二次根式中考真题及详解

合集下载

初中数学二次根式精选试题(含答案和解析)

初中数学二次根式精选试题(含答案和解析)

初中数学二次根式精选试题一.选择题1. (2018·湖南怀化·4分)使有意义的x的取值范围是()A.x≤3B.x<3 C.x≥3D.x>3【分析】先根据二次根式有意义的条件列出关于x的不等式.求出x 的取值范围即可.【解答】解:∵式子有意义.∴x﹣3≥0.解得x≥3.故选:C.【点评】本题考查的是二次根式有意义的条件.熟知二次根式具有非负性是解答此题的关键.2.(2018•江苏宿迁•3分)若实数m、n满足.且m、n恰好是等腰△ABC的两条边的边长.则△ABC的周长是()A. 12B. 10C. 8D. 6【答案】B【分析】根据绝对值和二次根式的非负性得m、n的值.再分情况讨论:①若腰为2.底为4.由三角形两边之和大于第三边.舍去;②若腰为4.底为2.再由三角形周长公式计算即可.【详解】由题意得:m-2=0.n-4=0.∴m=2.n=4.又∵m、n恰好是等腰△ABC的两条边的边长.①若腰为2.底为4.此时不能构成三角形.舍去.②若腰为4.底为2.则周长为:4+4+2=10.故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质.根据非负数的性质求出m、n的值是解题的关键.3.(2018•江苏无锡•3分)下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣3【分析】根据二次根式的性质把各个二次根式化简.判断即可.【解答】解:()2=3.A正确;=3.B错误;==3.C错误;(﹣)2=3.D错误;故选:A.【点评】本题考查的是二次根式的化简.掌握二次根式的性质:=|a|是解题的关键.4.(2018•江苏苏州•3分)若在实数范围内有意义.则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式.解不等式.把解集在数轴上表示即可.【解答】解:由题意得x+2≥0.解得x≥﹣2.故选:D.【点评】本题考查的是二次根式有意义的条件.掌握二次根式中的被开方数是非负数是解题的关键.5.(2018•山东聊城市•3分)下列计算正确的是()A.3﹣2=B.•(÷)=C.(﹣)÷=2D.﹣3=【分析】根据二次根式的加减乘除运算法则逐一计算可得.【解答】解:A.3与﹣2不是同类二次根式.不能合并.此选项错误;B.•(÷)=•==.此选项正确;C.(﹣)÷=(5﹣)÷=5﹣.此选项错误;D.﹣3=﹣2=﹣.此选项错误;故选:B.【点评】本题主要考查二次根式的混合运算.解题的关键是掌握二次根式混合运算顺序和运算法则.6.(2018•上海•4分)下列计算﹣的结果是()A.4 B.3 C.2D.【分析】先化简.再合并同类项即可求解.【解答】解:﹣=3﹣=2.故选:C.【点评】考查了二次根式的加减法.关键是熟练掌握二次根式的加减法法则:二次根式相加减.先把各个二次根式化成最简二次根式.再把被开方数相同的二次根式进行合并.合并方法为系数相加减.根式不变.7. (2018•达州•3分)二次根式中的x的取值范围是()A.x<﹣2 B.x≤﹣2 C.x>﹣2 D.x≥﹣2【分析】根据被开方数是非负数.可得答案.【解答】解:由题意.得2x+4≥0.解得x≥﹣2.故选:D.【点评】本题考查了二次根式有意义的条件.利用被开方数是非负数得出不等式是解题关键.8. (2018•杭州•3分)下列计算正确的是()A.B.C.D.【答案】A【考点】二次根式的性质与化简【解析】【解答】解:AB.∵.因此A符合题意;B不符合题意;CD.∵.因此C.D不符合题意;故答案为:A【分析】根据二次根式的性质.对各选项逐一判断即可。

中考数学总复习第5课 二次根式

中考数学总复习第5课 二次根式

的值为
()
A.-15
B.15
C.-125
D.125
解析:由二次根式的定义,得 2x-5≥0 且 5-2x≥0,∴x
≥5且 2
x≤52,∴x=52,∴y=-3,∴2xy=2×52×(-3)=-
15.
答案:A
【预测演练 1-3】 化简:( 3-x)2- x2-10x+25.
解析:∵3-x≥0,∴x≤3,原式=3-x-|x-5|=3-x- (5-x)=3-x-5+x=-2.
解析:(1)4 1- 8=4× 2-2 2=2 2-2 2=0.
2
2
(2)原式=( 2+1)( 2-1)× 2=(2-1)× 2= 2.
(3)原式=(3 2)2-1-[(2 2)2-4 2+1]
=18-1-8+4 2-1=8+4 2.
(4)原式=( 10-3)2013·( 10+3)2013·( 10+3)
∴a=m 2+2n 2,b=2m n . 这样,小明找到了把部分 a+b 2的式子化为平方式的方法. 请你仿照小明的方法探索并解决问题: (1)当 a,b,m,n 均为正整数时,若 a+b 3=(m+n 3)2,用含 m,n 的
式子分别表示 a,b 得,a=________,b=________; (2)利用所探索的结论,找一组正整数 a,b,m,n 填空: ______+______ 3=(______+______ 3)2; (3)若 a+4 3=(m+n 3)2 且 a,b,m,n 均为正整数,求 a 的值.
解析:x-3≥0, ∴x≥3.
答案:x ≥3
【预测演练 1-1】
等式 2k-1= k-3
数 k 的取值范围是
2k-1成立,则实 k-3
()

