反比例函数概念
反比例函数概念
反比例函数概念
Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】
知识点一:反比例函数的有关概念
1. 定义:一般地,形如(为常数,)的函数称为反比例函数。
还可以写成
知识点二:反比例函数的基本性质
1、反比例函数的图像:
反比例函数的图像是双曲线,是轴对称图形(对称轴是或);(为常数,)中自变量,函数值,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交;
2、作图方法:描点法
①列表(应以O为中心,沿O的两边分别取三对或以上互为相反的数)
②描点(有小到大的顺序)
③连线(从左到右光滑的曲线)
3、反比例函数的几何意义:
反比例函数()中比例系数的几何意义是:过双曲线()上任意引轴轴的垂线,所得矩形面积为。
4、反比例函数的基本性质
反比例函数
的取值质①、的取值范围是;的取值范围是
②、函数图像分别在第一、三象限,在每个象限内,随着的增大而减小
③、对称轴为直线
④、若点在反比例函数图像上,则点也一定在此反比例函数图像上。
①、的取值范围是;的取值范围是
②、函数图像分别在第二、四象限,在每个象限内,随着的增大而增大
③、对称轴为直线
④、若点在反比例函数图像上,则点也一定在此反比例函数图像上。
5、反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即可求出。
反比例函数
2.在同一直角坐标系中,函数 与 的图象大致为( ).
A. B. C. D.
3.如图,一次函数y1=k1+b(k1≠0)的图象分别与x轴、y轴相交于点A、B,与反比例函数 的图象交于C(﹣4,-2),D(2,4).当x为()时, .
A.x>﹣2B.x<﹣4
C.x<﹣4或0<x<2D.﹣2<x<2
(1)求一次函数和反比例函数的表达式;
(2)求 的面积;
(3)根据图像,直接写出一次函数值大于反比例函数值时x的取值范围.
6.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压 是气体体积 的反比例函数,其图象如图所示.
(1)写出这一函数的表达式;
(2)当气体体积为 时,气压是多少?
(3)当气球内的气压大于 时,气球将爆炸.为了安全起见,气体的体积应不小于多少?
反比例函数
反比例函数图象与性质
知识点
1.反比例函数的概念:一般地, (k为常数,k≠0)叫做反比例函数,即y是x的反比例函数。(x为自变量,y为因变量,其中x不能为零)
2.反比例函数的等价形式:y是x的反比例函数←→ ←→ ←→ ←→变量y与x成反比例,比例系数为k.
3.判断两个变量是否是反比例函数关系有两种方法:①按照反比例函数的定义判断;②看两个变量的乘积是否为定值<即 >。(通常第二种方法更适用)
【例5】图,点 是双曲线 : ( )上的一点,过点 作 轴的垂线交直线 : 于点 ,连结 , .当点 在曲线 上运动,且点 在 的上方时,△ 面积的最大值是______.
【例6】如图,D是矩形AOBC的对称中心,A(0,4),B(6,0),若一个反比例函数的图象经过点D,交AC于点M,则点M的坐标为___.
反比例函数
课题反比例函数的复习教学目标 1.系统复习本章节的知识体系及知识内容。
重难点透视1.反比例函数的应用教学内容知识整理1.反比例函数的概念:一般地,形如kyx=(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数.2.确定反比例函数的解析式:设反比例函数的解析式为kyx=,代入自变量与函数值,解方程求出k的值,得出解析式.三种表达式:①kyx=②xy=k ③1y kx-=3.反比例函数的图像和性质当k>0时,函数的图像分别位于一、三象限,在每一个象限内,y随x的增大而减小;当k<0时,函数的图像分别位于二、四象限,在每一个象限内,y随x的增大而增大;反比例函数的图像是轴对称图形。
当k>0时,对称轴是y=x;当k<0时,对称轴是y=-x;反比例函数的图像是中心对称图形,对称中心是原点。
4.|k|的意义:反比例函数上的点与x轴和y轴围成的矩形的面积。
例题:如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD 为矩形,则它的面积为.基础训练1、计算:sin45°+cos230°﹣+2sin60°.2、如图,已知点A. B分别在反比例函数1yx=(x>0),4-yx=的图象上,且OA⊥OB,则OBOA的值为( )A. 2B. 2C. 3D.43、若直线y=m(m为常数)与函数2(2)8(2)x xyxx⎧≤⎪=⎨>⎪⎩的图象有三个不同的交点,则常数m的取值范围_________.4、如图,已知函数3yx=-与y=ax2+bx+c(a>0,b>0)的图象相交于点P,且点P的纵坐标为1,则关于x的方程23ax bxx++=的解是_____________.5、已知,抛物线y=ax2+2ax+c与y轴交于点C,与x轴交于A,B两点,点A在点B左侧。
反比例函数概念与性质
反比例函数概念与性质反比例函数的概念与性质一、反比例函数的概念1.反比例函数可以写成y=k/x的形式,其中自变量x的指数为-1.在解决有关自变量指数问题时,应特别注意系数。
2.反比例函数也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式。
3.反比例函数的自变量不能为0,故函数图象与x轴、y轴无交点。
二、反比例函数的图象1.在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称)。
2.反比例函数的图象是双曲线。
随着k的增大,图象的弯曲度越小,曲线越平直;随着k的减小,图象的弯曲度越大。
3.反比例函数的图象与坐标轴没有交点,称两条坐标轴是双曲线的渐近线。
当k>0时,图象的两支分别位于第一、第三象限内,在每个象限内,y随x的增大而减小;当k<0时,图象的两支分别位于第二、第四象限内,在每个象限内,y随x的增大而增大。
4.反比例函数的图象关于原点对称,即若(a,b)在双曲线的一支上,则(-a,-b)在另一支上。
5.反比例函数的k值的几何意义是:如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B 点,则矩形PBOA的面积是k;如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥XXX的延长线于C,则三角形PQC的面积也是k。
6.反比例函数的增减性需要将两个分支分别讨论,不能一概而论。
7.直线y=k与双曲线y=k/x的关系:当k>0时,两图象必有两个交点,且这两个交点关于原点成中心对称;当k=0时,两图象有一个公共点O;当k<0时,两图象没有交点。
8.反比例函数与一次函数的联系:当k=0时,反比例函数变为一次函数y=0.求反比例函数的解析式的方法主要有三种:待定系数法、反比例函数k的几何意义、实际问题。
四、反比例函数解析式的确定一、反比例函数的定义:反比例函数是指函数表达式为y=k/x的函数,其中k为非零常数。
反比例函数图像与性质
例1函数y= (x>0)的图象大致是( )
解析:函数y= 的图象是双曲线,当k<0时双曲线两分支分别在第二、四象限内,而已知中(x>0)表明横坐标为正,故双曲线位于第四象限.
