振动基本知识及故障诊断
设备震动故障诊断
什么是震动
振动是物体运动的一种形式,通常是指物体 经过其平衡位置而往复变化的过程。
振动有时对人类是有害的,但有时人们可以利 用振动来为我们服务。
只要是运转的机器,都或多或少地发生振动, 因此,振动诊断在各种诊断方法中所占的比例最 大,一般可达60%-70%。
按振动频率分类
2)工作介质:有无尘埃、颗粒性杂质或 腐蚀性气体(液体);
3)周围环境:有无严重的干扰(或污染) 源存在,如振源,粉尘、热源等。
4.设备基础型式及状况 搞清楚是刚性基础还是弹性基础等等。
5.主要资料档案资料 设备原始档案资料、设备检修资料、设
备故障记录档案等。
二. 确定诊断方案
在此基础上,接下来就要确定具体的诊断方案。 诊断方案应包括以下几方面的内容。
1)根据经验,估计各类常见多发故障的振动特征频率 和振幅。
2)根据结构特点、性能参数和工作原理计算出某些可 能发生的故障特征频率。
3) 广泛搜集诊断知识,掌握一些常用设备的故障特征 频率和相应的振幅大小。
3. 确定测量参数
经验表明,根据诊断对象振动信号的频率 特征来选择参数。通常的振动测量参数有加速 度、速度和位移。一般按下列原则选用:
2)适合于诊断目的
3)符合安全操作要求
因为测量时,设备在运行,因此需要注意安全问 题。
4)适合于安置传感器
有足够的空间,有良好的接触,测点部位有足够 的刚度等。
通常,轴承是监测振动最理想的部位,因为转子 上的振动载荷直接作用在轴承上,并通过轴承把 机器和基础联接成一个整体,因此轴承部位的振 动信号还反映了基础的状况。所以,在无特殊要 求的情况下,轴承是首选测点。如果条件不允许, 也应使测点尽量靠近轴承,以减小测点和轴承之 间的机械阻抗。此外,设备的地脚、机壳、缸体、 进出口管道、阀门、基础等,也是测振的常设测 点。
机械振动信号的故障诊断方法
机械振动信号的故障诊断方法引言:在机械设备运行过程中,振动信号是一种常见的故障指示现象。
通过分析和诊断振动信号,可以及早发现机械故障,采取正确的维修和保养措施,确保设备的正常运行。
本文将探讨涉及机械振动信号的故障诊断方法,旨在提供有关该领域的深入了解。
一、频谱分析法频谱分析法是最常用的机械振动信号分析方法之一。
通过将振动信号转换为频谱图,可以清晰地观察到不同频率分量的振动强度,从而判断设备是否存在故障。
频谱分析法的基本原理是将时域信号转换为频域信号。
常见的频谱分析方法包括傅里叶变换、小波分析等。
傅里叶变换能够将振动信号转化为频谱图,显示出信号中各个频率分量的振动幅值。
小波分析则更加适用于非平稳信号的分析,能够更好地捕捉到故障信号中的瞬态、突变等特征。
二、特征提取法特征提取法是通过提取振动信号的某些指标或特征参数,来判断机械设备是否存在故障。
常用的特征参数包括峰值、裕度、脉冲指标、峭度等。
这些参数可以用来描述振动信号的振动幅值、尖锐程度、频率分布等属性。
特征提取法的优点是简单明了,能够直观地了解机械设备的振动特征。
然而,对于复杂的振动信号和多种故障模式,单一的特征参数可能并不能提供足够的信息,因此需要结合其他方法进行综合分析。
三、模式识别法模式识别法将机械故障诊断问题归纳为模式分类问题,通过建立适当的分类器,判断设备的故障类型。
常见的模式识别方法包括神经网络、支持向量机、随机森林等。
模式识别法的优点是能够针对复杂的机械故障模式进行自动化分析和诊断,发现常规方法可能无法察觉到的故障特征。
然而,模式识别法需要大量的训练数据和适当的特征提取方法,才能取得较好的诊断效果。
四、频域分析法频域分析法是对振动信号进行频域特性分析的一种方法。
通过计算信号的功谱密度谱或功率谱密度谱,可以获取信号在不同频率上的能量分布情况。
频域分析法能够清晰地展示出不同频率分量在振动信号中的贡献程度,从而判断故障模式的频率范围。
例如,对于轴承故障常见的故障频率,可以通过频域分析法准确判断设备是否存在轴承故障。
振动分析和故障诊断分析解析
数
100密 尔
幅
振 动 速 度 (英 寸 /秒 )
值
振 动 加 速 度 (g)
高频区域
高 频 段 力 指 示 器
疲劳指示器
当量烈度轮廓
应力指示器
对数频率
2020/3/16
其中:
振 动 加 速 度 (g) 峰 值 振 动 速 度 (英 寸 /秒 ) 峰 值 振 动 位 移 (密 尔 ) 峰 峰 值 频 率 (转 /分 )
机器振动测量和评价的有关标准
ISO10816-2:50MW以上大型汽轮发电机组振动速度 评定区域边界
2020/3/16
机器振动测量和评价的有关标准
ISO10816-3:300KW以上50MW以下大型机组振动烈度区域分类
2020/3/16
机器振动测量和评价的有关标准
ISO10816-3:15KW-300KW中型机器振动烈度区域分类
• 振动加速度传感器固定对频响的影响
2020/3/16
振动监测中的一些技术细节要点
• 仪器频率响应特性
2020/3/16
0. 5赫兹
4赫兹
绝对振动(瓦振) 相对振动(轴振)
电涡流式传感器 在 滑动轴承内对准轴
绝对振动
轴
轴承
非接触式传 感器
相对振动
2020/3/16
双芯或四芯电缆提供(24伏)直流电源操作信
制频率等间隔的分布的
2020/3/16
滤波问题
高通滤波 低通滤波 带通滤波
未滤波的原始信号
滤波器
滤波器
滤波器
滤波后的信号
带阻滤波
滤波器
滤波器
2020/3/16
振动参数
1.振动位移 2.振动速度 (国际标准和国家标