专题06 二次根式(24题)(解析版)--2024年中考数学真题分类汇编

专题06 二次根式(24题)(解析版)--2024年中考数学真题分类汇编

专题06二次根式(24题)一、单选题1.(2024·湖南·27)A .7B .72C .14D 14【答案】D【分析】此题主要考查了二次根式的乘法,正确计算是解题关键.直接利用二次根式的乘法运算法则计算得出答案.【详解】解:2714⨯=,故选:D2.(2024·内蒙古包头·2296-所得结果是()A .3B 6C .35D .35±【答案】C【分析】本题考查化简二次根式,根据二次根式的性质,化简即可.【详解】解:229681364535-=-==;故选C .3.(2024·云南·x x 的取值范围是()A .0x >B .0x ≥C .0x <D .0x ≤【答案】B【分析】本题主要考查了二次根式有意义的条件.根据二次根式有意义的条件,即可求解.【详解】解:∵式子x 在实数范围内有意义,∴x 的取值范围是0x ≥.故选:B4.(2024·黑龙江绥化·23m -有意义,则m 的取值范围是()A .23m ≤B .32m ≥-C .32m ≥D .23m ≤-【答案】C【分析】本题考查了二次根式有意义的条件,根据题意可得230m -≥,即可求解.5.(2024·四川乐山·中考真题)已知12x <<2x +-的结果为()A .1-B .1C .23x -D .32x-6.(2024·重庆·中考真题)已知m =m的范围是()A .23m <<B .34m <<C .45m <<D .56m <<7.(2024·江苏盐城·,设其面积为2cm S ,则S 在哪两个连续整数之间()A .1和2B .2和3C .3和4D .4和5【答案】C【分析】本题主要考查无理数的估算,二次根式的乘法,先计算出矩形的面积S ,再利用放缩法估算无理数大小即可.【详解】解:2510S =⨯=,91016<<,∴91016<<,∴3104<<,即S 在3和4之间,故选:C .8.(2024·安徽·中考真题)下列计算正确的是()A .356a a a +=B .632a a a ÷=C .()22a a -=D 2a a=【答案】C【分析】题目主要考查合并同类项、同底数幂的除法、积的乘方运算、二次根式的化简,根据相应运算法则依次判断即可【详解】解:A 、3a 与5a 不是同类项,不能合并,选项错误,不符合题意;B 、633a a a ÷=,选项错误,不符合题意;C 、()22a a -=,选项正确,符合题意;D 、当0a ≥时,2a a =,当0a <时,2a a =-,选项错误,不符合题意;故选:C9.(2024·重庆·1223的值应在()A .8和9之间B .9和10之间C .10和11之间D .11和12之间【答案】C【分析】本题考查的是二次根式的乘法运算,无理数的估算,先计算二次根式的乘法运算,再估算即可.【详解】解:∵()1223266+=+,而424265<=<,∴1026611<+<,故答案为:C10.(2024·四川德阳·,按以下方式进行排列:则第八行左起第1个数是()A .B .CD .二、填空题11.(2024·江苏连云港·x 的取值范围是.12.(2024·江苏扬州·有意义,则x 的取值范围是.13.(2024·贵州·23的结果是.【答案】6【分析】利用二次根式的乘法运算法则进行计算.【详解】解:原式=23⨯=6,故答案为:6.【点睛】本题考查二次根式的乘法运算,掌握二次根式乘法的运算法则a b ab ⋅=(a ≥0,b >0)是解题关键.14.(2024·北京·9x -x 的取值范围是.【答案】9x ≥【分析】根据二次根式有意义的条件,即可求解.【详解】解:根据题意得90x -≥,解得:9x ≥.故答案为:9x ≥【点睛】本题主要考查了二次根式有意义的条件,熟练掌握二次根式的被开方数为非负数是解题的关键.15.(2024·天津·中考真题)计算()111111-+的结果为.【答案】10【分析】利用平方差公式计算后再加减即可.【详解】解:原式11110=-=.故答案为:10.【点睛】本题考查了二次根式的混合运算,掌握二次根式的混合运算法则及平方差公式是解题的关键.16.(2024·四川德阳·()23-=.【答案】3【分析】根据二次根式的性质“2a a =”进行计算即可得.【详解】解:()2333-=-=,故答案为:3.【点睛】本题考查了化简二次根式,解题的关键是掌握二次根式的性质.17.(2024·黑龙江大兴安岭地·中考真题)在函数2y x =+中,自变量x 的取值范围是.【答案】3x ≥/3x≤【分析】本题主要考查函数自变量取值范围,分别根据二次根式有意义的条件和分式有意义的条件列出不等式求解即可.【详解】解:根据题意得,30x -≥,且20x +≠,解得,3x ≥,故答案为:3x ≥.18.(2024·山东烟台·x 的取值范围为.【答案】1x >/1x<【分析】本题考查代数式有意义,根据分式的分母不为0,二次根式的被开方数为非负数,进行求解即可.【详解】解:由题意,得:10x ->,解得:1x >;故答案为:1x >.19.(2024·山东威海·=.20.(2024·黑龙江齐齐哈尔·中考真题)在函数2y x =+中,自变量x 的取值范围是.【答案】3x >-且2x ≠-【分析】本题考查了求自变量的取值范围,根据二次根式有意义的条件和分式有意义的条件列出不等式组解答即可求解,掌握二次根式有意义的条件和分式有意义的条件是解题的关键.【详解】解:由题意可得,3020x x +>⎧⎨+≠⎩,解得3x >-且2x ≠-,故答案为:3x >-且2x ≠-.三、解答题21.(2024·内蒙古包头·中考真题)(1)先化简,再求值:()()2121x x +-+,其中22x =(2)解方程:2244x xx x --=.【答案】(1)21x -,7;(2)3x =【分析】本题考查了整式的运算,二次根式的运算,解分式方程等知识,解题的关键是:(1)先利用完全平方公式、去括号法则化简,然后把x 的值代入计算即可;(2)先去分母,去括号,移项,合并同类项,系数化1,检验,解分式方程即可.【详解】解:(1)()()2121x x +-+22122x x x =++--21x =-,当22x =时,原式()22217=-=;(2)2244x x x x --=--去分母,得()224x x x ---=,解得3x =,把3x =代入43410x -=-=-≠,∴3x =是原方程的解.22.(2024·上海·中考真题)计算:1021|13|24(13)23-++--+.【答案】26【分析】本题考查了绝对值,二次根式,零指数幂等,掌握化简法则是解题的关键.先化简绝对值,二次根式,零指数幂,再根据实数的运算法则进行计算.【详解】解:121|13|24(13)23-++--+2331261(23)(23)-=-++-+-3126231=-++--26=.23.(2024·甘肃·318122【答案】0【分析】根据二次根式的混合运算法则计算即可.24.(2024·河南·中考真题)(1(01;(2)化简:231124a a a +⎛⎫+÷ ⎪.。

中考数学经典题——二次根式(含答案)

中考数学经典题——二次根式(含答案)

二次根式要点一:二次根式的定义及性质 一、选择题1、(2010·聊城中考)无理数-3的相反数是( )A .- 3B . 3C .13D .-13【解析】选B,数a 的相反数为-a ,有-(-3)=3。

2、(2010·巴中中考)下列各数:21303003.072260cos 32.0902-︒,,,,,,, π中,无理数的个数是( )A 2个B 3个C 4个D 5个【解析】选B ,无限不循环小数是无理数,其中21303003.02-,, π三个是无理数,其他是有理数。

3、 (2009·宁波中考)x 的取值范围是( ).A .2x ≠B .2x >C .2x ≤D .2x ≥ 答案:D4、(2009·天津中考)若x y ,为实数,且20x +,则2009x y ⎛⎫ ⎪⎝⎭的值为( )A .1B .1-C .2D .2- 答案:B5.(2009·济宁中考)已知aA. aB. a -C. - 1D. 0 答案:D.6.(20092()x y =+,则x -y 的值为( )A .-1B .1C .2D .3【解析】选C.本题考查二次根式的意义,由题意可知1x =,1y =-,∴x -y =2,故选C .7、(20081a -,则a 的取值范围是( )A .1a >B .1a ≥C .1a <D .1a ≤【解析】选D.由二次根式的非负性知10. 1.a a -≥≤即 8、(2007·内江中考)已知ABC △的三边a b c ,,满足2|2|1022a b a ++=+,则ABC △为( )(A )等腰三角形 (B )正三角形 (C )直角三角形 (D )等腰直角三角形【解析】选B.∵2|2|1022a b a ++=+.∴21025412|0a a b -++--+=即2251)2|0a -++=()∴a=5,b=5,c=5. 二、填空题9、(2010·常德中考)函数y =x 的取值范围是_________.【解析】由二次根式的意义可以得出2x-6≥0,因而得出x ≥3。

中考数学最新真题专项汇总—二次根式(含解析)

中考数学最新真题专项汇总—二次根式(含解析)

