【6套合集】湖南长沙市雅礼中学2020中考提前自主招生数学模拟试卷附解析

合集下载

2020年中考数学押题卷及答案(二十)

2020年中考数学押题卷及答案(二十)

2020年中考数学押题卷及答案(二十)一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.(4分)化简(﹣a2)•a5所得的结果是()A.a7B.﹣a7C.a10 D.﹣a102.(4分)下列方程中,有实数根的是()A.B. C.2x4+3=0 D.3.(4分)如图,比例规是一种画图工具,它由长度相等的两脚AC 和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a 的两个端点上,当CD=1.8cm时,则AB的长为()A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm4.(4分)下列判断错误的是()A.如果k=0或,那么B.设m为实数,则C.如果,那么D.在平行四边形ABCD中,5.(4分)在Rt△ABC中,∠C=90°,如果sinA=,那么sinB的值是()A.B.C. D.36.(4分)将抛物线y1=x2﹣2x﹣3先向左平移1个单位,再向上平移4个单位后,与抛物线y2=ax2+bx+c重合,现有一直线y3=2x+3与抛物线y2=ax2+bx+c相交,当y2≤y3时,利用图象写出此时x的取值范围是()A.x≤﹣1 B.x≥3 C.﹣1≤x≤3 D.x≥0二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)已知,则的值是.8.(4分)已知线段AB长是2厘米,P是线段AB上的一点,且满足AP2=AB•BP,那么AP长为厘米.9.(4分)已知△ABC的三边长是、、2,△DEF的两边长分别是1和,如果△ABC与△DEF相似,那么△DEF的第三边长应该是.10.(4分)如果一个反比例函数图象与正比例函数y=2x图象有一个公共点A(1,a),那么这个反比例函数的解析式是.11.(4分)如果抛物线y=ax2+bx+c(其中a、b、c是常数,且a≠0)在对称轴左侧的部分是上升的,那么a0.(填“<”或“>”)12.(4分)将抛物线y=(x+m)2向右平移2个单位后,对称轴是y 轴,那么m的值是.13.(4分)如图,斜坡AB的坡度是1:4,如果从点B测得离地面的铅垂线高度BC是6米,那么斜坡AB′的长度是米.14.(4分)在等腰△ABC中,已知AB=AC=5,BC=8,点G是重心,联结BG,那么∠CBG的余切值是.15.(4分)如图,△ABC中,点D在边AC上,∠ABD=∠C,AD=9,DC=7,那么AB=.16.(4分)已知梯形ABCD,AD∥BC,点E和点F分别在两腰AB和DC上,且EF是梯形的中位线,AD=3,BC=4.设,那么向量=.(用向量表示)17.(4分)如图,△ABC中,AB=AC,∠A=90°,BC=6,直线MN∥BC,且分别交边AB,AC于点M、N,已知直线MN将△ABC分为面积相等的两部分.如果将线段AM绕着点A旋转,使点M落在边BC 上的点D处,那么BD=.18.(4分)如图,矩形纸片ABCD,AD=4,AB=3,如果点E在边BC 上,将纸片沿AE折叠,使点B落在点F处,联结FC,当△EFC是直角三角形时,那么BE的长为.三、解答题(本大题共7题,满分78分)19.(10分)计算:﹣tan60°×sin60°.20.(10分)解方程组:.21.(10分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).(1)求此抛物线的表达式;(2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y 轴的交点是C点,求△ABC的面积.22.(10分)如图,在一条河的北岸有两个目标M、N,现在位于它的对岸设定两个观测点A、B.已知AB∥MN,在A点测得∠MAB=60°,在B点测得∠MBA=45°,AB=600米.(1)求点M到AB的距离;(结果保留根号)(2)在B点又测得∠NBA=53°,求MN的长.(结果精确到1米)(参考数据:≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)23.(12分)已知:如图,梯形ABCD中,DC∥AB,AD=BD,AD⊥DB,点E是腰AD上一点,作∠EBC=45°,联结CE,交DB于点F.(1)求证:△ABE∽△DBC;(2)如果,求的值.24.(12分)在平面直角坐标系xOy中(如图),已知抛物线y=ax2+bx﹣,经过点A(﹣1,0)、B(5,0).(1)求此抛物线顶点C的坐标;(2)联结AC交y轴于点D,联结BD、BC,过点C作CH⊥BD,垂足为点H,抛物线对称轴交x轴于G,联结HG,求HG的长.25.(14分)已知:如图,四边形ABCD中,0°<∠BAD≤90°,AD=DC,AB=BC,AC平分∠BAD.(1)求证:四边形ABCD是菱形;(2)如果点E在对角线AC上,联结BE并延长,交边DC于点G,交线段AD的延长线于点F(点F可与点D重合),∠AFB=∠ACB,设AB 长度是a(a是常数,且a>0),AC=x,AF=y,求y关于x的函数关系式,并写出定义域;(3)在第(2)小题的条件下,当△CGE是等腰三角形时,求AC的长(计算结果用含a的代数式表示)参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.(4分)化简(﹣a2)•a5所得的结果是()A.a7B.﹣a7C.a10 D.﹣a10【解答】解:(﹣a2)•a5=﹣a7,故选B2.(4分)下列方程中,有实数根的是()A.B. C.2x4+3=0 D.【解答】解:A、由题意=﹣1<0,方程没有实数根;B、去分母得到:x2﹣x+1=0,△<0,没有实数根;C、由题意x4=﹣<0,没有实数根,D、去分母得到:x=﹣1,有实数根,故选D.3.(4分)如图,比例规是一种画图工具,它由长度相等的两脚AC 和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a 的两个端点上,当CD=1.8cm时,则AB的长为()A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm【解答】解:∵OA=3OC,OB=3OD,∴OA:OC=OB:OD=3:1,∠AOB=∠DOC,∴△AOB∽△COD,∴==,∴AB=3CD=3×1.8=5.4(cm).故选B.4.(4分)下列判断错误的是()A.如果k=0或,那么B.设m为实数,则C.如果,那么D.在平行四边形ABCD中,【解答】解:A、如果k=0或,那么,正确;B、设m为实数,则,正确;C、如果,那么或,错误;D、在平行四边形ABCD中,,正确;5.(4分)在Rt△ABC中,∠C=90°,如果sinA=,那么sinB的值是()A.B.C. D.3【解答】解:∵Rt△ABC中,∠C=90°,sinA=,∴cosA===,∴∠A+∠B=90°,∴sinB=cosA=.故选:A.6.(4分)将抛物线y1=x2﹣2x﹣3先向左平移1个单位,再向上平移4个单位后,与抛物线y2=ax2+bx+c重合,现有一直线y3=2x+3与抛物线y2=ax2+bx+c相交,当y2≤y3时,利用图象写出此时x的取值范围是()A.x≤﹣1 B.x≥3 C.﹣1≤x≤3 D.x≥0【解答】解:y1=x2﹣2x﹣3=(x﹣1)2﹣4,则它的顶点坐标为(1,﹣4),所以抛物线y1=x2﹣2x﹣3先向左平移1个单位,再向上平移4个单位后的解析式为y=x2,解方程组得或,所以当﹣1≤x≤3.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)已知,则的值是.【解答】解:由等比性质,得==,故答案为:.8.(4分)已知线段AB长是2厘米,P是线段AB上的一点,且满足AP2=AB•BP,那么AP长为(﹣1)厘米.【解答】解:∵P是线段AB上的一点,且满足AP2=AB•BP,∴P为线段AB的黄金分割点,且AP是较长线段,∴AP=AB=2×=(﹣1)厘米.故答案为(﹣1).9.(4分)已知△ABC的三边长是、、2,△DEF的两边长分别是1和,如果△ABC与△DEF相似,那么△DEF的第三边长应该是.【解答】解:设第三边为x,∵:=1:,∵与1是对应边,与是对应边,∵△ABC与△DEF相似,∴==,解得x=,即△DEF的第三边应该是.故答案为:.10.(4分)如果一个反比例函数图象与正比例函数y=2x图象有一个公共点A(1,a),那么这个反比例函数的解析式是y=.【解答】解:将x=1代入y=2x,得y=2,∴点A(1,2),设反比例函数解析式为y=,∵一个反比例函数图象与正比例函数y=2x图象有一个公共点A(1,2),∴2=.解得,k=2,即反比例函数解析式为y=,故答案为:y=.11.(4分)如果抛物线y=ax2+bx+c(其中a、b、c是常数,且a≠0)在对称轴左侧的部分是上升的,那么a<0.(填“<”或“>”)【解答】解:∵抛物线y=ax2+bx+c在对称轴左侧的部分是上升的,∴抛物线开口向下,∴a<0.故答案为:<.12.(4分)将抛物线y=(x+m)2向右平移2个单位后,对称轴是y 轴,那么m的值是2.【解答】解:将抛物线y=(x+m)2向右平移2个单位后,得到抛物线解析式为y=(x+m﹣2)2.其对称轴为:x=2﹣m=0,解得m=2.故答案是:2.13.(4分)如图,斜坡AB的坡度是1:4,如果从点B测得离地面的铅垂线高度BC是6米,那么斜坡AB′的长度是6米.【解答】解:∵斜坡AB的坡度i=1:4,∴=,∵从点B测得离地面的铅垂线高度BC是6米,∴=,解得:AC=24,则斜坡AB的长为:==6(米).故答案为6.14.(4分)在等腰△ABC中,已知AB=AC=5,BC=8,点G是重心,联结BG,那么∠CBG的余切值是.【解答】解::∵AB=AC=5,BC=8,点G为重心,∴AD⊥BC,CD=BC=×8=4,∴AD===3,∴GA=2,∴DG=1,∴BG=,∴∠CBG的余切值=,故答案为:15.(4分)如图,△ABC中,点D在边AC上,∠ABD=∠C,AD=9,DC=7,那么AB=12.【解答】解:∵∠ABD=∠C、∠BAD=∠CAB,∴△ABD∽△ACB,∴,即AB2=AC•AD,∵AD=9,DC=7∴AC=16,∴AB=12,故答案为:1216.(4分)已知梯形ABCD,AD∥BC,点E和点F分别在两腰AB和DC上,且EF是梯形的中位线,AD=3,BC=4.设,那么向量=.(用向量表示)【解答】解:∵EF是梯形的中位线,∴EF=(A D+BC),∵AD:BC=3:4,=,∴BC=AD,∴=(+)=(+)=.故答案为17.(4分)如图,△ABC中,AB=AC,∠A=90°,BC=6,直线MN∥BC,且分别交边AB,AC于点M、N,已知直线MN将△ABC分为面积相等的两部分.如果将线段AM绕着点A旋转,使点M落在边BC 上的点D处,那么BD=3.【解答】解:∵△ABC中,AB=AC,∠A=90°,BC=6,∴AB=cos45°×BC=3,∵直线MN∥BC,∴△AMN∽△ABC,∵直线MN将△ABC分为面积相等的两部分,∴S△AMN:S△ABC=1:2,∴==,即=,解得AM=3,如图,过A作AD⊥BC于D,则AD=BC=3,∴将线段AM绕着点A逆时针旋转45°,可以使点M落在边BC上的点D处,此时,BD=BC=3.故答案为:3.18.(4分)如图,矩形纸片ABCD,AD=4,AB=3,如果点E在边BC 上,将纸片沿AE折叠,使点B落在点F处,联结FC,当△EFC是直角三角形时,那么BE的长为 1.5或3.【解答】解:分两种情况:①当∠EFC=90°时,如图1,∵∠AFE=∠B=90°,∠EFC=90°,∴点A、F、C共线,∵矩形ABCD的边AD=4,∴BC=AD=4,在Rt△ABC中,AC===5,设BE=x,则CE=BC﹣BE=4﹣x,由翻折的性质得,AF=AB=3,EF=BE=x,∴CF=AC﹣AF=5﹣3=2,在Rt△CEF中,EF2+CF2=CE2,即x2+22=(4﹣x)2,解得x=1.5,即BE=1.5;②当∠CEF=90°时,如图2,由翻折的性质得,∠AEB=∠AEF=×90°=45°,∴四边形ABEF是正方形,∴BE=AB=3,综上所述,BE的长为1.5或3.故答案为:1.5或3.三、解答题(本大题共7题,满分78分)19.(10分)计算:﹣tan60°×sin60°.【解答】解:原式=+﹣×=2+﹣=1.20.(10分)解方程组:.【解答】解:由②得:(x﹣y﹣3)(x﹣y+1)=0∴x﹣y=3或x﹣y=﹣1∴或∴或.21.(10分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).(1)求此抛物线的表达式;(2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y 轴的交点是C点,求△ABC的面积.【解答】解:(1)设抛物线的解析式为y=a(x﹣3)2+5,将A(1,3)代入上式得3=a(1﹣3)2+5,解得a=﹣,∴抛物线的解析式为y=﹣(x﹣3)2+5,(2)∵A(1,3)抛物线对称轴为:直线x=3∴B(5,3),令x=0,y=﹣(x﹣3)2+5=,则C(0,),△ABC的面积=×(5﹣1)×(3﹣)=5.22.(10分)如图,在一条河的北岸有两个目标M、N,现在位于它的对岸设定两个观测点A、B.已知AB∥MN,在A点测得∠MAB=60°,在B点测得∠MBA=45°,AB=600米.(1)求点M到AB的距离;(结果保留根号)(2)在B点又测得∠NBA=53°,求MN的长.(结果精确到1米)(参考数据:≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)【解答】解:(1)过点M作MD⊥AB于点D,∵MD⊥AB,∴∠MDA=∠MDB=90°,∵∠MAB=60°,∠MBA=45°,∴在Rt△ADM中,;在Rt△BDM中,,∴,∵AB=600m,∴AD+BD=600m,∴,∴,∴,∴点M到AB的距离.(2)过点N作NE⊥AB于点E,∵MD⊥AB,NE⊥AB,∴MD∥NE,∵AB∥MN,∴四边形MDEN为平行四边形,∴,MN=DE,∵∠NBA=53°,∴在Rt△NEB中,,∴,∴.23.(12分)已知:如图,梯形ABCD中,DC∥AB,AD=BD,AD⊥DB,点E是腰AD上一点,作∠EBC=45°,联结CE,交DB于点F.(1)求证:△ABE∽△DBC;(2)如果,求的值.【解答】证:(1)∵∠ADB=90°,AD=BD,∴∠A=∠DBA=45°,又∵DC∥AB,∴∠CDB=∠DBA=45°=∠A,又∵∠CBE=∠DBA=45°,∴∠EBA=∠CBD,∴△CBD∽△EBA;(2)∵△CBD∽△EBA,∴,∵∠CBE=∠DBA,,∴.24.(12分)在平面直角坐标系xOy中(如图),已知抛物线y=ax2+bx﹣,经过点A(﹣1,0)、B(5,0).(1)求此抛物线顶点C的坐标;(2)联结AC交y轴于点D,联结BD、BC,过点C作CH⊥BD,垂足为点H,抛物线对称轴交x轴于G,联结HG,求HG的长.【解答】解:(1)把A(﹣1,0)、B(5,0)代入抛物线解析式,得:,解得:,∴抛物线的解析式为:,∴顶点C(2,﹣3)(2)方法一:设BD与CG相交于点P,设直线AC的解析式为:y=kx+b把A(﹣1,0)和C(2,﹣3)代入得:解得:则直线AC:y=﹣x﹣1,∴D(0,﹣1),同理可得直线BD:y=x﹣1,∴∵∠CHP=∠PGB=90°,∠GPB=∠CPH∴△BPG∽△CPH,∴∴△HPG∽△CPB,∴,∴,∴;方法二:如图2,过点H作HM⊥CG于M,∵,,,∴BD2=CD2+BC2,∴∠BCD=90°,∵S△BCD=BD•CH=BC•CD,∴,∵∠ABD=∠HCG,∴△OBD∽△MCH,∴,∴,,∴,由勾股定理得:GH=∴, 方法三:直线AC :y=﹣x ﹣1,∴D (0,﹣1),直线BD :y=x ﹣1,∵CH ⊥BD ,∴k BD •k CH =﹣1,∴直线CH :y=﹣5x +7,联立解析式:,解得:,∴∴.25.(14分)已知:如图,四边形ABCD中,0°<∠BAD≤90°,AD=DC,AB=BC,AC平分∠BAD.(1)求证:四边形ABCD是菱形;(2)如果点E在对角线AC上,联结BE并延长,交边DC于点G,交线段AD的延长线于点F(点F可与点D重合),∠AFB=∠ACB,设AB 长度是a(a是常数,且a>0),AC=x,AF=y,求y关于x的函数关系式,并写出定义域;(3)在第(2)小题的条件下,当△CGE是等腰三角形时,求AC的长(计算结果用含a的代数式表示)【解答】(1)证明:∵AD=DC,AB=BC∴∠DAC=∠DCA,∠BAC=∠BCA又AC平分∠BAD∴∠DAC=∠BAC∴∠DCA=∠BAC,∠DAC=∠BCA,∴AB∥DC,AD∥BC∴四边形ABCD为平行四边形又AD=DC∴四边形ABCD是菱形(2)解:∵四边形ABCD是菱形,∴AF∥BC,AB=BC∴∠AFB=∠CBF,∠FAC=∠ACB,∠ACB=∠BAC ∴∠EBC=∠BAC=∠AFB=∠FAC=∠ACB∴△AEF∽△ABC,△ABC∽△BEC∴∴BC2=EC•AC∴a2=EC•x∴,∴AE=AC﹣EC=x﹣,∵△AEF∽△ABC∴,即∴();(3)解:∵△CEG是等腰三角形,①当CG=EG时,∴∠CGE=∠ECG,∵∠ECG=∠CBF,∴∠CGE=∠CBF,∵∠CGB=∠ABF,∴∠ABF=∠CBF,此时,点F,G和点D重合,∴AF=AB,∴y=a,即∴,②当CG=CE时,∴∠CEG=∠CGB,∵∠CEG=∠AC B+∠CBF=2∠ACB=∠BCD,∴∠CGB=∠BCD,∵∠FDG=∠BAD=∠BCD,∴∠FDG=∠FGD,∴FG=FD,∴AF=BF,∵∠EBCC=∠ECB,∴BE=CE,∵∠EAF=∠EFA,∴AE=EF,∴FB=AC∴y=x即∴(负值已舍),③当EG=CE时,∴∠CEG=∠ACD,∵∠ACD=∠CBF,∴∠CEG=∠CBF,∵∠CEG=∠CBF+∠ACB,∴此种情况不存在.综上所述:或时,△CEG为等腰三角形.。

2020年湖南省长沙市教科院中考数学模拟试卷(三) (解析版)

2020年湖南省长沙市教科院中考数学模拟试卷(三) (解析版)

2020年长沙市教科院中考数学模拟试卷(三)一、选择题(共12小题).1.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元B.收入20元C.支出80元D.收入80元2.下列计算正确的是()A.a+a2=a3B.(3a)2=6a2C.a6÷a2=a3D.a2•a3=a5 3.在△ABC中,若∠A﹣∠B=∠C,则此三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形4.下列图形中,既是中心对称图形,也是轴对称图形的是()A.赵爽弦图B.科克曲线C.河图幻方D.谢尔宾斯基三角形5.某班6名同学参加体能测试的成绩分别为:80,90,75,75,80,80.下列表述错误的是()A.众数是80B.中位数是75C.平均数是80D.方差是256.中国倡导的“一带一路”建设将促进世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为44亿人,这个数用科学记数法表示为()A.44×108B.4.4×108C.4.4×1010D.4.4×1097.用尺规作图作△ABC的BC边上的高,下列作法正确的是()A.B.C.D.8.不等式组的解集在数轴上表示出来是()A.B.C.D.9.若圆锥的高为4cm,母线长为5cm,则圆锥的全面积为()A.15πcm2B.20πcm2C.24πcm2D.36πcm210.若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是()A.k<5B.k≥5C.k≤5且k≠1D.k>511.如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()A.B.C.D.12.如图,正方形ABCD中,以BC为边向正方形内部作等边△BCE.连接AE.DE,连接BD交CE于F,下列结论:①∠AED=150°②△DEF~△BAE;③tan∠ECD=④△BEC的面积:△BFC的面积=(+1):2,其中正确的结论有()个.A.4B.3C.2D.1二、填空题(本大题共6个小题,每小题3分,共18分)13.4的平方根是.14.李老师上班途中要经过一个十字路口,十字路口红灯亮30秒、黄灯亮5秒、绿灯亮25秒,李老师到达路口恰好遇到绿灯的概率是.15.已知a+b=4,ab=3,则代数式(a+1)(b+1)的值为.16.如图,点E在∠BOA的平分线上,EC⊥OB,垂足为C,点F在OA上,若∠AFE=30°,EC=3,则EF=.17.如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为.18.如图,在平面直角坐标系xOy中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B,C在反比例函数y=(x>0)的图象上,则△OAB的面积等于.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.计算:()﹣1﹣(π+3)0﹣4cos30°+.20.解分式方程:+1=.21.如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料.根据统计结果绘制如下两个统计图(如图),根据统计图提供的信息,解答下列问题:(1)这个班级有多少名同学?并补全条形统计图;(2)在扇形统计图中,求“碳酸饮料”所在的扇形的圆心角度数为多少度?(3)为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学做良好习惯监督员,请用列表法或树状图法求出恰好抽到一男一女的概率.22.在数学综合实践活动课上,某小组要测量学校升旗台旗杆的高度、如图,测得BC∥AD,斜坡AB的长为6米,坡度i=l:,在点B处测得旗杆顶端的仰角为70°,点B到旗杆底部C的距离为4米.(1)求斜坡AB的坡角α的度数;(2)求旗杆顶端离地面的高度ED的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.74,结果精确到0.1米)23.如图所示,⊙O的半径为5,点A是⊙O上一点,直线l过点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l于点B,交⊙O于点E,直径PD的延长线交直线l于点F,点A是的中点.(1)求证:直线l是⊙O的切线;(2)若PA=8,求PB的长.24.某批发市场有考试文具套装,其中A品牌的批发价是每套20元,B品牌的批发价是每套25元,小王需购买A,B两种品牌的文具套装共1000套.(1)如果小王按批发价购买这1000套文具花了22000元,那么A,B两种品牌的文具套装各购买了多少套?(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡,并用会员卡购买A,B两种品牌文具套装1000套,共用了y元,设A品牌文具套装买了x套,求出y与x之间的函数关系式;(3)小王用会员卡购买A,B两种品牌文具套装1000套,共用了20000元,他计划在网店包邮销售这两种文具套装,每套文具套装小王需支付邮费8元,若A品牌每套销售价格比B品牌少5元,请你帮他计算,A品牌的文具套装每套定价不低于多少元时才不亏本?(运算结果取整数)25.定义:有一个内角为90°,且对角线相等的四边形称为准矩形.(1)①如图1,准矩形ABCD中,∠ABC=90°,若AB=2,BC=3,则BD=;②如图2,直角坐标系中,A(0,3),B(5,0),若整点P使得四边形AOBP是准矩形,则点P的坐标是;(整点指横坐标、纵坐标都为整数的点)(2)如图3,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;(3)已知,准矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,当△ADC为等腰三角形时,请直接写出这个准矩形的面积是.26.如图,直线y=﹣x+4与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A,B两点,与x轴的另外一个交点为C.(1)填空:b=,c=,点C的坐标为;(2)如图1,若点P是第一象限抛物线上一动点,连接OP交直线AB于点Q,设点P 的横坐标为m,设=y,求y与m的函数关系式,并求出的最大值;(3)如图2,若点P是抛物线上一动点,当∠PBA+∠CBO=45°时,求点P的坐标.参考答案一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共12个小题,每小题3分,共36分)1.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元B.收入20元C.支出80元D.收入80元【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解:根据题意,收入100元记作+100元,则﹣80表示支出80元.故选:C.2.下列计算正确的是()A.a+a2=a3B.(3a)2=6a2C.a6÷a2=a3D.a2•a3=a5【分析】根据合并同类项法则,积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加对各选项分析判断利用排除法求解.解:A、a与a2不是同类项,不能合并,故A选项错误;B、(3a)2=9a2,故B选项错误;C、a6÷a2=a6﹣2=a4,故C选项错误;D、a2•a3=a2+3=a5,故D选项正确.故选:D.3.在△ABC中,若∠A﹣∠B=∠C,则此三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形【分析】根据三角形的内角和定理得出∠A+∠B+∠C=180°,代入得出2∠A=180°,求出即可.解:∵∠A﹣∠B=∠C,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,∴△ABC是直角三角形,故选:B.4.下列图形中,既是中心对称图形,也是轴对称图形的是()A.赵爽弦图B.科克曲线C.河图幻方D.谢尔宾斯基三角形【分析】根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项正确;C、不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:B.5.某班6名同学参加体能测试的成绩分别为:80,90,75,75,80,80.下列表述错误的是()A.众数是80B.中位数是75C.平均数是80D.方差是25【分析】根据众数、中位数、平均数以及方差的概念分别对每一项进行分析,即可得出答案.解:∵80出现了3次,出现的次数最多,∴众数是80;把这些数从小到大排列为:75,75,80,80,80,90,则中位数是=80;平均数是(80+90+75+75+80+80)=80,则方差S2=[3×(80﹣80)2+2×(75﹣80)2+(90﹣80)2]=25;表述错误的是B,6.中国倡导的“一带一路”建设将促进世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为44亿人,这个数用科学记数法表示为()A.44×108B.4.4×108C.4.4×1010D.4.4×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:44亿=4.4×109 ,故选:D.7.用尺规作图作△ABC的BC边上的高,下列作法正确的是()A.B.C.D.【分析】根据三角形的高的定义判断即可.解:∵△ABC的BC边上的高,AD⊥BC,∴选项B正确,故选:B.8.不等式组的解集在数轴上表示出来是()A.B.C.D.【分析】先分别解出不等式的解,再求其公共解集,并在数轴上表示出来.解:由①得x<﹣1,由②得x≤2,故解集为x<﹣1,9.若圆锥的高为4cm,母线长为5cm,则圆锥的全面积为()A.15πcm2B.20πcm2C.24πcm2D.36πcm2【分析】根据勾股定理求出圆锥的底面半径,根据扇形面积公式计算即可.解:圆锥的底面半径==3,∴圆锥的全面积=π×32+×2π×3×5=24π(cm2)故选:C.10.若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是()A.k<5B.k≥5C.k≤5且k≠1D.k>5【分析】根据根的判别式即可求出答案.解:由题意可知:△=16﹣4(k﹣1)≥0,∴k≤5,∵k﹣1≠0,∴k≠1,∴k≤5且k≠1故选:C.11.如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()A.B.C.D.【分析】分点Q在AC上和BC上两种情况进行讨论即可.解:当点Q在AC上时,∵∠A=30°,AP=x,∴PQ=x tan30°=,∴y=×AP×PQ=×x×=x2;当点Q在BC上时,如下图所示:∵AP=x,AB=16,∠A=30°,∴BP=16﹣x,∠B=60°,∴PQ=BP•tan60°=(16﹣x).∴==.∴该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下.故选:B.12.如图,正方形ABCD中,以BC为边向正方形内部作等边△BCE.连接AE.DE,连接BD交CE于F,下列结论:①∠AED=150°②△DEF~△BAE;③tan∠ECD=④△BEC的面积:△BFC的面积=(+1):2,其中正确的结论有()个.A.4B.3C.2D.1【分析】①利用正方形的性质,等边三角形的性质,等腰三角形的性质及三角形的内角和,周角求得判定即可②由①可得到∠ADE的度数,再利用正方形的性质即可得∠DEF=∠ABE,即可判定③可利用含30°的直角三角形的性质即可分别求出,再与tan∠ECD=tan30°作比较即可④两个三角形的底相同,由高的比进行判定即可解:∵△BEC为等边三角形∴∠EBC=∠BCE=∠ECB=60°,AB=EB=EC=BC=DC∵四边形ABCD为正方形∴∠ABE=∠ECD=90°﹣60°=30°∴在△ABE和△DCE中,AB=DC∠ABE=∠ECDBE=EC∴△ABE≌△DCE(SAS)∴∠AEB=∠DEC==75°∴∠AED=360°﹣60°﹣75°×2=150°故①正确由①知AE=ED∴∠EAD=∠EDA=15°∴∠EDF=45°﹣15°=30°∴∠EDF=∠ABE由①知∠AEB=∠DEC,∴△DEF~△BAE故②正确过点F作FM⊥DC交于M,如图设DM=x,则FM=x,DF=x∵∠FCD=30°∴MC=x则在Rt△DBC中,BD=∴BF=BD﹣DF=则∵tan∠ECD=tan30°=∴tan∠ECD=故③正确如图过点E作EH⊥BC交于H,过F作FG⊥BC交于G,得由③知MC=,MC=FG∴FG=∵BC=DC=x∴BH=∵∠EBC=60°∴EH=x,∴====故④正确故选:A.二、填空题(本大题共6个小题,每小题3分,共18分)13.4的平方根是±2.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.14.李老师上班途中要经过一个十字路口,十字路口红灯亮30秒、黄灯亮5秒、绿灯亮25秒,李老师到达路口恰好遇到绿灯的概率是.【分析】利用概率公式求解.解:李老师到达路口恰好遇到绿灯的概率==.故答案为.15.已知a+b=4,ab=3,则代数式(a+1)(b+1)的值为8.【分析】原式利用多项式乘多项式法则计算,整理后把已知等式代入计算即可求出值.解:原式=ab+a+b+1=ab+(a+b)+1,当a+b=4,ab=3时,原式=3+4+1=8.故答案为:816.如图,点E在∠BOA的平分线上,EC⊥OB,垂足为C,点F在OA上,若∠AFE=30°,EC=3,则EF=6.【分析】作EG⊥AO于点G,根据角平分线的性质求得EG的长,然后利用直角三角形中30°的直角边等于斜边的一半求解即可.解:如图,作EG⊥AO于点G,∵点E在∠BOA的平分线上,EC⊥OB,EC=3,∴EG=EC=3,∵∠AFE=30°,∴EF=2EG=2×3=6,故答案为:6.17.如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为45°.【分析】先根据OA=OC,∠ACO=45°可得出∠OAC=45°,故可得出∠AOC的度数,再由圆周角定理即可得出结论.解:连接OA,如图,∵∠ACO=45°,OA=OC,∴∠ACO=∠CAO=45°,∴∠AOC=90°,∴∠B=45°.故答案为:45°18.如图,在平面直角坐标系xOy中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B,C在反比例函数y=(x>0)的图象上,则△OAB的面积等于3.【分析】过点B、点C作x轴的垂线,垂足为D,E,则BD∥CE,得出===,设CE=x,则BD=2x,根据反比例函数的解析式表示出OD=,OE=,OA =,然后根据三角形面积公式求解即可.解:如图,过点B、点C作x轴的垂线,垂足为D,E,则BD∥CE,∴==,∵OC是△OAB的中线,∴===,设CE=x,则BD=2x,∴C的横坐标为,B的横坐标为,∴OD=,OE=,∴DE=OE﹣OD=,∴AE=DE=,∴OA=OE+AE=,∴S△OAB=OA•BD=××2x=3.故答案为3.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.计算:()﹣1﹣(π+3)0﹣4cos30°+.【分析】直接利用负整数指数幂的性质以及零指数幂的性质、特殊角的三角函数值、二次根式的性质分别化简得出答案.解:原式=2﹣1﹣4×+2=2﹣1﹣2+2=1.20.解分式方程:+1=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:去分母得:4+x2﹣1=x2﹣2x+1,解得:x=﹣1,经检验x=﹣1是增根,分式方程无解.21.如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料.根据统计结果绘制如下两个统计图(如图),根据统计图提供的信息,解答下列问题:(1)这个班级有多少名同学?并补全条形统计图;(2)在扇形统计图中,求“碳酸饮料”所在的扇形的圆心角度数为多少度?(3)为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学做良好习惯监督员,请用列表法或树状图法求出恰好抽到一男一女的概率.【分析】(1)由B类型的人数及其百分比求得总人数,在用总人数减去其余各组人数得出C类型人数,即可补全条形图;(2)用360°乘以样本中C饮品人数占被调查人数的比例可得;(3)用列表法或画树状图法列出所有等可能结果,从中确定恰好抽到一名男生和一名女生的结果数,根据概率公式求解可得.解:(1)∵抽查的总人数为:20÷40%=50人,∴C类人数=50﹣20﹣5﹣15=10人,补全条形统计图如下:(2)“碳酸饮料”所在的扇形的圆心角度数为:10÷50×360°=72°;(3)画树状图得:所有等可能的情况数有20种,其中一男一女的有12种,所以P(恰好抽到一男一女)==.22.在数学综合实践活动课上,某小组要测量学校升旗台旗杆的高度、如图,测得BC∥AD,斜坡AB的长为6米,坡度i=l:,在点B处测得旗杆顶端的仰角为70°,点B到旗杆底部C的距离为4米.(1)求斜坡AB的坡角α的度数;(2)求旗杆顶端离地面的高度ED的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.74,结果精确到0.1米)【分析】(1)过点B作BF⊥AD于点F,由i=tan∠BAF=,可得∠BAF=30°;(2)由∠BAF=30°、AB=6,知CD=BF=AB=3米,再由EC=BC tan∠EBC可得答案.解:(1)如图所示,过点B作BF⊥AD于点F,∵i=tan∠BAF=,∴∠BAF=30°,即α=30°;(2)∵∠BAF=30°,AB=6,∴CD=BF=AB=3米,在Rt△BCE中,∵∠EBC=70°,BC=4,∴EC=BC tan∠EBC=4tan70°≈10.96,则ED=EC+CD=3+10.96=13.96≈14.0(米),答:旗杆顶端离地面的高度ED的长约为14.0米.23.如图所示,⊙O的半径为5,点A是⊙O上一点,直线l过点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l于点B,交⊙O于点E,直径PD的延长线交直线l于点F,点A是的中点.(1)求证:直线l是⊙O的切线;(2)若PA=8,求PB的长.【分析】(1)连接DE,OA.想办法证明OA⊥BF即可;(2)连接AD,只要证明△PAD∽△PBA,可得=,即可解决问题.【解答】(1)证明:连接DE,OA.∵PD是直径,∴∠DEP=90°,∵PB⊥FB,∴∠DEP=∠FBP,∴DE∥BF,∵=,∴OA⊥DE,∴OA⊥BF,∴直线l是⊙O的切线.(2)解:连接AD.∵=,∴∠APD=∠APB,∵PD是直径,∴∠PAD=90°,∴∠PAD=∠ABP=90°,∴△PDA∽△PAB,∴=,∴=,∴PB=.24.某批发市场有考试文具套装,其中A品牌的批发价是每套20元,B品牌的批发价是每套25元,小王需购买A,B两种品牌的文具套装共1000套.(1)如果小王按批发价购买这1000套文具花了22000元,那么A,B两种品牌的文具套装各购买了多少套?(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡,并用会员卡购买A,B两种品牌文具套装1000套,共用了y元,设A品牌文具套装买了x套,求出y与x之间的函数关系式;(3)小王用会员卡购买A,B两种品牌文具套装1000套,共用了20000元,他计划在网店包邮销售这两种文具套装,每套文具套装小王需支付邮费8元,若A品牌每套销售价格比B品牌少5元,请你帮他计算,A品牌的文具套装每套定价不低于多少元时才不亏本?(运算结果取整数)【分析】(1)设小王需购买A、B两种品牌文具套装分别为x套、y套,根据“购买A,B两种品牌的文具套装共1000套,花了22000元”列方程组解答即可;(2)根据题意,可得y=500+0.8×[20x+25(1000﹣x)],据此求出y与x之间的函数关系式即可.(3)首先求出小王购买A、B两种品牌文具套装分别为多少套,然后设A品牌文具套装的售价为z元,则B品牌文具套装的售价为z+5元,所以125z+875(z+5)≥20000+8×1000,据此求出A品牌的文具套装每套定价不低于多少元时才不亏本即可.解:(1)设小王够买A品牌文具x套,够买B品牌文具y套,根据题意,得:,解得,答:小王够买A品牌文具600套,够买B品牌文具400套.(2)y=500+0.8[20x+25(1000﹣x)]=500+0.8(25000﹣5x)=500+20000﹣4x=﹣4x+20500,∴y与x之间的函数关系式是:y=﹣4x+20500.(3)根据题意,得:﹣4x+20500=20000,解得:x=125,∴小王够买A品牌文具套装为125套、够买B品牌文具套装为875套,设A品牌文具套装的售价为z元,则B品牌文具套装的售价为(z+5)元,由题意得:125z+875(z+5)≥20000+8×1000,解得:z≥23.625,答:A品牌的文具套装每套定价不低于24元时才不亏本.25.定义:有一个内角为90°,且对角线相等的四边形称为准矩形.(1)①如图1,准矩形ABCD中,∠ABC=90°,若AB=2,BC=3,则BD=;②如图2,直角坐标系中,A(0,3),B(5,0),若整点P使得四边形AOBP是准矩形,则点P的坐标是(5,3),(3,5);(整点指横坐标、纵坐标都为整数的点)(2)如图3,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;(3)已知,准矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,当△ADC为等腰三角形时,请直接写出这个准矩形的面积是+,+,2.【分析】(1)利用准矩形的定义和勾股定理计算,再根据准矩形的特点和整点的特点求出即可;(2)先利用正方形的性质判断出△ABE≌△BCF,即可;(3)分三种情况分别计算,用到梯形面积公式,对角线面积公式,对角线互相垂直的四边形的面积计算方法.解:(1)①∵∠ABC=90°,∴BD=AC===,故答案为,②∵A(0,3),B(5,0),∴AB==,设点P(m,n),O(0,0),∴OP==,∵m,n都为整数,∴点P(3,5)或(5,3);故答案为P(3,5)或(5,3);(2)∵四边形ABCD是正方形,∴AB=BC,∠A=∠ABC=90°,∴∠EBF+∠EBC=90°,∵BE⊥CF,∴∠EBC+∠BCF=90°,∴∠EBF=∠BCF,∴△ABE≌△BCF,∴BE=CF,∴四边形BCEF是准矩形;(3),,∵∠ABC=90°,∠BAC=60°,AB=2,∴BC=2,AC=4,准矩形ABCD中,BD=AC=4,①当AC=AD时,如图1,作DE⊥AB,∴AE=BE=AB=1,∴DE===,∴S准矩形ABCD=S△ADE+S梯形BCDE=DE×AE+(BC+DE)×BE=×+(2+)×1=+;②当AC=CD时,如图2,作DF⊥BC,∴BD=CD,∴BF=CF=BC=,∴DF===,∴S准矩形ABCD=S△DCF+S梯形ABFD=FC×DF+(AB+DF)×BF=××+(2+)×=+;③当AD=CD,如图3,连接AC中点和D并延长交BC于M,连接AM,连接BG,过B作BH⊥DG,在Rt△ABC中,AC=2AB=4,∴BD=AC=4,∴AG=AC=2,∵AB=2,∴AB=AG,∵∠BAC=60°,∴∠ABG=60°,∴∠CBG=30°在Rt△BHG中,BG=2,∠BGH=30°,∴BH=1,在Rt△BHM中,BH=1,∠CBH=30°,∴BM=,HM=,∴CM=,在Rt△DHB中,BH=1,BD=4,∴DH=,∴DM=DH﹣MH=﹣,∴S准矩形ABCD=S△ABM+S四边形AMCD,=BM×AB+AC×DM=××2+×4×(﹣)=2;故答案为+,+,2.26.如图,直线y=﹣x+4与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A,B两点,与x轴的另外一个交点为C.(1)填空:b=1,c=4,点C的坐标为(﹣2,0);(2)如图1,若点P是第一象限抛物线上一动点,连接OP交直线AB于点Q,设点P 的横坐标为m,设=y,求y与m的函数关系式,并求出的最大值;(3)如图2,若点P是抛物线上一动点,当∠PBA+∠CBO=45°时,求点P的坐标.【分析】(1)通过一次函数解析式确定A、B两点坐标,直接利用待定系数法求解即可得到b,c的值,令y=0便可得C点坐标;(2)分别过P、Q两点向x轴作垂线,通过PQ与OQ的比值为y以及平行线分线段成比例,找到=,设点P坐标为(m,﹣m2+m+4),Q点坐标(n,﹣n+4),表示出ED、OD等长度,即可得y与m、n之间的关系,再次利用,即可求解;(3)∠OBA=∠OBP+∠PBA=45°,∠PBA+∠CBO=45°,则∠OBP=∠CBO,进而求解.解:(1)∵直线y=﹣x+4与x轴交于点A,与y轴交于点B.∴A(4,0),B(0,4).又∵抛物线过B(0,4),∴c=4.把A(4,0)代入y=﹣x2+bx+4得,0=﹣×42+4b+4,解得,b=1.∴抛物线解析式为,y=﹣x2+x+4.令﹣x2+x+4=0,解得,x=﹣2或x=4.∴C(﹣2,0);故答案为:1;4;(﹣2,0);(2)如图1,分别过P、Q作PE、QD垂直于x轴交x轴于点E、D.设P(m,﹣m2+m+4),Q(n,﹣n+4),则PE=﹣m2+m+4,QD=﹣n+4.又∵==y.∴n=.又∵,即,把n═代入上式并整理得:4y=﹣m2+2m.∴y=﹣m2+m.∵﹣<0,故y有最大值,当m=2时,y max=.即PQ与OQ的比值的最大值为;(3)如图2,∵∠OBA=∠OBP+∠PBA=45°,∠PBA+∠CBO=45°,∴∠OBP=∠CBO,此时PB过点(2,0).设直线PB解析式为,y=kx+4.把点(2,0)代入上式得,0=2k+4.解得,k=﹣2,∴直线PB解析式为,y=﹣2x+4.令﹣2x+4=﹣x2+x+4,整理得,x2﹣3x=0.解得,x=0(舍去)或x=6.当x=6时,﹣2x+4=﹣2×6+4=﹣8∴P(6,﹣8).。