机械振动与故障诊断基本知识
旋转机械状态监测与故障诊断讲义陈国远深圳市创为实技术发展有限公司2005年8月目录第一章状态监测的基本知识 (4)一、有关的名词和术语 (4)1. 振动的基本参量:幅值、周期(频率)和相位 (4)2. 通频振动、选频振动、工频振动 (6)3. 径向振动、水平振动、垂直振动、轴向振动 (6)4. 同步振动、异步振动 (7)5. 谐波、次谐波、亚异步、超异步 (7)6. 相对轴振动、绝对轴振动、轴承座振动 (7)7. 自由振动、受迫振动、自激振动、随机振动 (7)8. 高点和重点 (8)9. 刚度、阻尼和临界阻尼 (8)10. 共振、临界转速、固有频率 (9)11. 分数谐波共振、高次谐波共振和参数激振 (9)12. 涡动、正进动和反进动 (9)13. 同相振动和反相振动 (10)14. 轴振型和节点 (10)15. 转子挠曲 (11)16. 电气偏差、机械偏差、晃度 (11)17. 偏心和轴心位置 (11)18. 间隙电压、油膜压力 (11)二、传感器的基本知识 (12)1. 振动传感器 (12)2. 电涡流振动位移传感器的工作原理 (13)3. 电动力式振动速度传感器的工作原理 (13)⒋压电式加速度传感器的工作原理 (14)第二章状态监测常用图谱 (15)1.波德图 (15)2.极坐标图 (16)3.频谱瀑布图 (16)4.极联图 (17)5.轴心位置图 (18)6.轴心轨迹图 (18)7.振动趋势图 (19)8.波形频谱图 (20)第三章旋转机械的故障诊断 (22)1. 不平衡 (22)2. 不对中 (23)3. 轴弯曲和热弯曲 (26)4. 油膜涡动和油膜振荡 (28)5. 蒸汽激振 (30)6. 机械松动 (33)7. 转子断叶片与脱落 (33)8. 摩擦 (38)9. 轴裂纹 (40)10. 旋转失速与喘振 (40)11. 机械偏差和电气偏差 (43)第一章状态监测的基本知识一、有关的名词和术语机械振动是指物体围绕其平衡位置附近来回摆动并随时间变化的一种运动。
振动故障诊断要点
振动故障诊断要点振动故障是机械设备常见的故障类型之一,通过振动故障诊断可以帮助工程师找出故障的原因并采取相应的维修措施。
下面是振动故障诊断的要点:1.基本振动概念:了解振动的基本概念和参数,如振动的幅值、频率、相位和加速度等。
这些参数可以帮助工程师判断振动的严重程度和类型。
2.振动特征分析:振动特征分析包括频谱分析、时域分析和轨迹分析等。
频谱分析可以将振动信号转化为频谱图,从而找出频率和幅值异常的情况。
时域分析可以观察振动信号的波形,判断是否存在常见的故障类型。
轨迹分析可以观察旋转机械中旋转部件的运动轨迹,如转子不平衡和轴承故障。
3.振动测量与工具:了解振动测量的原理和方法,掌握常见的振动测量仪器,如加速度计、速度计和位移计等。
这些测量工具可以帮助工程师获取准确的振动数据,并用于故障诊断。
4.振动故障类型:了解振动故障的常见类型,如轴承故障、齿轮故障、不平衡和磨损等。
每种故障类型都有其特定的振动特征,通过分析这些特征可以判断故障的类型和位置。
5.振动诊断方法:根据振动特征和振动测量数据,结合机械设备的工作原理和结构特点,采用不同的振动诊断方法。
常见的方法包括单点测量、多点测量、滤波和波形诊断等。
通过综合应用这些方法,可以准确判断振动故障的原因。
6.振动故障分析:进行振动故障诊断后,需要对振动数据进行进一步的分析。
这包括对振动频谱进行解释和比较,对不同的振动特征进行关联分析,以及对振动故障的可能原因进行推断和验证。
7.故障预防和维护:通过振动故障诊断可以及时找出故障的原因,从而采取相应的维修措施。
然而,更好的方法是在设备正常运行期间进行故障预防和维护工作,包括定期检查和维护设备、定期校准和保养振动测量仪器等。
8.振动故障诊断的案例分析:通过分析实际案例,学习振动故障诊断的方法和技巧。
实际案例可以帮助工程师理解振动故障的原因和机理,并提高振动故障诊断的能力。
振动故障诊断是机械设备维修中重要的一环,能够帮助工程师快速准确地找出故障的原因,避免设备损坏和停机时间的增加。
振动基本知识及故障诊断
v0
2
tg v0 x0
(二)描述简谐振动的三要素
x 振幅 A (Amplitude)
偏离平衡位置的最大值。描述振动的规模。 频率 f (Frequency)
描述振动的快慢。单位为次/秒(Hz) 或次/分(c/min) 。 周期 T = 1/f 为每振动一次所需的时间,单位为秒。
圆频率 = 2 f 为每秒钟转过的角度,单位为弧度/秒 初相角 (Initial phase)
x
v
vx
a
a
振动位移 (Displacement)
速x度(A Veslociityn )t
vd xA si n t ()
加速度d t(Acceleration)
2
ad2xA 2si n t ()
dt2
位移、速度、加速度都是同 频率的简谐波。
三者的幅值相应为A、A、 A 2。
相位关系:加速度领先速度 90º; 速度领先位移90º。
合振动:xA co 0 ts ()
A A 12A 222A 1A 2co s( [21)]
A 12A 222A 1A 2co2s(1)
α2
A2A2AAA11A1AA
α α1
x
tg A A 1 1c sio n 1 1s A A 2 2c sio n 2 2s
A2
xx
两种特殊情况: 2 1 2 n , n 0 , 1 , 2 , A A 1 A 2
O’
r/e
C
A
1