答案:D.
例2函数y=kx+1与函数y= 在同一坐标系中的大致图象是( )
解:可用排除法,假设y= 中k>0,双曲线过第一、三象限,则直线y=kx+1也应过第一、第三象限且与y轴交于正半轴,故排除B、D.同理可排除C,故答案为A.
A.y1<0<y3B.y3<0<y1;C.y2<y1<y3D.y3<y1<y2
5.已知一次函数y=x+m与反比例函数y= (m≠-1)的图象在第一象限内的交点为P(x0,3).
(1)求x0的值;
(2)求一次函数和反比例函数的解析式.
6.如图所示,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y= (m≠0)的图象在第一象限交于C点, CD垂直于x轴,垂足为D.若OA=OB=OD=1,
7.已知反比例函数 图象与直线 和 的图象过同一点.
(1)求这个反比例函数的解析式;
(2)当 >0时,这个反比例函数值 随 的增大如何变化?
8.如图,已知A(-4,2)、B(n,-4)是一次函数 的图象与反比例函数 的图象的两个交点.
(1)求此反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.
(1)自变量的取值范围是除0以外的一切实数
(2)当k>0时,它的两个分支分别在第一象限和第三象限内无限伸展;在每一象限内,y随x值的增大而减小。当k<0时,它的两个分支分别在第二象限和第四象限内无限伸展;在每一象限内,y随x值的增大而增大。
第六章反比例函数的概念及基本性质
反比例函数的概念及基本性质教学目标掌握反比例函数的概念、性质、图象,熟悉反比例函数与一次函数的关系 重难点分析重点:1、反比例函数的概念; 2、反比例函数的图形特征。
难点:1、求反比例函数的解析式; 2、根据图形特征比较大小。
知识点梳理1、反比例函数的概念:一般地,如果两个变量x ,y 之间的关系可以表示成xk y =(k 为常数,0≠k )的形式,那么称y 是x 的反比例函数。
一般形式:xk y = (k 为常数,)注意:(1)等号左边是函数y ,等号右边是一个分式,分子是不为零的常数k(也叫做比例系数k),分母中含有自变量x ,且x 的指数是1,若写成1-=kx y 。
则x 的指数是-1。
(2)比例系数是反比例函数定义的一个重要组成部分。
(3)自变量x 的取值范围是的一切实数。
(4)函数y 的取值范围也是一切非零实数。
2、待定系数法求反比例函数的解析式。
3、反比例函数图象(双曲线)的画法:(1)列表;(2)描点;(3)连线。
4、反比例函数的性质:(1)当0>k 时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是说,在每个象限内,y 随x 的增大而减小;(2)当0<k 时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升.也就是说,在每个象限内,随的增大而增大。
知识点1:反比例函数的概念【例1】判断下列说法是否正确1.如果y 是x 的反比例函数,那么当x 增大时,y 就减小 【 】 2.当x 与y 乘积一定时,y 就是x 的反比例函数,x 也是y 的反比例函数 【 】 3.如果一个函数不是正比例函数,就是反比例函数 【 】 4.y 与2x 成反比例时,y 与x 并不成反比例 【 】 5.y 与x 2成反比例时,y 与x 也成反比例 【 】 6.已知y 与x 成反比例,又知当2=x 时,3=y ,则y 与x 的函数关系式是6xy = 【 】 【随堂练习】1、已知三角形的面积是定值S ,则三角形的高h 与底a 的函数关系式是h =__________,这时h 是a 的__________。
反比例函数的概念与性质
反比例函数在经济学中的应用
描述供求关系:反比例函数可以用来描述经济学中的供求关系,帮助分析 市场上的供需变化。
解释边际效用递减规律:反比例函数可以解释经济学中的边际效用递减规 律,即随着消费量的增加,单位消费所带来的效用逐渐减少。
反比例函数与二次函数的联系与区别
反比例函数与二次函数都是非线性函数,具有不同的函数图像和性质。
反比例函数的图像位于x轴和y轴之间,而二次函数的图像可能位于x轴上 方或下方。
反比例函数的导数在x=0处不存在,而二次函数的导数在x=0处存在。
反比例函数在x>0时单调递减,在x<0时单调递增,而二次函数在x<0时 单调递减,在x>0时单调递增。
反比例函数与幂函数的联系与区别
反比例函数与幂函数在形式上的联系:两者都是形如y=k/x(k为常数)的函数,具有反比例关 系的函数形式。
反比例函数与幂函数在性质上的区别:反比例函数的图像分布在第一、三象限,而幂函数的图 像根据幂次的不同分布在各象限;反比例函数的图像是关于原点对称的,而幂函数的图像则关 于:双曲 线,位于两轴之 间
图像位置:取决于 比例常数k,k>0 时位于一三象限, k<0时位于二四象 限
图像变化趋势: 随着x的增大或减 小,y值逐渐减小 或增大
图像与坐标轴的 交点:原点 O(0,0)和点(k,0)
反比例函数的解析式
定义:形如 y = k/x (k为常数且k≠0) 的函数称为反比例函数 解析式:y = k/x (k为常数且k≠0) 图像:双曲线,位于x轴和y轴的两侧 性质:当k>0时,图像位于第一、三象限;当k<0时,图像位于第二、四象限
反比例函数知识点
反比例函数知识点:1.定义:形如y =xk (k 为常数,k ≠0)的函数称为反比例函数。
其中x 是自变量,y 是函数,自变量x 的取值是不等于0的一切实数。