湖南长沙市2020年中考数学试题(解析版)

湖南长沙市2020年中考数学试题(解析版)

2020年长沙市初中学业水平考试试卷数学一、选择题-2的值是()1.()3A. 6-B. 6C. 8D. 8-【答案】D【解析】【分析】利用有理数的乘方计算法则进行解答.-2=-8,【详解】()3故选:D.【点睛】此题考查有理数的乘方计算法则,熟练掌握运算法则是解题的关键.2.下列图形中,是轴对称图形但不是中心对称图形的是()A. B.C. D.【答案】B【解析】分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、不是轴对称图形,也不是中心对称图形,不合题意;B、是轴对称图形,不是中心对称图形,符合题意;C、不是轴对称图形,也不是中心对称图形,不合题意;D、不是轴对称图形,是中心对称图形,不合题意.故选:B.【点睛】本题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后原图形重合.3.为了将“新冠疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策,切实减轻企业负担,以促进我国进出口企业平稳发展,据国家统计局相关数据显示,2020年1月至5月,全国累计办理出口退税632400000000元,其中632400000000用科学记数法表示为( )A. 116.23410⨯B. 106.23410⨯C. 96.23410⨯D. 126.23410⨯ 【答案】A【解析】【分析】先将632400000000表示成a×10n 的形式,其中1<| a |<10,n 为将632400000000化成an×10n 的形式时小数点向左移动的位数.【详解】解:632400000000元=116.23410⨯元.故答案为A .【点睛】本题考查了科学记数法,即将原数据写成a×10的形式,确定a 和n 的值是解答此类题的关键. 4.下列运算正确的是( )A. =B. 826x x x ÷=C. =D. ()257a a =【答案】B【解析】【分析】根据合并同类项,系数相加字母和字母的指数不变;同底数幂的除法,底数不变指数相减;二次根式的乘法计算;幂的乘方,底数不变,指数相乘,利用排除法求解.【详解】解:A 25,故本选项错误;B 、826x x x ÷=,故本选项正确;C =≠,故本选项错误; D 、()25107a a a =≠,故本选项错误.故选:B .【点睛】本题考查了合并同类项,同底数幂的除法,二次根式的乘法,幂的乘方.很容易混淆,要熟练掌握运算法则.5.2019年10月,《长沙晚报》对外发布长沙高铁两站设计方案,该方案以三湘四水,杜鹃花开 ,塑造出杜鹃花开的美丽姿态,该高铁站建设初期需要运送大量的土石方,某运输公司承担了运送总量为6310m土石方的任务,该运输公司平均运送土石方的速度v(单位:3/m天)与完成运送任务所需的时间t(单位:天)之间的函数关系式是()A.610vt= B. 610v= C. 26110v t= D. 6210v t=【答案】A【解析】【分析】由总量=vt,求出v即可.【详解】解(1)∵vt=106,∴v=6 10t,故选:A.【点睛】本题考查了反比例函数的应用,熟练掌握反比例函数的性质是解题的关键.6.从一艘船上测得海岸上高为42米的灯塔顶部的仰角是30度,船离灯塔的水平距离为()A. 423米B. 143米C. 21米D. 42米【答案】A【解析】【分析】在直角三角形中,已知角的对边求邻边,可以用正切函数来解决.【详解】解:根据题意可得:船离海岸线的距离为42÷tan30°=423(米).故选:A.【点睛】本题考查解直角三角形的应用-仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.7.不等式组1112xx+≥-⎧⎪⎨<⎪⎩的解集在数轴上表示正确的是()A. B.C. D.【答案】D【解析】【分析】先分别解出两个不等式,然后找出解集,表示在数轴上即可.【详解】解:11 12xx+≥-⎧⎪⎨<⎪⎩①②,由①得,x≥−2,由②得,x<2,故原不等式组的解集为:−2≤x<2.在数轴上表示为:故答案为:D.【点睛】本题考查的是一元一次不等式组的解法及在数轴上表示解集,在数轴上表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.熟练掌握不等式组的解法是解题的关键.8.一个不透明的袋子中装有1个红球,2个绿球,除颜色外无其他差别,从中随机摸出一个球,然后放回摇匀,再随机摸出一个,下列说法中,错误的是()A. 第一次摸出的球是红球,第二次摸出的球一定是绿球B. 第一次摸出的球是红球,第二次摸出的球不一定是绿球C. 第一次摸出的球是红球,第二次摸出的球不一定是红球D. 第一次摸出的球是红球的概率是13;两次摸出的球都是红球的概率是19【答案】A【解析】【分析】根据摸出球的颜色可能出现的情形及概率依次分析即可得到答案.【详解】A、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故错误;B、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故正确;C、第一次摸出的球是红球,第二次摸出的球不一定是红球,故正确;D、第一次摸出的球是红球的概率是13;两次摸到球的情况共有(红,红),(红,绿1),(红,绿2),(绿1,红),(绿1,绿1),(绿1,绿2),(绿2,红),(绿2,绿1),(绿2,绿2)9种等可能的情况,两次摸出的球都是红球的有1种,∴两次摸出的球都是红球的概率是19,故正确; 故选:A.【点睛】此题考查了事件的可能性的大小及利用概率的公式、列举法求事件的概率,正确理解题中放回摇匀,明确每次摸出的球的颜色都有可能是解题的关键.9.2020年3月14日,是人类第一个“国际数学日”这个节日的昵称是“π(Day )”国际数学日之所以定在3月14日,是因为3.14与圆周率的数值最接近的数字,在古代,一个国家所算的的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展的水平的主要标志,我国南北朝时期的祖冲之是世界上最早把圆周率的精确值计算到小数点后第七位的科学巨匠,该成果领先世界一千多年,以下对圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比;其中正确的是( )A. ②③B. ①③C. ①④D. ②④ 【答案】A【解析】【分析】圆周率的含义:圆的周长和它直径的比值,叫做圆周率,用字母π表示,π是一个无限不循环小数;据此进行分析解答即可.【详解】解:①圆周率是一个有理数,错误;②π是一个无限不循环小数,因此圆周率是一个无理数,说法正确;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比,说法正确;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比,说法错误;故选:A .【点睛】本题考查了对圆周率的理解,解题的关键是明确其意义,并知道圆周率一个无限不循环小数,3.14只是取它的近似值.10.如图,一块直角三角板的60度的顶点A 与直角顶点C 分别在平行线,FD GH 上,斜边AB 平分CAD ∠,交直线GH 于点E ,则ECB ∠的大小为( )A. 60︒B. 45︒C. 30︒D. 25︒【答案】C【解析】【分析】利用角平分线的性质求得∠DAE的度数,利用平行线的性质求得∠ACE的度数,即可求解.【详解】∵AB平分CAD∠,∠CAB=60︒,∴∠DAE=60︒,∵FD∥GH,∴∠ACE+∠CAD=180︒,∴∠ACE=180︒-∠CAB-∠DAE=60︒,∵∠ACB=90︒,∴∠ECB=90︒-∠ACE=30︒,故选:C.【点睛】本题考查了角平分线的定义,平行线的性质,用到的知识点为:两直线平行,同旁内角互补.11.随着5G网络技术的发展,市场对5G产品的需求越来越大,为满足市场需求,某大型5G产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需的时间与更新技术前生产400万件产品所需时间相同,设更新技术前每天生产x万件,依据题意得()A.40050030x x=-B.40050030x x=+C.40050030x x=-D.40050030x x=+【答案】B【解析】【分析】设更新技术前每天生产x万件产品,则更新技术后每天生产(x+30)万件产品,根据工作时间=工作总量÷工作效率,再结合现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同,即可得出关于x的分式方程.【详解】解:设更新技术前每天生产x万件产品,则更新技术后每天生产(x+30)万件产品,依题意,得:40050030x x =+. 故选:B . 【点睛】本题考查了由实际问题列分式方程,解题的关键是找准等量关系,正确列出分式方程.12.“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把焦脆而不糊的豆腐块数的百分比称为“可食用率”,在特定条件下,“可食用率”p 与加工煎炸的时间t (单位:分钟)近似满足函数关系式:2p at bt c =++(0,a ≠a ,b ,c 为常数),如图纪录了三次实验数据,根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为( )A. 3.50分钟B. 4.05分钟C. 3.75分钟D. 4.25分钟【答案】C【解析】【分析】 将图中三个坐标代入函数关系式解出a 和b ,再利用对称轴公式求出即可.【详解】将(3,0.8)(4,0.9)(5,0.6)代入2p at bt c =++得:0.8930.91640.6255a b c a b c a b c =++⎧⎪=++⎨⎪=++⎩①②③②-①和③-②得0.1=70.39a b a b +⎧⎨-=+⎩④⑤ ⑤-④得0.4=2a -,解得a =﹣0.2.将a =﹣0.2.代入④可得b =1.5.对称轴= 1.5 3.7522(0.2)b a --==⨯-. 故选C .【点睛】本题考查二次函数的三点式,关键在于利用待定系数法求解,且本题只需求出a 和b 即可得出答案.二、填空题13.长沙地铁3号线、5号线即将运行,为了解市民每周乘地铁出行的次数,某校园小记者随机调查了100名市民,得到了如下的统计表:这次调查的众数和中位数分别是___________________________.【答案】5、5【解析】【分析】根据众数和中位数的概念计算即可.【详解】从表格中可得人数最多的次数是5,故众数为5.100÷2=50,即中位数为从小到大排列的第50位,故中位数为5.故答案为5、5.【点睛】本题考查众数和中位数的计算,关键在于熟练掌握基础概念.14.某数学老师在课外活动中做了一个有趣的游戏:首先发给A ,B ,C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成下列三个步骤:第一步,A 同学拿出三张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学,请你确定,最终B 同学手中剩余的扑克牌的张数为___________________.【答案】9【解析】【分析】把每个同学的扑克牌的数量用相应的字母表示出来,列式表示变化情况即可找出最后答案.【详解】设每个同学扑克牌的数量都是x ;第一步,A 同学的扑克牌的数量是3x -,B 同学的扑克牌的数量是3x +;第二步,B 同学的扑克牌的数量是33x ++,C 同学的扑克牌的数量是3x -;第三步,A 同学的扑克牌的数量是2(3x -),B 同学的扑克牌的数量是33x ++-(3x -);∴B 同学手中剩余的扑克牌的数量是:33x ++-(3x -)9=.故答案为:9.【点睛】本题考查了列代数式以及整式的加减,解决此题的关键根据题目中所给的数量关系,建立数学模型.根据运算提示,找出相应的等量关系.15.若一个圆锥的母线长是3,底面半径是1,则它的侧面展开图的面积是_____.【答案】3π.【解析】【分析】先求得圆锥的底面周长,再根据扇形的面积公式S =12lR 求得答案即可. 【详解】解:圆锥的底面周长为:2×π×1=2π, 侧面积为:12×2π×3=3π. 故答案为:3π.【点睛】本题考查了圆锥侧面积的计算:正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.16.如图,点P 在以MN 为直径的半圆上运动,(点P 与M ,N 不重合),PQ MN NE ⊥平分MNP ∠,交PM 于点E ,交PQ 于点F .(1) PF PE PQ PM+=___________________. (2)若2PN PM PN =⋅,则MQ NQ=___________________.【答案】 (1). 1 (2). 1【解析】【分析】(1)过E 作GE MN ⊥于G ,可得90NGE ∠=︒,根据圆周角的性质可得90MPN ∠=︒,又NE 平分MNP ∠,根据角平分线的性质可得PE GE =;由PNE MNE ∠=∠,90PNE PEN ∠+∠=︒ ,90MNE QFN ∠+∠=︒,且QFN PFE ∠=∠,根据“等角的余角相等”可得PEN PFE ∠=∠ ,再根据等腰三角形的性质“等角对等边”可得PE PF =,即有GE PF =;由PQ MN ⊥,GE MN ⊥,可得//GE PQ ,从而可得在PMQ 中有EM GE PM PQ=,将EM PM PE =-、PE GE =、GE PF =代入可得,PM PF PF PM PQ -=,既而可求得PF PE PQ PM+的值.(2) 由2PN PM PN =⋅得PN PM =,又PQ MN ⊥,根据等腰三角形的性质可得PQ 平分MN ,即MQ NQ =,从而可求得MQ NQ. 【详解】(1)如图所示,过E 作GE MN ⊥于G ,则90NGE ∠=︒,∵MN 为半圆的直径,∴90MPN ∠=︒,又∵NE 平分MNP ∠,90NGE ∠=︒,∴PE GE =.∵NE 平分MNP ∠,∴PNE MNE ∠=∠,∵90EPN FQN ∠=∠=︒,∴90,90PNE PEN MNE QFN ∠+∠=︒∠+∠=︒,又QFN PFE ∠=∠,∴90,90PNE PEN MNE PFE ∠+∠=︒∠+∠=︒, 又∵PNE MNE ∠=∠,∴PEN PFE ∠=∠,∴PE PF =,又∵PE GE =,∴GE PF =.∵PQ MN ⊥,GE MN ⊥,∴//GE PQ ,∴在PMQ 中,EM GE PM PQ=, 又∵EM PM PE =-,∴PM PE GE PM PQ -=,∴将GE PF =,PE PF =,代入PM PE GE PM PQ-=得,PM PF PF PM PQ -=, ∴1PF PE PM PF PF PQ PM PM PM-+=+=, 即1PF PE PQ PM+=. (2)∵2PN PM PN =⋅,∴PN PM =,又∵PQ MN ⊥,∴PQ 平分MN ,即MQ NQ =, ∴1MQ NQ=, 故答案为:(1) 1PF PE PQ PM +=;(2) 1MQ NQ=. 【点睛】本题综合考查了圆周角的性质、角平分线的性质、等腰三角形的性质、平行线分线段成比例的性质等知识.(1)中解题的关键是利用角平分线的性质和等腰三角形的性质求得GE PF =,PE PF =,再通过平行线分线段成比例的性质得到EM GE PM PQ=,进行等量代换和化简后即可得解;(2)中解题的关键是利用等腰三角形的性质得到MQ NQ =,即可得解.三、解答题17.计算:)10131454-︒⎛⎫--++ ⎪⎝⎭ 【答案】7【解析】【分析】根据绝对值、零次幂、特殊角的三角函数值、二次根式和负整数指数幂的运算法则分别对每项进行化简,再进行加减计算即可.【详解】解:)10131454-︒⎛⎫--+ ⎪⎝⎭=3114-++=7【点睛】本题考查实数的混合运算、熟练掌握绝对值、零次幂、特殊角的三角函数值、二次根式和负整数指数幂的运算法则是解题的关键.18.先化简,再求值22296923x x x x x x x +-⋅--++-,其中4x = 【答案】33x -,3 【解析】【分析】先将代数式化简,再代入值求解即可. 【详解】()()()22233292336923233333x x x x x x x x x x x x x x x x x x x +-+-++⋅-=⋅-=-=-++-+-----. 将x=4代入可得:原式=333343x ==--. 【点睛】本题考查代数式的化简求值,关键在于熟练掌握平方差公式和完全平方公式.19.人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法:已知:AOB ∠求作:AOB ∠的平分线做法:(1)以O 为圆心,适当长为半径画弧,交OA 于点M ,交OB 于点N ,(2)分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在AOB ∠的内部相交于点C (3)画射线OC ,射线OC 即为所求.请你根据提供的材料完成下面问题:(1)这种作已知角平分线的方法的依据是__________________(填序号).①SSS ②SAS ③AAS ④ASA(2)请你证明OC 为AOB ∠的平分线.【答案】(1)①;(2)证明见解析【解析】【分析】(1)根据作图的过程知道:OM=ON ,OC=OC ,CM=CM ,由“SSS ”可以证得△EOC ≌△DOC ;(2)根据作图的过程知道:OM=ON ,OC=OC ,CM=CM ,由全等三角形的判定定理SSS 可以证得△EOC ≌△DOC ,从而得到OC 为AOB ∠的平分线.【详解】(1)根据作图的过程知道:OM=ON ,OC=OC ,CM=CM ,所以由全等三角形的判定定理SSS 可以证得△EOC ≌△DOC ,从而得到OC 为AOB ∠的平分线;故答案为:①;(2)如图,连接MC 、NC .根据作图的过程知,在△MOC 与△NOC 中,OM ON OC OC CM CN ⎧⎪⎨⎪⎩===,∴△MOC ≌△NOC (SSS ),∠AOC=∠BOC ,∴OC 为AOB ∠的平分线.【点睛】本题考查了作图-基本作图及全等三角形的判定定理的应用,注意:三角形全等的判定定理有SAS ,ASA ,AAS ,SSS ,HL .20.2020年3月,中共中央、国务院颁布了《关于全面加强新时代大中小学劳动教育的意见》长沙市教育局发布了“普通中小学校劳动教育状况评价指标”,为了解某校学生一周劳动次数的情况,随机抽取若干学生进行调查,得到如下统计图表:(1)这次调查活动共抽取___________人;(2)_________;____________m n ==.(3)请将条形图补充完整(4)若该校学生总人数为3000人,根据调查结果,请你估计该校一周劳动4次及以上的学生人数.【答案】(1)200;(2)86,27;(3)图形见解析;(4)810人【解析】【分析】(1)用“1次及以下”的人数除以所占的百分比,即可求出调查的总人数;(2)总人数乘以“3次”所占的百分比可得m 的值,“4次及以上”的人数除以总人数可得n%的值,即可求得n 的值;(3)总人数乘以“2次”所占的百分比可得“2次”的人数,再补全条形统计图即可;(4)用全校总人数乘以“4次及以上”所占的百分比即可.【详解】解:(1)这次调查活动共抽取:20÷10%=200(人) 故答案为:200.(2)m=200×43%=86(人),n%=54÷200=27%,n=27,故答案为:86,27.(3)200×20%=40(人),补全图形如下:(4)∵“4次及以上”所占的百分比为27%,∴3000×27%=810(人).答:该校一周劳动4次及以上的学生人数大约有810人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用以及由样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.如图,AB 为O 的直径,C 为O 上的一点,AD 与过点C 的直线互相垂直,垂足为D ,AC 平分DAB ∠. (1)求证:DC 为O 的切线;(2)若3,3AD DC ==,求O 的半径.【答案】(1)详见解析;(2)2【解析】【分析】(1)连接OC ,利用角平分线的性质及同圆半径相等的性质求出∠DAC=∠OCA ,得到AD ∥OC ,即可得到OC ⊥CD 得到结论;(2)连接BC ,先求出3tan CD DAC AD ∠==得到∠CAB=∠DAC=30°,AC=2CD=23再根据AB 为O 的直径得到∠ACB=90°,再利用三角函数求出AB.【详解】(1)连接OC ,∵OA=OC ,∴∠OAC=∠OCA ,∵AC 平分DAB ∠,∴∠DAC=∠OAC ,∴∠DAC=∠OCA ,∴AD ∥OC ,∴∠ADC+∠OCD=180°,∵AD ⊥CD ,∴∠ADC=90°,∴∠OCD=90°,∴OC ⊥CD ,∴DC 为O 的切线;(2)连接BC ,在Rt △ACD 中,∠ADC=90°,3,3AD DC ==,∴3tan CD DAC AD ∠==, ∴∠DAC=30°,∴∠CAB=∠DAC=30°,AC=2CD=23,∵AB 是O 的直径,∴∠ACB=90°,∴AB=4cos AC CAB =∠, ∴O 的半径为2.【点睛】此题考查角平分线的性质定理,圆的切线的判定定理,圆周角定理,锐角三角函数,直角三角形30°角的性质,正确连接辅助线解题是此题的关键.22.今年6月以来,我国多地遭遇强降雨,引发洪涝灾害,人民的生活受到了极大的影响,“一方有难,八方支援”,某市筹集了大量的生活物资,用A ,B 两种型号的货车,分两批运往受灾严重的地区,具体运算情况如下:第一批 第二批 A 型货车的辆数(单位:辆) 1 2(1)求A ,B 两种型号货车每辆满载分别能运多少吨生活物资; (2)该市后续又筹集了62.4吨生活物资,现已联系了3辆A 型号货车,试问至少还需联系多少辆B 型号货车才能一次性将这批生活物资运往目的地.【答案】(1)A ,B 两种型号货车每辆满载分别能运10吨,6吨生活物资;(2)6.【解析】【分析】(1)设A ,B 两种型号货车每辆满载分别能运x ,y 吨生活物资,根据条件建立方程组求出其解即可; (2)设还需联系m 辆B 型号货车才能一次性将这批生活物资运往目的地,根据题中的不等关系列出不等式解答即可.【详解】解:(1)设A ,B 两种型号货车每辆满载分别能运x ,y 吨生活物资依题意,得328,2550,x y x y +=⎧⎨+=⎩解得10,6,x y =⎧⎨=⎩∴A ,B 两种型号货车每辆满载分别能运10吨,6吨生活物资(2)设还需联系m 辆B 型号货车才能一次性将这批生活物资运往目的地依题意,得310662.4m ⨯+≥.解得m ≥5.4又m 为整数,∴m 最小取6∴至少还需联系6辆B 型号货车才能一次性将这批生活物资运往目的地.【点睛】本题考查了列二元一次方程组解实际问题的运用,一元一次不等式的运用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.23.在矩形ABCD 中,E 为DC 上的一点,把ADE ∆沿AE 翻折,使点D 恰好落在BC 边上的点F . (1)求证:ABF FCE ∆∆(2)若4AB AD ==,求EC 的长;(3)若2AE DE EC -=,记,BAF FAE αβ∠=∠=,求tan tan αβ+的值.【答案】(1)证明过程见解析;(223;(323. 【解析】【分析】 (1)只要证明∠B=∠C=90°,∠BAF=∠EFC 即可;(2)因为△AFE 是△ADE 翻折得到的,得到AF=AD=4,根据勾股定理可得BF 的长,从而得到CF 的长,根据△ABF ∽△FCE ,得到CE CF BF AB=,从而求出EC 的长; (3)根据△ABF ∽△FCE ,得到∠CEF=∠BAF=α,所以tan α+tan β=BF EF CE EF AB AF CF AF+=+,设CE=1,DE=x ,可得到AE ,AB ,AD 的长,根据△ABF ∽△FCE ,得到AB CF AF EF=,将求出的值代入化简会得到关于x 的一元二次方程,解之即可求出x 的值,然后可求出CE ,CF ,EF ,AF 的值,代入tan α+tan β=CE EF CF AF +即可.【详解】(1)证明:∵四边形ABCD 是矩形,∴∠B=∠C=∠D=90°,∴∠AFB+∠BAF=90°,∵△AFE 是△ADE 翻折得到的,∴∠AFE=∠D=90°,∴∠AFB+∠CFE=90°,∴∠BAF=∠CFE ,∴△ABF ∽△FCE .(2)解:∵△AFE 是△ADE 翻折得到的,∴AF=AD=4,∴BF=()22224232AF AB -=-=,∴CF=BC-BF=AD-BF=2,由(1)得△ABF ∽△FCE ,∴CE CF BF AB=,∴223CE=,∴EC=233.(3)解:由(1)得△ABF∽△FCE,∴∠CEF=∠BAF=α,∴tanα+tanβ=BF EF CE EFAB AF CF AF+=+,设CE=1,DE=x,∵2AE DE EC-=,∴AE=DE+2EC=x+2,AB=CD=x+1,2244AE DE x-=+∵△ABF∽△FCE,∴AB CFAF EF=,2144xxx-=+,211121x x xxx++-=+,∴112xx+=,∴21x x=-,∴x2-4x+4=0,解得x=2,∴CE=1,213x-,EF=x=2,2244AE DE x-=+23∴tan α+tan β=CE EF CF AF +3=. 【点睛】本题考查了相似三角形的判定与性质,翻折变换,矩形的性质,勾股定理等知识.解题的关键是灵活运用所学知识解决问题,学会运用方程的思想思考问题.24.我们不妨约定:若某函数图像上至少存在不同的两点关于原点对称,则把该函数称之为“H 函数”,其图像上关于原点对称的两点叫做一对“H 点”,根据该约定,完成下列各题(1)在下列关于x 的函数中,是“H 函数”的,请在相应题目后面的括号中打“√”,不是“H 函数”的打“×” ①2y x =( ) ②m y (m 0)x=≠( ) ③31y x =-( ) (2)若点()1,A m 与点(),4B n -关于x 的“H 函数” ()20y ax bx c a =++≠的一对“H 点”,且该函数的对称轴始终位于直线2x =的右侧,求,,a b c 的值域或取值范围;(3)若关于x 的“H 函数” 223y ax bx c =++(a ,b ,c 是常数)同时满足下列两个条件:①0a b c ++=,②(2)(23)0c b a c b a +-++<,求该H 函数截x 轴得到的线段长度的取值范围.【答案】(1)√;√;×;(2)-1<a <0,b=4,0<c <0;(3)2<12x x -<.【解析】【分析】(1)根据“H 函数”的定义即可判断;(2)先根据题意可求出m,n 的取值,代入()20y ax bx c a =++≠得到a,b,c 的关系,再根据对称轴在x=2的右侧即可求解;(3)设“H 点”为(p,q )和(-p,-q ),代入223y ax bx c =++得到ap 2+3c=0,2bp=q ,得到a,c 异号,再根据a+b+c=0,代入(2)(23)0c b a c b a +-++<求出c a 的取值,设函数与x 轴的交点为(x 1,0)(x 2,0),t=c a,利用根与系数的关系得到12x x -=解.【详解】(1)①2y x =是 “H 函数”②m y (m 0)x =≠是 “H 函数”③31y x =-不是 “H 函数”; 故答案为:√;√;×;(2)∵A,B 是“H 点”∴A,B 关于原点对称,∴m=4,n=1∴A(1,4),B (-1,-4)代入()20y ax bx c a =++≠得44a b c a b c ++=⎧⎨-+=-⎩解得40b ac =⎧⎨+=⎩ 又∵该函数的对称轴始终位于直线2x =的右侧,∴-2b a>2 ∴-42a >2 ∴-1<a <0∵a+c=0∴0<c <0,综上,-1<a <0,b=4,0<c <0;(3)∵223y ax bx c =++是“H 函数”∴设H 点为(p,q )和(-p,-q ), 代入得222323ap bp c q ap bp c q ⎧++=⎨-+=-⎩解得ap 2+3c=0,2bp=q∵p 2>0∴a,c 异号,∴ac <0∵a+b+c=0∴b=-a-c ,∵(2)(23)0c b a c b a +-++<∴(2)(23)0c a c a c a c a -----+<∴(2)(2)0c a c a -+<∴c 2<4a 2∴22c a<4 ∴-2<c a<2 ∴-2<c a<0 设t=c a ,则-2<t <0 设函数与x 轴的交点为(x 1,0)(x 2,0)∴x 1, x 2是方程223ax bx c ++=0的两根∴12x x -== 又∵-2<t <0∴2<12x x -<.【点睛】此题主要考查二次函数综合,解题的关键是熟知待定系数法、二次函数的性质及根与系数的关系.25.如图,半径为4的O 中,弦AB 的长度为点C 是劣弧AB 上的一个动点,点D 是弦AC 的中点,点E 是弦BC 的中点,连接DE ,OD ,OE .(1)求AOB ∠的度数;(2)当点C 沿着劣弧AB 从点A 开始,逆时针运动到点B 时,求ODE ∆的外心P 所经过的路径的长度;(3)分别记,ODE CDE ∆∆的面积为12,S S ,当221221S S -=时,求弦AC 的长度.【答案】(1)120AOB ∠=︒;(2)43π;(3)153AC =-或153AC =+. 【解析】【分析】 (1)过O 作OH ⊥AB 于H ,由垂径定理可知AH 的长,然后通过三角函数即可得到OAB ∠,从而可得到AOB ∠的度数;(2)连接OC ,取OC 的中点G ,连接DG 、EG ,可得到O 、D 、C 、E 四点共圆,G 为△ODE 的外心,然后用弧长公式即可算出外心P 所经过的路径的长度;(3)作CN ∥AB 交圆O 于N ,作CF ⊥AB 交AB 于F ,交DE 于P ,作OM ⊥CN 交CN 于M ,交DE 于Q ,交AB 于H ,连接OC ,分别表示出ODE ∆,CDE ∆的面积为1S ,2S ,由221221S S -=可算出72OM =,然后可利用勾股定理求出结果.【详解】解:(1)如图,过O 作OH ⊥AB 于H ,∵3AB =∴1232AH AB == ∴233AH cos OAH AO ===∠ ∴30OAH =︒∠,∵OA OB =,∴30OBH OAH ==︒∠∠,∴1803030120AOB =︒-︒-︒=︒∠;(2)如图,连接OC ,取OC 的中点G ,连接DG 、EG ,∵D 是弦AC 的中点,点E 是弦BC 的中点,OA OB OC ==,∴OD ⊥AC ,OE ⊥BC ,即∠ODC=∠OEC=90°, ∴122OG DG GE GC OC =====, ∴O 、D 、C 、E 四点共圆,G 为△ODE 的外心,∴G 在以O 为圆心,2为半径的圆上运动,∵120AOB ∠=︒,∴运动路径长为120241803ππ⨯=; (3)当点C 靠近A 点时,如图,作CN ∥AB 交圆O 于N ,作CF ⊥AB 交AB 于F ,交DE 于P ,作OM ⊥CN 交CN 于M ,交DE 于Q ,交AB 于H ,连接OC ,∵D 是弦AC 的中点,点E 是弦BC 的中点,∴1232DE AB == ∵30OAH =︒∠,4OA =,∴OH=2,设1OQ h =,2CP h =,由题可知12OM h h =+,12OH h h =-, ∴1112S DE h =⨯⨯,2212S DE h =⨯⨯, ∴()12121211112222S S DE h DE h DE h h DE OM +=⨯⨯+⨯⨯=⨯⨯+=⨯⨯ ()12121211112222S S DE h DE h DE h h DE OH -=⨯⨯-⨯⨯=⨯⨯-=⨯⨯ ∵()()2212121221S S S S S S -=+-=,∴112122DE OM DE OH ⎛⎫⎛⎫⨯⨯⨯⨯= ⎪⎪⎝⎭⎝⎭,即1122122OM ⎛⎫⎛⎫⨯⨯= ⎪⎪⎝⎭⎝⎭, 解得72OM =,∴2CM ==,即2FH =,由于AH =∴2AF =, 又∵73222CF MH OM OH ==-=-=,∴AC ==同理当点C 靠近B 点时,可知AC ==综上所述,AC =AC =【点睛】本题是圆的综合问题,题目相对较难,属于中考压轴题类型,理解题意并能准确画出辅助线是解题的关键.。