O
C
r
e A
O
重点 高点
0
c
C e rA
O
<< c
r << e
设备故障的振动诊断技术介绍及其应用
设备故障的振动诊断技术介绍及其应用设备故障的振动诊断技术是一种通过分析设备振动特征来判断设备工作状态和健康状况的技术。
它基于振动信号的特性和规律,结合数据采集、信号处理和分析技术,可以及时准确地诊断设备故障,预测设备寿命,指导设备维护和保养工作。
该技术的主要应用包括但不限于以下几个方面:1. 故障诊断:通过监测和分析设备振动信号,可以准确地诊断各种设备故障,如轴承失效、不平衡、松动等,为设备维修提供准确的依据。
2. 故障预测:振动诊断技术不仅可以发现设备已经存在的故障,还可以通过对振动信号的趋势分析和预测,提前预知设备可能出现的故障和故障发展的趋势,从而及时采取措施,避免事故发生。
3. 设备健康监测:通过对设备振动信号进行连续监测和分析,可以实时监测设备的运行状态和健康状况,及时发现和解决设备运行中的问题,保障设备的正常运行。
4. 设备维护管理:振动诊断技术可以为设备的定期维护和保养提供科学的依据和管理手段,有助于合理安排设备维修计划,降低维修成本,延长设备使用寿命。
总之,设备故障的振动诊断技术是一种非常有效的设备健康管理技术,可以帮助企业实现设备的智能化监控和管理,提高设备的可靠性和使用寿命,为企业的生产运营提供有力的支持。
设备振动诊断技术是一门对设备振动进行监测、分析和诊断的技术。
它基于振动信号的特性和规律,通过采集设备振动信号,利用信号处理和分析技术,可以判断设备的运行状态,预测设备健康状况,诊断设备故障,并为设备维护提供科学的依据。
这一技术的广泛应用,可以有效地提高设备的可靠性和使用寿命,减少由于设备故障而导致的生产事故或停工,以及维护管理成本。
下面将详细介绍设备振动诊断技术的原理、方法和应用。
一、原理设备的振动信号是由于设备在运行过程中产生的,其中蕴含了丰富的信息。
通过分析设备振动信号的频率、振幅、相位等特性,可以获得关于设备工作状态、结构状况和健康状况的信息。
设备振动信号包含了来自设备各个部件的振动信号,例如轴承、齿轮、驱动系统等。
振动信号的故障诊断与预测技术研究
振动信号的故障诊断与预测技术研究引言:振动是一种常见的物理现象,它在许多机械系统中都是不可避免的。
然而,振动也可能是机械系统存在故障的一个先兆。
因此,准确诊断和预测振动信号中的故障是至关重要的。
本文将探讨振动信号的故障诊断与预测技术的研究进展。
I. 振动信号的基本特征振动信号具有一些基本的特征,如频率、幅值和相位等。
其中,频率是振动信号中最基本的特征之一。
通过分析振动信号的频率,可以判断系统是否存在故障。
例如,当机械系统中的轴承损坏时,频率分析能够显示出明显的峰值。
此外,振动信号的幅值和相位也可以提供有关系统状态的重要信息。
II. 振动信号分析方法为了诊断和预测振动信号中的故障,许多分析方法已被开发和应用。
其中,时域分析、频域分析和小波分析是最常用的方法之一。
时域分析是一种基本的振动信号分析方法,它主要关注振动信号在时间维度上的变化。
通过观察振动信号的波形和时域统计量,如均值和标准差,可以获得关于系统故障的信息。
然而,时域分析无法提供频率和相位等更详细的信息。
频域分析通过将信号转换到频域来分析振动信号。
傅里叶变换是频域分析的常用方法之一,它可以将振动信号从时域转换为频域。
通过分析振动信号在频域上的频谱图,可以准确地识别出系统中存在的故障。
小波分析是一种在时域和频域上进行分析的方法。
它通过将振动信号分解成不同频率的小波分量,可以同时获得时间域和频域上的信息。
III. 振动信号的故障诊断故障诊断是利用振动信号分析来确定机械系统是否存在故障的过程。
通过诊断振动信号中的故障,可以及时采取相应的维修措施,避免更大的损失。
故障诊断的方法有很多种,如频域分析、时频域分析、小波分析和人工智能等。
这些方法不仅可以识别出故障的存在,还可以确定故障的类型和位置。
IV. 振动信号的故障预测振动信号的故障预测是根据历史振动数据来预测未来可能发生的故障。
通过振动信号的长期监测和分析,可以发现潜在的故障迹象,从而提前采取维修措施,减少停机时间和维修成本。
振动分析及故障诊断技术
振动分析及故障诊断技术摘要:在工业领域,机械设备是其重要组成部分。
为了保障设备运行平稳、可靠,我们开展设备维护工作。
振动是机械设备运行状态最直观的判定因素,振动控制问题一直是个重要并持续研究发展的课题。
掌握设备机械振动的测试分析技术,可以有效改善设备的机械性能,通过振动分析能够对设备运行状态进行诊断评估、预判设备是否存在故障、分析引起故障的原因及提出维护或维修的解决方案。
关键词:振动分析、频率、幅值、啮合频率、轴承故障频率前言机械设备在正常运行状态下,可以从温度、振动、扭矩、压力、润滑等多方面综合考虑设备状态,其中振动的幅值大小是比较直观并快速衡量设备状态的重要指标。
在保证设备不停机状态下,测试其振动值大小,可以从数据上初步判定设备正常与否;根据数据分析其采集的信号,从中辨别信号中对设备造成异常影响的故障频率,判定故障产生的原因;根据故障原因,能够指导后续如何维护或维修来解决此类故障以恢复设备正常运行状态。
1.振动的原理机械振动中最简单、最基础的振动为简谐振动。
从物理学上研究:简谐振动是物体随时间按照正弦函数所变化的一种运动类型。
从工业振动分析的角度考虑,振动三要素为:振幅、频率和相位。
将振动的三要素与物理学统一研究来分析。