说明:1)y 的取值范围是一切非零的实数。
2)反比例函数可以理解为两个变量的乘积是一个不为0的常数,因此其解析式也可以写成xy=k ;1-=kx y ;xk y 1=(k 为常数,k ≠0) 3)反比例函数y =xk (k 为常数,k ≠0)的左边是函数,右边是分母为自变量x 的分式,也就是说,分母不能是多项式,只能是x 的一次单项式,如xy 1=,x y 213=等都是反比例函数,但21+=x y 就不是关于x 的反比例函数。
2. 用待定系数法求反比例函数的解析式由于反比例函数y =xk 只有一个待定系数,因此只需要知道一组对应值,就可以求出k 的值,从而确定其解析式。
3. 反比例函数的画法:1)列表;2)描点;3)连线注:(1)列表取值时,x ≠0,因为x =0函数无意义,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y 值(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线(4)由于x ≠0,k ≠0,所以y ≠0,函数图象永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴4. 图像:反比例函数的图像属于双曲线。
反比例函数的图象既是轴对称图形又是中心对称图形。
有两条对称轴:直线y=x 和 y= -x ;对称中心是:原点5. 性质:说明:1)反比例函数的增减性不连续,在讨论函数增减问题时,必须有“在每一个象限内”这一条件。
2)反比例函数图像的两个分只可以无限地接近x 轴、y 轴,但与x 轴、y 轴没有交点。
3)越大,图象的弯曲度越小,曲线越平直. 越小,图象的弯曲度越大.4)对称性:图象关于原点对称,即若(a ,b )在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a ,b )在双曲线的一支上,则(,)和(,) 在双曲线的另一支上.6. 反比例函数y =xk (k ≠0)中的比例系数k 的几何意义表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。
第一讲:反比例函数的概念和图像性质
第一讲:反比例函数概念 一、一般地,形如xky =(k 为常数,且0≠k )的函数称为反比例函数。
注意:①分母中含有自变量x ,且指数为1.②比例系数0≠k③自变量x 的取值为一切非零实数。
反比例函数表达式的三种形式① xky =②kx y =1-③ k xy =二、求函数解析式的方法:待定系数法 对于解析式xky =,中只有一个待定系数,因此只需要一对对应的x 、y 的值即可。
例1:下列函数中,是反比例函数的有①x y 5=; ②x y 4.0=; ③2x y =; ④2=xy ; ⑤πx y =; ⑥xy 5-=;⑦12-=x y ; ⑧31-=xy ; ⑨)0(2≠=a a xay 为常数且; ⑩x y 52-=;例2:如果函数222-+=k kkx y 是反比例函数,那么k =________,此函数的解析式是 ;如果自变量取值为—1时,函数值为2,次反比例函数的关系式是 ; 例3:计划修建铁路1200km ,那么铺轨天数y (天)是每日铺轨量x 的反比例函数吗? 解:因为 ,所以y 是x 的反比例函数;例4:一块长方形花圃,长为a 米,宽为b 米,面积为8平方米,那么,列出a 关于b 的函数关系式为例5:在某一电路中,保持电压V (伏特)不变,电流I (安培)与电阻R (欧姆)成反比例,当电阻R=5时,电流I=2安培。
(1)求I 与R 之间的函数关系式;(2)当电流I=0.5安培时,求电阻R 的值。
思考:你还能举出哪些生活中的反比例函数例子?提升训练:1.已知:,21y y y +=1y 与2x 成正比例,2y 与x 成反比例,且当3,1==y x ;当1,1=-=y x ,求21-=x 时,y 的值?2.已知y 与x-1成反比例,并且x =-2时y =7,求:(1)求y 和x 之间的函数关系式; (2)当x=8时,求y 的值(3)y =-2时,x 的值。
3.已知y =y 1-y 2,y 1与x 成正比例,y 与x 成反比例,且当x =1时,y =-14,x =4时,y =3.求(1)y 与x 之间的函数关系式.(2)自变量x 的取值范围.(3)当x =14时,y 的值.第二讲:反比例函数的图像和性质 1.通过描点法画x y 2=和xy 3-=的函数图像 2.反比例函数的图像是双曲线。
反比例函数基础概念和图像性质
反比例函数(1)【考点聚焦】1、反比例函数的定义:如果两个变量%、y间的关系可以表示成的形式,则称y是%的反比例函数.2、反比例函数的三种等价形式:3、反比例函数的图像y = kx(k为常数,k牛0)中k与函数图像的关系: k的符号,决定了双曲线的位置:按要求将下面两幅图补充完整.k > 0 k < 04、反比例函数的图像与性质:在反比例函数中,当k > 0时,图像位于,且在每一个象限内,函数y的值随X值的增大而;当k < 0时,图像位于且在每一个象限内,函数y的值随X值的增大而.5、对称性:(1)关于对称,是;(2)若点Q, b)在图象上时,则也在图像上;【典例剖析】考点题型1:反比例函数的定义例1、若y = m—1)x m2-2是J关于x的反比例函数关系式,则m =,此函数关系式为.