2024年湖南省长沙市雅礼教育集团中考一模数学试题

2024年湖南省长沙市雅礼教育集团中考一模数学试题

2024年湖南省长沙市雅礼教育集团中考一模数学试题一、单选题1.下列各数中,最小的数是( ) A .2-B .1-C .1D .02.下列运算正确的是( ) A .632a a a ÷=B .235a a a ⋅=C .()23622a a =D .()222a b a b +=+3.如图是一个由6个相同的正方体组成的立体图形,它的主枧图是( )A .B .C .D .4.“五一”假期,星城长沙共接待游客6170000万人次.其中数据6170000用科学记数法表示为( ) A .561.710⨯B .70.61710⨯C .76.1710⨯D .66.1710⨯5.光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时,要发生折射,由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,1122,2∠=︒∠的度数为( )A .32︒B .58︒C .68︒D .78︒6.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( ) A .平均数B .中位数C .众数D .方差7.在平面直角坐标系中,点()2,3A 关于y 轴对称的点的坐标是( ) A .()2,3--B .()2,3-C .()2,3-D .()3,2--8.匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为一折线).这个容器的形状可能是( )A .B .C .D .9.如图,在ABC V 中,40C ∠=︒,分别以点B 和点C 为圆心,大于12BC 的长为半径画弧,两弧相交于M N ,两点,作直线MN ,交边AC 于点D ,连接BD ,则A D B ∠的度数为( )A .40︒B .50︒C .80︒D .100︒10.如图,三角形纸片ABC 中,90BAC ∠=︒,2AB =,3AC =.沿过点A 的直线将纸片折叠,使点B 落在边BC 上的点D 处:再折叠纸片,使点C 与点D 重合,若折痕与AC 的交点为E ,则sin DEA ∠=( )A .53B .1213 C .35D .23二、填空题11.因式分解:x 2﹣3x=.12.质检部门从1000件电子元件中随机抽取100件进行检测,其中有2件是次品.试据此估计这批电子元件中大约有件次品.13.关于x 的一元二次方程240x x m -+=有两个相等的实数根,则m 的值为 .14.如图,在Rt ABC ∆中,90C ∠=︒,4AC =,3BC =.若以AC 所在直线为轴,把ABC ∆旋转一周,得到一个圆锥,则这个圆锥的侧面积等于.15.如图是测量河宽的示意图,AE 与BC 相交于点D ,∠B=∠C=90°,测得BD=120m ,DC=60m ,EC=50m ,求得河宽AB=m .16.在密码学中,把直接可以看到的内容称为明码,对明码进行某种处理后得到的内容称为密码.有一种密码,将英文26个字母,,,a b c z L 依次对应1、2、3,…,26这26个自然数,如下表,当明码对应的序号x 为奇数时,密码对应的序号12x y +=;当明码对应的序号x 为偶数时,密码对应的序号13xy =+.按该规定,将明码“yano ”译成密码(密码是字母)是.三、解答题17.计算:()1011tan 602π-⎛⎫++-︒ ⎪⎝⎭.18.先化简,再求值:221422211a a a a a a --⋅---+-,其中3a =. 19.机翼是飞机的重要部件之一,一般分为左右两个翼面,对称地布置在机身两边,机翼的一些部位(主要是前缘和后缘)可以活动,驾驶员操纵这些部分可以改变机翼的形状,控制机翼升力或阻力的分布,以达到增加升力或改变飞机姿态的目的.如图,是某种型号飞机的机翼形状,图中,MC ND BE ∥∥,AB CE ∥,90BEC ∠=︒,请你根据图中的数据计算AC ,AB 的长度.1.41≈ 1.73,结果保留小数点后一位)20.劳动是一切幸福的源泉.为了初步了解学生的劳动教育情况,某校对九年级学生“参加家务劳动的时间”进行了抽样调查,并将劳动时间x 分为如下四组(:70A x <,:7080B x ≤<,:8090C x ≤<,:90D x ≥,单位:分钟)进行统计,绘制了如下不完整的统计图.根据以上信息,解答下列问题:(1)本次抽取的学生人数为______人,扇形统计图中m 的值为______; (2)补全条形统计图;(要求在条形图上方表明人数)(3)已知该校九年级有1000名学生,请估计该校九年级学生中参加家务劳动的时间在80分钟(含80分钟)以上的学生有多少人?(4)若D 组中有3名女生,其余均是男生,从中随机抽取两名同学交流劳动感受,请用列表法或树状图法,求抽取的两名同学中恰好是一名女生和一名男生的概率.21.如图,在ABC V 中,D 是边BC 的中点,过点C 画直线CE ,使CE AB ∥,交AD 的延长线于点E .(1)求证:ABD ECD V V ≌;(2)若3AC =,5CE =,BD 的长是偶数,则BD 长为__________.22.橘子洲头是长沙的标志性景点之一,被誉为中国第一洲,也是世界上最大的内陆洲.该景点有一文创店,最近一款印有“数风流人物,还看今朝”的橘子洲3D 图案书签销售火爆.该店第一次用1000元购进这款书签,很快售完,又花1600元第二次购进这款书签,已知每个书签第二次购进的成本比第一次便宜了1元,且第二次购进的数量是第一次的2倍. (1)求该商店两次购进这款书签各多少个?(2)第二次购进这款书签后仍按第一次的售价销售,在销售了第二次购进数量的45后,由于天气的影响,游客量减少,该商店决定将剩下的书签打五折销售并很快全部售完,若要使两次购进的书签销售完后的总利润不低于1880元,则第一次销售时每个书签的售价至少为多少元?23.如图,Rt ABC △中,90B ??,6AB =,8BC =,D 是斜边AC 上一个动点,过点作DE AB ⊥于E ,DF BC ⊥于F ,连接EF .(1)求证:四边形BEDF 是矩形;(2)在D 点的运动过程中,求EF 的最小值; (3)若四边形BEDF 为正方形,求ADDC. 24.我们不妨约定:如果抛物线的顶点在直线2y x =上,那么我们把这样的抛物线叫做“完美抛物线”,根据约定,解答下列问题:【概念理解】(1)下列抛物线是“完美抛物线”的是______; ①2y x =②246y x x =-+③()22y x h h =-+-【拓展应用】如图,已知“完美抛物线”()21y x k =--+的顶点为A ,将该抛物线沿直线2y x =向上平移,点A 平移到点B ,两条“完美抛物线”相交于点C ,设点B 、点C 的横坐标分别为(),1m n m >(2)若AB = (3)在平移的过程中,若1tan 2ACB ∠=,求m n +的值.e中,弦BC的长度为点A是优弧BC上的一个动点,点E是25.如图,半径为2的OV的内心,连接AE交BC于点F,交圆O于点D.ABC(1)求BAD∠的度数;V的内心点E所经过的路(2)当点A沿着优弧BC从点B开始,顺时针运动到点C时,求ABC径的长度;=,求y关于x的函数解析式.(3)连接OE,设OE x=,AE y。

2024年湖南省长沙市中考数学试题(解析版)

2024年湖南省长沙市中考数学试题(解析版)