振动位移的计算公式为:x(t)=Acos(ωt+φ)式中A为振幅,即测量物体偏离平衡位置的最大值;t为时间;ω为角频率;相位用φ表示,在运动状态,按初相位为0来计算。
频率即为时间的倒数,即f=1/t。
在工业应用中,振幅一般采用振动峰峰值来代表设备振动的大小。
振动速度的计算公式为:dx/dt=ωAsin(ωt+φ+π/2)振动速度一般采用速度有效值或速度RMS值来表示设备振动的大小。
振动加速度的计算公式为:d2x/dt2=ω2Asin(ωt+φ+π)从公式计算中可得出:加速度向量比速度向量超前90°,速度向量比位移向量超前90°,即表示加速度向量比位移向量超前180°。
物理机器振动知识点总结
物理机器振动知识点总结引言机器振动是指机器在工作过程中产生的一种周期性的运动或者水平或者垂直方向的来回运动。
机器振动不仅会影响设备的性能和寿命,还可能对周围的环境和人体造成危害。
因此,对机器振动的研究和控制是非常重要的。
本文将从机器振动的基本概念、振动的原理、振动的表征和测量、振动的控制和减震技术等几个方面进行介绍和总结。
一、振动的基本概念1.1 机器振动的定义机器振动是机器在工作时由于不平衡、松动、偏心、传动系统不稳定等因素引起的周期性运动。
机器振动不仅包括自然振动,还包括激振动和强迫振动。
1.2 机器振动的分类根据振动的性质和表现形式,机器振动可以分为自由振动、强迫振动、共振和阻尼振动等几种类型。
1.3 机器振动的产生原因机器振动的产生原因主要包括不平衡、柔性连接件、不精确的加工和装配、传动系统不稳定等。
这些因素都会导致机器在工作时产生不规则的运动,使得机器发生振动。
二、振动的原理2.1 振动的基本原理振动是物体相对于平衡位置的周期性运动。
当物体受到外力作用时,会产生振动。
振动的基本特征包括振幅、频率、周期和相位等。
2.2 振动的传播振动可以通过介质传播,振动的传播速度与介质的性质有关。
通常介质中的振动传播速度越快,介质越硬,振动衰减越小。
2.3 振动的耦合振动的耦合是指不同振动系统之间相互影响和作用。
当多个振动系统同时作用时,它们之间可能产生相互影响和共振现象,从而产生复杂的振动现象。
三、振动的表征和测量3.1 振动的表征指标振动的表征指标包括加速度、速度和位移等。
这些指标可以用于描述振动的不同特性,如振动的幅度、频率和相位等。
3.2 振动的测量方法振动的测量方法主要包括接触式和非接触式两种。
接触式振动测量通常使用加速度计、速度计和位移计等传感器进行测量,而非接触式振动测量则主要依靠激光测距仪、红外测温仪和摄像机等设备进行测量。
3.3 振动的分析与诊断振动的分析与诊断是指利用测量数据对机器振动进行分析和判断。
机械故障的振动分析及诊断
机械故障的振动分析及诊断引言机械故障的振动分析及诊断是现代工程领域一个重要的研究方向。
振动分析能够预测机械故障发生的可能性,诊断能够确定故障的原因和位置,对于提高机械设备的可靠性和可用性具有重要意义。
本文将介绍机械故障振动分析的基本原理、方法和应用。
一、机械故障振动分析的基本原理机械设备在运行时会产生振动,振动是由于设备的不平衡、磨损、故障等因素导致的。
振动分析的基本原理是通过检测和分析振动信号来判断设备是否存在故障,并对故障进行诊断。
振动信号可以通过加速度、速度和位移等形式来表示,其中加速度信号对于高频故障的诊断更为敏感。
二、机械故障振动分析的方法1.振动信号采集振动信号的采集是机械故障振动分析的第一个步骤。
采集振动信号可以通过加速度传感器、速度传感器或位移传感器来实现。
根据故障的类型和位置,选择合适的传感器进行振动信号采集。
多个传感器可以同时采集不同位置的振动信号,以获得更为准确的结果。
2.信号预处理振动信号采集后往往包含大量的噪声,需要进行信号预处理。
常用的信号预处理方法包括滤波、降噪和特征提取等。
滤波方法可以去除高频和低频的噪声,使得振动信号更加清晰。
降噪方法可以通过信号平均、小波分析等技术去除噪声,提高信号的信噪比。
特征提取方法可以从振动信号中提取出故障特征,如频率、幅值、相位等,用于故障诊断。
3.故障诊断故障诊断是根据振动信号的特征来确定故障的类型和位置。
常见的故障诊断方法包括频谱分析、阶次分析和时间域分析等。
频谱分析可以将振动信号转化为频域特性,通过比较频谱图来判断故障类型。
阶次分析可以将振动信号转化为阶次域特性,通过比较阶次图来判断故障位置。
时间域分析可以观察振动信号的波形和周期性,通过波形和周期性的变化来诊断故障。
三、机械故障振动分析的应用机械故障振动分析的应用十分广泛,涵盖了各个领域的机械设备。
例如,航空领域可以通过对飞机发动机的振动信号进行分析,来预测发动机故障并进行维修。
发电机组的振动监测与故障诊断
发电机组的振动监测与故障诊断振动监测是发电机组运行过程中非常重要的一项工作,它可以有效地帮助我们了解发电机组的运行状态,及时发现和解决潜在的故障问题。
本文将介绍振动监测的基本原理和方法,并探讨如何通过振动信号来进行故障诊断。
一、振动监测的基本原理发电机组在运行过程中会产生各种振动信号,这些信号可以反映出发电机组的运行状态和各部件的工作情况。
振动监测的基本原理是通过安装振动传感器来采集振动信号,并将信号转化为电信号进行处理和分析。
振动信号可以分为两类:机械振动信号和电子振动信号。
机械振动信号是由发电机组内部运行过程中产生的机械振动引起的,比如转子不平衡、轴承故障等。
电子振动信号是由电器故障或电磁干扰引起的,比如绝缘损坏、接触不良等。