中考数学最新真题专项汇总—二次根式(含解析)一.选择题1.(2022·湖北武汉)下列各式计算正确的是( )A=B .1= C =D 2=【答案】C【分析】由合并同类二次根式判断A ,B ,由二次根式的乘除法判断C ,D .【详解】解:A ≠B 、=C=D22==C .【点睛】本题考查合并同类二次根式,二次根式的乘法,二次根式的乘方运算,掌握以上知识是解题关键.2.(2022·山东聊城)射击时,子弹射出枪口时的速度可用公式v 其中a 为子弹的加速度,s 为枪筒的长.如果52510m /s a =⨯,0.64m s =,那么子弹射出枪口时的速度(用科学记数法表示)为( )A .20.410m /s ⨯B .20.810m /s ⨯C .2410⨯m /sD .28s 10m /⨯【答案】D【分析】把a =5×105m/s 2,s =0.64m 代入公式=v 化简即可.【详解】解:()2810m /s v =⨯,故选:D .【点睛】此题主要考查了二次根式的性质与化简以及科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.(2022·|2|cos45-⨯︒的结果,正确的是()B.C.D.2A【答案】B【分析】化简二次根式并代入特殊角的锐角三角比,再按照正确的运算顺序进行计算即可.-⨯︒|2|cos45=2==B【点睛】此题考查了二次根式的运算、特殊角的锐角三角比等知识,熟练掌握运算法则是解题的关键.4.(2022·山东青岛)计算)AB.1C D.3【答案】B再合并即可.【详解】解:94321故选:B.【点睛】本题考查的是二次根式的乘法运算,掌握“二次根式的乘法运算法则”是解本题的关键.5.(2022·2x -在实数范围内有意义,则x 的取值范围是( )A .1x >-B .1x -C .1x -且0x ≠D .1x -且0x ≠【答案】C【分析】根据二次根式被开方数不能为负数,负整数指数幂的底数不等于0,计算求值即可;【详解】解:由题意得:x +1≥0且x ≠0,∴x ≥-1且x ≠0,故选: C .【点睛】本题考查了二次根式的定义,负整数指数幂的定义,掌握其定义是解题关键.6.(2022·山东潍坊)秦兵马俑的发现被誉为“世界第八大奇迹”,兵马俑的眼睛,下列估算正确的是( )A .205<<B .2152<< C .12<<1 D 1> 【答案】C【分析】用夹逼法估算无理数即可得出答案.【详解】解:4<5<9,∴23,∴1∴1<1,故选:C.2【点睛】本题考查了无理数的估算,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.7.(2022·湖北恩施)函数y的自变量x的取值范围是()A.3x≥-x≠D.1x≥-且3x≠B.3x≥C.1【答案】C【分析】根据分式有意义的条件与二次根式有意义的条件得出不等式组,解不等式组即可求解.【详解】解:∴10,30+≥-≠,x x解得1x≠,故选C.x≥-且3【点睛】本题考查了求函数自变量的取值范围,掌握分式有意义的条件与二次根式有意义的条件是解题的关键.8.(2022·)A.B.3C.D.2【答案】A【分析】将被开方数12写成平方数4与3的乘积,再将4开出来为2,易知化简结果为故选:A.【点睛】本题考查了二次根式的化简,关键在于被开方数要写成平方数乘积的形式再进行化简.9.(2022·x的取值范围是()A.1≥x B.1x>x>C.0x≥D.0【答案】A0)进行计算即可.【详解】解:由题意得:10x-,∴,1x故选:A.0)是解题的关键.10.(2022·山东临沂)满足1m>的整数m的值可能是()A.3B.2C.1D.0【答案】A11的范围,再确定m的范围即可确定答案.【详解】3104<<,∴<,2131011m>,-,1∴≥,故选:A.3m【点睛】本题考查了绝对值的化简,无理数的估算和不等式的求解,熟练掌握知识点是解题的关键.11.(2021·)A.±3B.3C.±9D.9【答案】A【详解】解:,9的平方根是±3,±3,故选:A.【点睛】本题考查了算术平方根,平方根,熟练掌握相关知识是解题的关键.12.(2022·四川广安)下列运算中,正确的是()A.3a2 +2a2 =5a4B.a9÷a3=a3C=D.(﹣3x2)3=﹣27x6【答案】D【分析】根据合并同类项,同底数幂的除法,二次根式的加法,积的乘方运算,逐项分析判断即可求解.【详解】解:A. 3a2 +2a2 =5 a 2,故该选项不正确,不符合题意;B. a9÷a3=a6,故该选项不正确,不符合题意;C.D. (﹣3x2)3=﹣27x6,故该选项正确,符合题意;故选D【点睛】本题考查了合并同类项,同底数幂的除法,二次根式的加法,积的乘方运算,正确的计算是解题的关键.13.(2022·x的取值范围是A .x≥3B .x≤3C .x >3D .x <3【答案】A 【详解】解:由题意得30x -≥.解得x≥3,故选:A .14.(2022·内蒙古呼和浩特)下列运算正确的是( )A2± B .222()m n m n +=+ C .1211-=--x x x D .2229332-÷=-y x xy x y【答案】D【分析】分别根据二次根式乘法法则,完全平方公式,异分母分式加减法法则以及分式除法法则计算出各项结果后,再进行判断即可.【详解】解:A. 2,故此计算错误,不符合题意; B. 222()2m n m mn n +=++,故此计算错误,不符合题意; C. 1221(1)x x x x x --=---,故此计算错误,不符合题意; D. 22223933322y x x xy xy =x y y-÷=--,计算正确,符合题意,故选:D . 【点睛】本题主要考查了二次根式乘法,完全平方公式,异分母分式加减法以及分式除法,熟练掌握相关运算法则是解答本题的关键.15.(2022·湖南郴州)下列运算正确的是( )A .325a a a +=B .632a a a ÷=C .()222a b a b +=+ D 5 【答案】D【分析】根据合并同类项、同底数幂的除法法则,完全平方公式以及二次根式的计算法则进行计算即可.【详解】A.32a a+不能合并,故A错误;B.633a a a÷=,故B错误;C.()2222a b a ab b+=++,故C错误;5=,故D正确;故答案为:D.【点睛】本题考查合并同类项、同底数幂的除法法则、完全平方公式以及二次根式的计算法则等知识.掌握合并同类项、同底数幂的除法法则、完全平方公式以及二次根式的计算法则是解答本题的关键.16.(2022·四川雅安)下列计算正确的是()A.32=6B.(﹣25)3=﹣85C.(﹣2a2)2=2a4D【答案】D【分析】由有理数的乘方运算可判断A,B,由积的乘方运算与幂的乘方运算可判断C,由二次根式的加法运算可判断D,从而可得答案.【详解】解:239=,故A不符合题意;328,5125故B不符合题意;22424,a a故C不符合题意;2333,故D符合题意;故选D【点睛】本题考查的是有理数的乘方运算,积的乘方与幂的乘方运算,二次根式的加法运算,掌握以上基础运算是解本题的关键.17.(2022·湖南永州)下列各式正确的是()A=B .020= C .321a a -= D .()224--=【答案】D 【分析】利用二次根式性质化简、零指数幂、合并同类项、有理数减法运算即可判断。

