,y =2。

求当x =3时y 的值。

例2.已知一次函数y=kx+b 的图像经过点A (0,1)和点B (a ,-3a ),a <0,且点B 在反比例函数y=-3x 的图像上。

(1)求a 的值;(2)求一次函数的解析式;(3)利用函数的图像,求当这个一次函数y 的值在-1≤y ≤3范围内,相应的x 值的取值范围;(4)如果P (m ,y 1),Q (m+1,y 2)是这个一次函数图像上的两点,试比较y 1与y 2的大小。

例3.已知反比例函数kyx=与一次函数y x b=+的图象在第一象限相交于点(1,4)A k-+.(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.例4.如图,已知反比例函数)0(≠=kxky的图象经过点(21,8),直线bxy+-=经过该反比例函数图象上的点Q(4,m).(1)求上述反比例函数和直线的函数表达式;(2)设该直线与x轴、y轴分别相交于A 、B两点,与反比例函数图象的另一个交点为P,连结0P、OQ,求△OPQ的面积.例5.如图,一次函数2y x b =-+(b 为常数)的图象与反比例函数ky x =(k 为常数,且k ≠0)的图象交于A ,B 两点,且点A 的坐标为(1-,4). (1)分别求出反比例函数及一次函数的表达式;(2)求点B 的坐标.【过手练习】一选择题1.已知点(-1,1y ),(2,2y ),(3,3y )在反比例函数x k y 12--=的图像上. 下列结论中正确的是( ) A .321y y y >> B .231y y y >> C .213y y y >> D . 132y y y >>2.函数y a x a =-与ay x =(a ≠0)在同一直角坐标系中的图象可能是( )3.已知函数25(1)m ym x -=+是反比例函数,且图像在第二、四象限内,则m 的值是( )A .2B .2-C .2±D .12-4.(2010浙江宁波)已知反比例函数1y x =,下列结论不正确的是( )(A)图象经过点(1,1) (B)图象在第一、三象限(C)当1x >时,01y << (D)当0x <时,y 随着x 的增大而增大5.(2010 浙江台州市)反比例函数x y 6=图象上有三个点)(11y x ,,)(22y x ,,)(33y x ,,其中3210x x x <<<,则1y ,2y ,3y 的大小关系是( )A .321y y y << B .312y y y << C .213y y y << D .123y y y <<6.如图,已知双曲线(0)ky k x =<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为( ) A .12 B .9 C .6 D .4DBAyxOC xyBAo7.如图,直线)0(<=k kx y与双曲线x y 2-=交于),(),,(2211y x B y x A 两点,则yy 1=xy 2=4xx 第8题图122183y x y x -的值为( )A.-5 B.-10 C.5 D.108.函数y 1=x (x ≥0),y 2=4x (x>0)的图象如图所示,下列结论:①两函数图象的交点坐标为A (2,2);②当x>2时,y 2>y 1;③直线x =1分别与两函数图象相交于B 、C 两点,则线段BC 的长为3;④当x 逐渐增大时,y 1的值随x 的增大而增大,y 2的值随x 的增大减少.其中正确的是( )A .只有①②B .只有①③C .只有②④D .只有①③④9.如图,已知梯形ABCO 的底边AO 在x 轴上,BC ∥AO ,AB ⊥AO ,过点C 的双曲线k y x =交OB 于D ,且OD :DB=1:2,若△OBC 的面积等于3,则k 的值( )A . 等于2B .等于34C .等于245D .无法确定10.(2010年贵州毕节)函数1ky x -=的图象与直线y x =没有交点,那么k 的取值范围是( )A .1k >B .1k <C .1k >-D .1k <- 11.(2010浙江湖州)如图,已知在直角梯形AOBC 中,AC ∥OB ,CB ⊥OB ,OB =18,BC =12,AC =9,对角线OC 、AB 交于点D ,点E 、F 、G 分别是CD 、BD 、BC 的中点,以O 为原点,直线OB 为x 轴建立平面直角坐标系,则G 、E 、D 、F 四个点中与点A 在同一反比例函数图像上的是( ) A .点G B .点E C .点D D .点F .12.(2010山东潍坊)若正比例函数y =2kx 与反比例函数y =kx (k ≠0)的图象交于点A(m ,1),则k 的值是( ).A 22B 2222C 22D 2二、填空题O ABCDxy (第9题)(第10题)1.(2010安徽蚌埠二中)已知点(1,3)在函数)0(>=x x ky 的图像上。

正方形ABCD 的边BC 在x 轴上,点E 是对角线BD 的中点,函数)0(>=x x ky 的图像又经过A 、E 两点,则点E 的横坐标为____________。

2.如图,反比例函数x ky =的图象位于第一、三象限,其中第一象限内的图象经过点A (1,2),请在第三象限内的图象上找一个你喜欢的点P ,你选择的P 点坐标为 __________.3.如图,A 、B 是双曲线 kx) (k>0)上的点, A 、B 两点的横坐标分别是a 、2a ,线段AB 的延长线交x 轴于点C ,若S △AOC =6.则k= ________ .4.如图,在平面直角坐标系中,点O 为原点,菱形OABC 的对角线OB 在x 轴上,顶点A 在反比例函数y=的图像上,则菱形的面积为____________。

5.如图,直线43y x =与双曲线k y x =(0x >)交于点A .将直线43y x =向下平移个6单位后,与双曲线ky x =(0x >)交于点B ,与x 轴交于点C ,则C 点的坐标为___________;yxOBCA (第3题)若2A OB C =,则k =__________.6.如图,已知双曲线)0k (x ky >=经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为3,则k =____________.7.(2010湖北荆门)如图,函数y=k (x -1)的图象向左平移一个单位后与反比例函数y=x2的图象的交点为A 、B ,若点A 的坐标为(1,2),则点B 的坐标为__________. 8.(2010 四川成都)已知n 是正整数,111222(,),(,),,(,),n n nP x y P x y P x y 是反比例函数ky x =图象上的一列点,其中121,2,,,n xx x n ===.记112A x y =,223A x y =,1n n n A x y +=,,若1A a =(a 是非零常数),则A 1·A 2·…·A n 的值是_______________________(用含a 和n 的代数式表示).9.(2010云南昆明) 如图,点A (x 1,y 1)、B (x 2,y 2)都在双曲线(0)ky x x =>上,且214x x -=,122y y -=;分别过点A 、B 向x 轴、y 轴作垂线段,垂足分别为C 、D 、E 、F ,AC 与BF 相交于G 点,四边形FOCG 的面积为2,五边形AEODB 的面积为14,那么双曲线的解析式为___________ .10.(2010陕西西安)已知),(),,(2211y x B y x A 都在反比例函数x y 6=的图象上。

相关文档
最新文档