变式训练:)x m-3是反比例函数,求m的值.1、已知函数y = m+2考点题型2:图像例2、(七中)在—3、—2、—1、0、1、2这六个数中,随机取出一■个数,记为a ,那么2a-3使得关于x的反比例函数y = -------------- 经过第二、四象限,且使得关于x的方程xax + 2 - 1--- ——1 = 有整数解的概率为___________________ .x—1 1 —x变式训练:G, y),B(2, y),C(- 3, y)在双曲线y - a2 H—上,则y、y、y的大1、若点A小关 1 2 3 x123系是.(1) 求一次函数的解析式;2、(锦江区二诊)在一个不透明的盒子里,装有三个分别写有数字1,2,3的小球,它们 的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子, 摇匀后再随机取出1个小球,记下数字,前后两次的数字分别记为% , J ,并以此确定点 P Q,y ),那么点P 在函数y =2图象上的概率为.x考点题型3:增减性例3、如图,一次函数y = kx +b (k 、b 为常数,且k 丰0)和反比例函数y = 4Q > 0)的 x6y=一的图象交于A 、B 两点.已知当x > 1时y1> y 2;当 0 < x < 1 时,y 1 <y 2 .(2) 已知双曲线在第一象限上有一点C 到y 轴的距离为3,求A ABC 的面积.考点题型4:对称性)与双曲线y =—交于A Q , y)和B Q , y)两点,则x 例4、直线y = kh > 011 223 x y - 9 x y =1 2 2 1 -----------------------------变式训练:11、反比例函数y =--的图象的对称中心的坐标是x考点题型5:求解析式(3,0),点B 例5、如图,已知在直角梯形OABC中,CB // x轴,点C落在y轴上,点A(2,2),k将AB绕点B逆时针旋转90°,点A落在双曲线y =-的图象上点A,则k的值变式训练:___ …… c ( 20 _31、如图,矩形AOCB的两边OC、OA分别位于X轴、y轴上,点B的坐标为—-—,5 ID是AB边上一点,将AADO沿直线OD翻折,使点A恰好落在对角线OB上的E点处,k若E点在反比例函数y =—的图象上,则k =.X限> 0)2、(成外)如图,等边A OAB和等边A AFE的一边都在%轴上双曲线y = k经过。
《反比例函数定义》课件
这些变体形式在解决实际问题时可能更加方便,但本质上仍 然是反比例数在物理中的应用
总结词
详细描述
总结词
详细描述
在物理中,反比例函数常用于 描述与距离和时间有关的物理 量,如电流与电阻之间的关系 。
在电路分析中,反比例函数用 于描述电流与电阻之间的关系, 即电流I与电阻R之间的关系为 I=V/R,其中V为电压。当电压 V保持恒定时,电流I与电阻R成 反比关系。
3
反比例函数的奇偶性
反比例函数是奇函数,因为对于任意x≠0,都有 f(-x)=-f(x)。
反比例函数的图像
反比例函数的图像
反比例函数的图像位于x轴和y轴之间, 呈现出双曲线的形状。
图像的绘制方法
图像的特点
反比例函数的图像具有渐近线,当 k>0时,图像分别位于第一、三象限; 当k<0时,图像分别位于第二、四象 限。
《反比例函数定义》课件
• 反比例函数定义 • 反比例函数的表达式 • 反比例函数的应用 • 反比例函数的扩展知识
01
反比例函数定义
反比例函数的定义
1 2
反比例函数定义
反比例函数是一种数学函数,其定义为y=k/x (k为常数且k≠0),其中x是自变量,y是因变 量。
反比例函数的定义域和值域
反比例函数的定义域为x≠0,值域为y≠0。
04
反比例函数的扩展知识
反比例函数与其他数学知识的联系
与一次函数的联系
一次函数和反比例函数在形式上有所 不同,但它们在某些情况下可以相互 转化。例如,当反比例函数的分母为 常数时,它可以转化为一次函数的形 式。
与几何知识的联系
反比例函数图像通常位于两个象限内, 其形状与坐标轴、原点以及其他直线 或曲线存在特定的几何关系,这些关 系有助于理解函数的性质。
反比例函数复习讲义
反比例函数复习讲义 知识点一:反比例函数的概念一般地,如果两个变量x 、y 之间的关系可以表示成ky x=(k 为常数,)的形式,那么称y 是x 的反比例函数. 注:(1)反比例函数k y x =中的k x是一个分式,自变量x ≠0, k y x =也可写成1y kx -=或xy k =,其中k ≠0;(2)在反比例函数1y kx -=(k ≠0)中,x 的指数是-1。
如,5y x=也写成:15y x -=; (3)在反比例函数k y x =(k ≠0)中要注意分母x 的指数为1,如21y x=就不是反比例函数。
知识点二:反比例函数的图象 反比例函数(0)ky k x=≠的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限.它们关于原点对称,反比例函数的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交. 注:(1)观察反比例函数(0)ky k x=≠的图象可得:x 和y 的值都不能为0,并且图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点. (2)用描点法画反比例函数y= kx的图象时,应注意自变量x 的取值不能为0,一般应从1或-1开始对称取点.(3)在一个反比例函数图象上任取两点P ,Q ,过点P ,Q 分别作x 轴,y 轴的平行线,与两坐标轴分别围成的矩形面积为S 1,S 2 则S 1=S 2. 知识点三:反比例函数的性质 1.图象位置与函数性质当k>0时,x 、y 同号,图象在第一、三象限,且在每个象限内,y 随x 的增大而减小;当k<0时,x 、y 异号,图象在第二、四象限,且在每个象限内,y 随x 的增大而增大.2.若点(a,b)在反比例函数(0)ky k x=≠的图象上,则点(-a,-b )也在此图象上,故反比例函数的图象关于原点对称;3.正比例函数与反比例函数的性质比较。