中考数学二次根式(讲义及答案)及解析

中考数学二次根式(讲义及答案)及解析

一、选择题1.下列二次根式中是最简二次根式的为( ) A .12B .30C .8D .122.若 3x - 有意义,则 x 的取值范围是 ( ) A .3x >B .3x ≥C .3x ≤D .x 是非负数3.已知m 、n 是正整数,若2m +5n是整数,则满足条件的有序数对(m ,n )为( ) A .(2,5) B .(8,20)C .(2,5),(8,20)D .以上都不是4.设S=2222222211111111111112233499100++++++++++++,则不大于S 的最大整数[S]等于( ) A .98B .99C .100D .1015.下列计算或判断:(1)±3是27的立方根;(2)33a =a ;(3)64的平方根是2;(4)22(8)±=±8;(5)65- =65+,其中正确的有( ) A .1个B .2个C .3个D .4个6.如果2a a 2a 1+-+=1,那么a 的取值范围是( ) A .a 0= B .a 1=C .a 1≤D .a=0a=1或7.若a 、b 、c 为有理数,且等式成立,则2a +999b +1001c 的值是( )A .1999B .2000C .2001D .不能确定 8.下列运算中错误的是( ) A 235=B 236=C 822÷=D .2 (3)3-=9.已知0xy <,化简二次根式2yx - ) A y B y -C .y -D .y --10.下列计算正确的是( ) A 235=B .332-= C .222= D 393=二、填空题11.化简并计算:()()()()()()()...112231920xx x x x x x x +=+++++++________.(结果中分母不含根式)12.定义:对非负实数x “四舍五入”到个位的值记为()f x z , 即:当n 为非负整数时,如果1122n x n -<+≤,则()f x n =z .如:(0)(0.48)0f f ==z z ,(0.64)(1.49)1f f ==z z ,(4)(3.68)4f f ==z z ,试解决下列问题:①f =z __________;②f =z __________;+=__________.13.已知,-1,则x 2+xy +y 2=_____.14.÷=________________ .15.已知:可用含x =_____.16..17.计算:2015·2016=________.18.===据上述各等式反映的规律,请写出第5个等式:___________________________.19.化简:=_____. 20.x 的取值范围是_____. 三、解答题21.阅读下面的解答过程,然后作答:m 和n ,使m 2+n 2=a 且,则a 可变为m 2+n 2+2mn ,即变成(m +n )2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可. 【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==22.小明在解决问题:已知2a 2﹣8a+1的值,他是这样分析与解的:∵=2 ∴a ﹣2=∴(a ﹣2)2=3,a 2﹣4a+4=3 ∴a 2﹣4a=﹣1∴2a 2﹣8a+1=2(a 2﹣4a )+1=2×(﹣1)+1=﹣1 请你根据小明的分析过程,解决如下问题:(1(2)若,求4a 2﹣8a+1的值. 【答案】(1)9;(2)5. 【解析】 试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1===.(2)先对a 1 ,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a - 的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=1)+++⋯(2)∵1a ===,解法一:∵22(1)11)2a -=-= , ∴2212a a -+= ,即221a a -=∴原式=24(2)14115a a -+=⨯+= 解法二∴ 原式=24(211)1a a -+-+24(1)3a =--211)3=--4235=⨯-=点睛:(1得22=-=-a b ,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.23.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x - 【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案. 【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x - ∴ 3,4x y == 当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.24.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中,b=1.【答案】原式=a ba b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可. 【详解】原式=()()222a ab b aa ab a b -+⨯+-=()()()2·a b a aa b a b -+- =a ba b-+, 当,b=1时, 原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.25.一样的式子,其实我3==3==,1===;以上这种化简的步骤叫做分母有理化还可以用以下方法化简:221111===-=(12)化简:2n +++【答案】(1-2. 【解析】试题分析:(12看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.试题解析:(1)===== (2)原式2n +++=12. 考点:分母有理化.26.计算:(1;(2+2)2+2).【答案】(1-2)【分析】(1)直接化简二次根式进而合并得出答案; (2)直接利用乘法公式计算得出答案. 【详解】解:(1)原式=-(2)原式=3434++-=6+. 【点睛】本题考查了二次根式的运算,在进行二次根式运算时,可以运用乘法公式,运算率简化运算.27.计算:(1 (2)()()2221-【答案】2)1443 【分析】(1)先化成最简二次根式,然后再进行加减运算即可; (2)套用平方差公式和完全平方式进行运算即可. 【详解】解:(1)原式=23223323,(2)原式(34)(12431)1124311443,故答案为:1443.【点睛】本题考查二次根式的四则运算,熟练掌握二次根式的四则运算是解决本题的关键.28.计算:(1)()22131)()2---+(2【答案】(1)12;(2) 【分析】(1)按照负整数指数幂、0指数幂、乘方的运算法则计算即可; (2)根据二次根式的加减乘除运算法则计算即可. 【详解】(1)解:原式= 9-1+4=12(2) 【点睛】本题考查负整数指数幂、0指数幂、乘方以及二次根式的运算法则,熟练掌握二次根式的化简是关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用最简二次根式定义判断即可. 【详解】解:A =不是最简二次根式,本选项错误;BC =不是最简二次根式,本选项错误;D 2=故选:B . 【点睛】本题考查了最简二次根式,熟练掌握最简二次根式定义是解题的关键.2.B解析:B 【分析】直接利用二次根式有意义的条件进而分析得出答案. 【详解】有意义的x 的取值范围是:x ≥3. 故选:B . 【点睛】本题考查二次根式有意义的条件,解题关键是正确掌握定义和二次根式有意义的条件.3.C解析:C 【分析】根据二次根式的性质分析即可得出答案. 【详解】解:∵m 、n 是正整数, ∴m=2,n=5或m=8,n=20, 当m=2,n=5时,原式=2是整数; 当m=8,n=20时,原式=1是整数;即满足条件的有序数对(m ,n )为(2,5)或(8,20), 故选:C . 【点睛】本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.4.B解析:B 【分析】1111n n =+-+,代入数值,求出=99+1-1100,由此能求出不大于S 的最大整数为99. 【详解】∵==()211n n n n ++=+ =111+1n n -+,∴=1111111+11122399100-++-+++- =199+1100- =100-1100,∴不大于S 的最大整数为99. 故选B. 【点睛】1111n n =+-+是解答本题的基础.5.B解析:B 【解析】根据立方根的意义,可知27的立方根是3,故(1a =正确,故(2)正=8,可知其平方根为±,故(3)不正确;根据算术平方根的意义,可知8=,故(4=,故(5)正确. 故选B.6.C解析:C 【解析】试题解析:∵a1, a ∴1-a ≥0, a ≤1,故选C .7.B解析:B 【解析】因=,所以a =0,b =1,c =1,即可得2a +999b +1001c =999+1001=2000,故选B.点睛:本题考查了二次根式的性质与化简,将复合二次根式根据完全平方公式化简并比较系数是解题的关键.8.A解析:A 【分析】根据合并同类二次根式的法则对A 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断;根据二次根式的性质对D 进行判断. 【详解】23 23236=⨯=828242÷÷===,故此项正确,不符合要求;D. 2 (3)3-=,故此项正确,不符合要求; 故选A . 【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.9.B解析:B 【分析】先根据xy <0,考虑有两种情况,再根据所给二次根式可确定x 、y 的取值,最后再化简即可. 【详解】 解:0xy <,0x ∴>,0y <或0x <,0y >,又2yx x -有意义, 0y ∴<,0x ∴>,0y <,当0x >,0y <时,2yx y x -- 故选B . 【点睛】本题考查了二次根式的性质与化简.解题的关键是能根据已知条件以及所跟二次根式来确定x、y的取值.10.C解析:C【分析】根据立方根、二次根式的加减乘除运算法则计算.【详解】A、非同类二次根式,不能合并,故错误;B、=C、22=,正确;D故选C.【点睛】本题考查二次根式、立方根的运算法则,熟练掌握基本法则是关键.二、填空题11.【分析】根据=,将原式进行拆分,然后合并可得出答案.【详解】解:原式==.故答案为.【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观【分析】-,将原式进行拆分,然后合并可得出答案.【详解】解:原式====220400xx x-.【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观察.12.3 【解析】 1、;2、根据题意,先推导出等于什么, (1)∵, ∴,(2)再比较与的大小关系, ①当n=0时,; ②当为正整数时,∵, ∴, ∴,综合(1)、(2)可得:,解析:3 20172018【解析】1、(1.732)2z z f f ==;2、根据题意,先推导出f 等于什么, (1)∵2221142n n n n n ⎛⎫+<++=+ ⎪⎝⎭,12n <+, (2)12n -的大小关系,①当n=012n >-; ②当n 为正整数时,∵2212n n n ⎛⎫+-- ⎪⎝⎭1204n =->,∴2212n n n ⎛⎫+>- ⎪⎝⎭,12n>-,综合(1)、(2)可得:1122n n-<+,∴f n=z,∴3f=z.3、∵f n=z,∴(2017zf+111112233420172018=++++⨯⨯-⨯111111112233420172018=-+-+-++-112018=-20172018=.故答案为(1)2;(2)3;(3)20172018.点睛:(1)解第②小题的关键是应用“完全平方公式”和“作差的方法”分别证明到当n为非负整数时,1122n n-<+,从而得到f n=z;(2)解题③的要点是:当n为正整数时,111(1)1n n n n=-++.13.10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2)2﹣(+1)(﹣1)= 12﹣2=10.故答案为10.解析:10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2﹣1)=12﹣2=10.故答案为10.14.【解析】=,故答案为.解析:【解析】÷====-,故答案为15.【解析】 ∵=, ∴== = -==﹣x3+x , 故答案为:﹣x3+x.解析:211166x x -+【解析】∵x =-3==123=146+= -21116⎡⎤-⎢⎥⎣⎦=311166-+=﹣16x 3+116x ,故答案为:﹣16x3+116x. 16.【解析】 【详解】根据二次根式的性质和二次根式的化简,可知==. 故答案为. 【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可. 解析:2【解析】 【详解】22.故答案为2. 【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.17.【解析】 原式=. 故答案为.【解析】原式=20152015=18.【解析】上述各式反映的规律是 (n ⩾1的整数),得到第5个等式为: (n ⩾1的整数). 故答案是: (n ⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;=【解析】上述各式反映的规律是=n ⩾1的整数),得到第5==n ⩾1的整数).=n ⩾1的整数). 点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;第二步,找规律,分别比较等式中各部分与序号之间的关系,把其蕴含的规律用含序数的代数式表示出来;第三步,根据找出的规律得出第n 个等式.19.【分析】直接合并同类二次根式即可.【详解】解:.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.解析:【分析】直接合并同类二次根式即可.【详解】解:=.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.20.x>4【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.【点睛】本题主要考查的是二次根解析:x>4【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.【点睛】本题主要考查的是二次根式有意义的条件、分式有意义的条件,掌握二次根式的被开方数是非负数、分式分母不为0是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