2024年长沙市初中学业水平考试试卷数学注意事项:1.答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和座位号;2.必须在答题卡上答题,在草稿纸、试题卷上答题无效;3.答题时,请考生注意各大题题号后面的答题提示;4.请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5.答题卡上不得使用涂改液、涂改胶和贴纸;6.本学科试卷共25个小题,考试时量120分钟,满分120分.一、选择题(在下列各题的四个选项中,只有一项是符合题的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.【答案】B【解析】【分析】本题考查轴对称图形和中心对称图形的识别,熟知定义:轴对称图形:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;中心对称图形:把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.据此逐项判断即可.【详解】解:A 中图形轴对称图形,不是中心对称图形,故本选项不符合题意;B 中图形既是轴对称图形又是中心对称图形,故本选项符合题意;C 中图形是轴对称图形,不是中心对称图形,故本选项不符合题意;D 中图形不是轴对称图形,是中心对称图形,故本选项不符合题意,故选:B .2. 我国近年来大力推进国家教育数字化战略行动,截至2024年6月上旬,上线慕课数量超过7.8万门,学习人次达1290000000建设和应用规模居世界第一.用科学记数法将数据1290000000表示为( )A. 81.2910×B. 812.910×C. 91.2910×D. 712910×【答案】C 是【解析】【分析】本题考查科学记数法,科学记数法的一般形式为10n a ×,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值小于1时,n 是负整数.【详解】解:用科学记数法将数据1290000000表示为91.2910×,故选:C .3. “玉兔号”是我国首辆月球车,它和着陆器共同组成“嫦娥三号”探测器.“玉兔号”月球车能够耐受月球表面的最低温度是180−℃、最高温度是150℃,则它能够耐受的温差是( )A. 180−℃B. 150℃C. 30℃D. 330℃【答案】D【解析】【分析】本题考查了温差的概念和有理数的运算,解决本题的关键是气温最高值与最低值之差,计算解决即可. 【详解】解:能够耐受的温差是()150180330−−=℃, 故答案为:D .4. 下列计算正确的是( )A. 642x x x ÷=B.C. 325()x x =D. 222()x y x y +=+【答案】A【解析】【分析】此题主要考查同底数幂的除法、二次根式的加减、幂的乘方、完全平方公式的运算,解题的关键是熟知运算法则.【详解】解:A 、 642x x x ÷=,计算正确;BC 、326()x x =,原计算错误;D 、222()2x y x xy y +=++,原计算错误;故选A .5. 为庆祝五四青年节,某学校举办班级合唱比赛,甲班演唱后七位评委给出的分数为:9.5,9.2,9.6,9.4,9.5,8.8,9.4,则这组数据的中位数是( )A. 9.2B. 9.4C. 9.5D. 9.6【答案】B【解析】 【分析】本题考查了中位数的定义,中位数是一组数据从小到大排列后居于中间的一个数或中间两个数的平均数,根据中位数的定义解题即可.【详解】解:甲班演唱后七位评委给出的分数为:8.8,9.2,9.4,9.4,9.5,9.5,9.6,∴中位数为:9.4,故选B .6. 在平面直角坐标系中,将点()3,5P 向上平移2个单位长度后得到点P ′的坐标为( )A. ()1,5B. ()5,5C. ()3,3D. ()3,7【答案】D【解析】【分析】本题考查坐标与图形变换-平移变换,根据点的坐标平移规则:左减右加,上加下减求解即可.【详解】解:在平面直角坐标系中,将点()3,5P 向上平移2个单位长度后得到点P ′的坐标为()3,52+,即()3,7,故选:D . 7. 对于一次函数21y x =−,下列结论正确的是( ) A. 它的图象与y 轴交于点()0,1−B. y 随x 的增大而减小C. 当12x >时,0y <D. 它的图象经过第一、二、三象限【答案】A【解析】【分析】本题考查一次函数的性质,根据一次函数的性质逐个判断即可得到答案.【详解】解:A.当0x =时,1y =−,即一次函数21y x =−的图象与y 轴交于点()0,1−,说法正确; B.一次函数21y x =−图象y 随x 增大而增大,原说法错误; C.当12x >时,0y >,原说法错误; D.一次函数21y x =−图象经过第一、三、四象限,原说法错误; 故选A .的的8. 如图,在ABC 中,60BAC ∠=°,50B ∠=°,AD BC ∥.则1∠的度数为( )A. 50°B. 60°C. 70°D. 80°【答案】C【解析】 【分析】本题主要考查了三角形内角和定理、平行线的性质等知识点,掌握平行线的性质成为解题的关键. 由三角形内角和定理可得70C ∠=°,再根据平行线的性质即可解答.【详解】解:∵在ABC 中,60BAC ∠=°,50B ∠=°, ∴18070C BAC B ∠∠−∠−=°=°,∵AD BC ∥,∴170C ∠∠==°.故选:C .9. 如图,在O 中,弦AB 的长为8,圆心O 到AB 的距离4OE =,则O 的半径长为( )A. 4B.C. 5D. 【答案】B【解析】 【分析】本题考查垂径定理、勾股定理,先根据垂径定理得到AE ,再根据勾股定理求解即可.【详解】解:∵在O 中,弦AB 的长为8,圆心O 到AB 的距离4OE =,∴OE AB ⊥,142AE AB ==,在Rt AOE △中,OA, 故选:B .10. 如图,在菱形ABCD 中,6AB =,30B ∠=°,点E 是BC 边上的动点,连接AE ,DE ,过点A 作AF DE ⊥于点P .设DE x =,AF y =,则y 与x 之间的函数解析式为(不考虑自变量x 的取值范围)( )A. 9y x =B. 12y x =C. 18y x =D. 36y x= 【答案】C【解析】【分析】本题考查菱形的性质、含30度角的直角三角形的性质、相似三角形的判定与性质,利用相似三角形的性质求解x 、y 的关系式是解答的关键.过D 作DH BC ⊥,交BC 延长线于H ,则90DHE ∠=°,根据菱形的性质和平行线的性质得到6CD AD AB ===,ADF DEH ∠=∠,30DCH B ∠=∠=°,进而利用含30度角的直角三角形的性质132DH CD ==,证明AFD DHE ∽得到AF AD DH DE=,然后代值整理即可求解. 【详解】解:如图,过D 作DH BC ⊥,交BC 延长线于H ,则90DHE ∠=°,∵在菱形ABCD 中,6AB =,30B ∠=°,∴AB CD ∥,AD BC ∥,6CD AD AB ===,∴ADF DEH ∠=∠,30DCH B ∠=∠=°, 在Rt CDH △中,132DH CD ==, ∵AF DE ⊥, ∴90AFD DHE ∠=∠=°,又ADF DEH ∠=∠,∴AFD DHE ∽, ∴AF AD DH DE=, ∵DE x =,AF y =,∴63yx =,∴18yx =,故选:C.二、填空题(本大题共6个小题,每小题3分,共18分)11. 为了比较甲、乙、丙三种水稻秋苗的长势,每种秧苗各随机抽取40株,分别量出每株高度,计算发现三组秧苗的平均高度一样,并且得到甲、乙、丙三组秧苗高度的方差分别是3.6,10.8,15.8,由此可知____种秧苗长势更整齐(填“甲”、“乙”或“丙”).【答案】甲【解析】【分析】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵3.610.815.8<<,∴甲种秧苗长势更整齐,故答案为:甲.12. 某乡镇组织“新农村,新气象”春节联欢晚会,进入抽奖环节.抽奖方案如下:不透明的箱子里装有红、黄、蓝三种颜色的球(除颜色外其余都相同),其中红球有2个,黄球有3个,蓝球有5个,每次摇匀后从中随机摸一个球,摸到红球获一等奖,摸到黄球获二等奖,摸到蓝球获三等奖,每个家庭有且只有一次抽奖机会,小明家参与抽奖,获得一等奖的概率为______.【答案】15##0.2【解析】【分析】本题考查概率公式,掌握概率的意义是解题的关键.利用概率公式直接进行计算.【详解】解:小明家参与抽奖,获得一等奖的概率为21 2355=++,故答案为:15.13. 要使分式619x−有意义,则x需满足的条件是______.【答案】19x≠【解析】【分析】本题考查了分式有意义的条件,熟练掌握分式有意义的条件是解题的关键.【详解】解:∵分式619x −有意义, ∴190x −≠,解得19x ≠,故答案为:19x ≠.14. 半径为4,圆心角为90°的扇形的面积为______(结果保留π).【答案】4π【解析】 【分析】本题考查扇形的面积公式,根据扇形的面积公式2π360n r S =(n 为圆心角的度数,r 为半径)求解即可.【详解】解:由题意,半径为4,圆心角为90°的扇形的面积为290π44π360×=, 故答案为:4π.15. 如图,在ABC 中,点D ,E 分别是AC BC ,的中点,连接DE .若12DE =,则AB 的长为______.【答案】24【解析】【分析】本题主要考查三角形中位线定理,熟知三角形的中位线平行于第三边且等于第三边的一半是解题的关键.【详解】解:∵D ,E 分别是AC ,BC 的中点,∴DE 是ABC 的中点,∴221224AB DE ==×=,故答案为:24.16. 为庆祝中国改革开放46周年,某中学举办了一场精彩纷呈的庆祝活动,现场参与者均为在校中学生,其中有一个活动项目是“选数字猜出生年份”,该活动项目主持人要求参与者从1,2,3,4,5,6,7,8,9这九个数字中任取一个数字,先乘以10,再加上4.6,将此时的运算结果再乘以10,然后加上1978,最后减去参与者的出生年份(注:出生年份是一个四位数,比如2010年对应的四位数是2010),得到最终的运算结果.只要参与者报出最终的运算结果,主持人立马就知道参与者的出生年份.若某位参与者报出的最终的运算结果是915,则这位参与者的出生年份是______.【答案】2009【解析】【分析】本题考查二元一次方程的解,理解题意是解答的关键.设这位参与者的出生年份是x ,从九个数字中任取一个数字为a ,根据题意列二元一次方程,整理得1001109x a =+,根据a 的取值得到x 的9种可能,结合实际即可求解.【详解】解:设这位参与者的出生年份是x ,从九个数字中任取一个数字为a ,根据题意,得()10 4.6101978915a x +×+−=, 整理,得100461978915a x ++−=∴1001109x a =+, ∵a 是从1,2,3,4,5,6,7,8,9这九个数字中任取一个数字,∴x 的值可能为1209,1309,1409,1509,1609,1709,1809,1909,2009,∵是为庆祝中国改革开放46周年,且参与者均为在校中学生,∴x 只能是2009,故答案为:2009.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题8分,第22、23题每小题9分,第2425题每小题10分,共72分解答应写出必要的文字说明、证明过程或演算步骤)17. 计算:()011()π 6.84−−°−. 【答案】3【解析】【分析】本题考查了实数的混合运算,先根据绝对值、零指数幂、负整数指数幂的意义,特殊角的三角函值化简,再算加减即可.【详解】解:原式41=+3=.18. 先化简,再求值:()()()2233m m m m m −−++−,其中52m =. 【答案】49m −;1【解析】【分析】本题考查整式的混合运算及其求值,先根据整式的混合运算法则化简原式,再代值求解即可.【详解】解:()()()2233m m m m m −−++−22229m m m m =−++−49m =−. 当52m =时,原式54910912=×−=−=.19. 如图,在Rt ABC △中,90ACB ∠=°,AB =2AC =,分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧分别交于点M 和N ,作直线MN 分别交AB BC ,于点D ,E ,连接CD AE ,.(1)求CD 的长;(2)求ACE 的周长.【答案】(1(2)6【解析】【分析】本题考查了线段垂直平分线的性质:线段垂直平分线的点到线段两个端点的距离相等,斜中半定理:直角三角形中,斜边上的中线等于斜边的一半,以及勾股定理等知识点,熟记相关结论是解题关键. (1)由题意得MN 是线段AB 的垂直平分线,故点D 是斜边AB 的中点.据此即可求解;(2)根据EA EB =、ACE 的周长AC CE EA AC CE EB AC BC =++=++=+即可求解;【小问1详解】解:由作图可知,MN 是线段AB 的垂直平分线,∴在Rt ABC △中,点D 是斜边AB 的中点.∴1122CD AB ==×. 【小问2详解】解:在Rt ABC △中,4BC =.∵MN 是线段AB 的垂直平分线,∴EA EB =.∴ACE 的周长246AC CE EA AC CE EB AC BC =++=++=+=+=.20. 中国新能源产业异军突起.中国车企在政策引导和支持下,瞄准纯电、混动和氢燃料等多元技术路线,加大研发投入形成了领先的技术优势,2023年,中国新能源汽车产销量均突破900万辆,连续9年位居全球第一.在某次汽车展览会上,工作人员随机抽取了部分参展人员进行了“我最喜欢的汽车类型”的调查活动(每人限选其中一种类型),并将数据整理后,绘制成下面有待完成的统计表、条形统计图和扇形统计图 类型人数 百分比 纯电m 54% 混动 n %a氢燃料 3%b 油车 5 %c请根据以上信息,解答下列问题:(1)本次调查活动随机抽取了_____人;表中=a ______,b =______;(2)请补全条形统计图;(3)请计算扇形统计图中“混动”类所在扇形的圆心角的度数;(4)若此次汽车展览会的参展人员共有4000人,请你估计喜欢新能源(纯电、混动、氢燃料)汽车的有多少人?【答案】(1)50;30,6(2)见解析 (3)108°(4)3600人【解析】【分析】本题考查统计表、条形统计图和扇形统计图的综合,理解题意,能从统计图中获取有用信息是解答的关键.(1)用喜欢油车人数除以其所占的百分比可求得调查人数,用喜欢氢燃料人数除以调查人数可求得b ,进而用1减去喜欢其他车型所占的百分比可求解a ;(2)先求得n ,进而可补全条形统计图;(3)用360度乘以喜欢混动所占的百分比即可求解;(4)用总人数乘以样本中喜欢新能源汽车所占的百分比即可求解.【小问1详解】解:本次调查活动随机抽取人数为510%50÷=(人), %350100%6%b =÷×=,则6b =,%154%6%10%30%a =−−−=,则30a =,故答案为:50;30,6;【小问2详解】解:∵5030%15n =×=,∴补全条形统计图如图所示:【小问3详解】解:扇形统计图中“混动”36030%108°×=°;【小问4详解】解:()400054%30%6%3600×++=(人). 答:估计喜欢新能源(纯电、混动、氢燃料)汽车的有3600人.21. 如图,点C 在线段AD 上,AB AD =,B D ∠=∠,BC DE =.(1)求证:ABC ADE △≌△;(2)若60BAC ∠=°,求ACE ∠的度数. 【答案】(1)见解析 (2)60ACE ∠=°【解析】【分析】本题考查全等三角形的判定与性质、等边三角形的判定与性质,证明ACE △是等边三角形是解答的关键.(1)直接根据全等三角形的判定证明结论即可;(2)根据全等三角形的性质得到AC AE =,60CAE BAC ∠=∠=°,再证明ACE △是等边三角形,利用等边三角形的性质求解即可.【小问1详解】证明:在ABC 与ADE 中,AB AD B D BC DE = ∠=∠ =, 所以()SAS ABC ADE ≌;【小问2详解】解:因为ABC ADE △≌△,60BAC ∠=°, 所以AC AE =,60CAE BAC ∠=∠=°,所以ACE △是等边三角形.所以60ACE ∠=°.22. 刺绣是我国民间传统手工艺.湘绣作为中国四大刺绣之一,闻名中外,在巴黎奥运会倒计时50天之际,某国际旅游公司计划购买A 、B 两种奥运主题的湘绣作品作为纪念品.已知购买1件A 种湘绣作品与2件B 种湘绣作品共需要700元,购买2件A 种湘绣作品与3件B 种湘绣作品共需要1200元. (1)求A 种湘绣作品和B 种湘绣作品的单价分别为多少元?(2)该国际旅游公司计划购买A 种湘绣作品和B 种湘绣作品共200件,总费用不超过50000元,那么最多能购买A 种湘绣作品多少件?【答案】(1)A 种湘绣作品的单价为300元,B 种湘绣作品的单价为200元(2)最多能购买100件A 种湘绣作品【解析】【分析】本题考查了二元一次方程组的应用以及一元一次不等式的应用.(1)设A 种湘绣作品的单价为x 元,B 种湘绣作品的单价为y 元,根据“购买1件A 种湘绣作品与2件B 种湘绣作品共需要700元,购买2件A 种湘绣作品与3件B 种湘绣作品共需要1200元”,即可得出关于x ,y 的二元一次方程组,解之即可解题;(2)设购买A 种湘绣作品a 件,则购买B 种湘绣作品()200a −件,总费用=单价×数量,结合总费用不超过50000元,即可得出关于a 的一元一次不等式,解之即可得出a 的值,再取其中的最大整数值即可得出该校最大可以购买湘绣的数量.【小问1详解】设A 种湘绣作品的单价为x 元,B 种湘绣作品的单价为y 元.根据题意,得2700231200x y x y += +=, 解得300,200x y = = .答:A 种湘绣作品的单价为300元,B 种湘绣作品的单价为200元.【小问2详解】设购买A 种湘绣作品a 件,则购买B 种湘绣作品()200a −件.根据题意,得()30020020050000a a +−≤,解得100a ≤.答:最多能购买100件A 种湘绣作品.23. 如图,在ABCD 中,对角线AC ,BD 相交于点O ,90ABC ∠=°.(1)求证:AC BD =;(2)点E 在BC 边上,满足CEO COE ∠=∠.若6AB =,8BC =,求CE 的长及tan CEO ∠的值.【答案】(1)见解析 (2)5CE =,tan 3CEO ∠=【解析】【分析】本题考查矩形的判定与性质、勾股定理、等腰三角形的判定与性质、锐角三角函数等知识,熟练掌握矩形的判定与性质是解答的关键.(1)直接根据矩形的判定证明即可;(2)先利用勾股定理结合矩形的性质求得10AC =,OB OC =.进而可得152CO AC ==,再根据等腰三角形的判定得到5CE CO ==,过点O 作OF BC ⊥于点F ,根据等腰三角形的性质,结合勾股定理分别求得4CF =,1EF =,3OF =,然后利用正切定义求解即可.【小问1详解】证明:因为四边形ABCD 是平行四边形,且90ABC ∠=°,所以四边形ABCD 是矩形.所以AC BD =;【小问2详解】解:在Rt ABC △中,6AB =,8BC =,所以10AC =,因为四边形ABCD 是矩形, 所以152CO AC ==,OB OC =. 因为CEO COE ∠=∠,所以5CE CO ==.过点O 作OF BC ⊥于点F ,则142==CF BC ,所以541EF CE CF =−=−=,在Rt COF △中,3OF, 所以tan 3OF CEO EF∠==. 24. 对于凸四边形,根据它有无外接圆(四个顶点都在同一个圆上)与内切圆(四条边都与同一个圆相切),可分为四种类型,我们不妨约定:既无外接圆,又无内切圆的四边形称为“平凡型无圆”四边形;只有外接圆,而无内切圆的四边形称为“外接型单圆”四边形;只有内接圆,而无外接圆的四边形称为“内切型单圆”四边形;既有外接圆,又有内切圆的四边形称为“完美型双圆”四边形.请你根据该约定,解答下列问题:(1)请你判断下列说法是否正确(在题后相应的括号中,正确的打“√”,错误的打“×”,①平行四边形一定不是“平凡型无圆”四边形; ( )②内角不等于90°的菱形一定是“内切型单圆”四边形; ( )③若“完美型双圆”四边形的外接圆圆心与内切圆圆心重合,外接圆半径为R ,内切圆半径为r ,则有=R .( ) (2)如图1,已知四边形ABCD 内接于O ,四条边长满足:AB CD BC AD +≠+.①该四边形ABCD 是“______”四边形(从约定的四种类型中选一种填入); ②若BAD ∠的平分线AE 交O 于点E ,BCD ∠的平分线CF 交O 于点F ,连接EF .求证:EF 是O 的直径.(3)已知四边形ABCD 是“完美型双圆”四边形,它的内切圆O 与AB BC CD AD ,,,分别相切于点E ,F ,G ,H .①如图2.连接EG FH ,交于点P .求证:EG FH ⊥.②如图3,连接OA OB OC ,,,,若2OA =,6OB =,3OC =,求内切圆O 的半径r 及OD 的长.【答案】(1)①×;②√;③√(2)①外接型单圆;②见解析(3)r =OD = 【解析】【分析】(1)根据圆内接四边形和切线长定理可得:有外接圆的四边形的对角互补;有内切圆的四边形的对边之和相等,结合题中定义,根据对角不互补,对边之和也不相等的平行四边形无外接圆,也无内切圆,进而可判断①;根据菱形的性质可判断②;根据正方形的性质可判断③;(2)①根据已知结合题中定义可得结论; ②根据角平分线的定义和圆周角定理证明 EBF EDF=即可证得结论; (3)①连接OE 、OF 、OG 、OH 、HG ,根据四边形ABCD 是“完美型双圆”四边形,结合四边形的内角和定理可推导出180A EOH ∠+∠=°,180FOG C ∠+∠=°,180A C∠+∠=°,进而可得EOH C ∠=∠,180FOG EOH∠+∠=°,然后利用圆周角定理可推导出90HPG ∠=°,即可证得结论;②连接OE 、OF 、OG 、OH ,根据已知条件证明OAH COG ∠=∠,进而证明AOH OCG ∽得到32CG r =,再利用勾股定理求得r =,BE =BEO OHD ∽求解OD 即可. 【小问1详解】解:由题干条件可得:有外接圆的四边形的对角互补;有内切圆的四边形的对边之和相等,所以 ①当平行四边形对角不互补,对边之和也不相等时,该平行四边形无外接圆,也无内切圆, ∴该平行四边形是 “平凡型无圆”四边形,故①错误;②∵内角不等于90°的菱形的对角不互补,∴该菱形无外接圆,∵菱形的四条边都相等,∴该菱形的对边之和相等,∴该菱形有内切圆,∴内角不等于90°的菱形一定是“内切型单圆”四边形,故②正确;③由题意,外接圆圆心与内切圆圆心重合的“完美型双圆”四边形是正方形,如图,则OM r =,ON R =,OM MN ⊥,45ONM ∠=°,∴Rt OMN △为等腰直角三角形,∴ON =,即=R ;故③正确,故答案为:①×;②√;③√;【小问2详解】解:①∵四边形ABCD 中,AB CD BC AD +≠+,∴四边形ABCD 无内切圆,又该四边形有外接圆,∴该四边形ABCD 是“外接型单圆”四边形,故答案为:外接型单圆;的②∵BAD ∠的平分线AE 交O 于点E ,BCD ∠的平分线CF 交O 于点F ,∴BAE DAE ∠=∠,BCF DCF ∠=∠, ∴ BEDE =, BF DF =, ∴ BEBF DE DF +=+, ∴ EBF EDF=,即 EBF 和 EDF 均为半圆, ∴EF 是O 的直径.【小问3详解】①证明:如图,连接OE 、OF 、OG 、OH 、HG ,∵O 是四边形ABCD 的内切圆,∴OE AB ⊥,OF BC ⊥,OG CD ⊥,OH AD ⊥,∴90OEA OHA ∠=∠=°,在四边形AEOH 中,3609090180A ∠+∠°−°−°=°,同理可证,180FOG C ∠+∠=°,∵四边形ABCD 是“完美型双圆”四边形,∴该四边形有外接圆,则180A C ∠+∠=°,∴EOH C ∠=∠,则180FOG EOH∠+∠=°, ∵12FHG FOG ∠=∠,12EGH EOH ∠=∠, ∴()1902FHG EGH FOG EOH ∠+∠=∠+∠=°, ∴()18090HPGFHG EGH ∠=°−∠+∠=°, ∴EG FH ⊥;②如图,连接OE 、OF 、OG 、OH ,∵四边形ABCD 是“完美型双圆”四边形,它的内切圆O 与AB BC CD AD ,,,分别相切于点E ,F ,G ,H ,∴∴OE AB ⊥,OF BC ⊥,OG CD ⊥,OH AD ⊥,OE OF OG OH ===,∴180EAH FCG ∠+∠=°,OAH OAE ∠=∠,OCG OCF ∠=∠, ∴90OAH OCG ∠+∠=°,∵90COG OCG ∠+∠=°,∴OAH COG ∠=∠,又90AHO OGC ∠=∠=°,∴AOH OCG ∽, ∴OA OH OC CG=, ∵2OA =,3OC =, ∴23r CG =,则32CG r =, 在Rt OGC △中,由222OG CG OC +=得222332r r +=,解得r = 在Rt OBE 中,6OB =,∴BE 同理可证BEO OHD ∽, ∴BE OB OH OD=,6OD=,∴OD =【点睛】本题主要考查平行四边形的性质、正方形的性质、菱形的性质、圆周角定理、内切圆的定义与性质、外接圆的定义与性质、相似三角形的判定与性质、四边形的内角和定理、勾股定理、角平分线的判定等知识,理解题中定义,熟练掌握这些知识和灵活运用性质和判定是解题的关键.另外还要求学生具备扎实的数学基础和逻辑思维能力,备考时,重视四边形知识的学习,提高解题技巧和速度,以应对中考挑战.25. 已知四个不同的点11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y 都在关于x 的函数2y ax bx c ++(a ,b ,c 是常数,0a ≠)的图象上.(1)当A ,B 两点的坐标分别为()1,4−−,()3,4时,求代数式3202410127a b ++的值; (2)当A ,B 两点的坐标满足212122()40a y y a y y +++=时,请你判断此函数图象与x 轴的公共点的个数,并说明理由;(3)当0a >时,该函数图象与x 轴交于E ,F 两点,且A ,B ,C ,D 四点的坐标满足:222121222()0a y y a y y ++++=,222343422()0a y y a y y −+++=.请问是否存在实数(1)m m >,使得AB ,CD ,m EF ⋅这三条线段组成一个三角形,且该三角形的三个内角的大小之比为1:2:3?若存在,求出m 的值和此时函数的最小值;若不存在,请说明理由(注:m EF ⋅表示一条长度等于EP 的m 倍的线段).【答案】(1)3320241012202477a b ++= (2)此函数图象与x 轴的公共点个数为两个,理由见解析(3)存在两个m 的值符合题意;当m =时,此时该函数的最小值为53a −;当m =此时该函数的最小值为2a −【解析】【分析】本题主要考查了二次函数的性质、二次函数与一元二次方程的关系、二次函数与x 轴交点问题、直角三角形存在性问题等,熟练掌握相关知识和分类讨论是解题关键.(1)将A B 、代入得到关于a 、b 的关系式,再整体代入求解即可;(2)解方程212122()40a y y a y y +++=求解,再根据a 的正负分类讨论即可; (3)由内角之比可得出这是一个3060°°、的直角三角形,再将线段表示出来,利用特殊角的边角关系建立方程即可.【小问1详解】将()1,4A −−,()3,4B 代入2y ax bx c ++得4934a b c a b c −+=− ++=①②, ②-①得848a b +=,即22a b +=. 所以333202*********(2)2024777a ba b ++=++=. 【小问2详解】此函数图象与x 轴的公共点个数为两个. 方法1:由212122()40a y y a y y +++=,得12(2)(2)0a y a y ++=. 可得12a y =−或22a y =−. 当0a >时,<02a −,此抛物线开口向上,而A ,B 两点之中至少有一个点在x 轴的下方,此时该函数图象与x 轴有两个公共点;当0a <时,>02a −,此抛物线开口下,而A ,B 两点之中至少有一个点在x 轴的上方,此时该函数图象与x 轴也有两个公共点.综上所述,此函数图象与x 轴必有两个公共点.方法2:由212122()40a y y a y y +++=,得12(2)(2)0a y a y ++=. 可得12a y =−或22a y =−. 所以抛物线上存在纵坐标为2a −的点,即一元二次方程22a ax bx c ++=−有解. 所以该方程根的判别式24()02ab ac ∆=−+≥,即2242b ac a −≥. 因为0a ≠,所以240b ac −>.所以原函数图象与x 轴必有两个公共点.方法3:由()21212240a y y a y y +++=,可得12a y =−或22a y =−. 当12a y =−时,有2112a ax bx c ++=−,即2112a ax bx c ++=−, 所以2222211144()2(2)02ab ac b a ax bx a ax b ∆=−=+++=++>. 此时该函数图象与x 轴有两个公共点. 当22a y =−时,同理可得0∆>,此时该函数图象与x 轴也有两个公共点.综上所述,该函数图象与x 轴必有两个公共点.【小问3详解】因为0a >,所以该函数图象开口向上.由222121222()0a y y a y y ++++=,得()()22120a y a y +++=,可得12y y a ==−.由222343422()0a y y a y y −+++=,得2234()()0a y a y −+−=,可得34y y a ==. 所以直线AB CD ,均与x 轴平行.由(2)可知该函数图象与x 轴必有两个公共点,设()5,0E x ,()6,0F x . 由图象可知244ac b a a−−>,即2244b ac a −>. 所以2ax bx c a ++=−的两根为1x ,2x,可得12AB x x =−= 同理2ax bx c a ++=的两根为3x ,4x,可得34CD x x =−= 同理20ax bx c ++=的两根为5x ,6x,可得56m EF m x x m ⋅=⋅−= 由于1m >,结合图象与计算可得AB EF m EF <<⋅,<AB CD .若存在实数()1m m >,使得AB CD ,,m EF ⋅这三条线段组成一个三角形,且该三角形的三个内角的大小之比为1:2:3,则此三角形必定为两锐角分别为30°,60°的直角三角形,所以线段AB 不可能是该直角三角形的斜边.①当以线段CD 为斜边,且两锐角分别为30°,60°时,因为m EF AB ⋅>,所以必须同时满足:222()AB m EF CD +⋅=,m EF ⋅. 将上述各式代入化简可得2222288244a a m b ac a =<=−,且22223(44)4b ac a m b ac −−=−, 联立解之得222043a b ac −=,22286245a m b ac ==<−,解得1m =>符合要求.所以m =,此时该函数最小值为2220453443a acb a a a −−==−. ②当以线段m EF ⋅为斜边时,必有222()AB CD m EF +=⋅,同理代入化简可得的2222(4)(4)b ac m b ac −−,解得m =为斜边,且有一个内角为60°,而CD AB >,所以tan 60CD AB =⋅°, 化简得222484b ac a a −=>符合要求.所以m =2824a a a −==−. 综上所述,存在两个m 的值符合题意;当m =时,此时该函数的最小值为53a −;当m =2a −.。

2020年湖南省长沙市怡雅中学小升初招生数学模拟试卷及答案解析

2020年湖南省长沙市怡雅中学小升初招生数学模拟试卷及答案解析

2020年湖南省长沙市怡雅中学小升初招生数学模拟试卷一.填空题(共10小题,满分32分)
1.(4分)370200000读作,改写成用“万”作单位的数是,省略“亿”位后面的尾数约是亿.
2.(4分)找规律,填数:8,11,14,17,,23,
3.(3分)一个长方体长8厘米、宽6厘米、高5厘米.它的体积是立方厘米.4.(3分)有八个数排成一列,它们的平均数是54,前五个数的平均数是46,后四个数的平均数是68,第五个数是.
5.(3分)8名乒乓球运动员参加单打比赛,两两配对进行淘汰赛,要决出冠军,一共要比赛场.
6.(3分)图中各数之间存在一定的规律,根据规律可以知道a=.
7.(3分)一根绳子长8米,第一次用去,第二次用去米,这根绳子比原来短了米.8.(3分)判定下面的结果是偶数还是奇数.
①785+547的和是②675+54﹣465的结果是
③75×71的积是④奇数×奇数的积是.
A.奇数B.偶数.
9.(3分)一列火车通过一座1200米的大桥用了75秒,火车通过路旁电线杆只用15秒,火车长米.
10.(3分)淘气到文具店买5支钢笔和8本练习本共用去42元.1支钢笔的价钱恰好相当于4本练习本的价钱,每支钢笔的价钱是元.
二.选择题(共5小题,满分15分,每小题3分)
11.(3分)从5名候选人中要选出2人当数学课代表,则共()种方案.A.6B.10C.15
12.(3分)某商店运来两车同样重的白菜,第一车上午卖出,下午又卖出吨;第二车上午卖出吨,下午卖出余下的,剩下的白菜()
A.第一车多B.第二车多C.同样多D.无法比较
第1页(共14页)。

2024年长沙市中考数学真题试卷及答案

2024年长沙市中考数学真题试卷及答案

2024年湖南省长沙市中考数学真题试卷一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1.下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.2.我国近年来大力推进国家教育数字化战略行动,截至2024年6月上旬,上线慕课数量超过7.8万门,学习人次达1290000000,建设和应用规模居世界第一.用科学记数法将数据1290000000表示为( ) A.81.2910⨯B. 812.910⨯C. 91.2910⨯D. 712910⨯3.“玉兔号”是我国首辆月球车,它和着陆器共同组成“嫦娥三号”探测器.“玉免号”月球车能够耐受月球表面的最低温度是-180℃,最高温度是150℃,则它能够耐受的温差是( ) A.180o C -B. 150O CD. 330O CC. 30O C4.下列计算正确的是( )A. 642x x x ÷=B.=C. 325()x x =D. 222()x y x y +=+5.为庆祝五四青年节,某学校举办班级合唱比赛,甲班演唱后七位评委给出的分数为: 9.5 , 9.2 , 9.6 , 9.4 , 9.5 , 8.8 , 9.4,则这组数据的中位数是( ) A.9.2B.9.4C.9.5D.9.66.在平面直角坐标系中,将点(3,5)P 向上平移2个单位长度后得到点'P 的坐标为( ) A. (1,5)B. (5,5)C. (3,3)D. (3,7)7.对于一次函数21y x =-,下列结论正确的是( ) A.它的图象与y 轴交于点(0,1)- B. y 随x 的增大而减小C.当12x >时,0y < D.它的图象经过第一、二、三象限 8.如图,在ABC ∆中,60,50O O BAC B ∠=∠=,//AD BC ,则1∠的度数为( )A. 50oB. 60oC. 70oD. 80o9.如图,在O 中,弦AB 的长为8.圆心O 到AB 的距离4OE =.则O 的半径长为( )A.4B. C.5D. 10.如图,在菱形ABCD 中,6,30O AB B =∠=,点E 是BC 边上的动点,连接,AE DE ,过点A 作AF DE ⊥于点F .设,DE x AF y ==,则y 与x 之间的函数解析式为( )(不考虑自变量x 的取值范围)A.9y x=B. 12y x=C. 18y x=D. 36y x=二、填空题(本大题共6个小题,每小题3分,共18分)11.为了比较甲、乙、丙三种水稻秧苗的长势,每种秧苗各随机抽取40株,分别量出每株高度,计算发现三组秧苗的平均高度一样,并且得到甲、乙、丙三组秧苗高度的方差分别是3.6,10.8,15.8,由此可知____种秧苗长势更整齐(填“甲”、“乙”或“丙”).12.某乡镇组织“新农村,新气象”春节联欢晚会,进入抽奖环节.抽奖方案如下:不透明的箱子里装有红、黄、蓝三种颜色的球(除颜色外其余都相同),其中红球有2个,黄球有3个,蓝球有5个,每次摇匀后从中随机摸一个球,摸到红球获一等奖,摸到黄球获二等奖,摸到蓝球获三等奖,每个家庭有且只有一次抽奖机会.小明家参与抽奖,获得一等奖的概率为_______. 13.要使分式619x -有意义,则x 需满足的条件是______. 14.半径为4,圆心角为90o 的扇形的面积为______(结果保留π).15.如图,在ABC ∆中,点,D E 分别是,AC BC 的中点,连接DE =.若12DE =,则AB 的长为______.16.为庆祝中国改革开放46周年,某中学举办了一场精彩纷呈的庆祝活动,现场参与者均为在校中学生、其中有一个活动项目是“选数字猜出生年份”,该活动项目主持人要求参与者从1,2,3,4,5,6,7,8,9这九个数字中任取一个数字,先乘以10,再加上4.6,将此时的运算结果再乘以10,然后加上1978,最后减去参与者的出生年份(注:出生年份是一个四位数,比如2010年对应的四位数是2010),得到最终的运算结果.只要参与者报出最终的运算结果,主持人立马就知道参与者的出生年份.若某位参与者报出的最终的运算结果是915,则这位参与者的出生年份是____.三、解答题(本大题共9个小题,第17,18,19题每小题6分,第20,21题每小题8分第22,23题每小题9分,第24,25题每小题10分,共72分,解答应写出必要的文字说明、证明过程或演算步骤)17.计算:101()32cos30( 6.8)4o π-+----18.先化简,再求值:2(2)(3)(3)m m m m m --++-,其中52m =.19.如图,在Rt ABC ∆中,90,2o ACB AB AC ∠===,分别以点,A B 为圆心,大于12AB 的长为半径画弧,两弧分别交于点M 和N .作直线MN 分别交,AB BC 于点,D E ,连接,CD AE .(1)求CD 的长; (2)求ACE ∆的周长.20.中国新能源产业异军突起.中国车企在政策引导和支持下,瞄准纯电、混动和氢燃料等多元技术路线,加大研发投入形成了领先的技术优势.2023年,中国新能源汽车产销量均突破900万辆,连续9年位居全球第一.在某次汽车展览会上,工作人员随机抽取了部分参展人员进行了“我最喜欢的汽车类型”的调查活动(每人限选其中一种类型),并将数据整理后,绘制成下面有待完成的统计表、条形统计图和扇形统计图.请根据以上信息,解答下列问题:(1)本次调查活动随机抽取了_______人;表中a =____,b =______; (2)请补全条形统计图;(3)请计算扇形统计图中“混动”类所在扇形的圆心角的度数;(4)若此次汽车展览会的参展入员共有4000人,请你估计喜欢新能源(纯电、混动、氢燃料)汽车的有多少人21.如图,点C 在线段AD 上,,,AB AD B D BC DE =∠=∠=. (1)求证:ABC ADE ∆≅∆;(2)若60O BAC ∠=,求ACE ∠的度数.22.刺绣是我国民间传统手工艺.湘绣作为中国四大刺绣之一,闻名中外.在巴黎奥运会倒计时50天之际,某国际旅游公司计划购买A,B 两种奥运主题的湘绣作品作为纪念品.已知购买1件A 种湘绣作品与2件B 种湘绣作品共需要700元,购买2件A 种湘绣作品与3件B 种湘绣作品共需要1200元.(1)求A 种湘绣作品和B 种湘绣作品的单价分别为多少元?(2)该国际旅游公司计划购买A 种湘绣作品和B 种湘绣作品共200件,总费用不超过50000元,那么最多能购买A 种湘绣作品多少件?23.如图,在ABCD 中,对角线,AC BD 相交于点,90O O ABC ∠=.(1)求证:AC BD =;(2)点E 在BC 边上,满足CEO COE ∠=∠.若6,8AB BC ==,求CE 的长及tan CEO ∠的值。