正比例函数反比例函数解析式图 像 直线有两个分支组成的曲线(双曲线)位 置k >0,一、三象限; k <0,二、四象限 k >0,一、三象限 k <0,二、四象限增减性k >0,y 随x 的增大而增大 k <0,y 随x 的增大而减小k >0,在每个象限,y 随x 的增大而减小 k <0,在每个象限,y 随x 的增大而增大4.反比例函数y=x 中k 的意义 反比例函数y = k x (k ≠0)中比例系数k 的几何意义,即过双曲线y = kx(k ≠0)上任意一点引x 轴、y 轴垂线,所得矩形面积为│k │.知识点四:反比例函数解析式的确定反比例函数解析式的确定方法是待定系数法.由于在反比例函数关系式(0)ky k x=≠中,只有一个待定系数k ,确定了k 的值,也就确定了反比例函数,因此只需给出一组x 、y 的对应值或图象上点的坐标,代入(0)ky k x=≠中即可求出k 的值,从而确定反比例函数的解析式.知识点五:应用反比例函数解决实际问题须注意以下几点1.反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题。
反比例的所有概念和性质
反比例的所有概念和性质反比例是指两个变量之间存在一种相互制约的关系,当其中一个变量增大时,另一个变量会相应地减小,反之亦然。
在数学中,反比例通常用一个函数来表示,即y = k/x,其中k表示一个常数。
反比例的概念和性质如下:1. 反比例函数的定义:反比例函数是一种形式为y = k/x的函数,其中k为常数。
当x不等于零时,函数是定义良好的。
2. 反比例函数的图像:反比例函数的图像呈现出一种特殊的形态,即一个双曲线。
随着自变量x趋近于零,因变量y趋近于无穷大;随着自变量x趋近于无穷大,因变量y趋近于零。
3. 反比例的变化趋势:反比例的关系是由两个变量之间的相互制约所决定的。
当其中一个变量增大时,另一个变量会相应地减小;当其中一个变量减小时,另一个变量会相应地增大。
这种变化趋势与正比例关系相反。
4. 反比例的例子:反比例关系在现实生活中有许多实际应用,例如弹簧刚度与其伸长长度的关系、密度与体积的关系、速度与时间的关系等等。
5. 反比例的性质:反比例具有以下性质:a. 零点:反比例函数的图像经过坐标轴的原点。
b. 单调性:反比例函数在自变量的正值区间上是单调递减的,在自变量的负值区间上是单调递增的。
c. 渐进线:反比例函数的图像有两条渐近线,即y轴和x轴。
当自变量趋近于无穷大时,函数的图像趋近于x轴;当因变量趋近于无穷大时,函数的图像趋近于y轴。
d. 定比关系:反比例函数中,y/x的值始终等于常数k,即y = k/x。
6. 反比例的应用:反比例关系在实际生活中有广泛的应用,例如电阻和电流的关系、速度和时间的关系、浓度和体积的关系等等。
这些应用可以通过反比例关系来描述和解释。
7. 反比例的变种:在一些情况下,变量之间的关系可能不是严格的反比例,而是近似反比例。
在这种情况下,函数可能具有形式为y = k/x^n的一般反比例关系,其中n为正整数。
8. 反比例与正比例的关系:反比例和正比例是两个相关但相反的概念。
反比例函数
反比例函数知识要点1. 反比例函数的概念: 一般地,函数x k y =(k 是常数,且k ≠0)叫做反比例函数。
注意:(1)常数K 称为反比例系数,K 是非零常数;(2)解析式有三种表达式: ①xk y =(k ≠0);②xy=k (k ≠0);③1-=kx y (k ≠0) 2.反比例函数的图像: 3.反比例函数xk y =(k ≠0)的性质: (1)当K >0时,图像的两个分支分别在第一、三象限,在每一象限内,y 随x 的增大而减小;(2)当K <0时,图像的两个分支分别在第二、四象限,在每一象限内,y 随x 的增大而增大;(3)反比例函数的图像:①关于原点成中心对称;②关于直线x y =成轴对称;③关于直线x y -=成轴对称;4. 反比例函数面积的基本模型:①如图,过双曲线x k y =上任意一点P(X ,y),作x 轴(或y 轴)的垂线,则S ∆OMN=2|K |; ②如图,过双曲线x k y =上任意一点P(X ,y),作x 轴、y 轴的垂线,则S 矩形AOBP=|K|;反比例函数 xk y =(k 是常数,且k ≠0) K 的符号K >0K <0 图像(双曲线)这两条曲线只能无限接近于两坐标轴, 不能与其相交。
基础知识检测(一)填空1. 当m= 时,函数y=()的变化范围是时,函数值是反比例函数。
当y x m m 1-x 3-12≤≤+- . 2. 写出一个反比例函数,当x (x >0)增大时,y 反而减小,此函数的解析式是 ;已知反比例函数xk y -=4,当k 时,函数图像位于第一、三象限;当k 时,在每个象限内,y 随x 的增大而增大。
3. 在函数y=xa 12--(a 为常数)的图像上有三点(x1,y1)、(x2,y2)、(x3,y3),且x1<x2<0<x3,则函数y1,y2,y3的关系是 。
4. 已知反比例函数x k y =(k ≠0)的图像经过P(1,3)点,则反比例函数的解析式为 。
反比例函数的概念的图象的性质