中考数学5年真题(2019-2023)专题汇总解析—二次根式

中考数学5年真题(2019-2023)专题汇总解析—二次根式

中考数学5年真题(2019-2023)专题汇总解析—二次根式考点1二次根式一、单选题1.(2023)A.25与30之间B.30与35之间C.35与40之间D.40与45之间【答案】D【详解】解∶∵160020232025<<.即4045<,40与45之间.故选D.【点睛】本题主要考查了估算无理数的大小,正确估算无理数的取值范围是解题关键.2.(2023年江苏省无锡市中考数学真题)实数9的算术平方根是()A.3B.3±C.19D.9-【答案】A【分析】根据算术平方根的定义即可求出结果.3=,故选:A.【点睛】本题考查了平方根和算术平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.(2023年重庆市中考数学真题(A卷)的值应在()A .7和8之间B .8和9之间C .9和10之间D .10和11之间【答案】B【分析】先计算二次根式的混合运算,再估算结果的大小即可判断.=4=+∵2 2.5<<,∴45<<,∴849<+<,故选:B .【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的混合运算法则是解题的关键.4.(2019·广东·的结果是()A .4-B .4C .4±D .2【答案】B【分析】根据算术平方根的定义进行求解即可.,故选B.【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解题的关键.5.(2020·广西贵港·在实数范围内有意义,则实数x 的取值范围是()A .1x <-B .1x ≥-C .0x ≥D .1x ≥【答案】B【分析】根据二次根式的被开方数为非负数即可得出的取值范围.∴x+1≥0∴x≥﹣1故选:B【点睛】本题考查了二次根式有意义的条件,解答本题的关键是掌握二次根式有意义:被开方数为非负数.6.(2020·山东聊城·÷).A.1B.53C.5D.9【答案】A【分析】利用二次根式的乘除法则计算即可得到结果.÷==1=,故选:A.【点睛】本题主要考查了二次根式的乘除法,熟练掌握运算法则是解题的关键.7.(2023年辽宁省大连市中考数学真题)下列计算正确的是()A.0=B.+=C=D)26=-【答案】D【分析】根据零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算进行计算即可求解.【详解】解:A.)1=,故该选项不正确,不符合题意;B.=C.=D.)26=-,故该选项正确,符合题意;故选:D .【点睛】本题考查了零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.8.(2021·广东·统考中考真题)若0a =,则ab =()AB .92C .D .9【答案】B【分析】根据一个实数的绝对值非负,一个非负实数的算术平方根非负,且其和为零,则它们都为零,从而可求得a 、b 的值,从而可求得ab 的值.【详解】∵0a ≥0≥,且0a =∴0a =0==即0a =,且320a b -=∴a =b∴92ab ==故选:B .【点睛】本题考查了绝对值和算术平方根的非负性,一般地,几个非负数的和为零,则这几个非负数都为零.9.(2022·河北·统考中考真题)下列正确的是()A23=+B 23=⨯CD 0.7=【答案】B【分析】根据二次根式的性质判断即可.【详解】解:23=≠+,故错误;=⨯,故正确;23=≠≠,故错误;0.7故选:B.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键.10.(2023()A.点P B.点Q C.点R D.点S【答案】B<<【详解】解:∵479<<,<<23Q,故选:B.11.(2023年河北省中考数学真题)若a b===()A.2B.4C D【答案】A【分析】把a b【详解】解:∵a b==2==,故选:A.【点睛】本题考查了求二次根式的值,掌握二次根式的乘方和乘除运算是解题的关键.12.(2019·四川资阳·统考中考真题)设x=x的取值范围是()A.23x<<B.34x<<C.45x<<D.无法确定【答案】B【分析】根据无理数的估计解答即可.【详解】解:∵91516<<,∴34<<,故选B.【点睛】此题考查估算无理数的大小,关键是根据无理数的估计解答.13.(2021·广东·统考中考真题)设6a,小数部分为b,则(2a b+的值是()A.6B.C.12D.【答案】A的整数部分可确定a的值,进而确定b的值,然后将a与b的值代入计算即可得到所求代数式的值.【详解】∵34<<,∴263<<,∴62a=,∴小数部分624b==∴(((22244416106a b+=⨯+-=+-=-=.故选:A.【点睛】本题考查了二次根式的运算,正确确定6a与小数部分b的值是解题关键.二、填空题14.(2019·江苏苏州·x的取值范围为.【答案】6x≥【分析】根据根式有意义的条件,得到不等式,解出不等式即可.-60x≥,解出得到6x≥.【点睛】本题考查根式有意义的条件,能够得到不等式是解题关键.15.(2020·广西·=.【分析】利用二次根式的性质化简,再相减.==【点睛】本题考查了二次根式的减法,解题的关键是掌握二次根式的化简及性质.16.(2021·天津·统考中考真题)计算1)的结果等于.【答案】9【分析】根据二次根式的混合运算法则结合平方差公式计算即可.【详解】21)19=-=.故答案为9.【点睛】本题考查二次根式的混合运算.掌握二次根式的混合运算法则是解答本题的关键.17.(2023年湖北省武汉市数学真题)写出一个小于4的正无理数是.【分析】根据无理数估算的方法求解即可.<4<..【点睛】本题主要考查了无理数的估算,准确计算是解题的关键.18.(2023x 的取值范围是.【答案】13x ≥-【分析】根据二次根式有意义的条件得到130x +≥,解不等式即可得到答案.∴130x +≥,解得13x ≥-,故答案为:13x ≥-【点睛】此题考查了二次根式有意义的条件,熟知被开方式为非负数是解题的关键.19.(2019·河南·12--==.【答案】112【分析】本题涉及二次根式化简、负整数指数幂两个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.12--122=-112=.故答案为11 2.【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式等考点的运算.20.(2021·安徽·统考中考真题)埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等的等腰三角形,1-,它介于整数n和1n+之间,则n的值是.【答案】11即可完成求解.2.236≈;1 1.236≈;因为1.236介于整数1和2之间,所以1n=;故答案为:1.分即可;该题题干前半部分涉及到数学文化,后半部分为解题的要点,考查了学生的读题、审题等能力.21.(20231+=.【答案】3【分析】根据求一个数的立方根,有理数的加法即可求解.1+=213+=,故答案为:3.【点睛】本题考查了求一个数的立方根,熟练掌握立方根的定义是解题的关键.22.(2023年上海市中考数学真题)已知关于x2=,则x=【答案】18【分析】根据二次根式的性质,等式两边平方,解方程即可.【详解】解:根据题意得,140x -≥,即14x ≥,2=,等式两边分别平方,144x -=移项,18x =,符合题意,故答案为:18.【点睛】本题主要考查二次根式与方程的综合,掌握含二次根式的方程的解法是解题的关键.23.(2023年黑龙江省绥化市中考数学真题)若式子x有意义,则x 的取值范围是.【答案】5x ≥-且0x ≠/0x ≠且5x ≥-【分析】根据分母不为零,二次根式的被开方数是非负数,列出不等式计算即可.【详解】∵式子∴50x +≥且0x ≠,∴5x ≥-且0x ≠,故答案为:5x ≥-且0x ≠.【点睛】本题考查了分母不为零,二次根式的被开方数是非负数,熟练掌握二次根式和分式有意义的条件是解题的关键.24.(2023年黑龙江省齐齐哈尔市中考数学真题)在函数12y x +-中,自变量x 的取值范围是.【答案】1x >且2x ≠【分析】根据分式有意义的条件,二次根式有意义的条件得出10,20x x ->-≠,即可求解.【详解】解:依题意,10,20x x ->-≠∴1x >且2x ≠,故答案为:1x >且2x ≠.【点睛】本题考查了求函数自变量的取值范围,熟练掌握分式有意义的条件,二次根式有意义的条件是解题的关键.三、解答题25.(2019·福建·统考中考真题)先化简,再求值:(x -1)÷(x -21xx-),其中x【答案】1x x -,1+2【分析】先化简分式,然后将x 的值代入计算即可.【详解】解:原式=(x−1)÷221x x x-+()()211xx x =-⋅-1x x =-当x +1时,12=+【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.26.(2022·福建·统考中考真题)先化简,再求值:2111aa a -⎛⎫+÷ ⎪⎝⎭,其中1a =.【答案】11a -.【分析】根据分式的混合运算法则化简,再将a 的值代入化简之后的式子即可求出答案.【详解】解:原式()()111a a a a a+-+=÷()()111a a a a a +=⋅+-11a =-.当1a =时,原式2=.【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解题的关键.27.(2023年安徽中考数学真题)先化简,再求值:2211x x x +++,其中1x =.【答案】1x +【分析】先根据分式的性质化简,最后将字母的值代入求解.【详解】解:2211x x x +++()211x x +=+1x =+,当1x =-时,∴原式11+=.【点睛】本题考查了分式化简求值,解题关键是熟练运用分式运算法则进行求解.28.(20232133-⎛⎫- ⎪⎝⎭【答案】6-【分析】根据立方根、负整数指数幂及二次根式的运算可进行求解.【详解】解:原式2293=-+6=-.【点睛】本题主要考查立方根、负整数指数幂及二次根式的运算,熟练掌握立方根、负整数指数幂及二次根式的运算是解题的关键.29.(2023年吉林省长春市中考数学真题)先化简.再求值:2(1)(1)a a a ++-,其中3a =.【答案】31a +1+【分析】根据完全平方公式以及单项式乘以单项式进行化简,然后将字母的值代入进行计算即可求解.【详解】解:2(1)(1)a a a ++-2221a a a a =+++-31a =+当a =311==【点睛】本题考查了整式乘法的化简求值,实数的混合运算,熟练掌握完全平方公式以及单项式乘以单项式的运算法则是解题的关键.30.(2023年内蒙古通辽市中考数学真题)计算:21tan 453-⎛⎫+︒-⎪⎝⎭【答案】0【分析】根据负整数次幂、特殊角的三角函数值、算术平方根化简,然后在计算即可.【详解】解:21tan 453-⎛⎫+︒-⎪⎝⎭9110=+-,0=.【点睛】本题主要考查了负整数次幂、特殊角的三角函数值、算术平方根等知识点,掌握基本的运算法则是解答本题的关键.31.(2019·河南·统考中考真题)先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中x =【答案】3x【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.【详解】解:原式212(2)22(2)x x x x x x x +--⎛⎫=-÷ ⎪---⎝⎭322x x x-=⋅-3x=,当x ===.【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.32.(2023年辽宁省营口市中考数学真题)先化简,再求值:524223m m m m-⎛⎫++⋅⎪--⎝⎭,其中tan 45m =︒.【答案】26--m ,原式16=-【分析】先根据分式的混合计算法则化简,然后根据特殊角三角函数值和二次根式的性质求出m 的值,最后代值计算即可.【详解】解:524223m m m m-⎛⎫++⋅⎪--⎝⎭()22245223m m m m m-⎛⎫-=-⋅⎪---⎝⎭()222923m m m m--=⋅--()()()332223m m m m m+--=⋅--()23m =-+26m =--,∵tan 45m =︒,∴415m =+=,∴原式25610616=-⨯-=--=-.【点睛】本题主要考查了分式的化简求值,求特殊角三角函数值,化简二次根式等等,正确计算是解题的关键.33.