二、振动监测的方法1. 实时监测:通过振动传感器将振动信号实时采集并传输到监测系统,对振动信号进行分析,及时发现异常情况,并及时采取措施进行维修和保养。
2. 定期检测:定期使用振动仪器检测发电机组的振动情况,比如每月进行一次振动检测,可以有效地了解发电机组的运行状态,并及时发现潜在的故障问题。
3. 长期驻点监测:将振动传感器长期安装在发电机组上,通过采集连续不断的振动信号,了解发电机组的长期运行情况,为后续的故障诊断提供重要数据支持。
三、振动信号的故障诊断振动信号的故障诊断是通过对振动信号的分析和处理,来判断发电机组是否存在故障,并确定具体的故障类型和程度。
常用的故障诊断方法包括:1. 时域分析:通过对振动信号在时域上的波形进行分析,判断是否存在周期性故障,比如转子不平衡、轴承故障等。
2. 频域分析:通过对振动信号在频域上的频谱进行分析,得到频域特征参数,来识别故障类型,比如齿轮间隙、电机磁场不均匀等。
3. 振动信号模式识别:通过建立故障模式库,将不同故障类型的振动信号进行分类和归档,根据振动信号的特征进行匹配,从而确定故障类型。
四、振动监测与故障诊断的意义振动监测与故障诊断可以帮助我们及时发现和解决发电机组存在的潜在故障问题,避免故障发生对发电机组造成严重损害。
机械振动知识点总结
机械振动知识点总结机械振动的研究旨在分析和控制系统的振动特性,以提高系统的性能、减少系统的动态负荷、延长系统的使用寿命,并确保系统在工作过程中的稳定性和安全性。
本文将对机械振动的基本知识点进行总结,包括机械振动的分类、振动系统的建模分析、振动的控制和减振、以及振动的监测与诊断等内容。
一、机械振动的分类1. 根据振动形式的不同,机械振动可分为以下几类:(1)自由振动:系统在没有外部激励的情况下发生的振动,系统内部能量交换导致振幅逐渐减小直至停止,如钟摆的摆动。
(2)受迫振动:系统受到外部激励作用而发生的振动,外部激励可以是周期性的或非周期性的,如机械系统受到周期性力的作用而发生的振动。
(3)共振:当受迫振动的频率与系统的固有频率相近或一致时,系统的振幅将迅速增大,甚至造成系统破坏的现象。
2. 根据振动的传播方式,机械振动可分为以下几类:(1)固体振动:振动是在固体介质中传播的,如机械结构的振动。
(2)流体振动:振动是通过流体介质(如液体或气体)传播的,如管道中的水波振动。
(3)弹性振动:振动是由于材料的弹性变形而产生的,如弹簧振子的振动。
二、振动系统的建模分析1. 振动系统的建模方法(1)单自由度振动系统的建模:利用牛顿第二定律,可以建立单自由度振动系统的等效质点模型,然后通过能量方法或拉氏方程等方法,可以求解系统的振动特性。
(2)多自由度振动系统的建模:对于多自由度振动系统,可以利用连续系统的离散化方法,将系统离散化为多个质点的集合,并建立相应的动力学模型,然后求解系统的振动特性。
2. 振动系统的分析方法(1)频域分析:通过对系统的动力学方程进行傅里叶变换,可以将系统的运动响应转换到频域中进行分析,得到系统的频率响应特性。
(2)时域分析:通过对系统的动力学方程进行积分,可以得到系统的时域响应,包括系统的位移、速度、加速度等随时间的变化规律。
(3)模态分析:通过对系统的模态方程进行求解,可以得到系统的固有频率和振型,以及相应的阻尼比和阻尼比比例。
机械振动信号的时频分析与故障诊断
机械振动信号的时频分析与故障诊断导言机械设备的振动信号是反映设备正常运行状态及潜在故障的重要指标之一。
振动信号中蕴含着丰富的信息,可以通过时频分析来提取出这些信息并实现故障的诊断与预测。
本文将介绍机械振动信号的基本概念和特征,以及时频分析的原理与方法,并探讨其在故障诊断中的应用。
一、机械振动信号的基本概念与特征机械设备的振动信号是由设备运动所引起的机械波动,通常可以通过传感器采集到。
振动信号是一个非常复杂的时间序列,其包含了多种振动模态的叠加和相互作用。
为了对振动信号进行分析和诊断,我们首先需要了解振动信号的基本概念和特征。
1. 振动信号的频率振动信号的频率是指振动信号中重复发生的周期性变化的次数。
频率可以反映出振动信号的周期性特征,对于机械设备的故障分析非常重要。
2. 振动信号的振幅振动信号的振幅是指振动信号的大小或强度。
振幅可以反映出振动信号的强弱程度,对于故障的诊断与判定非常有帮助。
3. 振动信号的相位振动信号的相位是指振动信号与某一参考位置之间的时间差或空间差。
相位可以反映出振动信号的位置和偏移程度,帮助我们了解振动信号的波动规律。
4. 振动信号的谱图振动信号的谱图是将振动信号在频率域中的幅度进行展示的图形,通过谱图我们可以清晰地观察到振动信号的频率分布情况,从而对振动信号进行进一步的分析和处理。
二、时频分析的原理与方法为了进一步分析和处理机械振动信号,时频分析成为一种常用的手段。
时频分析是将信号在时间域和频率域上进行联合分析的方法,其原理与方法如下:1. 傅里叶变换傅里叶变换是时频分析的基础。
通过傅里叶变换,我们可以将信号从时域转换到频域,获得信号的频谱信息。
2. 小波变换小波变换是一种具有时频局部性的信号分析方法。
通过小波变换,我们可以在时域和频域上同时获得信号的时频信息,进一步提取信号的特征和规律。
3. 瞬时频率分析瞬时频率分析是时频分析的一种重要方法。
通过瞬时频率分析,我们可以获得信号的瞬时频率变化情况,进一步了解信号的振动模态和变化规律。
设备震动故障诊断分析
安装、维修
4. 5. 6. 1. 2.