反比例函数的概念及图像和性质★反比例函数的概念1.反比例函数:如果两个变量x、y 之间的关系可以表示成y=k x(k•为常数,k ≠0)的形式,那么称y 是x的反比例函数.2.反比例函数解析式的变形:反比例函数y=k x(k ≠0)还可以写成1-=kx y (k ≠0)或k xy =(k ≠0). 注意:(1)k 为常数,k≠0;(2)k x中分母x 的指数为1; (3)自变量x 的取值范围是x ≠0的一切实数;(4)因变量y的取值范围是y ≠0的一切实数.例1.若函数1322)(+--=m mx m m y 是反比例函数,则m 的值是?【变式训练】1.函数122-++=m m x m y 是反比例函数,求解析式.2.已知函数122)(--+=m m x m m y .(1)若y 是x 的正比例函数,求m 的值;(2)若y 是x 的反比例函数,求m 的值,并写出此时y 与x 的函数关系式.例 2.已知y y y y 121,+=与x 2成正比例,y 2与x 成反比例,且1=x 时,1;3-==x y 时,1=y ,求当21-=x 时y 的值。
【变式训练】已知y y y 21-=,y 1与x 成反比例,y 2与2-x 成正比例,并且当3=x 时,5=y ;当1=x 时,1-=y ,求 y 与x 之间的函数关系式。
例3.在平行四边形ABCD 中,E AD AB ,6,8==为AB 上一动点(不与B A 、重合),设DE x AE ,=的延长线交CB 的延长线于点F ,设y CF =,求y 与x 之间的函数关系,并写出自变量x 的取值范围。
【变式训练】如图,平行四边形ABCD 中,E cm BC cm AB ,1,4==是CD 边上一动点,BC AE 、的延长线交于F 点,设ycm BF xcm DE ==,.求y 与x 之间的函数关系式,并写出自变量x 的取值范围。
A DEB C F★反比例函数图像和性质利用画函数图象的方法,可以画出反比例函数的图象,它的图象是双曲线,①当0>k 时,函数的图象在第一、三象限,在每个象限内,曲线从左到右下降,也就是在每个象限内,y 随x 的增加而减小;②当0<k 时,函数的图象在第二、四象限,在每个象限内,曲线从左到右上升,也就是在每个象限内,y 随x 的增加而增大.4.画反比例函数的图象时要注意的问题:(1)画反比例函数图象的方法是描点法;(2)画反比例函数的图象要注意自变量的取值范围是0≠x ,因此,不能把两个分支连接起来;(3)由于在反比例函数中,x 和y 的值都不能为0,所以,画出的双曲线的两个分支要分别体现出无限的接近坐标轴,但永远不能达到x 轴和y 轴的变化趋势.例1.已知反比例22223-+-+=m m x m m y 的图像的两个分支分布在第二、四象限,求m 的值【变式训练】1.已知反比例函数72)2(---=m xx m y 的图像位于第一、三象限,求m的值。
反比例函数的概念与性质
反比例函数的概念与性质反比例函数是数学中常见的一类函数,其表达形式为y = k/x,其中k是一个非零常数,x和y分别表示自变量和因变量。
概念:反比例函数是一种特殊的函数,其特点是自变量和因变量呈反比关系。
当自变量的值增大时,因变量的值就会减小;反之,当自变量的值减小时,因变量的值就会增大。
这种函数在实际问题中往往具有很重要的意义。
性质一:定义域和值域反比例函数的定义域为除了x=0以外的所有实数,因为分母不能为零;而值域则为除了y=0以外的所有实数。
性质二:图像特征反比例函数的图像是一个开口向下或者开口向上的双曲线。
这是因为当x的绝对值趋近于无穷大时,y的值会趋近于0,而当x的绝对值趋近于0时,y的值会趋近于无穷大。
性质三:关于坐标轴的对称性反比例函数的图像关于原点对称。
也就是说,如果一个点(x,y)在函数的图像上,那么对应的点(-x,-y)也在图像上。
这是因为当自变量取相反数时,函数的值也会取相反数。
性质四:零点问题反比例函数的零点是x等于k的时候,因为此时分母为0,因变量为零。
换句话说,当x等于k时,函数的图像与x轴相交,这是图像的一个特殊点。
性质五:渐近线反比例函数的图像会有两条渐近线,分别是x轴和y轴。
当x趋近于正无穷或者负无穷时,函数的值会趋近于0,也就是说,函数的图像会无限接近x轴。
同样地,当y趋近于正无穷或者负无穷时,函数的值会趋近于0,函数的图像会无限接近y轴。
结论:反比例函数是一种重要的函数类型,在实际问题中经常出现。
了解反比例函数的概念和性质可以帮助我们更好地理解数学中的种种问题,同时也有助于我们在实际生活中解决各种与反比关系相关的情况。
反比例函数的基本概念与应用
反比例函数的基本概念与应用反比例函数是数学中常见的一种函数关系,也被称为倒数函数。
它是指当自变量x的取值趋近于无穷大或者无穷小时,函数值y趋近于零。
反比例函数可以表示为y = k/x,其中k为常数。
反比例函数的特点是随着自变量的增大,函数值会逐渐变小;而随着自变量的减小,函数值会逐渐变大。
反比例函数与比例函数相对,比例函数表示为y = kx,在反比例函数中,自变量与函数值呈现一种“反”关系。
反比例函数可以在多个领域中进行应用。
下面将重点介绍反比例函数在物理学和经济学中的应用。
一、反比例函数在物理学中的应用1. 物体均匀运动的速度与时间的关系在物理学中,物体的速度与时间呈现反比例关系。
当一个物体以匀速运动时,在相同的时间间隔内,它所走过的距离与所用的时间成反比。
即速度v与时间t的关系可以表示为v = k/t,其中k为常数。
例如,一辆汽车以恒定的速度行驶,它所走过的路程与所用的时间成反比。
当时间t增加时,速度v减小,反之亦然。
根据反比例函数的特点,我们可以推断出物体的速度与时间之间的关系。
通过对反比例函数进行实际测量和计算,可以得出物体在不同时间点的速度,进而分析和预测物体的运动情况。