(2023·重庆九龙坡·的值应在()A .2和3之间B .3和4之间C .4和5之间D .5和6之间【答案】A【分析】根据二次根式的乘法进行计算,以及估算无理数的大小的方法解答即可.=6=∵91416<<,∴34<,∴43-<<-,∴263<<,故选:A .【点睛】本题考查了估算无理数的大小和二次根式的运算.解题的关键是掌握二次根式的运算方法,以及估算无理数的大小的方法.34.(2023·辽宁丹东·统考二模)在函数y =x 的取值范围是()A .12x -<≤B .21x -<≤C .12x ≤≤D .12x <≤【答案】D【分析】根据函数有意义的条件得到2010x x -≥⎧⎨->⎩,解不等式组即可得到自变量x 的取值范围.【详解】解:由题意得2010x x -≥⎧⎨->⎩,解不等式组得12x <≤,故选:D .【点睛】此题考查了自变量的取值范围,熟练掌握二次根式和分式有意义的条件是解题的关键.35.(2023·安徽蚌埠·统考三模)下列运算正确的是()A 3=B .()3328a a -=-C =D .112235+=【答案】B【分析】根据二次根式的性质,积的乘方法则,二次根式的加法运算法则,有理数的加法运算法则依次判断即可得出答案.【详解】解:A 333==B .()3328a a -=-,故此选项符合题意;CD .11522365+=≠,故此选项不符合题意.故选:B .【点睛】本题考查二次根式的性质,积的乘方法则,二次根式的加法运算法则,有理数的加法运算法则.掌握相应的运算法则和性质是解题的关键.36.(2023·河北沧州·校考模拟预测)下列运算中,正确的是().A3=±B 2=C 2=D 8=-【答案】C【分析】利用二次根式的化简的法则对各项进行运算即可.【详解】解答:解:A 3=,故A 不符合题意;B 2=-,故B 不符合题意;C 2=,故C 符合题意;D 8=,故D 不符合题意;故选:C .【点睛】本题主要考查二次根式的化简,解答的关键是对相应的运算法则的掌握.37.(2023·四川泸州·四川省泸县第一中学校考三模)实数2的平方根为()A .2B .2±C D .【答案】D【分析】利用平方根的定义求解即可.【详解】∵2的平方根是.故选D .【点睛】此题主要考查了平方根的定义,注意一个正数的平方根有2个,它们互为相反数.38.(2023·西南大学附中校考三模)估计(3-)A .0和1之间B .2和3之间C .3和4之间D .4和5之间【答案】A【分析】由题意知(34-,由1.4 1.5=<<=,可得4.2 4.5<<,0.240.5<<,然后判断作答即可.【详解】解:(34-⨯,∵1.4 1.5=<<=,∴4.2 4.5<<,∴0.240.5<<,∴估算(3-0和1之间,故选:A .39.(2023·河北石家庄·校联考一模)下列计算正确的是()A =B1=-C =D 23=【答案】C【分析】根据二次根式加法、二次根式减法、二次根式乘法、二次根式除法分别进行判断即可.【详解】解:AB 0-=,故选项错误,不符合题意;C =D 1=,故选项错误,不符合题意.故选:C .【点睛】此题考查了二次根式的加法、减法、乘法、除法,熟练掌握运算法则是解题的关键.40.(2023·江苏无锡·校考二模)函数y x的取值范围是()A .5x ≥-B .5x ≤-C .5x ≥D .5x ≤【答案】C【详解】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数x 50x 5-≥⇒≥.故选C.考点:1.函数自变量的取值范围;2.二次根式有意义的条件.41.(2023·湖南长沙·校联考二模)4的算术平方根是()A .2B .2±C .8D .16【答案】A【分析】如果一个数x 的平方等于(0)a a ≥,那么这个数x 叫做a 的平方根,可以表示为平方根叫做a 的算术平方根.正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.【详解】解:42=,故选:A .【点睛】本题考查算术平方根的定义,明确平方根与算术平方根的区别与联系是本题的关键.42.(2023·重庆九龙坡·重庆市育才中学校考一模)x)A .0B .2C .3D .5【答案】D【分析】根据二次根式有意义的条件进行求解即可.∴40x -≥,即4x ≥,∴四个选项中只有D 选项中的5符合题意,故选:D .【点睛】本题主要考查了二次根式有意义的条件,熟知二次根式有意义的条件是被开方数大于等于零是解题的关键.43.(2023·甘肃平凉·的结果是.【答案】2【分析】根据二次根式的性质进行化简即可.2=.故答案为:2.()()(0000a a a a a a ⎧⎪===⎨⎪-⎩>)<.44.(2021·黑龙江大庆·=【答案】4【分析】先算4(2)-,再开根即可.==4=故答案是:4.【点睛】本题考查了求一个数的4次方和对一个实数开根号,解题的关键是:掌握相关的运算法则.45.(2023·广东茂名·校考一模)已知实数x,y |4|0y -=,则1x y -=⎛⎫⎪⎝⎭.【答案】2【分析】根据算术平方根的非负性,绝对值的非负性得出24x y ==,,进而根据负整数指数幂进行计算即可求解.40y -=0≥,40y -≥,∴20x -=,40y -=,∴24x y ==,,∴11112422x y ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭===.故答案为:2.【点睛】本题主要考查了算术平方根和绝对值的非负性、负整数次幂等知识点,根据非负性正确求得x 、y 的值是解答本题的关键.46.(2023·福建福州·校考二模)已知2a =2b =22a b ab -的值等于.【答案】【分析】先求出a b -=1ab =,再由()22a b ab ab a b -=-进行求解即可.【详解】解:∵2a =2b =∴22a b -=++=((22431ab =+⨯-=-=,∴22a b ab -()ab a b =-1=⨯=故答案为:【点睛】本题主要考查了二次根式的混合运算、求代数式的值,正确得到a b -=1ab =是解题的关键47.(2023·山东聊城·x 的取值范围是.【答案】12x ≥【分析】根据二次根式有意义的条件可得210x -≥,即可.【详解】解:由题意得:210x -≥,解得:12x ≥,故答案为:12x ≥.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.48.(2023·安徽滁州·校考模拟预测)计算)11-的结果等于.【答案】22【分析】直接利用平方差公式进行简便运算即可.【详解】解:)2211123122=-=-=,故答案为:22【点睛】本题考查的是二次根式的乘法运算,熟练的利用平方差公式进行简便运算是解本题的关键.49.(2023·陕西西安·校考模拟预测)-64的立方根是.【答案】-4【分析】直接利用立方根的意义,一个数的立方等于a ,则a 的立方根是这个数进行求解.【详解】解:根据立方根的意义,一个数的立方等于a ,则a 的立方根是这个数,可知-64的立方根为-4.故答案为:-4.【点睛】本题考查了立方根,解题的关键是掌握一个数的立方等于a ,则a 的立方根是这个数.50.(2023·云南昭通·x 的取值范围是.【答案】x>8【分析】由分式的分母不等于零和二次根式的被开方数是非负数得到x﹣8>0.【详解】解:由题意,得x﹣8>0,解得x>8.故答案是:x>8.【点睛】考查了分式有意义的条件和二次根式有意义的条件,注意,二次根式在分母上,所以不能取到0.51.(2023·四川泸州·四川省泸县第一中学校考三模)函数y=x的取值范围是.【答案】x>3【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件.x30x3x>3x30x3-≥≥⎧⎧⇒⇒⎨⎨-≠≠⎩⎩.52.(2023·河南洛阳·统考一模)计算:22-=.【答案】74-【分析】先计算22-,再算减法.【详解】解:原式17244=-=-.故答案为:74-.【点睛】本题考查了实数的计算,掌握负整数指数幂、二次根式的化简是解决本题的关键.53.(2023·安徽蚌埠·统考三模)计算:212022--=.【答案】2023【分析】根据有理数的乘方,二次根根式的性质,化简绝对值进行计算即可求解.【详解】解:212022--=122022-++2023=,故答案为:2023.【点睛】本题考查了有理数的乘方,二次根根式的性质,化简绝对值,正确的计算是解题的关键.54.(2022·新疆·x的取值范围是.【答案】x≥3【分析】直接利用二次根式有意义的条件得到关于x的不等式,解不等式即可得答案.【详解】由题意可得:x—3≥0,解得:x≥3,故答案为:x≥3【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键.55.(2023·黑龙江哈尔滨·统考三模)计算=.【答案】【分析】先根据二次根式的性质化简,然后根据二次根式的加减法则求解即可.【详解】解:=-2=-=故答案为:【点睛】本题主要考查了二次根式的性质、二次根式的加减运算等知识点,灵活运用二次根式的的性质化简是解题的关键.x的取值范围是.56.(2023·云南昆明·一模)要使式子3有意义,x≥【答案】5【分析】二次根式中的被开方数是非负数,依此即可求解.x-≥,【详解】解:依题意有:50x≥.解得5x≥.故答案为:5【点睛】本题考查了二次根式有意义的条件,关键是熟悉二次根式中的被开方数是非负数的知识点.57.(云南省丽江市华坪县2020-2021=.【答案】6【分析】利用二次根式的乘法法则进行求解即可.==.6故答案为:6.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式的乘法法则和二次根式的性质是解题的关键.58.(2023·山西·模拟预测)计算:=.【答案】【分析】先化简二次根式,再根据二次根式的加减计算法则求解即可.【详解】解:3=⨯=+=故答案为:【点睛】本题主要考查了二次根式的加减计算,二次根式的化简,正确计算是解题的关键.59.(2023·重庆沙坪坝·重庆八中校考模拟预测)如果2y=+,那么yx的值是.【答案】225【分析】根据二次根式有意义的条件,求出,x y的值,进而求出y x的值即可.【详解】解:∵2y=,∴150,150x x -≥-≥,∴15150x x -=-=,∴15,2x y ==,∴215225y x ==;故答案为:225.【点睛】本题考查二次根式有意义的条件,代数式求值.熟练掌握二次根式的被开方数是非负数,是解题的关键.60.(江西省崇仁县第二中学2016-2017学年八年级上学期第二次月考数学试题)计算:=【答案】61.(2015年初中毕业升学考试(山东滨州卷)数学(带解析))计算的结果为.【答案】﹣1【分析】此题用平方差公式计算即可.【详解】22=-23=-1=-62.(2023·黑龙江哈尔滨·=.【答案】3【分析】根据二次根式的化简方法和运算法则进行计算.【详解】解:原式33==【点睛】本题考查二次根式的计算,在化简二次根式的基础上再把同类二次根式合并.63.(福建省永春县第一中学2017【分析】根据二次根式乘法,加减法运算法则计算即可.【详解】解:原式=【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的化简方法是解题的关键.64.(2023·广东茂名·校考一模)先化简,再求值:2121211x x x x +⎛⎫÷+ ⎪-+-⎝⎭其中1x +.【答案】11x -;2【分析】先通分算括号内的,把除化为乘,再约分,化简后将x 的值代入计算.【详解】解:212(1)211x x x x +÷+-+-211(1)1x x x x ++=÷--211(1)1x x x x +-=⋅-+11x =-,当1x =+时,原式=2=.【点睛】本题考查了分式化简求值,掌握分式的基本性质,将分式通分和约分进行化简是关键.65.(2023·四川泸州·011+()3-23-【答案】【分析】根据实数的混合运算法则即可求解.011+()3-23-=(1+32-=1+32-+【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质及运算法则.66.(2023·安徽六安·1+【分析】先计算算术平方根.化简绝对值,求解立方根,再合并即可.1+=+-413=【点睛】本题考查是算术平方根的含义,化简绝对值,求解立方根,实数的混合运算,掌握“算术平方根与立方根的含义”是解本题的关键.67.(2022·新疆·统考中考真题)计算:20-+(2)|(3【分析】分别计算有理数的乘方、绝对值、二次根式及零指数幂,再进行加减即可.【详解】解:原式451=++=【点睛】本题考查有理数的乘方,绝对值和二次根式的化简及零指数幂的性质,属于基础题,正确运算是=.解题的关键.要熟练掌握:任何一个不等于零的数的零次幂都等于1a。