运行操作
3. 4.
5.
故障来源
1. 2. 3. 4. 5.
主要原因
长期运行,转子挠度增大 旋转体局部损坏、脱落或产生裂纹 零、部件磨损、点蚀或腐蚀等 配合面受力劣化,产生过盈不足或松动等, 破坏了配合性质和精度 机器基础沉降不均匀,机器壳体变形
机器恶劣
表2
1
3) 广泛搜集诊断知识,掌握一些常用设备的故障特征 频率和相应的振幅大小。
3. 确定测量参数 经验表明,根据诊断对象振动信号的频率 特征来选择参数。通常的振动测量参数有加速 度、速度和位移。一般按下列原则选用: 低频振动(<10Hz) 采用位移; 中频振动(10-1000Hz)采用速度;
高频振动(>1000Hz) 采用位移。
通常,轴承是监测振动最理想的部位,因为转子 上的振动载荷直接作用在轴承上,并通过轴承把 机器和基础联接成一个整体,因此轴承部位的振 动信号还反映了基础的状况。所以,在无特殊要 求的情况下,轴承是首选测点。如果条件不允许, 也应使测点尽量靠近轴承,以减小测点和轴承之 间的机械阻抗。此外,设备的地脚、机壳、缸体、 进出口管道、阀门、基础等,也是测振的常设测 点。
三. 进行振动测量与信号分析 1. 测量系统
目前,有两种基本的简易振动诊断系统可用于现 场,它们分别代表了 简易诊断发展的不同的发展阶段。 一种是模拟式测振仪所构成的测量系统,一种是以数据 采集器为代表的数字式测振仪所构成的测量系统。 2. 振动测量信号分析
确定了诊断方案以后,根据诊断目的对设备进行 各项相关参数测量。一般来讲,如果现场条件允许,每 个测点都是测量三个方向的振动值。即水平、垂直和轴 向。而且要定点、定时地进行测量,以有利于进行比较。
振动基本知识
振动的基本概念及刚性转子找平衡振动水平是衡量设备安全可靠运行的重要指标。
剧烈的振动容易导致零部件的疲劳损坏,一些重大的设备损害直接或间接地与振动有关。
所以,在设备运行时需对设备进行振动监测,其目的在于:(1):监测振动的大小,了解其是否在规定的范围内;(2):当机组异常时,进行测量和处理故障(不仅需测量振动的大小,还需测量频率、相位)。
一:振动的表示:振动的三要素:振幅、频率、以及相位。
振幅表示机组振动严重程度或剧烈程度的重要指标。
1:振幅:其表示方法有:(1):位移表示方法:振幅表示机组振动严重程度或剧烈程度的重要指标。
Ap单峰值就是振动的最大点到平衡位置之间的距离。
App峰峰值实际上就是振动的波峰与波谷的距离。
振动测量仪器输出的位移振动振幅通常都是峰峰值。
(2):加速度、速度表示方法:用速度均方根表示,又称为“烈度”,单位:mm/s用加速度表示时,单位为mm2 /s当速度为单一频率时,与速度之间的关系为注:•振动位移、速度和加速度•y =A sin(ωt+ ϕ)•v=d y/dt=ωA sin(ωt+ ϕ+π/2)•a= d 2y/dt2=ω2A sin(ωt+ ϕ+π)•(1)振动位移、速度和加速度信号的频率相同。
•(2)在相同位移幅值下,频率越高,交变应力越大,对设备危害也越大。
•(3)振动速度/加速度是振动位移和频率/频率平方的乘积,幅值中同时反映了振动频率和位移幅值的影响,较单纯的振动位移幅值更全面•(4)采用不同表示方式,必须考虑相互之间的相位差。
•(5)同一种故障在振动位移、速度和加速度频谱中表现出来的故障特征不完全相同。
•(6)振动位移、速度和加速度之间可以相互转换。
2:相位:(1)作用:相位就是转动部件参考一个固定位置得到的瞬时位置信息,相位告诉我们振动的方向。
相位在振动测量中主要应用于确定不平衡量的角度,由基频振动的相位和转子的机械滞后角可以知道不平衡的角度。
(2)概念:从广义上讲:相位可以理解为两个事件之间的时间。
振动检测基本知识
分析频率/采样点数/谱线数的设置要点1.最高分析频率:Fm指需要分析的最高频率,也是经过抗混滤波后的信号最高频率。
根据采样定理,Fm与采样频率Fs之间的关系一般为:Fs=2.56Fm;而最高分析频率的选取决定于设备转速和预期所要判定的故障性质。
2.采样点数N与谱线数M有如下的关系:N=2.56M 其中谱线数M与频率分辨率ΔF及最高分析频率Fm有如下的关系:ΔF=Fm/M 即:M=Fm/ΔF 所以:N=2.56Fm/ΔF★采样点数的多少与要求多大的频率分辨率有关。
例如:机器转速3000r/min=50Hz,如果要分析的故障频率估计在8倍频以下,要求谱图上频率分辨率ΔF=1 Hz ,则采样频率和采样点数设置为:最高分析频率Fm=8·50Hz=400Hz;采样频率Fs=2.56·Fm=2.56 ·400Hz=1024Hz;采样点数N=2.56·(Fm/ΔF)=2.56·(400Hz/1Hz)=1024=210谱线数M=N/2.56=1024/2.56=400条关于现场故障诊断要注意搜集的信息最近论坛上很多朋友发送了一些案例、求助等,对于一个现场诊断人员来说,似乎有很多信息没有注意到,或者在求助的时候没有说明,给诊断工作带来很多困难。