2. 电阻与电流的关系在电学中,电阻与电流呈现反比例关系。
根据欧姆定律,电阻R与电流I之间的关系可以表示为R = k/I,其中k为常数。
当电流增大时,电阻减小;当电流减小时,电阻增大。
这种反比例关系使得电阻器、电阻器组和电路等可以通过调节电流来改变阻力,实现对电能的控制。
反比例函数在电路分析和设计中具有重要的作用,通过它可以确定不同电路元件的阻抗、电流和电压之间的关系,为电路的运行和优化提供了理论支持。
二、反比例函数在经济学中的应用1. 物价与需求的关系在经济学中,物价与需求之间呈现反比例关系。
根据供需关系理论,当市场上某种商品或服务的需求量增加时,其价格往往会下降;当需求量减少时,价格则会上升。
这种反比例关系可以通过需求曲线来表示。
反比例函数的概念
反比例函数是一种特殊的函数,其定义域中的每个数都对应到值域中的一个数,其值域中的数与定义域中的数成反比。
也就是说,当定义域中的数增加时,值域中的数会减少,反之亦然。
这种关系可以用以下的公式来表示:
y = k/x
其中,y表示值域中的数,x表示定义域中的数,k是一个常数,也称为比例常数或系数。
反比例函数在数学中有很多应用,例如在物理学中,牛顿第二定律可以用反比例函数来表示;在经济学中,成本与产量的关系也可以用反比例函数来表示。
此外,反比例函数还可以用来解决各种实际问题,如水桶的排水速度、燃料消耗率等等。
需要注意的是,当定义域中的x等于0时,反比例函数就不存在。
此外,如果k的值为0,那么反比例函数也不存在。
反比例函数
反比例函数 1、反比例函数的概念 一般地,函数xk y =(k 是常数,k ≠0)叫做反比例函数。
反比例函数的解析式也可以写成1-=kx y 的形式。
注意:(1)k 是常数,且k 不为零;(2)x k中分母x 的指数为1,如22y x=不是反比例函数。
(3)自变量x 的取值范围是0x ≠一切实数.(4)自变量y 的取值范围是0y ≠一切实数2、反比例函数的图像反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
若点(m,n)在反比例函数xy =的图象上,则点(-m,-n )也在此图象上,故反比例函数的图象关于原点对称。
4、反比例函数解析式的确定的方法是待定系数法。
(1)由于在反比例函数xky =中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式。
(2)用待定系数法求反比例函数关系式的一般步骤是:①设所求的反比例函数为:xky =(0k ≠); ②根据已知条件,列出含k 的方程; ③解出待定系数k 的值; ④把k 值代入函数关系式xky =中。
一、选择题1.下列函数中,是反比例函数的是( )A.y=-3xB.y=-31x -1C.y=-32xD.y=-32x -2.如果双曲线y=kx过点A(3,-2),那么下列各点在双曲线上的是( ) A.(2,3) B.(6,1) C.(-1,-6) D.(-3,2)3.一定质量的二氧化碳,当它的体积V=53m ,密度p=1.98kg/3m 时,p 与V 之间的函数关系式是( )A.p=9.9VB.9.9V ρ=C.9.9V ρ=D.29.9V ρ= 4.已知1y +2y =y,其中1y 与1x成反比例,且比例系数为1k ,而2y 与2x 成正比例,且比例系数为2k ,若x=-1时,y=0,则1k ,2k 的关系是( )A.12k k + =0B.12k k =1C.12k k - =0D.12k k =-1 5.已知一次函数y=1k x+b,y 随x 的增大而减小,且b>0,反比例函数y=2k x中的2k 与1k 的值相等,则它们在同一坐标系内的图象只可能是( )二、填空题1.下列函数,① 1)2(=+y x ②. 11+=x y ③21x y = ④.x y 21-=⑤2x y =-⑥13y x= ;其中是y 关于x 的反比例函数的有:_________________。
反比例函数地概念和图像性质
反比例函数的概念和图像性质知识点一:反比例函数的定义如果两个变量x,y 之间的关系可以表示成y=xk(k ≠0)的形式,那么称y 是x 的反比例函数。
有三种形式 ①一般式y=xk(k ≠0)②求解式 k=xy(k ≠0) ③指数式 y=k 1-x (k ≠0) 例1 下列函数中哪些是反比例函数,是反比例函数的找出它的k 值⑴y=x k ⑵y= 36+x ⑶y=x 2+7 ⑷ y=-24x⑸y=x 3 ⑹y=x 25 ⑺y=x 47-例2 若函数y=(a-3)4122--a a x 是反比例函数,则a 的值 。
巩固练习1.在式子(1)13=xy (2)13-=x y (3)31+=x y (4)13-=x y (5)xy 23= 中哪些是反比例函数是反比例函数的找出它的k 值2.若函数28)3(mx m y -+=是反比例函数,则m 的取值是 3.如果函数22(1)m y m x -=-为反比例函数,则m 的值是知识点二:确定反比例函数的解析式(1)反比例函数关系式的确定方法:只需给出一组x 、y 的对应值或图象上点的坐标,代入xky =中即可求出k 的值,从而确定反比例函数的关系式。
例1.反比例函数的图象经过A (1,-2),求反比例函数的关系式例2.已知y 与x 成反比例,且当x=2时,y=3,求:(1)y 关于x 的函数解析式;(2)当x=-2时的y 值. 巩固练习1.函数xky =的图象经过点A (1,—2),则k 的值为( )。