中考数学复习《二次根式》专项练习题-附带答案

中考数学复习《二次根式》专项练习题-附带答案

中考数学复习《二次根式》专项练习题-附带答案一、选择题1.下列式子,一定是二次根式的共有()√28,1,√−1,√m,,√x2+1A.5个B.4个C.3个D.2个2.下列根式是最简二次根式的是()A.√3B.√12C.√3D.√503.要使二次根式√6x+12有意义,则x的取值范围是()A.x≤-2 B.x≥-2 C.x⩾−12D.x⩽−124.计算2√5×3√10等于()A.6√15B.6√30C.30√2D.30√5 5.计算√52−42−32的结果是()A.6 B.0 C.√6D.46.使式子√x+3√4−3x在实数范围内有意义的整数x有()A.5个B.3个C.4个D.2个7.下列计算错误的是()A.√43+√121=2√7B.(√8+√3)×√3=2√6+3C.(4√2−3√6)÷2√2=2−32√3D.(√5+√7)(√5−√7)=5−7=−28.如图,在长方形ABCD中无重叠放入面积分别为12cm2和16cm2的两张正方形纸片,则图中空白部分的面积为()A.8−4√3B.16−8√3C.8√3−12D.4−2√3二、填空题9.计算:3√2−√8=.10.若代数式√2−xx−2有意义,则x的取值范围是.11.已知:x=√13+1,y=√13−1,则xy的值为.12.若a <2,化简√(a −2)2+a ﹣1= .13.已知x =√3+1,y =√3−1,则代数式y x +x y 的值是 .三、解答题14.计算:(181832;(221268(13)-15.先化简,再求值:已知x =3+2√2,求(2−x)2x−2+√x 2+9−6x x−3的值 16.已知23x =+23y =(1)试求22x y +的值; (2)试求x y y x-的值. 17.某居民小区有块形状为长方形的绿地ABCD ,长BC 为√128米,宽AB 为√50米,现在要长方形绿地中修建两个形状大小相同的长方形花坛(即图中阴影部分),每个长方形花坛的长为(√13+1)米,宽为(√13−1)米.(1)求长方形ABCD 的周长.(结果化为最简二次根式)(2)除去修建花坛的地方,其它地方全修建成通道,通道上要铺上造价为30元/平方米的地砖,要铺完整个通道,则购买地砖需要花费多少元?18.在数学课外学习活动中,小明和他的同学遇到一道题:已知a =,求2a 2﹣8a+1的值.他是这样解答的: ∵a ===2﹣,∴a ﹣2=﹣ ∴(a ﹣2)2=3,a 2﹣4a+4=3∴a 2﹣4a =﹣1∴2a 2﹣8a+1=2(a 2﹣4a )+1=2×(﹣1)+1=﹣1.请你根据小明的解析过程,解决如下问题:(1)= ;(2)化简;(3)若a=,求a4﹣10a3+a2﹣20a+5的值.参考答案1.D2.C3.B4.C5.B6.C7.A8.C9.√210.x <211.1212.113.414.(1)原式2222(2)原式333315.解: x =3+2√2=√2(3+2√2)(3−2√2)=3−2√2∴x −3=−2√2<0.原式=x −2+|x−3|x−3 =x −2+3−x x−3=x −2−1=x −3.当x =3+2√2时,原式==3+2√2−3=3−2√2−3=−2√2.16.(1)解:∵23x =和 23y =∴x+y=2323+,xy=(2323+=1 ∴()2222242114x y x y xy +=+-=-⨯= ;(2)解:∵23x =+和 23y =-∴x+y=2323+x-y=((2323232323--=+=xy=(2323=1 ∴()()2242383x y x y x y x y y x xy xy +--⨯-====17.(1)解:2×(√128+√50)=2×(8√2+5√2)=26√2(米)∴长方形ABCD 的周长为26√2米.(2)解:√128×√50−2×(√13+1)×(√13−1)=80−2×12=56(平方米)则56×30=1680(元)∴要铺完整个通道,则购买地砖需要花费1680元.18.解:(1)故答案为:﹣1; (2)==12﹣1=11;(3)∵a =∴a ﹣5=∴(a ﹣5)2=26,即a 2﹣10a+25=26.∴a 2﹣10a =1∴a 4﹣10a 3+a 2﹣20a+5=a 2(a 2﹣10a+1)﹣20a+5=a 2×(1+1)﹣20a+5=2(a 2﹣10a )+5=2+5=7. 答:a 4﹣10a 3+a 2﹣20a+5的值为7.。

中考数学专题03 二次根式-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版)

中考数学专题03 二次根式-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版)