湖南省长沙市2024年中考模拟数学试题

湖南省长沙市2024年中考模拟数学试题

湖南省长沙市2024年中考模拟数学试题一、单选题1.3-的倒数为( ) A .3B .3-C .13D .13-2.苏州地铁4号线,2017年上半年通车试运营,主线全程长约为42000m ,北起相城区荷塘月色公园,南至吴江同津大道站,共设31站.将42000用科学记数法表示应为( ) A .0.42×105B .4.2×104C .44×103D .440×1023.下列等式成立的是( ) A .1232a a a+=B .11111a a a a a ++=--- C .1111x x x +=++ D .()()()222112222m m m m m ---=---4.下列图形中,不是轴对称图形的是( ) A .B .C .D .5.下列长度的三根木棒首尾相接,不能做成三角形框架的是( ) A .5cm ,7cm ,10cm B .5cm ,7cm ,13cm C .7cm ,10cm ,13cmD .5cm ,10cm ,13cm6.某市教育体育局想要了解本市初二年级8万名学生的期中数学成绩,从中抽取了2000名学生的数学成绩进行统计分析,以下说法正确的是( ) A .2000名学生是总体的一个样本 B .每位学生的数学成绩是个体 C .8万名学生是总体D .2000名学生是样本的容量7.如图所示,已知正方形ABCD 的面积是8平方厘米,正方形EFGH 的面积是62平方厘米,BC 落在EH 上,ACG V 的面积是4.9平方厘米,则ABE V 的面积是( )A .0.5平方厘米B .2平方厘米CD .0.9平方厘米8.如图,在V ABC 中,∠B =30°,若AB ∥CD ,CB 平分∠ACD ,则∠ACD 的度数为( )A .30°B .40°C .60°D .90°9.一次函数y kx b =+与正比例函数y kbx =(k ,b 为常数,且0kb ≠)在同一平面直角坐标系中的图象可能是( )A .B .C .D .10.张浩有红牌和蓝牌各75张,已知张浩能在一个摊位上用2张红牌换1张银牌和1张蓝牌,还能在另一个摊位上用3张蓝牌换1张银牌和1张红牌,若他按照上述方法继续换下去,直到手中的牌无法交换为止,则张浩手中最后有银牌( )张A .62B .26C .102D .103二、填空题11.因式分解:21x -=.12.若不等式组220x a b x ->⎧⎨->⎩的解集为11x -<<,则2009()a b +=.13.在x 2+( )+4=0的括号中添加一个关于x 的一次项...,使方程有两个相等的实数根. 14.如图,双曲线ky (k 0)x=>与⊙O 在第一象限内交于P 、Q 两点,分别过P 、Q 两点向x 轴和y 轴作垂线,已知点P 坐标为(1,3),则图中阴影部分的面积为.15.如图,OA 是O e 的半径,BC 是O e 的弦,OA BC ⊥于点D ,AE 是O e 的切线,AE 交OC 的延长线于点E .若45AOC ∠=︒,2BC =,则线段AE 的长为.16.如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 夹角为150°,AB 的长为32cm ,BD的长为14cm ,则»DE的长为cm .三、解答题17.(1)计算:())121--+﹣sin30°(2)化简:2a 11a a a++-. 18.(1)计算:()()21122x x x ⎛⎫--+- ⎪⎝⎭;(2)先化简,再求值:()()()23366a a a a +---+,其中1a =-.19.位于河南省郑州市的炎黄二帝巨型塑像,是为代表中华民族之创始、之和谐、之统一.塑像由山体CD 和头像AD 两部分组成.某数学兴趣小组在塑像前50米处的B 处测得山体D 处的仰角为45°,头像A 处的仰角为70.5°,求头像AD 的高度.(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)20.为了加强对青少年防溺水安全教育,5月底某校开展了“远离溺水,珍爱生命”的防溺水安全知识比赛.下面是从参赛学生中随机收集到的20名学生的成绩(单位:分): 87 99 86 89 91 91 95 96 87 97 91 97 96 86 96 89 100 91 99 97 整理数据:分析数据:解决问题:(1)直接写出上面表格中的a ,b ,c ,d 的值;(2)若成绩达到95分及以上为“优秀”等级,求“优秀”等级所占的百分率; (3)请估计该校1500名学生中成绩达到95分及以上的学生人数.21.如图,已知点B E C F ,,,在一条直线上,BE CF =,AC DE ∥,A D ∠=∠. 求证:ABC DFE △≌△.22.某游船先顺流而下,然后逆流返回.已知水流速度是每小时3千米,游船在静水中的速度是每小时18千米.为使游船在4小时内(含4小时)返回出发地,则游船顺流最远可行多少千米?23.如图,在ABC V 中,AB AC =,30B ∠=︒,线段AB 的垂直平分线MN 交BC 于D ,连接AD .(1)求DAC ∠的度数; (2)若2BD =,求BC 的长.24.在平面直角坐标系xOy 中,对于直线l 及点P 给出如下定义:过点P 作y 轴的垂线交直线l 于点Q ,若PQ ≤1,则称点P 为直线l 的关联点,当PQ =1时,称点P 为直线l 的最佳关联点,当点P 与点Q 重合时,记PQ =0.例如,点P (1,2)是直线y =x 的最佳关联点.根据阅读材料,解决下列问题.如图,在平面直角坐标系xOy 中,已知直线1l :y =﹣x +3,2l :y =2x +b .(1)已知点A (0,4),3(,1)2B ,C (2,3),上述各点是直线1l 的关联点是;(2)若点D (﹣1,m )是直线1l 的最佳关联点,则m 的值是;(3)点E 在x 轴的正半轴上,点A (0,4),以OA 、OE 为边作正方形AOEF .若直线l 2与正方形AOEF 相交,且交点中至少有一个是直线1l 的关联点,则b 的取值范围是.25.如图,⊙O为△ABC的外接圆,AC=BC,D为OC与AB的交点,E为线段OC延长线上一点,且∠EAC=∠ABC.(1)求证:直线AE是⊙O的切线.(2)若D为AB的中点,CD=6,AB=16,求⊙O的半径;(3)在(2)的基础上,点F在⊙O上,且»»,△ACF的内心点G在AB边上,求BGBC BF的长.。

2024年湖南省长沙市中考数学模拟试卷及答案解析

2024年湖南省长沙市中考数学模拟试卷及答案解析

2024年湖南省长沙市中考数学模拟试卷一、选择题(在下列各题的四个选项中,只有一项符合题意的。

请在答题卡中填涂符合题意的选项。

本大题共10小题,每小题3分,共30分)1.(3分)下列实数中,为有理数的是()A.B.πC.D.12.(3分)若分式在实数范围内有意义,则x的取值范围是()A.x≠0B.x≠1C.x>1D.x<13.(3分)下列立体图形中,俯视图与主视图不同的是()A.B.C.D.4.(3分)下列说法正确的是()A.打开电视机,正在播放“张家界新闻”是必然事件B.天气预报说“明天的降水概率为65%”,意味着明天一定下雨C.两组数据平均数相同,则方差大的更稳定D.数据5,6,7,7,8的中位数与众数均为75.(3分)2023年前三季度全国GDP30强城市排名已经揭晓,长沙GDP约为10800亿名列第十五,同比增速为6.32%,数据10800用科学记数法表示为()A.0.108×105B.10.8×103C.1.08×104D.1.08×103 6.(3分)下列运算正确的是()A.a2•a3=a6B.a2+a3=a5C.(a+b)2=a2+b2D.(a3)2=a6 7.(3分)在直角坐标系中,点A(2,﹣3)关于原点对称的点位于()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)如图,E、F、G、H分别是四边形ABCD四条边的中点,则四边形EFGH一定是()A.平行四边形B.矩形C.菱形D.正方形9.(3分)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80°B.120°C.100°D.90°10.(3分)我国古代数学典籍《九章算术》第七章“盈不足”中有一道两鼠穿墙问题:“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何”,翻译过来就是:有五尺厚的墙,两只老鼠从墙的两边相对分别打洞穿墙,大、小鼠第一天都进一尺,以后每天,大鼠加倍,小鼠减半,则几天后两鼠相遇,这个问题体现了古代对数列问题的研究,现将墙的厚度改为20尺,则需要几天时间才能打穿(结果取整数)()A.4B.5C.6D.7二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)分解因式:1﹣x2=.12.(3分)如图,在⊙O中,圆心角∠AOB=70°,那么圆周角∠C=.13.(3分)睡眠管理作为“五项管理”中重要的内容之一,也是学校教育重点关注的内容.某老师了解到某班40位同学每天睡眠时间(单位:小时)如下表所示,则该班级学生每天的平均睡眠时间是小时.睡眠时间8小时9小时10小时人数6241014.(3分)已知关于x的方程x2+3x﹣m=0的只有一个解,则m的值是.15.(3分)如图所示,点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,若△AOB的面积为2,则k的值是.16.(3分)若一次函数y=x+1与y=﹣x﹣1交于A点,则A点的坐标为.三、解答题(本大题共9小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分。

长沙雅礼教育集团联考2024-2025学年九年级上学期10月月考数学试题(原卷版)

长沙雅礼教育集团联考2024-2025学年九年级上学期10月月考数学试题(原卷版)

2024年秋季学期长沙市北雅中学九年级10月错题回做练习数学科目试题考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(本大题共10个小题,每小题3分,共30分)1. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D. 2. 下列二次根式是最简二次根式的是( )A.B.C. D. 以上都不是 3. 如图,在菱形ABCD 中,对角线AC 12=,8BD =,则菱形ABCD 的面积( )A. 96B. 54C. 48D. 244. 如图,等边△OAB 边长为2O 在平面直角坐标系的原点,点A 在x 轴正半轴上,则点B 的坐标为( )A. (1,1)B.1) C. (1D.5. 你知道废电池是一种危害严重的污染源吗?一粒纽扣电池可以污染700000升水,这个数字用科学计数法表示为( )A 5710×升 B. 60.710×升 C. 6710×升 D. 47.010×升 6. 下列说法正确的是( ) A. 1x 是整式 B. 0是单项式.C. 223x y π−的系数是23−D. 232x xy −−是一次三项式7. 学校举办跳绳比赛,九年(2)班参加比赛6名同学每分钟跳绳次数分别是172,169,180,182,175,176,这6个数据的中位数是( )A. 181B. 175C. 176D. 175.58. 开学前,学校需要对教室、食堂等场所进行消毒处理.某商场的84消毒液,第一天销售量达到200瓶,第二天、第三天销售量连续增长,第三天销售量达到700瓶,且第二天与第三天的增长率相同,设增长率为x ,根据题意列方程为( )A. ()27001200x −=B. ()22001700x +=C. ()22001700x +=D. ()20012700x +=9. 设A (﹣2,y 1),B (﹣1,y 2),C (2,y 3)是抛物线y=﹣(x+1)2+1上的三点,则y 1,y 2,y 3的大小关系为( )A. y 2>y 1>y 3B. y 1>y 3>y 2C. y 3>y 2>y 1D. y 3>y 1>y 2 10. 如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC AB ,边于E ,F 点,若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM 周长的最小值为( )A. 6B. 8C. 10D. 16二、填空题(本大题共6个小题,每小题3分,共18分)11. 如图,A 、B 、C O 上,若46ACB ∠=°,则O ∠=______°.12. 抛物线y=12(x+2)2-2的顶点是_____. 13. 如图,直线2y x b =−+与x 轴交于点(30),,那么不等式20x b −+<的解集为 _____.的在14. 已知20x y −++=,则22x y −的值为________.15. 如图,COD △是AOB 绕点O 顺时针旋转42°后得到的图形,点C 恰好落在边AB 上,若53B ∠=°,则COB ∠=____.16. 在平面直角坐标系中,抛物线2(0)y ax bx c a =+++≠与x 轴的一个交点坐标(2,0),对称轴为直线1x =,其部分图象如图所示,下列结论:①抛物线过原点;②<0a b c −+;③20a b c ++=;④抛物线的顶点坐标为(1,)2b;⑤当1x <时,y 随x 的增大而增大.其中结论正确的是 __.三、解答题(本大题共9个小题,第17、18、19题每题6分,第20、21题每题8分,第22、23题每题9分,第24、25题每题10分,共72分,解答题应写出必要的文字说明、证明过程或演算步骤)17. ()20202411π202422− −+−−− .18. 先化简,再求值:2221211x x x x x −+ ÷− ++,其中2x =. 19. 在平面直角坐标系中,ABO 的三个顶点坐标分别为()2,3A ,()3,1B ,OO (0,0).(1)将ABO 向右平移4个单位,画出平移后的111A B O △;(2)以点O 为对称中心,画出与ABO 成中心对称22A B O ,此时四边形22ABA B 的形状是______; 20. “山水连云,醉美港城”.某校数学兴趣小组就“最想去的连云港市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)本次调查的样本容量为_____;(2)补全条形统计图.......;扇形统计图中E 的扇形圆心角的度数为_____; (3)若该校共有1200名学生,请估计“最想去景点C ”的学生人数.21. 如图,已知AB 为O 直径,CD 是弦,且AB CD ⊥,连接AC BC 、.的(1)求证:CAB BCD ∠=∠;(2)若3BE =,8CD =,求O 的半径.22. 已知关于x 的方程()2110k x kx −++=. (1)证明:不论k 为何值,方程总有实数根;(2)当k 为何整数时,方程有两个不相等整数根?23. 某数学兴趣小组在暑假开展社会实践活动,销售某品牌书包,平均每天可以销售20个,每个盈利12元,为了扩大销售,增加盈利,该小组决定采取适当的降价措施,经调查发现,如果每个书包每降价1元,平均每天可以多卖5个.(1)若每个书包降价x 元,则可多卖__________个,每个盈利__________元;(2)若该兴趣小组同学想要一天盈利300元,每个书包应降价多少元;(3)该兴趣小组同学想要一天盈利最大,应降价多少元,所得最大利润是多少元?24. 问题发现已知:如图1,等边三角形A 1A 2A 3,点P 是A 1A 2下方的任意一点,∠A 1P A 3=∠A 3P A 2=60°,可证:P A 1+P A 2=P A 3,从而得到12123PA PA PA PA PA +++是定值. (1)这个定值是 .(2)请写出上述证明过程.类比探究如图2,把(1)中条件“等边三角形A 1A 2A 3,∠A 1P A 3=∠A 3P A 2=60°,”改为“正方形A 2A 1A 3A 4,∠A 1P A 4=∠A 4P A 3=∠A 3P A 2=45°,”其余条件不变.的(3)请问:121234+PA PA PA PA PA PA +++还是定值吗? (4)如果是,请直接写出这个定值;如果不是,请说明理由.25. 定义:函数图象G 上的点(),P x y 的纵坐标y 与横坐标x 的差y x −叫做点P 的“双减差”,图象G 上所有点的“双减差”中最小值称为函数图象G 的“幸福值”如:抛物线2y x =上有点()4,16P ,则点P 的“双减差”为12;而抛物线2y x =上所有点的“双减差”22111244y x x x x −=−=−−≥− ,即该抛物线的“幸福值”为14−.根据定义,解答下列问题: (1)已知函数4y x =图象上点P 的横坐标1x =,求点P 的“双减差”y x −的值;(2)若直线()1112y kx x =+−≤≤的“幸福值”为()21k k >,求k 的值;(3)设抛物线2y x bx c =++顶点的横坐标为m ,且该抛物线的顶点在直线9y x =−+上,当12132m x m −≤≤+时,抛物线2y x bx c =++的“幸福值”是5,求该抛物线的解析式.。

湖南省长沙市雅礼中学2024-2025学年七上数学期中考试试卷(含答案)

湖南省长沙市雅礼中学2024-2025学年七上数学期中考试试卷(含答案)

湖南省长沙市雅礼中学2024-2025学年七上数学期中考试试卷考生注意:本试卷共3道大题,25道小题,满分120分,时量120分钟.一.选择题(共10小题,满分30分,每小题3分) 1.712−的相反数是( ) A .712B .712−C .127D .127−2.2024年6月2日6时23分,"嫦娥六号"着陆器在月球背面预定着陆区域成功着陆.月球与地球之间的距离约为380000千米,将380000用科学记数法表示为( )A .60.3810⨯B .63.810⨯C .43810⨯D .53.810⨯ 3.下列各种关系中,成反比例关系的是( ) A .书的总页数一定,未读的页数与已读的页数 B .小麦的总产量一定,每公顷产量与种植面积 C .圆柱底面积一定,圆柱的体积与高 D .同学的年龄一定,他们的身高与体重4.10月20日,2024长沙马拉松暨全国半程马拉松锦标赛(第四站)在长沙鸣枪,小雅参加了半程马拉松(21.0975公里).请用四舍五入法把21.0975精确到0.01,所得到的近似数为( ) A .21.10 B .21.09 C .21.1 D .21.097 5.下列计算正确的是( ) A .2a a a +=B .3265x x x −=C .22234a b ba a b −=−D .235325x x x +=6.若|2009||2010|0a b −++=,则2024()a b +的值为( ) A .0 B .1C .1−D .20247.下列说法中正确的个数有( )①a −表示负数;②小于1−的数的倒数大于其本身;③单项式223x yπ−的系数为23−;④一个有理数不是整数就是分数. A .0个 B .1个 C .2个 D .3个8.已知关于x 的多项式()4323243643x mx x x x nx −−−−−−不含3x 和2x 项,则( )A .4m =−,3n =−B .4m =,3n =C .4m =−,3n =D .4m =,3n =−9.小明在超市买回若干个相同的纸杯,他把纸杯整齐地叠放在一起.如图①,3个纸杯的高度为11cm ;如图②,5个纸杯的高度为13cm .若把n 个这样的纸杯叠放在一起,则高度为( ) A .(10)cm n + B .(8)cm n + C .(25)cm n + D .(23)cm n +(第9题图) (第10题图)②①13cm11cm10.如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,....,则第2012次输出的结果为( ) A .3B .6C .200632 D .10033310032+⨯二.填空题(共6小题,满分18分,每小题3分) 11.化简:|2|−−=.12.点A 、B 在数轴上对应的数分别为2−和5,则A 、B 两点间的距离为.13.比较大小:34−56−.(填">"或"<") 14.小强购买绿、橙两种颜色的珠子串成一条手链,已知绿色珠子m 个,每个2元,橙色珠子n 个,每个5元,那么小强购买珠子需花费元.15.如果单项式13a x y +与32b x y 是同类项,那么a b +=.16.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤: 第一步,A 同学拿出五张扑克牌给B 同学; 第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为.三.解答题(共9小题,满分72分) 17.(6分)计算:233(4)16(2)−−−−÷−18.(6分)计算: (1)2252x xy yx x −++;(2)()()22426m m m m +−+.19.(6分)先化简,再求值:5()()22222251x y xy xy x y −−+−,其中12x =,1y =−. 20.(8分)某食品厂从生产的袋装食品中抽取20袋,检测每袋的质量是否符合标准,超过或不足的部分分(1)这批样品的质量比标准质量多还是少?多或少几克?(2)若每袋标准质量为450克,则抽样检测的总质量是多少? 21.(8分)有理数a 、b 、c 在数轴上的位置如图. (1)判断正负,用"<"或">"填空: c b−0;a b +0.(2)化简:||||||c b a b a b −+−−+.22.(9分)整体代换是数学的一种思想方法,例如:20x x +=,则21186x x ++=;我们将2x x +作为一个整体代入,则原式011861186=+=. 仿照上面的解题方法,完成下面的问题: (1)若230x x +−=,则22021x x ++=;(2)如果6a b +=,求2()4421a b a b +−−+的值;(3)若2222a ab +=,228b ab +=,求22232a b ab −−的值. 23.(9分)滴滴打车是目前国内最受欢迎的网约车平台之一,为了给用户提供便捷、安全的出行服务,滴滴打车制定了一套收费规则:①起步价:滴滴打车的起步价为10元,乘客预约用车、取消订单等情况都会收取起步价. ②里程费:起步里程3公里,超过3公里的部分,将按1.5元/公里的标准收取里程费用. ③时长费:起步时间8分钟,超过8分钟的部分,将按0.25元/分钟的标准收取时长费用.(注:车费由里程费、时长费、起步价构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算.) (1)若小爱同学乘坐滴滴打车,行车里程为2.8公里,行车时间为5分钟,需付车费元.(2)若小爱同学乘坐滴滴打车,行车里程为a (3a >)公里,行车时间为b (8b >)分钟,则应付车费多少元?(3)若小爱同学从家出发,乘坐滴滴打车到杭州体育馆观看亚运会,行车里程为18公里,行车时间为20分钟,则需付车费多少元?24.(10分)如图,实数a 、b 、c 在数轴上表示的点分别是点A 、B 、C ,且a 、b 、c 满足||4a =,6a b +=−,0ab >,c 是最小的正整数.(1)请直接写出a =,b =,c =.(2)若点B 沿数轴向右运动,速度是2个单位长度/秒,当t 为何值时,O ,B ,C 三点满足其中一点到另外两个点的距离相等?(点O 为坐标原点)(3)在(2)的条件下,若点A 沿数轴向左运动,速度为1个单位长度/秒,点C 向右运动,速度为4个单位长度/秒,问运动t 秒后,23AB BC −的值是否随着时间t 的变化而变化?若不变化,求这个不变的值;若变化,求这个值的变化范围.("BC "表示点B 和点C 之间的距离,"AB "表示点A 和点B 之间的距离)CBA25.(10分)日常生活中,我们使用的数是十进制数,数的进位方法是"逢十进一",十进制的基数是十,而计算机使用的数是二进制数,即数的进位方法是"逢二进一",二进制的基数是二.二进制只使用数字0,1,如二进制数1101记为21101(),21101()通过式子321212021⨯+⨯+⨯+可以转换为十进制数13,即322(1101)121202113=⨯+⨯+⨯+=. (1)将二进制数210101()转换为十进制数.(2)二进制的加法运算是一种基本运算,它和十进制数的加法原理类似,只是运算的基数不同.在二进制数的加法运算中,我们需要将两个二进制数按位相加,并且需要考虑进位的情况.二进制数的基本规则:000+=;011+=;1110+=(二进制进位).举个例子,我们来计算二进制数2(1011)和2(110)的加法:22(1011)(110)+.从最低位开始相加,101+=,没有进位;1110+=,这里需要进位;101+=,没有进位;1110+=,这里也需要进位,最终的结果是210001().请计算:()2210101(1101)+;(请把计算或探究过程写出来) (3)请类比十进制的运算,进一步研究二进制的运算, ①计算:221110(11)⨯(),(请把计算或探究过程写出来) ②计算:2222(1101012)(1010)(110101)(1001)−+⨯,并把结果转化为十进制的数。

2020年湖南省长沙市教科院中考数学模拟试卷(四) (解析版)

2020年湖南省长沙市教科院中考数学模拟试卷(四) (解析版)