下面我就现场诊断人员应该注意和掌握的信息作一个简单的个人总结,不是针对某一个设备,而是针对尽可能多的设备来分析,建议大家在下现场的时候或进行求助的时侯,尽可能多地描述自己得到的信息。
1.设备基本信息①设备的型号、名牌参数:如电机级数、电压、电流;气压机的转速、临界转速等。
②设备的基本机构、性能、用途:如基础是混凝土还是钢制框架;转子是否悬臂、单级还是多级;叶轮叶片数目;是否变频调速;工作介质、密封形式等。
③工艺参数:如工艺介质、流量、压力、温度;润滑油类型、油压、温度等。
2.设备轴承形式①滚动轴承形式:深沟球轴承、角接触轴承、圆柱棍子轴承、圆锥棍子轴承、纯轴向推力轴承;滚动体是单列还是双列。
【检修】主要辅机振动诊断与处理(果断收藏研究不看就亏了)
【检修】主要辅机振动诊断与处理(果断收藏研究不看就亏了)一,基本概念(1)振幅:振幅表示振动或动态运动的幅度,它是表示设备振动严重程度或烈度的一个重要指标。
振幅可用峰-峰值(双振幅)Xp-p,单位是μm;均方根值(烈度)vrms,单位是mm/s。
峰-峰值和均方根值在我们衡量振动大小时都常用到,比如:某厂主机轴瓦振动为两个测点,采用均方根值,单位mm/s,并有保护值11.8mm/s(汽轮机)、14.8mm/s(发电机)。
在我们常用手持测振仪上,我们也可以选择测量峰-峰值和均方根值。
(2)频率:振动频率是指振动物体在单位时间(1s)内振动周期数,为周期的倒数。
它反映振动发生的快慢,是分析振动原因的重要依据。
通频振动:实际的振动中往往同时存在多个不同频率成分的振动分量,即呈现由各种频率的正弦波振动分量迭加在一起的波形,该波形正峰值与负峰值之间的最大偏差值就是通频振动,它是振动测试频段内总的振动。
基频振动:一倍频(基频)振动幅值表示转速频率相同的正弦波正峰值与负峰值之间的偏差值。
(3)相位:振动相位(角)是由键相信号与选频振动信号构成的相对关系,它是转子或轴承座某一瞬间的振动选频信号与轴上某一固定标志的相位差。
相位的度量单位为度(°),通常振动相位在0~360度范围之间变化。
一倍频(基频)相位振动的相位在振动分析中十分重要,它不仅反映了不平衡质量的相对位置,在动平衡中必不可少,而且在故障诊断中也很重要。
二,辅机常见振动故障及处理常见故障可以分为三大类:机械类、基础类、电气类。
第一类,机械类:这是我们研究的重点,具体可分为转子质量不平衡、轴承故障、联轴器故障、共振、连接刚度不足。
(1)转子质量不平衡。
振动特征:振动主振频率为基频,基频振动幅值、相位均较稳定,振动随转速升高而增大,转速越高振动爬升的速度越快,振动有很好的再现性。
汽机侧辅机单纯的质量不平衡故障不多,锅炉侧引风机、排粉机(中间储仓式制粉系统)等设备由于工作环境较恶劣,叶片经常发生磨损和叶轮积灰等,所以此类设备经常会出现质量不平衡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1x
a v
0.5
t
2
4
6
8
10
12
14
-0.5
结论:
(1)单自由度无阻尼系统的自由振动是以正弦或余弦函数表 示的,故称为简谐振k动。
(2)自由振动的角频率m即系统的固有频率仅由系统本身参数 确 定,与外界激励、初始条件无关。
A=
x02
v0
2
(3)自由振动的tg振 幅vA0 和初相角φ由初始条件所确定。
合振动:x Acos(0t )
A A12 A22 2 A1 A2 cos[ (2 1 )]
A12 A22 2 A1 A2 cos(2 1 )
tg A1 sin1 A2 sin 2 A1 cos1 A2 cos 2
α2
A2A2AAA11A1AA
α α1
x
A2
xx
两种特殊情况:2 1 2n , n 0,1,2,A A1 A2
描述振动在起始瞬间的状态。
(三)简谐振动的合成
振动与其它运动形式一样也可以进行合成与分解 振动往往是由若干种频率的简谐振动合成的 下面我们研究几种基本而重要的简谐振动的合成
1.同方向、同频率简谐振动的合成——仍然为简谐振动
x1 A1 cos(0t 1 ), x2 A2 cos(0t 2 )
振动基本知识及故障诊断
傅行军 东南大学 火电机组振动国家工程研究中心
上篇:振动基本知识
一、振动及其分类
振动——指物体在一定位置附近的往复运动。
普遍存在于宇宙及人类生产、生活中。是电厂重要安全经济指标之一。
电厂中振动过大的危害