A .21 B. 21- C. 2 D. —22.反比例函数 x m y 1+=的图象经过点(2,1),则m 的值是3.已知点(2,152 )是反比例函数y=21m x -图象上一点,则此函数图象必经过点( )A .(3,-5)B .(5,-3)C .(-3,5)D .(3,5) 5.已知y 与x 成反比例,当5=x 时1-=y ,那么当3=y 时=x6.反比例函数x k y =的图像经过(23-,5)点、(a ,-3)及(10,b )点,则k = ,a = ,b = ;7.双曲线xky =经过点(2 ,―3),则k = 8.已知S与P成反比,当P=3时,S=2,那么P=2时,S= ; 知识点三:反比例函数概念的应用 注意:(1)在实际问题中,辨别两个变量是否是反比例函数关系,看两个变量的积是否是定值; (2)解析式中自变量x 和因变量y 的取值范围都是不为零的一切实数、例1、设反比例函数11(0)k y k u =≠,正比例函数22(0)u k x k =≠,求y 与x 之间的函数关系式,并指明它是什么函数、例2、设面积为220cm 的平行四边形的一边长为a (cm ),这条边上的高为h (cm )、⑴求h 关于a 的函数解析式及自变量a 的取值范围;⑵ h 关于a 的函数是不是反比例函数?如果是,请说出它的比例系数、例3.商场推出分期付款购电脑活动,每台电脑12000元,首付4000元,以后每月付y 元,x 个月全部付清,则y 与x 的关系式为____________,是______函数巩固练习1.某工人承包运输粮食的总数是20吨,每天运x 吨,共运了y 天,则y 与x 的关系式为______,是______函数.2.小华以每分钟x 字的速度书写,y 分钟写了300个字,则y 与x 的函数关系式为( )(A) x=y 300 (B) y=x 300 (C) x+y=300 (D) y=x x-3003.用电器的输出功率与通过的电流、用电器的电阻之间的关系是,下面说法正确的是( ) A 、为定值,与成反比例 B 、为定值,与成反比例 C 、为定值,与成正比例D 、为定值,与成正比例知识点四:反比例的图像画法作反比例函数y =x 4和 y=-x4的图像1:列表:(在自变量取值勤范围内取一些值,并计算相应的函数值)3:连线:(用光滑的曲线顺次连接各点) 4:归纳:做反比例函数图像应注意什么问题? ① ②讨论与交流(1)反比例函数y=x 4的图像在哪两个象限?和函数 y =-x4的图象有什么相同点和不同点?(2)反比例函数xky =的图象在哪两个象限?由什么确定?(3)在每一个象限内,随的变化如何变化?总结知识点y 随x 的变化情况也同k 有关系,即x k y =,当0>k 时,在每一个象限内,y 随x 的增大而减小; 当0<k 时,在每一个象限内,y 随x 的增大而增大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拓展练习
3.已知 y 与 x2 成反比例,并且当 x=3 时,y=4. (1)写出 y 关于 x 的函数解析式; x 的值.
1、已知函数 y=xm -7 是正比例函数,则 m = ___; 已知函数 y = 3xm -7 是反比例函数,则 m = ___ 。
思考
下列问题中,变量间具有函数关系吗?如果有,请 直接写出解析式.
问题2 某住宅小区要种植一块面积为 1 000 m2的矩 形草坪,草坪的长 y(单位:m)随宽 x(单位:m)的 变化而变化.
问题3 已知北京市的总面积为 1.68×104 km2 ,人 均占有面积 S(单位: km2 /人)随全市总人口 n(单位: 人)的变化而变化.
形成概念
v 1 463 t
y 1 000 x
S 1.68104 n
y k(k ≠ 0) x
一般地,形如 y k(k 为常数,且 k ≠ 0)的函数, x
叫做反比例函数,其中 x 是自变量,y 是函数.
自变量 x 的取值范围是不等于 0 的一切实数.
概念辨析
1.用函数解析式表示下列问题中变量间的对应关系: (1)一个游泳池的容积为 2 000 m3,游泳池注满水 所用时间 t(单位:h)随注水速度 v(单位:m3/h)的 变化而变化; (2)某长方体的体积为 1 000 cm3,长方体的高 h (单位:cm)随底面积 S(单位:cm2)的变化而变化; (3)一个物体重 100 N,物体对地面的压强 p(单 位:Pa)随物体与地面的接触面积 S(单位:m2)的变 化而变化.
(1)t 2 000 ;(2)h 1 000 ; (3)p 100 .
v
S
S
概念辨析
2.下列哪些关系式中的 y 是 x 的反比例函数?
(1)y=4x;
(2)
y x
=3;
(3)y=-
2 x
;
(4)y=6x+1; (5)y=x2-1;
(6)y=
1 x2
;
(7)xy=123 .
例题探究
例1 已知 y 是 x 的反比例函数,并且当 x=2 时, y=6.
2、当 m 为何值时,函数 解析式.
是反比例函数,并求出其函数
3、.若 数关系式。
是关于 x 的反比例函数,确定 m 的值,并求其函
反思小结
(1)我们今天学习了哪些知识? (2)我们是如何形成反比例函数概念的? (3)如何根据已知条件确定反比例函数的解析式?
布置作业
教科书习题 26.1 第 1,2 题.
九年级 下册
26.1 反比例函数(第1课时)
情境引入
问题1 京沪线铁路全程为 1 463 km,某次列车的 平均速度 v(单位:km/h)随此次列车的全程运行时间 t(单位:h)的变化而变化.
(1)平均速度 v,运行时间 t 存在什么数量关系? (2)这两个变量间有函数关系吗?试说明理由. (3)你能写出 v 关于 t 的解析式吗?