2020年长沙市教科院中考数学模拟试卷(四)一、选择题1.下列实数中,最小的是()A.3B.C.D.02.据亚洲开发银行统计数据,2010年至2020年,亚洲各经济体的基础设施如果要达到世界平均水平,至少需要8000000000000美元基建投资.将8000000000000用科学记数法表示应为()A.0.8×1013B.8×1012C.8×1013D.80×10113.下列各式运算正确的是()A.3y3•5y4=15y12B.(a3)2=(a2)3C.(ab5)2=ab10D.(﹣x)4•(﹣x)6=﹣x104.在一个不透明的袋子中装有3个白球和4个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是()A.B.C.D.5.如图,AB∥CD,AF交CD于点E,∠A=45°,则∠CEF等于()A.135°B.120°C.45°D.35°6.如图是一个几何体的主视图和俯视图,则这个几何体是()A.正方体B.三棱柱C.三棱锥D.长方体7.某车间20名工人日加工零件数如表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5B.5、5、6C.6、5、6D.5、6、68.《九章算术》是中国古代数学名著,其对扇形面积给出“以径乘周四而一”的算法与现代数学的算法一致,如某一问题:有一扇形田地,下周长(弧长)为30米,径长(两段半径的和)为16米,则该扇形田地的面积为()A.120平方米B.240平方米C.360 平方米D.480平方米9.如图,在Rt△ABC中∠C=90°,AB>BC,分别以顶点A、B为圆心,大于AB长为半径作圆弧,两条圆弧交于点M、N,作直线MN交边CB于点D.若AD=5,CD=3,则BC长是()A.7B.8C.12D.1310.“五一”期间,小华和妈妈到某景区游玩,小明想利用所学的数学知识,估测景区里的观景塔DE的高度.他从点D处的观景塔出来走到点A处.沿着斜坡AB从A点走了8米到达B点,此时回望观景塔,更显气势宏伟.在B点观察到观景塔顶端的仰角为45°且AB⊥BE,再往前走到C处,观察到观景塔顶端的仰角30°,测得BC之间的水平距离BC=10米,则观景塔的高度DE约为()米.(=1.41,=1.73)A.14B.15C.19D.2011.如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4B.2≤k≤8C.2≤k≤16D.8≤k≤1612.如图,在平面直角坐标系中,已知A(﹣3,﹣2),B(0,﹣2),C(﹣3,0),M 是线段AB上的一个动点,连接CM,过点M作MN⊥MC交y轴于点N,若点M、N 在直线y=kx+b上,则b的最大值是()A.﹣B.﹣C.﹣1D.0二、填空题(本大捱共6个小®,每小S3分,共|K分)13.在函数y=中,自变量x的取值范围是.14.分解因式:x2y+2xy+y=.15.不等式组的解集是.16.两组数据m,6,n与1,m,2n,7的平均数都是8,若将这两组数据合并成一组数据,则这组新数据的极差为.17.如图,▱ABCD的对角线AC、BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD 的周长为.18.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①abc<0;②5a﹣b+c<0;③方程ax2+bx+c=0的两根分别为x1=﹣5,x2=1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23,24题毎小题9分,第25、26题每小題10分,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.计算:﹣|2﹣|+()﹣2﹣2sin60°20.先化简(﹣1)÷,然后从﹣2≤a<2中选出一个合适的整数作为a的值代入求值.21.某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:70 72 74 75 76 76 77 77 77 78 79c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有人;(2)表中m的值为;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.22.如图,在四边形ABCD中,∠BAC=90°,点E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=3,BC=5,求EF的长.23.上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?(利润率=)24.类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解:如图1,在四边形ABCD中,添加一个条件,使得四边形ABCD是“等邻边四边形”,请写出你添加的一个条件;(2)概念延伸:下列说法正确的是(填入相应的序号)①对角线互相平分的“等邻边四边形”是菱形;②一组对边平行,另一组对边相等的“等邻边四边形”是菱形;③有两个内角为直角的“等邻边四边形”是正方形;④一组对边平行,另一组对边相等且有一个内角是直角的“等邻边四边形”是正方形;(3)问题探究:如图2,小红画了一个Rt△ABC,其中∠ABC=90°,AB=4,BC=3,并将Rt△ABC 沿∠B的平分线BB'方向平移得到△A'B'C′,连结AA′,BC′,小红要使平移后的四边形ABC′A′是“等邻边四边形”应平移多少距离(即线段BB'的长)?25.已知关于x的方程kx2+(2k+1)x+2=0.(1)求证:无论k取任何实数时,方程总有实数根;(2)当抛物线y=kx2+(2k+1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象确定实数a的取值范围;(3)将(2)中的抛物线向右平移m(3≤m≤6)个单位,与x轴的两个交点分别为A (x1,0),B(x2,0),若=+,求M的取值范围.26.如图,已知抛物线y=mx2﹣8mx﹣9m与x轴交于A,B两点,且与y轴交于点C(0,﹣3),过A,B,C三点作⊙O′,连接AC,BC.(1)求⊙O′的圆心O′的坐标;(2)点E是AC延长线上的一点,∠BEC的平分线CD交⊙O′于点D,求点D的坐标,并直接写出直线BC和直线BD的解析式;(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD,若存在,请求出点P的坐标,若不存在,请说明理由.参考答案一、选择题(在下列各題的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共12个小题,每小题3分,共36分)1.下列实数中,最小的是()A.3B.C.D.0【分析】先比较各个数的大小,再得出选项即可.解:∵3>,∴最小的数是0,故选:D.2.据亚洲开发银行统计数据,2010年至2020年,亚洲各经济体的基础设施如果要达到世界平均水平,至少需要8000000000000美元基建投资.将8000000000000用科学记数法表示应为()A.0.8×1013B.8×1012C.8×1013D.80×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:8000000000000=8×1012,故选:B.3.下列各式运算正确的是()A.3y3•5y4=15y12B.(a3)2=(a2)3C.(ab5)2=ab10D.(﹣x)4•(﹣x)6=﹣x10【分析】直接利用幂的乘方运算法则以及积的乘方运算法则、单项式乘以单项式运算法则分别判断得出答案.解:A、3y3•5y4=15y7,故此选项不合题意;B、(a3)2=(a2)3,正确;C、(ab5)2=a2b10,故此选项不合题意;D、(﹣x)4•(﹣x)6=x10,故此选项不合题意;故选:B.4.在一个不透明的袋子中装有3个白球和4个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是()A.B.C.D.【分析】直接利用概率公式计算可得.解:∵袋子中球的总个数为3+4=7(个),其中黑球有4个,∴摸出黑球的概率是,故选:C.5.如图,AB∥CD,AF交CD于点E,∠A=45°,则∠CEF等于()A.135°B.120°C.45°D.35°【分析】根据平行线的性质可得∠AED,结合对顶角可求得∠CEF,可得出答案.解:∵AB∥CD,∴∠AED=180°﹣∠A=135°,又∵∠CEF和∠AED为对顶角,∴∠CEF=135°.故选:A.6.如图是一个几何体的主视图和俯视图,则这个几何体是()A.正方体B.三棱柱C.三棱锥D.长方体【分析】根据三视图得出几何体为三棱柱即可.解:由主视图和俯视图可得几何体为三棱柱,故选:B.7.某车间20名工人日加工零件数如表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5B.5、5、6C.6、5、6D.5、6、6【分析】根据众数、平均数和中位数的定义分别进行解答即可.解:5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数第10、11个数的平均数,则中位数是=6;平均数是:=6;故选:D.8.《九章算术》是中国古代数学名著,其对扇形面积给出“以径乘周四而一”的算法与现代数学的算法一致,如某一问题:有一扇形田地,下周长(弧长)为30米,径长(两段半径的和)为16米,则该扇形田地的面积为()A.120平方米B.240平方米C.360 平方米D.480平方米【分析】首先求得半径的长,然后利用扇形面积公式S=lr求解即可.解:∵径长(两段半径的和)为16米,∴半径长为8米,∵下周长(弧长)为30米,∴S═lr=×30×8=120平方米,故选:A.9.如图,在Rt△ABC中∠C=90°,AB>BC,分别以顶点A、B为圆心,大于AB长为半径作圆弧,两条圆弧交于点M、N,作直线MN交边CB于点D.若AD=5,CD=3,则BC长是()A.7B.8C.12D.13【分析】由尺规作图可知,MN是线段AB的垂直平分线,即可得出DA=DB=5,依据CD的长即可得到BC=CD+BD=8.解:由尺规作图可知,MN是线段AB的垂直平分线,∴DA=DB=5,又∵CD=3,∴BC=CD+BD=3+5=8,故选:B.10.“五一”期间,小华和妈妈到某景区游玩,小明想利用所学的数学知识,估测景区里的观景塔DE的高度.他从点D处的观景塔出来走到点A处.沿着斜坡AB从A点走了8米到达B点,此时回望观景塔,更显气势宏伟.在B点观察到观景塔顶端的仰角为45°且AB⊥BE,再往前走到C处,观察到观景塔顶端的仰角30°,测得BC之间的水平距离BC=10米,则观景塔的高度DE约为()米.(=1.41,=1.73)A.14B.15C.19D.20【分析】作BF⊥DE于F,AH⊥BF于H,根据等腰直角三角形的性质求出AH,根据正切的定义用EF表示出CF、BF,根据题意列式求出EF,结合图形计算,得到答案.解:作BF⊥DE于F,AH⊥BF于H,∵∠EBF=45°,∴∠ABH=45°,∴AH=BH=8×=4,在Rt△ECF中,tan∠ECF=,则CF=EF,在Rt△EBF中,∠EBF=45°,∴BF=EF,由题意得,EF﹣EF=10,解得,EF=5+5,则DE=EF+DF=5+5+4≈19,故选:C.11.如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4B.2≤k≤8C.2≤k≤16D.8≤k≤16【分析】由于△ABC是直角三角形,所以当反比例函数y=经过点A时k最小,经过点C时k最大,据此可得出结论.解:∵△ABC是直角三角形,∴当反比例函数y=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=16,∴2≤k≤16.故选:C.12.如图,在平面直角坐标系中,已知A(﹣3,﹣2),B(0,﹣2),C(﹣3,0),M 是线段AB上的一个动点,连接CM,过点M作MN⊥MC交y轴于点N,若点M、N 在直线y=kx+b上,则b的最大值是()A.﹣B.﹣C.﹣1D.0【分析】当点M在AB上运动时,MN⊥MC交y轴于点N,此时点N在y轴的负半轴移动,定有△AMC∽△NBM;只要求出ON的最小值,也就是BN最大值时,就能确定点N的坐标,而直线y=kx+b与y轴交于点N(0,b),此时b的值最大,因此根据相似三角形的对应边成比例,设未知数构造二次函数,通过求二次函数的最值得以解决.解:连接AC,则四边形ABOC是矩形,∴∠A=∠ABO=90°,又∵MN⊥MC,∴∠CMN=90°,∴∠AMC=∠MNB,∴△AMC∽△NBM,∴,设BN=y,AM=x.则MB=3﹣x,ON=2﹣y,∴,即:y=x2+x∴当x=﹣=﹣时,y最大=×()2+=,∵直线y=kx+b与y轴交于N(0,b)当BN最大,此时ON最小,点N(0,b)越往上,b的值最大,∴ON=OB﹣BN=2﹣=,此时,N(0,)b的最大值为.故选:A.二、填空题(本大捱共6个小&#174;,每小S3分,共|K分)13.在函数y=中,自变量x的取值范围是x≥﹣2且x≠0.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.解:由题意得,x+2≥0且x≠0,解得x≥﹣2且x≠0.故答案为:x≥﹣2且x≠0.14.分解因式:x2y+2xy+y=y(x+1)2.【分析】首先提取公因式y,再利用完全平方进行二次分解即可.解:原式=y(x2+2x+1)=y(x+1)2,故答案为:y(x+1)2.15.不等式组的解集是x≤﹣2.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式≤﹣1,得:x≤﹣2,解不等式﹣x+7>4,得:x<3,则不等式组的解集为x≤﹣2,故答案为:x≤﹣2.16.两组数据m,6,n与1,m,2n,7的平均数都是8,若将这两组数据合并成一组数据,则这组新数据的极差为11.【分析】根据平均数的计算公式先求出m、n的值,再根据极差的定义即可得出答案.解:∵两组数据m,6,n与1,m,2n,7的平均数都是8,∴,解得:,故将这两组数据合并成一组数据为:12,6,6,1,12,12,7,则极差为:12﹣1=11.故答案为:11.17.如图,▱ABCD的对角线AC、BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD 的周长为16.【分析】首先证明OE=BC,再由AE+EO=4,推出AB+BC=8即可解决问题.解:∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故答案为:16.18.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①abc<0;②5a﹣b+c<0;③方程ax2+bx+c=0的两根分别为x1=﹣5,x2=1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有①②③.【分析】①由抛物线的开口方向确定a的正负号,再由对称轴的位置,确定b的正负号,由抛物线与y轴的交点位置,确定c的正负号;②根据抛物线的顶点坐标公式用a表示b和c,再代入5a﹣b+c中,便可得由a的取值范围确定代数5a﹣b+c的正负;③把y=ax2+bx+c=0中,b、c换成a,再解方程便可得判断正误;④分别求出方程ax2+bx+c=1和ax2+bx+c=﹣1的两根和,便可求得原方程四根之和.解:∵抛物线的开口向上,则a>0,对称轴在y轴的左侧,则b>0,交y轴的负半轴,则c<0,∴abc<0,所以①结论正确;∵抛物线的顶点坐标(﹣2,﹣9a),∴﹣=﹣2,=﹣9a,∴b=4a,c=﹣5a,∴5a﹣b+c=5a﹣4a﹣5a=﹣4a<0,故②结论正确;∵抛物线y=ax2+bx+c=ax2+4ax﹣5a,当y=0时,ax2+4ax﹣5a=0,即a(x+5)(x﹣1)=0,∴x=﹣5或1,∴方程ax2+bx+c=0的两个根x1=﹣5,x2=1,故结论③正确;若方程|ax2+bx+c|=1有四个根,设方程ax2+bx+c=1的两根分别为x1,x2,则=﹣2,可得x1+x2=﹣4,设方程ax2+bx+c=﹣1的两根分别为x3,x4,则=﹣2,可得x3+x4=﹣4,所以这四个根的和为﹣8,故结论④错误,故答案为①②③.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23,24题毎小题9分,第25、26题每小題10分,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.计算:﹣|2﹣|+()﹣2﹣2sin60°【分析】首先计算乘方,然后计算加减,即可.解:原式=3﹣(2﹣)+4﹣2×=3﹣2++4﹣=5.20.先化简(﹣1)÷,然后从﹣2≤a<2中选出一个合适的整数作为a的值代入求值.【分析】直接利用分式的加减运算法则将括号里面通分运算,进而利用分式的混合运算法则计算得出答案.解:原式=,=,=∵从﹣2≤a<2的范围内选取一个合适的整数,∴当a=﹣2时,原式=.21.某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:70 72 74 75 76 76 77 77 77 78 79c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有23人;(2)表中m的值为77.5;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.【分析】(1)根据条形图及成绩在70≤x<80这一组的数据可得;(2)根据中位数的定义求解可得;(3)将各自成绩与该年级的中位数比较可得答案;(4)用总人数乘以样本中七年级成绩超过平均数76.9分的人数所占比例可得.解:(1)在这次测试中,七年级在80分以上(含80分)的有15+8=23人,故答案为:23;(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为78、79,∴m==77.5,故答案为:77.5;(3)甲学生在该年级的排名更靠前,∵七年级学生甲的成绩大于中位数78分,其名次在该年级抽查的学生数的25名之前,八年级学生乙的成绩小于中位数79.5分,其名次在该年级抽查的学生数的25名之后,∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9分的人数为400×=224(人).22.如图,在四边形ABCD中,∠BAC=90°,点E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=3,BC=5,求EF的长.【分析】(1)根据平行四边形和菱形的判定证明即可;(2)根据菱形的性质和三角形的面积公式解答即可.【解答】(1)证明:∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,∴AE=CE=BC,∴四边形AECD是菱形;(2)解:过A作AH⊥BC于点H,如图所示:∵∠BAC=90°,AB=3,BC=5,∴AC===4,∵S△ABC=BC•AH=AB•AC,∴AH===,∵点E是BC的中点,BC=5,四边形AECD是菱形,∴CD=CE=,∵S▱AECD=CE•AH=CD•EF,∴EF=AH=.23.上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?(利润率=)【分析】(1)设第一批购进水果x千克,则第二批购进水果2.5x千克,依据题意列式计算而得到结果,并检验是原方程的解,而求得.(2)设售价为每千克a元,求得关系式,又由630a ≥7500×1.26,而解得.解:(1)设第一批购进水果x千克,则第二批购进水果2.5x千克,依据题意得:,解得x=200,经检验x=200是原方程的解,∴x+2.5x=700,答:这两批水果共购进700千克;(2)设售价为每千克a元,则:,630a≥7500×1.26,∴,∴a≥15,答:售价至少为每千克15元.24.类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解:如图1,在四边形ABCD中,添加一个条件,使得四边形ABCD是“等邻边四边形”,请写出你添加的一个条件;(2)概念延伸:下列说法正确的是①②④(填入相应的序号)①对角线互相平分的“等邻边四边形”是菱形;②一组对边平行,另一组对边相等的“等邻边四边形”是菱形;③有两个内角为直角的“等邻边四边形”是正方形;④一组对边平行,另一组对边相等且有一个内角是直角的“等邻边四边形”是正方形;(3)问题探究:如图2,小红画了一个Rt△ABC,其中∠ABC=90°,AB=4,BC=3,并将Rt△ABC 沿∠B的平分线BB'方向平移得到△A'B'C′,连结AA′,BC′,小红要使平移后的四边形ABC′A′是“等邻边四边形”应平移多少距离(即线段BB'的长)?【分析】(1)根据定义添加一组邻边相等即可;(2)先利用平行四边形的判定定理得平行四边形,再利用“等邻边四边形”定义得邻边相等,得出结论;(3)由平移的性质易得BB′=AA′,A′B′∥AB,A′B′=AB=4,B′C′=BC =3,A′C′=AC=5,再利用“等邻边四边形”定义分类讨论,由勾股定理得出结论.解:(1)AB=BC或BC=CD或AD=CD或AB=AD.答案:AB=AD.(2)①正确,理由为:∵四边形的对角线互相平分,∴这个四边形是平行四边形,∵四边形是“等邻边四边形”,∴这个四边形有一组邻边相等,∴这个“等邻边四边形”是菱形;②正确,理由为:一组对边平行,另一组对边相等可得到:两组对边相等,则该四边形是平行四边形,所以根据“邻边相等的平行四边形为菱形”推知:一组对边平行,另一组对边相等的“等邻边四边形”是菱形;③不正确,理由为:有两个内角为直角的“等邻边四边形”不是平行边形时,该结论不成立;④正确,理由为:一组对边平行,另一组对边相等可得到:两组对边相等,则该四边形是平行四边形,所以根据“邻边相等的平行四边形为菱形”推知:一组对边平行,另一组对边相等的“等邻边四边形”是菱形;再由由一内角是直角的菱形为正方形推知,④的说法正确.故答案是:①②④;(3)∵∠ABC=90°,AB=4,BC=3,∴AC=5,∵将Rt△ABC平移得到△A′B′C′,∴BB′=AA′,A′B′∥AB,A′B′=AB=4,B′C′=BC=3,A′C′=AC=5,(I)如图1,当AA′=AB时,BB′=AA′=AB=4;(II)如图2,当AA′=A′C′时,BB′=AA′=A′C′=5;(III)当A′C′=BC′=5时,如图3,延长C′B′交AB于点D,则C′B′⊥AB,∵BB′平分∠ABC,∴∠ABB′=∠ABC=45°,∴∠BB′D=′∠ABB′=45°∴B′D=BD,设B′D=BD=x,则C′D=x+1,BB′=x,∵在Rt△BC′D中,BD2+C′D2=BC′2∴x2+(x+1)2=52,解得:x1=3,x2=﹣4(不合题意,舍去),∴BB′=x=3(Ⅳ)当BC′=AB=4时,如图4,与(Ⅲ)方法一同理可得:BD2+C′D2=BC′2,设B′D=BD=x,则x2+(x+1)2=32,解得:x1=,x2=(不合题意,舍去),∴BB′=x=;综上所述,要使平移后的四边形ABC′A′是“等邻边四边形”应平移3或.25.已知关于x的方程kx2+(2k+1)x+2=0.(1)求证:无论k取任何实数时,方程总有实数根;(2)当抛物线y=kx2+(2k+1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象确定实数a的取值范围;(3)将(2)中的抛物线向右平移m(3≤m≤6)个单位,与x轴的两个交点分别为A (x1,0),B(x2,0),若=+,求M的取值范围.【分析】(1)分类讨论:该方程是一元一次方程和一元二次方程两种情况.当该方程为一元二次方程时,根的判别式△≥0,方程总有实数根;(2)通过解kx2+(2k+1)x+2=0得到k=1,由此得到该抛物线解析式为y=x2+3x+2,结合图象回答问题.(3)抛物线向右平移m(3≤m≤6)个单位后的解析式为y=(x+﹣m)2﹣,令y =0,解方程求得x1=m﹣1,x2=m﹣2,代入=+,求得M==,根据3≤m≤6即可求得M的取值.【解答】(1)证明:①当k=0时,方程为x+2=0,所以x=﹣2,方程有实数根,②当k≠0时,∵△=(2k+1)2﹣4k×2=(2k﹣1)2≥0,即△≥0,∴无论k取任何实数时,方程总有实数根;(2)解:令y=0,则kx2+(2k+1)x+2=0,解关于x的一元二次方程,得x1=﹣2,x2=﹣,∵二次函数的图象与x轴两个交点的横坐标均为整数,且k为正整数,∴k=1.∴该抛物线解析式为y=x2+3x+2,由图象得到:当y1>y2时,a>1或a<﹣4.(3)解:∵抛物线解析式为y=x2+3x+2=(x+)2﹣∴抛物线向右平移m(3≤m≤6)个单位后的解析式为y=(x+﹣m)2﹣,令y=0,则(x+﹣m)2﹣=0,解得x1=m﹣1,x2=m﹣2,∵=+,∴M==,∵3≤m≤6,∴≤M≤.26.如图,已知抛物线y=mx2﹣8mx﹣9m与x轴交于A,B两点,且与y轴交于点C(0,﹣3),过A,B,C三点作⊙O′,连接AC,BC.(1)求⊙O′的圆心O′的坐标;(2)点E是AC延长线上的一点,∠BEC的平分线CD交⊙O′于点D,求点D的坐标,并直接写出直线BC和直线BD的解析式;(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD,若存在,请求出点P的坐标,若不存在,请说明理由.【分析】(1)求出点A、B的坐标,利用O′为AB的中点,即可求解;(2)证明∠O′DB=90°,即O′D⊥AB,即可求解;(3)分点P在直线BD下方、P在BD的上方两种情况,分别求解即可.解:(1)y=mx2﹣8mx﹣9m,令y=0,解得:x=﹣1或9,故点A、B的坐标分别为:(﹣1,0)、(9,0),∵过A,B,C三点作⊙O′,故O′为AB的中点,∴点O′的坐标为(4,0);(2)∵AB是圆的直径,∴∠ACB=90°,∴∠BCE=90°,∵∠BEC的平分线为CD,∴∠BCD=45°,∴∠O′DB=90°,即O′D⊥AB,圆的半径为AB=5,故点D的坐标为(4,﹣5),设直线BC的表达式为:y=kx+b,则,解得:,故直线BC的表达式为:y=x﹣3,同理可得直线BD的表达式为:y=x﹣9;(3)由点A、B、C的坐标得,抛物线的表达式为:y=x2﹣x﹣3①,①当点P(P′)在直线BD下方时,∵∠PDB=∠CBD,∴DP′∥BC,则设直线DP′的表达式为:y=x+t,将点D的坐标代入上式并解得:t=﹣,故直线DP′的表达式为:y=x﹣②,联立①②并解得:x=(舍去负值),故点P的坐标为(,);②当点P在BD的上方时,由BD的表达式知,直线BD的倾斜角为45°,以BD为对角线作正方形DMBN,边MB交直线DP′于点H′,直线DP交NB边于点H,对于直线DP′:y=x﹣,当x=9时,y=﹣,即BH′=,根据点的对称性知:BH=BH′=,故点H(,0),由点D、H的坐标得,直线DH的表达式为:y=3x﹣17③,联立①③并解得:x=3或14(舍去3),故点P的坐标为(14,25);故点P的坐标为:(,)或(14,25).。

2024年湖南省长沙市雅礼集团中考数学预测题(2)

2024年湖南省长沙市雅礼集团中考数学预测题(2)

2024年湖南省长沙市雅礼集团中考数学预测题(2)一、单选题1.《九章算术》记载的余和不足等概念体现了中国是最早采用正负数表示相反意义量的国家,若收入10元记作10+元,则支出136元记作( ) A .136+元B .136-元C .0元D .126-元2.小明同学从正面观察如图所示的几何体,得到的平面图形是( )A .B .C .D .3.计算2312x ⎛⎫⎪⎝⎭的结果正确的是( )A .6xB .614xC .514xD .9x4.如图,,AB CD AC ∥与BD 相交于点E .若40C ∠=︒,则A ∠的度数是( )A .39︒B .40︒C .41︒D .42︒5.据党中央2024年发布的中国共产党党内统计公报,截至2023年12月底,全国约共有党员9675万.数据9675万用科学记数法表示为( ) A .79.67510⨯B .39.67510⨯C .49.67510⨯D .69.67510⨯6.“石阡苔茶”是贵州十大名茶之一,在我国传统节日清明节前后,某茶叶经销商对甲、乙、丙、丁四种包装的苔茶(售价、利润均相同)在一段时间内的销售情况统计如下表,最终决定增加乙种包装苔茶的进货数量,影响经销商决策的统计量是( )A .中位数B .平均数C .众数D .方差7.《孙子算经》中记载了这样一道题:”今有百鹿进城,每家取一鹿,不尽,又三家合取一鹿,恰尽”.问:有多少户人家?大意为:有100头鹿,首先每户分一头鹿,发现还有剩余,将剩下的鹿给每3户共分一头,恰好分完,若设共有x 户,则下列方程正确的是( ) A .11003x +=B .31100x +=C .11003x x +=D .11003x += 8.如图,在四边形ABCD 中,AD BC ∥,添加下列条件后仍不能..判定四边形ABCD 是平行四边形的是( )A .AD BC =B .AB DC ∥ C .A C ∠=∠D .AB DC =9.某射击运动队进行了五次射击测试,甲、乙两名选手的测试成绩如下表.甲、乙两名选手成绩的方差分别记为2S 甲和2S 乙,则2S 甲与2S 乙的大小关系是( )A .22S S >甲乙 B .22S S <甲乙C .22S S =甲乙D .无法确定10.已知0m n >>,若关于x 的方程2230x x m +--=的解为()1212,x x x x <.关于x 的方程2230x x n +--=的解为3434,()x x x x <.则下列结论正确的是( )A .3124x x x x <<<B .1342x x x x <<<C .1234x x x x <<<D .3412x x x x <<<二、填空题11.因式分解:24a -=.12.将直角坐标系中的点()4,3绕原点O 沿顺时针方向旋转90°,最终得到的点的坐标为 . 13.如图所示的卡槽中有一块三角形铁片OAB V ,点C ,D 分别是OA ,OB 的中点,若4cm CD =,则该铁片底边AB 的长为 cm .14.已知关于x 的一元二次方程2310kx x -+=有两个相等的实数根,则常数k 的值可能是 . 15.如图,点C 是半圆O 同侧的一点,AB 为直径,若6cm AB AC ==,50BAC ∠=︒,连接线段AC BC 、分别交圆于点D 、点E ,则弧DE 的长为 cm .16.图中分别为反比例函数ky x=与一次函数y ax b =+的图象,已知交点坐标(2,3)A ,(,2)B m -,直接写出不等式kax b x+>的解:.三、解答题17.计算:0(2024)2cos60|5|-︒+-. 18.请从下列2个题中任选1题作答:①已知5x =,求代数式2324416x x ---的值; ②已知13x =,求代数式(21)(12)4(3)x x x x +-++的值.19.2023年12月,21世纪经济研究院发布《国际消费中心城市建设年度报告(2023)》,长沙被列为发展型消费中心城市(Gamma 级).根据市场需求,长沙市某企业为加快生产速度,更新了部分生产设备,更新设备后生产效率比更新前提高了25%,若更新设备前每天生产产品x 件.据此解答下列问题:(1)更新设备后每天生产 件产品(用含x 的式子表示);(2)更新设备后生产6000件产品还比更新设备前的生产5000件产品少用2天,则更新设备后每天生产多少件产品?20.奇山秀水聚宝盆——湖南首届旅游大会在张家界召开.如图①为某景区山地剖面图,为给游客提供更好的游览体验,拟在山上修建观光索道.如图②所示为索道的设计示意图,以山顶D 为起点,沿途修建AB 、CD 两段长度相等的观光索道,最终到达山脚A 处,中途观光平台BC 为50m ,且与AF 平行.索道AB 与水平线的夹角为15︒,CD 与水平线夹角为45︒,A 、B 两处的水平距离AE 为576m ,DF AF ⊥,垂足为点F .(参考数据:sin150.25︒≈,cos150.96︒≈,tan150.26︒≈ 1.41≈)(1)求索道AB 的长(结果精确到0.1m ); (2)求水平距离AF 的长(结果精确到0.1m ).21.端午节,又称端阳节、龙舟节、重午节、重五节、天中节等,日期在每年农历五月初五,是集祈福辟邪、拜神祭祖、欢庆饮食和娱乐为一体的民俗大节.某校今年6月开设了以“端午”为主题的活动课程,每位学生可在“折纸龙”、“做香囊、“采艾叶””与“包粽子”四门课程中任意且只选择其中一门,学校统计调查了本校部分学生的选课情况,小明据此绘制了两幅不完整的统计图,请你根据图表信息回答下列问题:(1)补全条形统计图,并求本次被调查的学生人数.(2)该校共有2000名学生,若每间教室最多可安排40名学生,试估计开设“包粽子“课程的教室至少需要几间.22.图1为小明和妹妹小红每天的出行路线,某天兄妹俩从学校出发,到书吧看书后回家,哥哥小明步行先出发,途中速度保持不变:妹妹骑车从学校出发,到书吧前的速度为200米/分,两人离学校的路程s (米)与哥哥离开学校的时间t (分)的函数图像在图2中分别表示.(1)求小明步行的速度.(2)已知妹妹小红比哥哥小明迟2分钟到书吧. ①求图中a 的值;②若妹妹仅在书吧停留了11分钟后就准备回家,且速度是哥哥的1.6倍,求追上时兄妹俩离家还有多远.23.如图,已知O e 的内接ABC V 为等边三角形,连接顶点C 与圆心O ,并延长交AB 于点D ,交O e 于点E ,连接EA ,EB .(1)图中与ACD V 全等的三角形是 ,图中度数为30︒的角有 个 ; (2)求证:AED CEB ∽△△;(3)连接OA ,OB ,判断四边形OAEB 的形状,并说明理由. 24.在ABC V 中,BC 为O e 的直径,AC 为过C 点的切线.(1)如图①,以点B 为圆心,BC 为半径作圆弧交AB 于点M ,连结CM ,若66ABC ∠=︒,求ACM ∠的大小;(2)如图②,过点D 作O e 的切线DE 交AC 于点E ,求证:AE EC =; (3)如图③,在(1)(2)的条件下,若3tan 4A =,求:ADE ACM S S △△的值. 25.若函数G 在()m x n m n ≤≤<上的最大值记为max y ,最小值记为min y ,且满足max min 1y y -=,则称函数G 是在m x n ≤≤的“美好函数”.(1)函数①1y x =+;②2y x =;③2y x =.其中函数___________是在12x ≤≤上的“美好函数”;(填序号)(2)已知函数G :()2230y ax ax a a =--≠.①函数G 是在12x ≤≤上的“美好函数”,求a 的值;②当1a =时,函数G 是在1t x t ≤≤+上的“美好函数”,请直接写出t 的值;(3)已知函数G :()2230y ax ax a a =-->,若函数G 是在221m x m +≤≤+(m 为整数)上的“美好函数”,且存在整数k ,使得maxminy k y =,求a 的值.。

2020届湖南省长沙市雅礼中学高三高考数学理模拟一试题A卷解析版

2020届湖南省长沙市雅礼中学高三高考数学理模拟一试题A卷解析版

2020届湖南省长沙市雅礼中学高三高考数学(理)模拟(一)试题(A 卷)一、单选题1.若复数z 的共轭复数z 满足:31i z =+,则复数z 对应的点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A【解析】根据虚数单位的幂的运算化简后,根据共轭复数的概念写出z 的结果,进而判定对应点所在的象限. 【详解】1i 1i z z =-⇒=+,故z 对应的点在第一象限.故选:A . 【点睛】本题考查虚数单位的幂的运算,共轭复数的概念,复数的几何意义,属基础题. 2.已知集合2{|log (1)1}P x x =-<,2|1Q x x ⎧<=⎫⎨⎬⎩⎭,则()R P Q ⋂等于( ) A .(1,2] B .[0,2]C .(1,2)D .(0,3]【答案】A【解析】化简集合,P Q ,求出Q 的补集,再结合交集的定义求解结论即可. 【详解】2{|log (1)1}{|012}(1P x x x x =-<=<-<=,3), 2|1(Q x x ⎧⎫=<=-∞⎨⎬⎩⎭,0)(2⋃,)+∞,故[0RQ =,2];故()(1R P Q ⋂=,2]. 故选:A . 【点睛】本题主要考查集合的基本运算,考查了对数函数的定义域以及分式不等式的求解,比较基础.3.某商家统计了去年P,Q两种产品的月销售额(单位:万元),绘制了月销售额的雷达图,图中A点表示P产品2月份销售额约为20万元,B点表示Q产品9月份销售额约为25万元.根据图中信息,下面统计结论错误..的是()A.P产品的销售额极差较大B.P产品销售额的中位数较大C.Q产品的销售额平均值较大D.Q产品的销售额波动较小【答案】B【解析】由图示中P产品的销售额的波动较大,Q产品的销售额的波动较小,再根据极差、中位数、平均值的概念,可得选项.【详解】据图求可以看出,P产品的销售额的波动较大,Q产品的销售额的波动较小,并且Q产品的销售额只有两个月的销售额比25万元稍小,其余都在25万元至30万元之间,所以P产品的销售额的极差较大,中位数较小,Q产品的销售的平均值较大,销售的波动较小,故选:B.【点睛】本题考查识别统计图的能力,会根据图示得出其数字特征的大小关系,属于基础题. 4.《九章算术 衰分》中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱数多少衰出之,问各几何?”翻译为“今有甲持钱560,乙持钱350,丙持钱180,甲、乙、丙三个人一起出关,关税共计100钱,要按个人带钱多少的比例交税,问三人各应付多少税?”则下列说法中错误的是()A.甲付的税钱最多B.乙、丙两人付的税钱超过甲C.乙应出的税钱约为32D.丙付的税钱最少【答案】B【解析】通过阅读可以知道,A D说法的正确性,通过计算可以知道,B C说法的正确性.【详解】甲付的税钱最多、丙付的税钱最少,可知,A D 正确:乙、丙两人付的税钱占总税钱的3511002<不超过甲。

2022学年湖南长沙雅礼实验中学中考数学押题试卷(含答案解析)

2022学年湖南长沙雅礼实验中学中考数学押题试卷(含答案解析)