(1) 减少设备的使用寿命,造成设备损坏,甚至酿成灾难性事故; (2)动静部件碰摩,使转轴弯曲,部件及基础损坏; (3)降低机组的机械性能和热力性能; (4)振动及其产生的噪声,影响运行人员身体健康和工作效率。
x0
(二)描述简谐振动的三要素
x 振幅 A (Amplitude)
偏离平衡位置的最大值。描述振动的规模。 频率 f (Frequency)
描述振动的快慢。单位为次/秒(Hz) 或次/分(c/min) 。 周期 T = 1/f 为每振动一次所需的时间,单位为秒。
圆频率 = 2 f 为每秒钟转过的角度,单位为弧度/秒 初相角 (Initial phase)
稳态振动方程:
y(t)=Ysin(t- -)
Y0为质量块上作用有静力F0时的静位移 Y0 =F0/k
y(t)=Ysin(t- - )
式中:
振幅 Y=
Y0
1
( n
)2
2
4
2( n
)2
2( )
相位差:
=arctan
1
(
n )2
n
振幅放大因子:M Y Y0
1
2
1
(
n
)2
4 2 ( )2 n
振动的分类
(1)按振动的产生方式分:
自由振动 受迫振动
(2)按振动的规律分:
简谐振动 复合周期振动 瞬态振动 随机振动
(3)按振动故障的性质分:
自激振动 强迫振动
(4)按振动模型的自由度分:
单自由度振动 多自由度振动
二、简谐振动
(一)简谐振动的运动学方程 以无阻尼自由振动的弹簧振子为例得出普遍结论:
由 F ma kx
运动学特征
a k x 2 x
m
微分dd2t方2x程特征2 x 0
k o x
k
m
解
d2x dt 2
+
ω2x
=
0
可得
位 移 x A cos( t )
振动方程
速 度 v dx A sin(t ) A cos(t )
dt
2
加速度 a dv A 2 cos(t ) A 2 cos(t )
m m
d
2 T
阻尼比:
Mi、Mi+1分别为阻尼自由振动的相邻超调量。
(一)谐激励的强迫振动
四、单自由度系统强迫振动
外加作用力:f (t) F0 sin(t )
d2y dt 2
2n
dy dt
2 n
y
2nY0
sin(t
)
Y0为质量块上作用有静力F0时的静位移 Y0 =F0 /k
n =
k
m ,
2
c mk
y2 A22
2
x A1
y A2
cos(
2
1 ) sin2(2
1 )
①
在一般情况下,为一椭圆方程,椭圆的形状、大小, 长、短轴方位,由振幅和相位差决定
4.方向垂直、不同频率简谐振动的合成
若分振动频率不成整数比,则合运动轨迹不能形成稳定的封闭曲线, 质点运动不具有周期性
若分振动频率成整数比,则合运动轨迹为一稳定的封闭曲线,质点运
动具有周期性,轨迹图形称为利萨如图形
y
图形的花样与振幅、初相、频率比有关
73
用作图法画利萨如图形
T1:T2 = 1:2 A1:A2 = 3:2 α1 = -π/2 α2 = π/2
4 8
7
8
6
1 A α2
5
2
234
6
α1
2
A
5 11
x
三、单自由度系统自由振动
ωd为阻尼自由振动的圆频率
d n 1 2
振动
x
t
合振幅做周期性变化的现象叫拍,合振幅大小每变化
一个周期叫1拍,单位时间内拍出现的次数叫拍频
拍
2
,
1
v拍
2 1 2
v2
v1
3.方向垂直、同频率简谐振动的合成
x A1 cos(0t 1 ), y A2 cos(0t 2 )
y
将两个式子展开,消去参数t, 可得质点
x
运动的轨迹方程:
x2 A12
如:T1=2s, T2=3s
t
3s
结论:合振动不是简谐 x
振动,但有周期性,合
振动周期为两个分振动
t
周期的最小公倍数
6s
2)两个分振动频率很高,又非常接近,即2 1 2 1
x
x2
x1
A(cos2t
cos1t )
2 A cos
2 1 2
t
cos
2 1 2
t
可视为振幅做周期性缓慢变化的准简谐振动,又称调幅
2 1 (2n 1) , n 0,1,2,A | A1 A2 |
2.同方向、不同频率简谐振动的合成——周期振动
x1 Acos1t , x2 Acos2t , x Acos1t Acos2t
⒈ 1 v1 T2 m
x1
2 v2 T1 n
t
m , n 为整数,m≠n
2s
用 x-t 图像合成最方便 x2
图a)——幅频特性曲线 图b)——相频特性曲线
(1)当激励频率 n 1 2 2
1
n
时,振幅达到最大值,称临界。
(2)不管系统的阻尼比是多少,
在
n
1 时,位移始终落后于
激励力90度现象,称共振。
(二)单圆盘转子不平衡振动和临界转速
r/e
O’
m A
k
O
y
C
r
e A
O
1 0
x
c
圆盘惯性力 + 轴弹性力 = 偏心的离心力