2022学年湖南长沙雅礼实验中学中考数学押题试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、测试卷卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是( )A .20,20B .30,20C .30,30D .20,302.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m ,n ,则二次函数的图象与x 轴有两个不同交点的概率是( ).A .B .C .D .3.若关于x 的分式方程的解为正数,则满足条件的正整数m 的值为( ) A .1,2,3 B .1,2 C .1,3 D .2,3 4.下列运算结果是无理数的是( )A .32×2B .32⨯C .722÷D .22135-5.如图,直线AB ∥CD ,∠A =70°,∠C =40°,则∠E 等于()A .30°B .40°C .60°D .70°6.要整齐地栽一行树,只要确定两端的树坑的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是( )A .两点之间的所有连线中,线段最短B.经过两点有一条直线,并且只有一条直线C.直线外一点与直线上各点连接的所有线段中,垂线段最短D.经过一点有且只有一条直线与已知直线垂直7.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°-12αB.90°+12αC.2D.360°-α8.下列计算正确的是( )A.(a-3)2=a2-6a-9 B.(a+3)(a-3)=a2-9C.(a-b)2=a2-b2D.(a+b)2=a2+a29.如图,在正方形OABC中,点A的坐标是(﹣3,1),点B的纵坐标是4,则B,C两点的坐标分别是()A.(﹣2,4),(1,3)B.(﹣2,4),(2,3)C.(﹣3,4),(1,4)D.(﹣3,4),(1,3)10.如图,菱形ABCD的对角线相交于点O,过点D作DE∥AC,且DE=12AC,连接CE、OE,连接AE,交OD于点F,若AB=2,∠ABC=60°,则AE的长为()A3B5C7D.22 11.如图所示的几何体的主视图正确的是()A.B.C.D.12.如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为()A.m>98B.m89C.m=98D.m=89二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某商场对今年端午节这天销售A、B、C三种品牌粽子的情况进行了统计,绘制了如图1和图2所示的统计图,则B品牌粽子在图2中所对应的扇形的心角的度数是_____.14.已知函数y=1x-1,给出一下结论:①y的值随x的增大而减小②此函数的图形与x轴的交点为(1,0)③当x>0时,y的值随x的增大而越来越接近-1④当x≤12时,y的取值范围是y≥1以上结论正确的是_________(填序号)15.如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME的面积记为S2;当AB=3时,△AME的面积记为S3;…;当AB=n时,△AME的面积记为S n.当n≥2时,S n﹣S n﹣1=▲ .16.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为_____.17.写出一个比2大且比5小的有理数:______.18.设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB的面积记为S2;…,依此类推,则S n可表示为________.(用含n的代数式表示,其中n为正整数)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某翻译团为成为2022年冬奥会志愿者做准备,该翻译团一共有五名翻译,其中一名只会翻译西班牙语,三名只会翻译英语,还有一名两种语言都会翻译.求从这五名翻译中随机挑选一名会翻译英语的概率;若从这五名翻译中随机挑选两名组成一组,请用树状图或列表的方法求该纽能够翻译上述两种语言的概率.20.(6分)如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.21.(6分)如图,抛物线与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x 轴,垂足为点C(3,0).(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N. 设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由22.(8分)﹣(﹣1)2018+4﹣(13)﹣123.(8分)如图,已知∠AOB与点M、N求作一点P,使点P到边OA、OB的距离相等,且PM=PN(保留作图痕迹,不写作法)24.(10分)某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子.帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的35.问该兴趣小组男生、女生各有多少人?25.(10分)如图,已知点A(﹣2,0),B(4,0),C(0,3),以D为顶点的抛物线y=ax2+bx+c过A,B,C三点.(1)求抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P为第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标.26.(12分)有一个二次函数满足以下条件:①函数图象与x轴的交点坐标分别为A(1,0),B(x1,y1)(点B在点A的右侧);②对称轴是x=3;③该函数有最小值是﹣1.(1)请根据以上信息求出二次函数表达式;(1)将该函数图象x>x1的部分图象向下翻折与原图象未翻折的部分组成图象“G”,平行于x轴的直线与图象“G”相交于点C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),结合画出的函数图象求x3+x4+x5的取值范围.27.(12分)如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,(1)求证:△ACE≌△BCD;(2)若DE=13,BD=12,求线段AB的长.2022学年模拟测试卷参考答案(含详细解析)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【答案解析】根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数.【题目详解】捐款30元的人数为20人,最多,则众数为30,中间两个数分别为30和30,则中位数是30,故选C.【答案点睛】本题考查了条形统计图、众数和中位数,这是基础知识要熟练掌握.2、C【答案解析】分析:本题可先列出出现的点数的情况,因为二次图象开口向上,要使图象与x轴有两个不同的交点,则最低点要小于0,即4n-m2<0,再把m、n的值一一代入检验,看是否满足.最后把满足的个数除以掷骰子可能出现的点数的总个数即可.解答:解:掷骰子有6×6=36种情况.根据题意有:4n-m2<0,因此满足的点有:n=1,m=3,4,5,6,n=2,m=3,4,5,6,n=3,m=4,5,6,n=4,m=5,6,n=5,m=5,6,n=6,m=5,6,共有17种,故概率为:17÷36=.故选C.点评:本题考查的是概率的公式和二次函数的图象问题.要注意画出图形再进行判断,找出满足条件的点.3、C【答案解析】测试卷分析:解分式方程得:等式的两边都乘以(x﹣2),得x=2(x﹣2)+m,解得x=4﹣m,且x=4﹣m≠2,已知关于x的分式方的解为正数,得m=1,m=3,故选C.考点:分式方程的解.4、B【答案解析】根据二次根式的运算法则即可求出答案.【题目详解】A选项:原式=3×2=6,故A不是无理数;B,故B是无理数;C6,故C不是无理数;D==12,故D不是无理数故选B.【答案点睛】考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.5、A【答案解析】∵AB∥CD,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E,∠C=40°,∴∠E=∠1﹣∠C=70°﹣40°=30°.故选A.6、B【答案解析】本题要根据过平面上的两点有且只有一条直线的性质解答.【题目详解】根据两点确定一条直线.故选:B.【答案点睛】本题考查了“两点确定一条直线”的公理,难度适中.7、C【答案解析】测试卷分析:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=12(360°﹣α)=180°﹣12α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣12α)=12α.故选C.考点:1.多边形内角与外角2.三角形内角和定理.8、B【答案解析】利用完全平方公式及平方差公式计算即可.【题目详解】解:A、原式=a2-6a+9,本选项错误;B、原式=a2-9,本选项正确;C、原式=a2-2ab+b2,本选项错误;D、原式=a2+2ab+b2,本选项错误,故选:B.【答案点睛】本题考查了平方差公式和完全平方公式,熟练掌握公式是解题的关键.9、A【答案解析】作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,由AAS证明△AOE≌△OCD,得出AE=OD,OE=CD,由点A的坐标是(﹣3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C(1,3),同理:△AOE≌△BAF,得出AE=BF=1,OE﹣BF=3﹣1=2,得出B(﹣2,4)即可.【题目详解】解:如图所示:作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,则∠AEO=∠ODC=∠BFA=90°,∴∠OAE+∠AOE=90°.∵四边形OABC是正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD.在△AOE和△OCD中,∵AEO ODCOAE CODOA CO∠∠∠∠=⎧⎪=⎨⎪=⎩,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD.∵点A的坐标是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3).同理:△AOE≌△BAF,∴AE=BF=1,OE﹣BF=3﹣1=2,∴B(﹣2,4).故选A.【答案点睛】本题考查了正方形的性质、全等三角形的判定与性质、坐标与图形性质;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.10、C【答案解析】在菱形ABCD中,OC=12AC,AC⊥BD,∴DE=OC,∵DE∥AC,∴四边形OCED是平行四边形,∵AC⊥BD,∴平行四边形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴△ABC为等边三角形,∴AD=AB=AC=2,OA=12AC=1,在矩形OCED中,由勾股定理得:2222213AD AO-=-在Rt△ACE中,由勾股定理得:22222(3)7AC CE+=+= C.点睛:本题考查了菱形的性质,先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明四边形OCED是矩形,再根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.11、D【答案解析】主视图是从前向后看,即可得图像.【题目详解】主视图是一个矩形和一个三角形构成.故选D.12、C【答案解析】测试卷解析:∵一元二次方程2x2+3x+m=0有两个相等的实数根,∴△=32-4×2m=9-8m=0,解得:m=98.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、120°【答案解析】根据图1中C品牌粽子1200个,在图2中占50%,求出三种品牌粽子的总个数,再求出B品牌粽子的个数,从而计算出B品牌粽子占粽子总数的比例,从而求出B品牌粽子在图2中所对应的圆心角的度数.【题目详解】解:∵三种品牌的粽子总数为1200÷50%=2400个,又∵A、C品牌的粽子分别有400个、1200个,∴B品牌的粽子有2400-400-1200=800个,则B品牌粽子在图2中所对应的圆心角的度数为360×8001360120 24003=⨯=︒.故答案为120°.【答案点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.14、②③【答案解析】(1)因为函数11yx=-的图象有两个分支,在每个分支上y随x的增大而减小,所以结论①错误;(2)由110x-=解得:1x=,∴11yx=-的图象与x轴的交点为(1,0),故②中结论正确;(3)由11yx=-可知当x>0时,y的值随x的增大而越来越接近-1,故③中结论正确;(4)因为在11yx=-中,当=-1x时,2y=-,故④中结论错误;综上所述,正确的结论是②③. 故答案为:②③.15、2n1 2-【答案解析】连接BE,∵在线段AC 同侧作正方形ABMN 及正方形BCEF ,∴BE ∥AM .∴△AME 与△AMB 同底等高.∴△AME 的面积=△AMB 的面积.∴当AB=n 时,△AME 的面积为2n 1S n 2=,当AB=n -1时,△AME 的面积为()2n 1S n 12=-. ∴当n≥2时,()()()22n n 11112n 1S S n n 1=n+n 1n n+1=2222---=---- 16、12x (x ﹣1)=1 【答案解析】【分析】赛制为单循环形式(每两队之间都赛一场),x 个球队比赛总场数为12x (x ﹣1),即可列方程. 【题目详解】有x 个队,每个队都要赛(x ﹣1)场,但两队之间只有一场比赛,由题意得:12x (x ﹣1)=1, 故答案为12x (x ﹣1)=1. 【答案点睛】本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.17、2【答案解析】.【题目详解】2(答案不唯一),故答案为:2(答案不唯一).【答案点睛】此题考查无理数的估算,解题的关键在于利用题中所给有理数的大小求符合题意的答案.18、12n 1+ 【答案解析】测试卷解析:如图,连接D 1E 1,设AD 1、BE 1交于点M ,∵AE 1:AC=1:(n+1),∴S △ABE1:S △ABC =1:(n+1),∴S △ABE1=11n +, ∵1111AB BM n D E ME n+==, ∴1121BM n BE n +=+, ∴S △ABM :S △ABE1=(n+1):(2n+1),∴S △ABM :11n +=(n+1):(2n+1), ∴S n =121n +. 故答案为121n +.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)45;(2)710. 【答案解析】(1)直接利用概率公式计算;(2)只会翻译西班牙语用A 表示,三名只会翻译英语的用B 表示,一名两种语言都会翻译用C 表示,画树状图展示所有20种等可能的结果数,找出该组能够翻译上述两种语言的结果数,然后根据概率公式求解.【题目详解】解:(1)从这五名翻译中随机挑选一名会翻译英语的概率=45; (2)只会翻译西班牙语用A 表示,三名只会翻译英语的用B 表示,一名两种语言都会翻译用C 表示画树状图为:共有20种等可能的结果数,其中该组能够翻译上述两种语言的结果数为14,所以该纽能够翻译上述两种语言的概率=147 2010=.【答案点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20、(1)AD2=AC•CD.(2)36°.【答案解析】测试卷分析:(1)通过计算得到=,再计算AC·CD,比较即可得到结论;(2)由,得到,即,从而得到△ABC∽△BDC,故有,从而得到BD=BC=AD,故∠A=∠ABD,∠ABC=∠C=∠BDC.设∠A=∠ABD=x,则∠BDC=2x,∠ABC=∠C=∠BDC=2x,由三角形内角和等于180°,解得:x=36°,从而得到结论.测试卷解析:(1)∵AD=BC=,∴==.∵AC=1,∴CD==,∴;(2)∵,∴,即,又∵∠C=∠C,∴△ABC∽△BDC,∴,又∵AB=AC,∴BD=BC=AD,∴∠A=∠ABD,∠ABC=∠C=∠BDC.设∠A=∠ABD=x,则∠BDC=∠A+∠ABD=2x,∴∠ABC=∠C=∠BDC=2x,∴∠A+∠ABC+∠C=x+2x+2x=180°,解得:x=36°,∴∠ABD=36°.考点:相似三角形的判定与性质.21、(1)112y x=+;(2)251544s t t=-+(0≤t≤3);(3)t=1或2时;四边形BCMN为平行四边形;t=1时,平行四边形BCMN是菱形,t=2时,平行四边形BCMN不是菱形,理由见解析.【答案解析】(1)由A、B在抛物线上,可求出A、B点的坐标,从而用待定系数法求出直线AB的函数关系式.(2)用t表示P、M、N 的坐标,由等式MN NP MP=-得到函数关系式.(3)由平行四边形对边相等的性质得到等式,求出t.再讨论邻边是否相等.【题目详解】解:(1)x=0时,y=1,∴点A的坐标为:(0,1),∵BC⊥x轴,垂足为点C(3,0),∴点B的横坐标为3,当x=3时,y=52, ∴点B 的坐标为(3,52), 设直线AB 的函数关系式为y=kx+b ,1532b k b =⎧⎪⎨+=⎪⎩, 解得,121k b ⎧=⎪⎨⎪=⎩,则直线AB 的函数关系式112y x =+ (2)当x=t 时,y=12t+1, ∴点M 的坐标为(t ,12t+1), 当x=t 时,2517144y t t =-++ ∴点N 的坐标为2517(,1)44t t t -++ 2251715151(1)44244s t t t t t =-++-+=-+ (0≤t≤3); (3)若四边形BCMN 为平行四边形,则有MN=BC , ∴25155=442t t -+, 解得t 1=1,t 2=2,∴当t=1或2时,四边形BCMN 为平行四边形,①当t=1时,MP=32,PC=2, ∴MC=52=MN ,此时四边形BCMN 为菱形, ②当t=2时,MP=2,PC=1,∴,此时四边形BCMN 不是菱形.【答案点睛】本题考查的是二次函数的性质、待定系数法求函数解析式、菱形的判定,正确求出二次函数的解析式、利用配方法把一般式化为顶点式、求出函数的最值是解题的关键,注意菱形的判定定理的灵活运用.22、-1.直接利用负指数幂的性质以及算术平方根的性质分别化简得出答案.【题目详解】原式=﹣1+1﹣3=﹣1.【答案点睛】本题主要考查了实数运算,正确化简各数是解题的关键.23、见解析【答案解析】作∠AOB的角平分线和线段MN的垂直平分线,它们的交点即是要求作的点P.【题目详解】解:①作∠AOB的平分线OE,②作线段MN的垂直平分线GH,GH交OE于点P.点P即为所求.【答案点睛】本题考查了角平分线和线段垂直平分线的尺规作法,熟练掌握角平分线和线段垂直平分线的的作图步骤是解答本题的关键.24、男生有12人,女生有21人.【答案解析】设该兴趣小组男生有x人,女生有y人,然后再根据:(男生的人数-1)×2-1=女生的人数,(女生的人数-1) ×35=男生的人数,列出方程组,再进行求解即可. 【题目详解】设该兴趣小组男生有x人,女生有y人,依题意得:2(1)13(1)5y xx y=--⎧⎪⎨=-⎪⎩,解得:1221 xy=⎧⎨=⎩.答:该兴趣小组男生有12人,女生有21人.本题主要考查了二元一次方程组的应用,解题的关键是明确题中各个量之间的关系,并找出等量关系列出方程组. 25、(1)y=﹣x2+x+3;D(1,);(2)P(3,).【答案解析】(1)设抛物线的解析式为y=a(x+2)(x-4),将点C(0,3)代入可求得a的值,将a的值代入可求得抛物线的解析式,配方可得顶点D的坐标;(2)画图,先根据点B和C的坐标确定直线BC的解析式,设P(m,-m2+m+3),则F(m,-m+3),表示PF的长,根据四边形DEFP为平行四边形,由DE=PF列方程可得m的值,从而得P的坐标.【题目详解】解:(1)设抛物线的解析式为y=a(x+2)(x﹣4),将点C(0,3)代入得:﹣8a=3,解得:a=﹣,y=﹣x2+x+3=﹣(x﹣1)2+,∴抛物线的解析式为y=﹣x2+x+3,且顶点D(1,);(2)∵B(4,0),C(0,3),∴BC的解析式为:y=﹣x+3,∵D(1,),当x=1时,y=﹣+3=,∴E(1,),∴DE=-=,设P(m,﹣m2+m+3),则F(m,﹣m+3),∵四边形DEFP是平行四边形,且DE∥FP,∴DE=FP,即(﹣m2+m+3)﹣(﹣m+3)=,解得:m1=1(舍),m2=3,∴P(3,).【答案点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数和二次函数的解析式,利用方程思想列等式求点的坐标,难度适中.26、(1)y=12(x﹣3)1﹣1;(1)11<x3+x4+x5<9+12.【答案解析】(1)利用二次函数解析式的顶点式求得结果即可;(1)由已知条件可知直线与图象“G”要有3个交点.分类讨论:分别求得平行于x轴的直线与图象“G”有1个交点、1个交点时x3+x4+x5的取值范围,易得直线与图象“G”要有3个交点时x3+x4+x5的取值范围.【题目详解】(1)有上述信息可知该函数图象的顶点坐标为:(3,﹣1)设二次函数表达式为:y=a(x﹣3)1﹣1.∵该图象过A(1,0)∴0=a(1﹣3)1﹣1,解得a=12.∴表达式为y=12(x﹣3)1﹣1(1)如图所示:由已知条件可知直线与图形“G”要有三个交点1当直线与x轴重合时,有1个交点,由二次函数的轴对称性可求x3+x4=6,∴x3+x4+x5>11,当直线过y=12(x﹣3)1﹣1的图象顶点时,有1个交点,由翻折可以得到翻折后的函数图象为y=﹣12(x﹣3)1+1,∴令12(x﹣3)1+1=﹣1时,解得x=3+12或x=3﹣12(舍去)∴x3+x4+x5<9+12.综上所述11<x3+x4+x5<9+12.【答案点睛】考查了二次函数综合题,涉及到待定系数法求二次函数解析式,抛物线的对称性质,二次函数图象的几何变换,直线与抛物线的交点等知识点,综合性较强,需要注意“数形结合”数学思想的应用.27、(3)证明见解析; (3)AB=3.【答案解析】(3)由等腰直角三角形得出AC=BC,CE=CD,∠ACB=∠ECD=90°,得出∠BCD=∠ACE,根据SAS推出△ACE≌△BCD即可;(3)求出AD=5,根据全等得出AE=BD=33,在Rt△AED中,由勾股定理求出DE即可.【题目详解】证明:(3)如图,∵△ACB与△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∵∠ACB=∠ECD=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,∴∠BCD=∠ACE,在△BCD和△ACE中,∵BC=AC,∠BCD=∠ACE,CD=CE,∴△BCD≌△ACE(SAS);(3)由(3)知△BCD≌△ACE,则∠DBC=∠EAC,AE=BD=33,∵∠CAD+∠DBC=90°,∴∠EAC+∠CAD=90°,即∠EAD=90°,∵AE=33,ED=33,∴AD=22=5,1312∴AB=AD+BD=33+5=3.【答案点睛】本题考查了全等三角形的判定与性质,也考查了等腰直角三角形的性质和勾股定理的应用. 考点:3.全等三角形的判定与性质;3.等腰直角三角形.。

2024年湖南省长沙市雅礼集团中考模拟数学试题(五)

2024年湖南省长沙市雅礼集团中考模拟数学试题(五)

2024年湖南省长沙市雅礼集团中考模拟数学试题(五)一、单选题1.2024-的倒数为( )A .2024B .12024C .2024-D .12024- 2.某市政府在2022年着力稳定宏观经济大盘,全市经济发展取得新成效,全年生产总值实现2502.7亿元.数据2502.7亿用科学记数法表示为( )A .82502.710⨯B .112.502710⨯C .102.502710⨯D .32.502710⨯ 3.如图是一个立体图形的三视图,该立体图形是( )A .三棱柱B .圆柱C .三棱锥D .圆锥4.下列函数中,函数值y 随x 的增大而减小的是( )A .6y x =B .6y x =-C .6y x =D .6y x =- 5.如图在BCD △中,A 为BD 边上一点,AE CD ∥,AC 平分BCD ∠,235∠=︒,60D ∠=︒,则B ∠=( )A .50︒B .45︒C .40︒D .25︒6.某镇的“脆红李”深受广大市民的喜爱,也是馈赠亲友的尚佳礼品,首批“脆红李”成熟后,当地某电商用12000元购进这种“脆红李”进行销售,面市后,线上订单猛增供不应求,该电商又用11000元购进第二批这种“脆红李”,由于更多“脆红李”成熟,单价比第一批每件便宜了5元,但数量比第一批多购进了40件,求购进的第一批“脆红李”的单价.设购进的第一批“脆红李”的单价为x 元/件,根据题意可列方程为( )A .1200011000405x x =-- B .1200011000405x x -=+ C .1200011000405x x +=+ D .1100012000405x x +=- 7.为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,如图是各时间段的小车与公交车的车流量,则下列说法正确的是( )A .小车的车流量比公交车的车流量稳定B .小车的车流量比公交车的方差较大C .小车与公交车车流量在同一时间段达到最小值D .小车与公交车车流量的变化趋势相同8.在四边形ABCD 中,,AD BC AB CD =∥.下列说法能使四边形ABCD 为矩形的是( ) A .AB CD ∥ B .AD BC = C .A B ∠=∠ D .A D ∠=∠9.()11,A x y ,()22,B x y 为反比例函数4k y x -=的图像上两点,当120x x <<时,有12y y <,则k 的取值范围是( )A .0k <B .0k >C .4k <D .4k >10.如图,四边形ABCD 是边长为12的正方形,曲线11112DA B C D A ⋅⋅⋅是由多段90︒的圆心角所对的弧组成的.其中,¼1DA 的圆心为A ,半径为AD ;¼11A B 的圆心为B ,半径为1BA ;¼11B C 的圆心为C ,半径为1CB ;¼11C D 的圆心为D ,半径为1DC ,…,按规律循环延伸曲线,¼20242024A B 则的长是( )A .4047π2B .2024πC .2025π2D .2023π二、填空题11.函数y =x 的取值范围是. 12.分解因式:29m n n -=.13.在平面直角坐标系xOy 中,若反比例函数()0k y k x=≠的图象经过点()1,2--A 和点()2,B m ,则AOB V 的面积为.14.已知12,x x 是方程2220x kx +-=的两个实数根,且()()122210x x --=,则k 的值为. 15.黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,这个比例被公认为是最能引起美感的比例,因此被称为黄金分割.如图,乐器上的一根弦长80cm AB =,两个端点A ,B 固定在乐器面板上,支撑点C 是靠近点B 的黄金分割点,支撑点D 是靠近点A 的黄金分割点,则支撑点C ,D 之间的距离为cm .(结果保留根号)16.在ABC V 中7,3,90AB BC C ==∠=︒,点D 在边AC 上,点E 在CA 延长线上,且CD DE =,如果B e 过点A ,E e 过点D ,若B e 与E e 有公共点,那么E e 半径r 的取值范围是.三、解答题17()042024π2cos30--+︒18.先化简,再求值;532224a a a a ⎛⎫ ⎪⎝-÷⎭+---,其中a 为满足04a <<的整数. 19.为了防洪需要,某地决定新建一座拦水坝,如图,拦水坝的横断面为梯形ABCD ,斜面坡度3:4i =是指坡面的铅直高度AF 与水平宽度BF 的比.已知斜坡CD 长度为20米,18C ∠=︒,求斜坡AB 的长.(结果精确到米)(参考数据:sin180.31,cos180.95,tan180.32︒≈︒≈︒≈)20.在深化教育综合改革、提升区域教育整体水平的进程中,某中学以兴趣小组为载体,加强社团建设,艺术活动学生参与面达100%,通过调查统计,八年级二班参加学校社团的情况(每位同学只能参加其中一项):A .剪纸社团,B .泥塑社团,C .陶笛社团,D .书法社团,E .合唱社团,并绘制了如下两幅不完整的统计图.(1)该班共有学生_________人,并把条形统计图补充完整;(2)扇形统计图中,m =___________,n =___________,参加剪纸社团对应的扇形圆心角为_______度;(3)小鹏和小兵参加了书法社团,由于参加书法社团几位同学都非常优秀,老师将从书法社团的学生中选取2人参加学校组织的书法大赛,请用“列表法”或“画树状图法”,求出恰好是小鹏和小兵参加比赛的概率.21.在如图所示的平面直角坐标系中,菱形OABC 的一边OC 在x 轴正半轴上,顶点A 的坐标为(,点D 是边OC 上的动点,过点D 作DE OB ⊥交边OA 于点E ,作DF OB ∥交边BC 于点F ,连接EF ,设OD x =,DEF V 的面积为S .(1)求线段DF 的长度y 关于x 的函数解析式,并写出x 的范围;(2)当x 取何值时,S 的值最大?请求出S 的最大值.22.中国是世界文明古国之一.数学是中国古代科学中一门重要学科,其发展源远流长,成就辉煌.《孙子算经》、《周髀算经》是我国古代较为普及的算书,许多问题浅显有趣.某书店的《孙子算经》单价是《周髀算经》单价的34,用600元购买《孙子算经》比购买《周髀算经》多买5本.(1)求《孙子算经》、《周髀算经》两种图书的单价分别为多少元?(2)国际数学节是为了纪念中国古代数学家祖冲之而设立的节日.为筹备“3.14数学节”活动,某校计划到该书店购买这两种图书共80本,且购买的《周髀算经》数量不少于《孙子算经》数量的一半.由于购买量大,书店打折优惠,两种图书均按八折出售,求两种图书分别购买多少本时费用最少?23.在数学活动课上,小明兴趣小组对二次函数的图象进行了深入的探究,如果将二次函数()20y ax bx c a =++≠图象上的点(),A x y 的横坐标不变,纵坐标变为A 点的横、纵坐标之和,就会得到的一个新的点()1,A x x y +,他们把这个点1A 定义为点A 的“简朴”点.他们发现:二次函数()20y ax bx c a =++≠所有简朴点构成的图象也是一条抛物线,于是把这条抛物线定义为()20y ax bx c a =++≠的“简朴曲线”.例如,二次函数21y x x =++的“简朴曲线”就是22121y x x x x x =+++=++,请按照定义完成:(1)点()1,2P 的“简朴”点是________;(2)如果抛物线()2730y ax x a =-+≠经过点()1,3M -,求该抛物线的“简朴曲线”;(3)已知抛物线2y x bx c =++图象上的点(),B x y 的“简朴点”是()11,1B -,若该抛物线的“简朴曲线”的顶点坐标为(),m n ,当03c ≤≤时,求n 的取值范围.24.如图(1)所示,已知在ABC V 中,AB AC =,O 在边AB 上,点F 为边OB 中点,为以O 为圆心,BO 为半径的圆分别交CB ,AC 于点D ,E ,联结EF 交OD 于点G .(1)如果OG DG =,求证:四边形CEGD 为平行四边形;(2)如图(2)所示,联结OE ,如果90,,4BAC OFE DOE AO ∠=︒∠=∠=,求边OB 的长;(3)联结BG ,如果OBG V 是以OB 为腰的等腰三角形,且AO OF =,求OG OD的值. 25.如图1所示,已知抛物线212y x bx c =-++与x 轴交于A ,B 4,0 两点,与y 轴交于点()0,2C .点P 为第一象限抛物线上的点,连接CA ,CB ,PB ,PC .(1)填空:b =______,c =______,tan ABC ∠=______;(2)如图1所示,当2PCB OCA ∠=∠时,求点P 的坐标;(3)如图2所示,点D 在y 轴负半轴上,OD OB =,点Q 为抛物线上一点,90QBD ∠=︒.点E ,F 分别为BDQ △的边DQ ,DB 上的动点,且QE DF =,记BE QF +的最小值为m . ①求m 的值;②设PCB V 的面积为S ,若214S m k =-,请直接写出k 的取值范围.。

2024年湖南省长沙市雅礼实验中学中考二模数学试题(含答案)

2024年湖南省长沙市雅礼实验中学中考二模数学试题(含答案)

2024年长沙市雅礼实验中学初三二模试卷数学科目考生注意:本试卷共3道大题,25道小题,满分120分,时量120分钟一、选择题(本大题共10个小题,每小题3分,共30分)1.下列各数为无理数的是()A.3 B.3.14 C.D2.为弘扬优秀传统文化,继承和发扬民间剪纸艺术,某中学开展了“剪纸进校园非遗文化共传承”的项目式学习,下列剪纸作品的图案既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列运算正确的是()A B.C.D.4.中科院国家天文台基于我国郭守敬望远镜和美国APOGEE巡天的观测数据,精确测量了距离银河系中心1.6万光年至8.1万光年范围内的恒星运动速度,并估算出银河系的“体重”约为8050亿个太阳质量.其中数据“8050亿”用科学记数法可表示为()A.B.C.D.5.将直尺和三角板进行如图摆放,,则的度数为()A.B.C.D.6.不等式组的解集表示在数轴上正确的是()A.B.C.D.7.二十四节气是中华民族农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明”.小鹏购买了四张形状、大小、质地均相同的“二十四节气”主题邮票,正面分别印有“立春”“立夏”“秋分”“大暑”四种不同的图案,背面576=437a b ab+=22(1)1x x+=+326x x x⋅=980510⨯118.510⨯108.0510⨯118.0510⨯142∠=︒2∠42︒45︒48︒52︒15112x xx+<-+⎧⎪⎨-≥⎪⎩完全相同,他将四张邮票洗匀后正面朝下放在桌面上.从中随机抽取两张邮票,恰好抽到“立春”和“立夏”的概率是()A.B .C .D .8.若反比例函数的图象在第二、四象限内,则m 的取值范围是( )A .B .C .D .9.如图,已知四边形ABCD 内接于,,则的度数为()A .B .C .D .10.某校ABCDE 五名学生参加投篮比赛,其中有3人进入了决赛.A 说:“如果我进入,那么B 也进入.”B 说:“如果我进入,那么C 也进入.”C 说:“如果我进入,那么D 也进入.”D 说:“如果我进入,那么E 也进入,”大家都没有说错,则进入决赛的三个人是( )A .A ,B ,CB .B ,C ,DC .C ,D ,ED .D ,E ,A二、填空题(本大题共6个小题,每小题3分,共18分)11有意义,则x 的取值范围是________.12.在平面直角坐标系中,点A (,3)到y 轴的距离为________.13.如图的弦,半径ON 交AB 于点M ,M 是AB 的中点,且,则MN 的长为________.14.若a 是一元二次方程的一个根,则的值为________.15.将圆心角为,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆半径为________.16.如图,在中,,.用直尺和圆规在边AB 上确定一点D .则的度数为________.131416122m y x+=2m >-2m <-2m >2m <O 110BDC ∠=︒BOC ∠110︒120︒70︒140︒4-O 8AB =3OM =2230x x +-=224a a +90︒ABC △45A ∠=︒30B ∠=︒ACD ∠三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题8分,第22、23题每小题9分,第24、25题每小题10分,共72分)17.计算:.18.先化简,再求值:,其中.19.风力发电作为一种清洁能源、可再生能源,已成为我国重要的能源结构之一.某研学小组到风力发电厂参观学习,发现一如图所示的风力发电机,在A 处测得,向前120米到达B 处,测得,其中A ,B ,C 在同一条直线上,点D 为发电机顶端处.若风轮叶片的长度为30米,则风力)20.为了解学生的课外阅读情况,某校随机抽取了部分学生进行调查,对他们每周的课外阅读时间x (单位:小时)进行分组整理并绘制了如图所示的频数分布直方图和扇形图:(1)请补全频数分布直方图;(2)扇形图中m 的值为________;D 等级所对应的扇形圆心角度数为________;(3)若该校总共有2000名学生,每周的课外阅读时间不多于4小时的学生大约有多少人.21.如图,D ,E 为中GF 边上两点,过D 作交CE 的延长线于点A ,.(1)求证:;(2)若,,,求CF 的长.01122024)3tan 30(3--π-+︒-2(2)4(1)(1)3m m m m m +-+-+12m =30DAC ∠=︒60DBC ∠=︒ 1.73=GCF △AB CF ∥AE CE =ADE CFE ≌△△3BG =5BC =2BD =22.2023-2024赛季欧洲冠军杯决赛于6月2日在伦敦温布利大球场拉下帷幕,赛前某体育运动专卖店决定采购某款运动T 恤,最初用6000元购进一批该款T 恤,由于市场供不应求,该专卖店又用15000元购进了第二批该款T 恤,所购数量是第一批购进量的2倍,由于供货紧张,每件价格比第一次贵10元.(1)该专卖店购进第一批、第二批T 恤衫每件的进价分别是多少元?(2)如果两批T 恤衫按相同的标价销售,要使两批T 恤衫全部售完后利润不低于16800元,那么每件T 恤衫的标价至少是多少元?23.如图,平行四边形ABCD 中,AE ,CF 分别是,的平分线,且E 、F 分别在边BC ,AD 上,.(1)求证:四边形AECF 是菱形;(2)若,,求平行四边形ABCD 的面积.24.我们不妨约定:在平面直角坐标系中,如果函数图象上至少存在一个点的纵坐标是横坐标的3倍,则把该函数称之为“开心函数”,其图象上纵坐标是横坐标3倍的点叫做“开心点”.(1)判断以下函数上是否是“开心函数”,若是,则打√,若不是,则打“×”;①________ ②________ ③________(2)关于x 的函数(a 为常数)是“开心函数”吗?如果是,指出有多少个“开心点”,如果不是,请说明理由;(3)若抛物线(a 、b 、c 为常数),与x 轴分别交于A (,0),B (,0)两点,其中;与y 轴交于C 点(0,c ),抛物线顶点为P 点,点M 为第三象限抛物线上一动点,且点M 的横坐标为t ,连接AC ,BM 交于N 点,连接BC ,CM ,记,,若满足:①抛物线顶点P 为“开心点”;②;③是等边三角形;若,m 的值.25.如图,点C 在AB 为直径的圆O 上,连接AC ,BC ,的角平分线交AB 于点E ,交圆O 于点P .G是上一点,且,连接AG 并延长交CB 的延长线于点F ,连接EG .(1)求证:;(2)若,,求的面积.BAD ∠BCD ∠AE AF =60ABC ∠=︒4AB =y x =1y x=-2y x =2(4)24ay ax a x =++++2y ax bx c =++1x 2x 12x x <1MCN S S =△2BCN S S =△20b a -=ABP △625m t m ≤≤+12S S ACB ∠ BPPG BC =AC CF =6BC =8AC =AEG △(3)设,,求y 关于x 的函数表达式.2024年长沙市雅礼实验中学初三二模数学答案一、选择题题号12345678910答案DCADCBCBDC二、填空题11. 12.413.214.615.116.三、解答题17.解:原式18.解:原式当时,原式19.解:由题意得:,在中,,,∴,在中,∴∴,∵风轮叶片的长度为30米,∴叶片顶端离地面的最小距离米,APx BE=tan AGE y ∠=1x ≥-75︒(2133=++-0=22224(1)3m m m m=+--+24m =+12m =5=DC AC ⊥Rt DBC △60DBC ∠=︒BC x =tan 60CD BC =⋅︒=Rt ACD △30DAC ∠=︒3tan 30CDAC x==︒2120AB AC BC x =-==60BC =CD =3073.8≈答:叶片顶端离地面的最小距离约为73.8米.20.解:(1)∵,∴本次调查共抽取了100名学生,,∴D 组有25人,补全频数分布直方图如下:(2)∵,∴,D 等级所对应的扇形圆心角度数为(3)人答:每周的课外阅读时间不多于4小时的学生大约有620人;21.(1)证明:∵,∴,,在和中,,∴(AAS ).(2)解:∵,∴,∴,∵,,1010%100÷=100102140425----=4040%100=40m =2536090100⨯︒=︒10212000620100+⨯=AB CF ∥F ADE ∠=∠A ECF ∠=∠ADE △CFE △ADE CFE EAD ECF AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩ADE CFE ≌△△AB CF ∥GBD GCF ∽△△GB BDGC CF=3BG =5BC =2BD =∴,∴,∴.22.解:(1)设该店铺购进第一批T 恤衫每件的进价是x 元,则购进第二批T 恤衫每件的进价是元,依题意有,解得,经检验,是原方程的解,且符合题意,.该店铺购进第一批T 恤衫每件的进价是40元,购进第二批T 恤衫每件的进价是50元;(2)件,件,设每件T 恤衫的标价是a 元,依题意有:,解得.答:每件T 恤衫的标价至少是84元.23.(1)证明:∵四边形ABCD 是平行四边形,∴,,∵AE 、CF 分别是、的平分线,∴,,∴,∵,∴,∴,∴,∴四边形AECF 是平行四边形,∵,∴四边形AECF 是菱形;(2)解:连接AC ,∵四边形ABCD 是平行四边形,∴,8CG =4210CF =328CF=163CF =(10)x +600015000210x x ⨯=+40x =40x =10401050x +=+=600040150÷=1500050300÷=150(40)300(50)16800a a -+-≥84a =BAD BCD ∠=∠AD BC ∥BAD ∠BCD ∠12BAE DAE BAD ∠=∠=∠12BCF DCF BCD ∠=∠=∠DAE BCF ∠=∠AD BC ∥DAE AEB ∠=∠BCF AEB ∠=∠AE FC ∥AE AF =AD BC ∥∴,∵AE 平分,∴,∴,∴,∵,∴是等边三角形,∴,BE 边上的高为由(1)知四边形AECF 是菱形,∴,∴平行四边形ABCD 的面积为24.解:(1)√,×,√;(2)联立,得到:,整理,得:,第一种情况:当时,,,所以函数是开心函数,有1个开心点;第二种情况:当时,,∴时,;时,;时,综上所述:当或时,函数是开心函数,有1个“开心点”;当且时,函数是开心函数,有2个“开心点”;当时,函数不是开心函数(3)∵,∴,∴抛物线的对称轴为:,∴顶点的横坐标为,∵抛物线顶点为“开心点”,∴顶点的纵坐标为:,∴二次函数的解析式为:,∵三角形ABP 是等边三角形,∴,∴,DAE AEB ∠=∠BAD ∠BAE DAE ∠=∠BAE AEB ∠=∠AB EB =60ABC ∠=︒ABE △4AB AE BE ===h =4AE CE ==8BC=8S BC h =⋅=⨯=2(4)24ay ax a x =++++3y x =23(4)24ax ax a x =++++2(1)204aax a x ++++=0a =20x +=2x =-0a ≠2(1)4(2)614aa a a ∆=+-+=-+0∆>16a <0∆=16a =0∆<16a >0a =16a =16a <0a ≠16a >20b a -=2b a =12bx a=-=-1-133-⨯=-22(1)323y a x ax ax a =+-=++-2(2)4(3)1212a a a a ∆=--==1a =∴二次函数的解析式为:,当时,;当时,,解得:∴A (,0),B (0),C (0,),设直线AC 的解析式为:(),则:,解得:,∴;过点M 作x 轴的垂线交AC 于点D ,过点B 作x 轴的垂线交AC 于点E ,∵点M (t ,),则D (t ,),E ()∴,.∴,即∴是关于t 的二次函数,且对称轴:又∵,∴随t 的增大而减小,∴当时,,解得或(舍去).∴222y x x =+-0x =2y =-0y =2220x x +-=11x =-21x =-1-1-2-y kx b =+0k ≠0(12k b b ⎧=--+⎪⎨-=⎪⎩12k b ⎧=-⎪⎨=-⎪⎩(12y x =-222t t +-(12t --1-+62(1MD t t =--+6BE =-12S MN MD S BN BE ==12S S =12S S t =6225m m +≥65m ≥-12S S t m =12S S =1m =-m =1m =-25.(1)证明:∵AB 是的直径,∴,∵CP 平分,∴,∵,∴,∵,∴,∴,∴,∴,∴,∴;(2)解:①如图,连接PB ,∵AB 是的直径,∴,,∴,∵CP 平分,∴,∴∵,,∴,∴,∴连接BG ,AG 与CP 交于HO 90ACB ∠=︒ACB ∠1452PCA PCB ACB ∠=∠=∠=︒ PBPB =45PAB PAB ∠=∠=︒PG BC = PGBC =PAG BAC ∠=∠PAG BAG BAC BAG ∠+∠=∠+∠45CAG PAB ∠=∠=︒F CAG ∠=∠AC CF =O 90ACB APB ∠=∠=︒8AC =6BC =10AB =AP =ACB ∠43AE AC EB BC ==44077AE AB ==CAB PAF ∠=∠APG ABC ∠=∠PAG EAC ∽△△AG APAC AE=AG =∵AB 是的直径,∴,,,∵,,∴,∴,;(3)解:如图,连接PB ,PG ,∵CP 平分,∴,∴,∵AB 是的直径,∴,∴,∵,∴,∴,∵CP 平分,∴,∴,O90BGF AGB ∠=∠=︒2BF CF BC =-=BG =EAH BAG ∠=∠90AHC AGB ∠=∠=︒AEH ABG ∽△△AE EH AB BG=EH =11422S EH AG =⋅==ACB ∠AP BP =AP BP =O 90APB ∠=︒AB =AP x BE=AP BE x =⋅1AE AB BE BE BE -====-AP BE x AE AB BE ⋅====-ACB ∠1AC AE CB BE==-1)AC BC =-不妨设,则,,∴,由(2)知:∴,∴,∴,∴,∴∴.2BC PG a ==PH GH==1)2AC a =-⋅1)(2AH CH AC x a ===⋅-=AEC APG ∽△△PG AP CE AE=2aCE =CE =(2EH CH CE x a =-=-=tan EH y AGE GH =∠===。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中学自主招生数学试卷一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.(3分)﹣3的相反数是()A.3B.﹣3C.±3D.2.(3分)下列计算正确的是()A.2a+3b=5ab B.=±6C.a2b÷2ab=a2D.(2ab2)3=8a3b63.(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.4.(3分)一组数据1,2,3,3,4,5.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差5.(3分)如图,AB是⊙O的直径,直线P A与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20°B.25°C.40°D.50°6.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2C.D.7.(3分)已知实数x、y满足:x﹣y﹣3=0和2y3+y﹣6=0.则﹣y2的值为()A.0B.C.1D.8.(3分)如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,当y<0时x的取值范围是()A.x>2B.0<x<4C.﹣1<x<4D.x<﹣1 或x>4二、填空题(本大题共10小题,每小题3分,共30分.)9.(3分)“五一”小长假期间,扬州市区8家主要封闭式景区共接待游客528600人次,同比增长20.56%.用科学记数法表示528600为.10.(3分)若有意义,则x的取值范围是.11.(3分)分解因式:mx2﹣4m=.12.(3分)若方程x2+kx+9=0有两个相等的实数根,则k=.13.(3分)一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为cm2.14.(3分)如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是.15.(3分)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为.16.(3分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.17.(3分)如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线y=的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn=.18.(3分)如图,⊙O的直径AB=8,C为弧AB的中点,P为弧BC上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,连接BD,则BD的最小值是.三、解答题(本大题有10小题,共96分.)19.(8分)(1)计算:|﹣3|﹣tan30°+20180﹣()﹣1;(2)化简:(1+a)(1﹣a)+a(a﹣2).20.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.21.(8分)若关于x的分式方程=1的解是正数,求m的取值范围.22.(8分)小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n个路口,则小明在每个路口都没有遇到红灯的概率是.23.(10分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6m的B处安置高为1.5m的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(结果保留根号)24.(10分)如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且ED⊥DB,FB ⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.25.(10分)观察下表:我们把某一格中所有字母相加得到的多项式称为特征多项式,例如:第1格的“特征多项式”为x+4y.回答下列问题:(1)第4格的“特征多项式”为,第n格的“特征多项式”为;(2)若第1格的“特征多项式”的值为2,第2格的“特征多项式”的值为﹣6.①求x,y的值;②在①的条件下,第n格的“特征多项式的值”随着n的变化而变化,求“特征多项式的值”的最大值及此时n值.26.如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,E为BC的中点,连接DE.(1)求证:DE为⊙O的切线;(2)如果⊙O的半径为3,ED=4,延长EO交⊙O于F,连接DF,与OA交于点G,求OG的长.27.(12分)在平面直角坐标系中,点O为原点,点A的坐标为(﹣8,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=45°,OE=OA,求直线EF的函数表达式;(2)如图3,若α为锐角,且tanα=,当EA⊥x轴时,正方形对角线EG与OF相交于点M,求线段AM的长;(3)当正方形OEFG的顶点F落在y轴正半轴上时,直线AE与直线FG相交于点P,是否存在△OEP的两边之比为:1?若存在,求出点P的坐标;若不存在,试说明理由.28.如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△P AD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.参考答案与试题解析一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是﹣(﹣3)=3.故选:A.2.【分析】直接利用合并同类项法则以及算术平方根、整式的除法运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、2a+3b无法计算,故此选项错误;B、=6,故此选项错误;C、a2b÷2ab=a,故此选项错误;D、(2ab2)3=8a3b6,正确.故选:D.3.【分析】俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中.【解答】解:从上面看,图2的俯视图是正方形,有一条对角线.故选:C.4.【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:A、原来数据的平均数是3,添加数字3后平均数仍为3,故A与要求不符;B、原来数据的众数是3,添加数字3后众数仍为3,故B与要求不符;C、原来数据的中位数是3,添加数字3后中位数仍为3,故C与要求不符;D、原来数据的方差==,添加数字3后的方差==,故方差发生了变化.故选:D.5.【分析】利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠P AO的度数,然后利用圆周角定理来求∠ABC的度数.【解答】解:如图,∵AB是⊙O的直径,直线P A与⊙O相切于点A,∴∠P AO=90°.又∵∠P=40°,∴∠POA=50°,∴∠ABC=∠POA=25°.故选:B.6.【分析】求出AB=3,由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴==.故选:A.7.【分析】根据x﹣y﹣3=0和2y3+y﹣6=0,可以得到x与y的关系和y2﹣的值,从而可以求得所求式子的值.【解答】解:∵x﹣y﹣3=0和2y3+y﹣6=0,∴x=y+3,y2+﹣=0,∴y2﹣=﹣∴﹣y2==1+=1﹣(﹣)=1+=,故选:D.8.【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【解答】解:∵y3=(kx+b)(mx+n),y<0,∴(kx+b)(mx+n)<0,∵y1=kx+b,y2=mx+n,即y1•y2<0,有以下两种情况:(1)当y1>0,y2<0时,此时,x<﹣1;(2)当y1<0,y2>0时,此时,x>4,故选:D.二、填空题(本大题共10小题,每小题3分,共30分.)9.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:528600=5.286×105,故答案为:5.286×10510.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意,得:x﹣2≠0,解得:x≠2.故答案是:x≠2.11.【分析】首先提取公因式m,进而利用平方差公式分解因式即可.【解答】解:mx2﹣4m=m(x2﹣4)=m(x+2)(x﹣2).故答案为:m(x+2)(x﹣2).12.【分析】根据根判别式△=b2﹣4ac的意义得到△=0,即k2﹣4×1×9=0,然后解方程即可.【解答】解:∵方程x2+kx+9=0有两个相等的实数根,∴△=0,即k2﹣4•1•9=0,解得k=±6.故答案为±6.13.【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.【解答】解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=2π•5=10π,∴圆锥的侧面积=•10π•2=10π(cm2).故答案为:10π.14.【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△ABC=4,而S△OAB=|k|,∴|k|=4,∵k<0,∴k=﹣8.故答案为:﹣8.15.【分析】根据平行线的性质可得出∠3=∠4+∠5,结合对顶角相等可得出∠3=∠1+∠2,代入∠1=30°、∠3=45°,即可求出∠2的度数.【解答】解:给各角标上序号,如图所示.∵∠3=∠4+∠5,∠1=∠4,∠2=∠5,∴∠3=∠1+∠2.又∵∠1=30°,∠3=45°,∴∠2=15°.故答案为:15°.16.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.17.【分析】依据题意可得,A,C之间的水平距离为6,点Q与点P的水平距离为7,A,B之间的水平距离为2,双曲线解析式为y=,依据点P'、点B离x轴的距离相同,都为6,即点P的纵坐标m=6,点Q“、点Q'离x轴的距离相同,都为4,即点Q的纵坐标n=4,即可得到mn的值.【解答】解:由图可得,A,C之间的水平距离为6,2018÷6=336…2,由抛物线y=﹣x2+4x+2可得,顶点B(2,6),即A,B之间的水平距离为2,∴点P'、点B离x轴的距离相同,都为6,即点P的纵坐标m=6,由抛物线解析式可得AO=2,即点C的纵坐标为2,∴C(6,2),∴k=2×6=12,∴双曲线解析式为y=,2025﹣2018=7,故点Q与点P的水平距离为7,∵点P'、Q“之间的水平距离=(2+7)﹣(2+6)=1,∴点Q“的横坐标=2+1=3,∴在y=中,令x=3,则y=4,∴点Q“、点Q'离x轴的距离相同,都为4,即点Q的纵坐标n=4,∴mn=6×4=24,故答案为:24.18.【分析】以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,依据∠ADC=135°,可得点D的运动轨迹为以Q为圆心,AQ为半径的,依据△ACQ中,AQ=4,【解答】解:如图所示,以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,连接AC,BC,BQ.∵⊙O的直径为AB,C为的中点,∴∠APC=45°,又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴点D的运动轨迹为以Q为圆心,AQ为半径的,又∵AB=8,C为的中点,∴△ACB是等腰直角三角形,∴AC=4,∴△ACQ中,AQ=4,∴BQ==4,∵BD≥BQ﹣DQ,∴BD的最小值为4﹣4.故答案为:4﹣4.三、解答题(本大题有10小题,共96分.)19.【分析】(1)根据实数的混合计算解答即可;(2)根据整式的混合计算解答即可.【解答】解:(1)原式==﹣1.(2)原式=1﹣a2+a2﹣2a=1﹣2a20.【分析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数;(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数;【解答】解:(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,故答案为:200;(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示:(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.21.【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程的解为正数确定出m的范围即可.【解答】解:去分母得:1+m=x﹣2,解得:x=m+3,由分式方程的解为正数,得到m+3>0,且m+3≠2,解得:m>﹣3且m≠﹣1.22.【分析】(1)画树状图列出所有等可能结果,从中找到到第二个路口时第一次遇到红灯的结果数,根据概率公式计算可得.(2)根据在第1个路口没有遇到红灯的概率为,到第2个路口还没有遇到红灯的概率为=()2可得答案.【解答】解:(1)画树状图如下:由树状图知,共有9种等可能结果,其中到第二个路口时第一次遇到红灯的结果数为2,所以到第二个路口时第一次遇到红灯的概率为;(2)∵在第1个路口没有遇到红灯的概率为,到第2个路口还没有遇到红灯的概率为=()2,∴到第n个路口都没有遇到红灯的概率为()n,故答案为:()n.23.【分析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.【解答】解:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×=2(米),∵DH=1.5,∴CD=2 +1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==(4+)(米),答:拉线CE的长约为(4+)米.24.【分析】(1)由四边形ABCD为平行四边形,利用平行四边形的性质得到对边平行且相等,对角相等,再由垂直的定义得到一对直角相等,利用等式的性质得到一对角相等,利用ASA即可得证;(2)过D作DH垂直于AB,在直角三角形ADH中,利用30度所对的直角边等于斜边的一半得到AD=2DH,在直角三角形DEB中,利用斜边上的中线等于斜边的一半得到EB=2DH,易得四边形EBFD为平行四边形,利用平行四边形的对边相等得到EB=DF,等量代换即可得证.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,AD∥CB,AB∥CD,∴∠ADB=∠CBD,∵ED⊥DB,FB⊥BD,∴∠EDB=∠FBD=90°,∴∠ADE=∠CBF,在△AED和△CFB中,,∴△AED≌△CFB(ASA);(2)作DH⊥AB,垂足为H,在Rt△ADH中,∠A=30°,∴AD=2DH,在Rt△DEB中,∠DEB=45°,∴EB=2DH,∵ED⊥DB,FB⊥BD.∴DE∥BF,∵AB∥CD,∴四边形EBFD为平行四边形,∴FD=EB,∴DA=DF.25.【分析】(1)利用已知表格中x,y个数变化规律得出第2格的“特征多项式”以及第n 格的“特征多项式”;(2)①利用(1)中所求得出关于x,y的等式组成方程组求出答案;②利用二次函数最值求法得出答案.【解答】解:(1)由表格中数据可得:第4格的“特征多项式”为:16x+25y,第n格的“特征多项式”为:n2x+(n+1)2y(n为正整数);故答案为:16x+25y,n2x+(n+1)2y(n为正整数);(2)①由题意可得:,解得:答:x的值为﹣6,y的值为2.②设W=n2x+(n+1)2y当x=﹣6,y=2时:W=﹣6n2+2(n+1)2=,此函数开口向下,对称轴为,∴当时,W随n的增大而减小,又∵n为正整数∴当n=1时,W有最大值,W最大=﹣4×(1﹣)2+3=2,即:第1格的特征多项式的值有最大值,最大值为2.26.【分析】(1)首先连接OD,由BE=EC,CO=OA,得出OE∥AB,根据平行线与等腰三角形的性质,易证得△COE≌△DOE,即可得∠ODE=∠OCE=90°,则可证得ED 为⊙O的切线;(2)只要证明OE∥AB,推出,由此构建方程即可解决问题;【解答】解:(1)证明:连接OD,∵E为BC的中点,AC为直径,∴BE=EC,CO=OA,∴OE∥AB,∴∠COE=∠CAD,∠EOD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠COE=∠DOE,在△COE和△DOE中,,∴△COE≌△DOE(SAS),∴∠ODE=∠OCE=90°,∴ED⊥OD,∴ED是圆O的切线;(2)连接CD;由题意EC、ED是⊙O的切线,∴EC=ED,∵OC=OD,∴OE⊥CD,∵AC是直径,∴∠CDA=90°,∴CD⊥AB,∴OE∥AB,∴,在Rt△ECO中,EO==5,∵∠EOC=∠CAD,∴cos∠CAD=cos∠EOC=,∴AD=,设OG=x,则有,∴x=,∴OG=.27.【分析】(1)求出E、F两点坐标,利用待定系数法即可解决问题;(2)如图3中,作MH⊥OA于H,MK⊥AE交AE的延长线于K.只要证明四边形AOMK 是正方形,证明AE+OA=2AH即可解决问题;(3)如图2中,设F(0,2a),则E(﹣a,a).构建一次函数利用方程组求出交点P 坐标,分三种情形讨论求解即可;【解答】解:(1)∵OE=OA=8,α=45°,∴E(﹣4,4),F(0,8),设直线EF的解析式为y=kx+b,则有,解得∴直线EF的解析式为y=x+8.(2)如图3中,作MH⊥OA于H,MK⊥AE交AE的延长线于K.在Rt△AEO中,tan∠AOE==,OA=8,∴AE=4,∵四边形EOGF是正方形,∴∠EMO=90°,∵∠EAO=∠EMO=90°,∴E、A、O、M四点共圆,∴∠EAM=∠EOM=45°,∴∠MAK=∠MAH=45°,∵MK⊥AE,MH⊥OA,∴MK=MH,四边形KAOM是正方形,∵EM=OM,∴△MKE≌△MHO,∴EK=OH,∴AK+AH=2AH=AE+EK+OA﹣OH=12,∴AH=6,∴AM=AH=6.(3)如图2中,设F(0,2a),则E(﹣a,a).∵A(﹣8,0),E(﹣a,a),∴直线AP的解析式为y=x+,直线FG的解析式为y=﹣x+2a,由,解得,∴P(,).①当PO=OE时,∴PO2=2OE2,则有:+=4a2,解得a=4或﹣4(舍弃)或0(舍弃),此时P(0,8).②当PO=PE时,则有:+=2[(+a)2+(﹣a)2],解得:a=4或12,此时P(0,8)或(﹣24,48),③当PE=EO时,[(+a)2+(﹣a)2]=4a2,解得a=8或0(舍弃),∴P(﹣8,24)综上所述,满足条件的点P的坐标为(0,8),(﹣8,24),(﹣24,48).28.【分析】(1)由点C的坐标为(0,3),可知﹣9a=3,故此可求得a的值,然后令y=0得到关于x的方程,解关于x的方程可得到点A和点B的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得∠CAO=60°,依据AE为∠BAC的角平分线可求得∠DAO=30°,然后利用特殊锐角三角函数值可求得OD=1,则可得到点D的坐标.设点P的坐标为(,a).依据两点的距离公式可求得AD、AP、DP的长,然后分为AD =P A、AD=DP、AP=DP三种情况列方程求解即可;(3)设直线MN的解析式为y=kx+1,接下来求得点M和点N的横坐标,于是可得到AN的长,然后利用特殊锐角三角函数值可求得AM的长,最后将AM和AN的长代入化简即可.【解答】解:(1)∵C(0,3).∴﹣9a=3,解得:a=﹣.令y=0得:ax2﹣2 ax﹣9a=0,∵a≠0,∴x2﹣2 x﹣9=0,解得:x=﹣或x=3.∴点A的坐标为(﹣,0),B(3,0).∴抛物线的对称轴为x=.(2)∵OA=,OC=3,∴tan∠CAO=,∴∠CAO=60°.∵AE为∠BAC的平分线,∴∠DAO=30°.∴DO=AO=1.∴点D的坐标为(0,1)设点P的坐标为(,a).依据两点间的距离公式可知:AD2=4,AP2=12+a2,DP2=3+(a﹣1)2.当AD=P A时,4=12+a2,方程无解.当AD=DP时,4=3+(a﹣1)2,解得a=0或a=2(舍去),∴点P的坐标为(,0).当AP=DP时,12+a2=3+(a﹣1)2,解得a=﹣4.∴点P的坐标为(,﹣4).综上所述,点P的坐标为(,0)或(,﹣4).(3)设直线AC的解析式为y=mx+3,将点A的坐标代入得:﹣m+3=0,解得:m =,∴直线AC的解析式为y=x+3.设直线MN的解析式为y=kx+1.把y=0代入y=kx+1得:kx+1=0,解得:x=﹣,∴点N的坐标为(﹣,0).∴AN=﹣+=.将y=x+3与y=kx+1联立解得:x=.∴点M的横坐标为.过点M作MG⊥x轴,垂足为G.则AG=+.∵∠MAG=60°,∠AGM=90°,∴AM=2AG=+2=.∴+=+=+===.中学自主招生数学试卷一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.(3分)﹣3的相反数是()A.3B.﹣3C.±3D.2.(3分)下列计算正确的是()A.2a+3b=5ab B.=±6C.a2b÷2ab=a2D.(2ab2)3=8a3b63.(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.4.(3分)一组数据1,2,3,3,4,5.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差5.(3分)如图,AB是⊙O的直径,直线P A与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20°B.25°C.40°D.50°6.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2C.D.7.(3分)已知实数x、y满足:x﹣y﹣3=0和2y3+y﹣6=0.则﹣y2的值为()A.0B.C.1D.8.(3分)如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,当y<0时x的取值范围是()A.x>2B.0<x<4C.﹣1<x<4D.x<﹣1 或x>4二、填空题(本大题共10小题,每小题3分,共30分.)9.(3分)“五一”小长假期间,扬州市区8家主要封闭式景区共接待游客528600人次,同比增长20.56%.用科学记数法表示528600为.10.(3分)若有意义,则x的取值范围是.11.(3分)分解因式:mx2﹣4m=.12.(3分)若方程x2+kx+9=0有两个相等的实数根,则k=.13.(3分)一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为cm2.14.(3分)如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是.15.(3分)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为.16.(3分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.17.(3分)如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线y=的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn=.18.(3分)如图,⊙O的直径AB=8,C为弧AB的中点,P为弧BC上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,连接BD,则BD的最小值是.三、解答题(本大题有10小题,共96分.)19.(8分)(1)计算:|﹣3|﹣tan30°+20180﹣()﹣1;(2)化简:(1+a)(1﹣a)+a(a﹣2).20.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.21.(8分)若关于x的分式方程=1的解是正数,求m的取值范围.22.(8分)小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n个路口,则小明在每个路口都没有遇到红灯的概率是.23.(10分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6m的B处安置高为1.5m的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(结果保留根号)24.(10分)如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且ED⊥DB,FB ⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.25.(10分)观察下表:我们把某一格中所有字母相加得到的多项式称为特征多项式,例如:第1格的“特征多项式”为x+4y.回答下列问题:(1)第4格的“特征多项式”为,第n格的“特征多项式”为;(2)若第1格的“特征多项式”的值为2,第2格的“特征多项式”的值为﹣6.①求x,y的值;②在①的条件下,第n格的“特征多项式的值”随着n的变化而变化,求“特征多项式的值”的最大值及此时n值.26.如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,E为BC的中点,连接DE.(1)求证:DE为⊙O的切线;(2)如果⊙O的半径为3,ED=4,延长EO交⊙O于F,连接DF,与OA交于点G,求OG的长.27.(12分)在平面直角坐标系中,点O为原点,点A的坐标为(﹣8,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=45°,OE=OA,求直线EF的函数表达式;(2)如图3,若α为锐角,且tanα=,当EA⊥x轴时,正方形对角线EG与OF相交于点M,求线段AM的长;(3)当正方形OEFG的顶点F落在y轴正半轴上时,直线AE与直线FG相交于点P,是否存在△OEP的两边之比为:1?若存在,求出点P的坐标;若不存在,试说明理由.28.如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△P AD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.参考答案与试题解析一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是﹣(﹣3)=3.故选:A.2.【分析】直接利用合并同类项法则以及算术平方根、整式的除法运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、2a+3b无法计算,故此选项错误;B、=6,故此选项错误;C、a2b÷2ab=a,故此选项错误;D、(2ab2)3=8a3b6,正确.故选:D.3.【分析】俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中.【解答】解:从上面看,图2的俯视图是正方形,有一条对角线.故选:C.4.【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:A、原来数据的平均数是3,添加数字3后平均数仍为3,故A与要求不符;B、原来数据的众数是3,添加数字3后众数仍为3,故B与要求不符;C、原来数据的中位数是3,添加数字3后中位数仍为3,故C与要求不符;D、原来数据的方差==,添加数字3后的方差==,故方差发生了变化.故选:D.5.【分析】利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠P AO的度数,然后利用圆周角定理来求∠ABC的度数.【解答】解:如图,∵AB是⊙O的直径,直线P A与⊙O相切于点A,∴∠P AO=90°.又∵∠P=40°,∴∠POA=50°,∴∠ABC=∠POA=25°.故选:B.6.【分析】求出AB=3,由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴==.故选:A.7.【分析】根据x﹣y﹣3=0和2y3+y﹣6=0,可以得到x与y的关系和y2﹣的值,从而可以求得所求式子的值.【解答】解:∵x﹣y﹣3=0和2y3+y﹣6=0,∴x=y+3,y2+﹣=0,∴y2﹣=﹣∴﹣y2==1+=1﹣(﹣)=1+=,故选:D.8.【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【解答】解:∵y3=(kx+b)(mx+n),y<0,∴(kx+b)(mx+n)<0,∵y1=kx+b,y2=mx+n,即y1•y2<0,有以下两种情况:(1)当y1>0,y2<0时,此时,x<﹣1;(2)当y1<0,y2>0时,此时,x>4,故选:D.二、填空题(本大题共10小题,每小题3分,共30分.)9.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:528600=5.286×105,故答案为:5.286×10510.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意,得:x﹣2≠0,解得:x≠2.故答案是:x≠2.11.【分析】首先提取公因式m,进而利用平方差公式分解因式即可.【解答】解:mx2﹣4m=m(x2﹣4)=m(x+2)(x﹣2).故答案为:m(x+2)(x﹣2).12.【分析】根据根判别式△=b2﹣4ac的意义得到△=0,即k2﹣4×1×9=0,然后解方程即可.【解答】解:∵方程x2+kx+9=0有两个相等的实数根,∴△=0,即k2﹣4•1•9=0,解得k=±6.故答案为±6.13.【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.【解答】解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=2π•5=10π,∴圆锥的侧面积=•10π•2=10π(cm2).故答案为:10π.14.【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△ABC=4,而S△OAB=|k|,∴|k|=4,∵k<0,∴k=﹣8.故答案为:﹣8.15.【分析】根据平行线的性质可得出∠3=∠4+∠5,结合对顶角相等可得出∠3=∠1+∠2,代入∠1=30°、∠3=45°,即可求出∠2的度数.【解答】解:给各角标上序号,如图所示.∵∠3=∠4+∠5,∠1=∠4,∠2=∠5,∴∠3=∠1+∠2.又∵∠1=30°,∠3=45°,∴∠2=15°.故答案为:15°.。

相关文档
最新文档