专题03.二次根式一、单选题1.(2021·取1.442 )A .-100B .-144.2C .144.2D .-0.01442【答案】B【分析】类比二次根式的计算,提取公因数,代入求值即可.【详解】33 1.442= 33333(13-=--=-144.2=- 故选B .【点睛】本题考查了根式的加减运算,类比二次根式的计算,提取系数,正确的计算是解题的关键.2.(2021· ).A .321-+B .321+-C .321++D .321--【答案】A【分析】根据有理数运算和二次根式的性质计算,即可得到答案.2==∵3212-+=,且选项B 、C 、D 的运算结果分别为:4、6、0故选:A .【点睛】本题考查了二次根式、有理数运算的知识;解题的关键是熟练掌握二次根式、含乘方的有理数混合运算的性质,即可得到答案.3.(2021·湖北恩施土家族苗族自治州·,,这三个实数中任选两数相乘,所有积中小于2的有( )个.A .0B .1C .2D .3 【答案】C【分析】根据题意分别求出这三个实数中任意两数的积,进而问题可求解.【详解】解:由题意得:(2,==-=∴所有积中小于2的有2-两个;故选C .【点睛】本题主要考查二次根式的乘法运算,熟练掌握二次根式的乘法运算是解题的关键.4.(2021·湖南常德市·中考真题)计算:11122⎛⎫+-⋅= ⎪⎝⎭( )A .0B .1C .2D 【答案】B 【分析】先将括号内的式子进行通分计算,最后再进行乘法运算即可得到答案.【详解】解:11122⎛⎫-⋅ ⎪ ⎪⎝⎭=1122⋅=415-=1.故选:B . 【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则以及乘法公式是解答此题的关键. 5.(2021·湖南衡阳市·中考真题)下列计算正确的是( )A 4=±B .()021-=C =D 3=【答案】B【分析】利用算术平方根,零指数幂,同类二次根式,立方根逐项判断即可选择.4=,故A 选项错误,不符合题意;0(2)1-=,故B 选项正确,符合题意;C 选项错误,不符合题意;D 选项错误,不符合题意;故选B .【点睛】本题考查算术平方根,零指数幂,同类二次根式,立方根.掌握各知识点和运算法则是解答本题的关键.6.(2021·浙江杭州市·中考真题)下列计算正确的是( )A 2=B 2=-C 2=±D 2=± 【答案】A 【分析】由二次根式的性质,分别进行判断,即可得到答案.2==,故A 正确,C 2,故B 、D 错误;故选:A . 【点睛】本题考查了二次根式的性质,解题的关键是掌握性质进行判断.7.(2021·上海中考真题)下列实数中,有理数是( )A B C D 【答案】C【分析】先化简二次根式,再根据有理数的定义选择即可【详解】A 2;B 3C 12为有理数;D 故选:C 【点睛】本题考查二次根式的化简、无理数的定义、有理数的定义、熟练掌握有理数的定义是关键8.(2021·江苏苏州市·中考真题)计算2的结果是( )A B .3 C .D .9【答案】B【分析】直接根据二次根式的性质求解即可.【详解】解:2=3,故选B .【点睛】此题主要考查了二次根式的性质,熟练掌握2(0)a a =≥是解答此题的关键.9.(2021·甘肃武威市·中考真题)下列运算正确的是( )A 3=B .4=C =D 4=【答案】C【分析】直接根据二次根式的运算法则计算即可得到答案.=A 错;=B 错;=C 2=,故D 错.故选:C .【点睛】此题考查的是二次根式的运算和化简,掌握其运算法则是解决此题关键.10.(2021· )A.7 B .C .D .【答案】B【分析】根据二次根式的运算法则,先算乘法再算减法即可得到答案;===B .【点睛】本题主要考查了二次根式的混合运算,掌握二次根式的运算法则是解题的关键.11.(2021·浙江嘉兴市·中考真题)能说明命题“若x 为无理数,则x 2也是无理数”是假命题的反例是()A .1x =B .1x =C .x =D .x =【答案】C【分析】根据反例满足条件,但不能得到结论,所以利用此特征可对各选项进行判断.【详解】解:A 、)221=3x =-B 、)221x =C 、(22=18x =,是有理数,符合题意;D 、22=5x =-,是无理数,不符合题意;故选:C .【点睛】本题考查了无理数的概念以及二次根式的运算,熟练掌握运算法则和定义是解题的关键. 12.(2021·重庆中考真题)下列计算中,正确的是( )A .21=B .2=C =D 3=【答案】C【分析】根据二次根式运算法则逐项进行计算即可.【详解】解:A. =,原选项错误,不符合题意;B. 2不是同类二次根式,不能合并,原选项错误,不符合题意;C. =D. =C .【点睛】本题考查了二次根式的运算,解题关键是熟练运用二次根式运算法则,进行准确计算.13.(2020·是同类二次根式的是( )AB C D 【答案】C【分析】先把每个二次根式进行化简,化成最简二次根式,后比较被开方数即可.【详解】的被开方数不相同,故不是同类二次根式;3==被开方数相同,故是同类二次根式;=被开方数不同,故不是同类二次根式.故选:C .【点睛】本题考查了二次根式的化简,同类二次根式,熟练掌握根式化简的基本方法,灵活运用同类二次根式的定义判断解题是求解的关键.14.(2020·内蒙古赤峰市·中考真题)估计( ( ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间 【答案】A 【分析】根据二次根式的混合运算法则进行计算,再估算无理数的大小.【详解】(,∵4<6<9,∵<3,∴<5,故选:A.【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的运算法则、会进行无理数的大小估算是解题的关键.15.(2020·辽宁朝阳市· )A .0B C .D .12【答案】B 【分析】根据二次根式的性质化简第一项,根据二次根式的乘法化简第二项,然后合并即可.【详解】解:原式= =B . 【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答本题的关键.16.(2020·辽宁丹东市·中考真题)在函数y =x 的取值范围是( ) A .3x ≤B .3x <C .3x ≥D .3x > 【答案】A【分析】根据二次根式有意义,列不等式9-3x≥0,求出x 的取值范围即可.【详解】解:根据二次根式有意义,所以,9-3x≥0,解得,x≤3.故选:A .【点睛】本题主要考查函数自变量的取值范围的知识点,二次根式中的被开方数必须是非负数,否则二次根式无意义.17.(2020·湖北宜昌市·其运算结果能成为有理数的是( ).A .BC .3D .0【答案】D 【分析】分别计算出各选项的结果再进行判断即可.【详解】A .B =C .3D .00=,是有理数,正确.故选:D .【点睛】此题主要考查了二次根式的运算,辨别运算结果,区分运算结果是否是有理数是解题的关键.18.(2020·山东菏泽市·中考真题)函数5y x =-的自变量x 的取值范围是( ) A .5x ≠B .2x >且5x ≠C .2x ≥D .2x ≥且5x ≠【答案】D【分析】由分式与二次根式有意义的条件得函数自变量的取值范围. 【详解】解:由题意得:20,50x x -≥⎧⎨-≠⎩解得:2x ≥且 5.x ≠ 故选D . 【点睛】本题考查的是函数自变量的取值范围,掌握分式与二次根式有意义的条件是解题的关键. 19.(2020·黑龙江绥化市·中考真题)下列等式成立的是( )A 4=±B 2=C .-=D .8=- 【答案】D【分析】根据算术平方根、立方根、二次根式的化简等概念分别判断.【详解】解:A. 4=,本选项不成立;B. 2=-,本选项不成立;C. a a a-=-= D. 8=-,本选项成立.故选:D. 【点睛】本题考查了二次根式的化简与性质,正确理解二次根式有意义的条件、算术平方根的计算等知识点是解答问题的关键.20.(2020·山东济宁市·中考真题)下列各式是最简二次根式的是( )A B C D 【答案】A 【分析】根据最简二次根式的定义即可求出答案.【详解】解:A B =C a =,不是最简二次根式,故选项错误;D = A. 【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型. 21.(2020·江苏泰州市·中考真题)下列等式成立的是( )A .3+=B =C= D 3= 【答案】D【分析】根据二次根式的运算法则即可逐一判断.【详解】解:A 、3和不能合并,故A 错误;B =B 错误;C===,故C 错误;D 3=,正确;故选:D . 【点睛】本题考查了二次根式的运算,解题的关键是掌握基本的运算法则.22.(2019·湖北恩施土家族苗族自治州·中考真题)函数11=-+y x 中,自变量x 的取值范围是( ) A .23x ≤ B .23x ≥ C .23x <且1x ≠- D .23x ≤且1x ≠- 【答案】D【分析】根据分式及二次根式有意义的条件解答即可.【详解】∵11=+y x x+1≠0,2-3x≥0,解得:23x ≤且1x ≠-,故选D. 【点睛】本题考查分式及二次根式有意义的条件,要使分式有意义,分母不为0;要使二次根式有意义,被开方数大于等于0.23.(2019·湖北宜昌市·中考真题)古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b c p ++=,那么三角形的面积为S =ABC ∆中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若5a =,6b =,7c =,则ABC ∆的面积为( )A .B .C .18D .192【答案】A 【分析】利用阅读材料,先计算出p 的值,然后根据海伦公式计算ABC ∆的面积;【详解】7a =,5b =,6c =.∴56792p ++==,∴ABC ∆的面积S ==A .【点睛】考查了二次根式的应用,解题的关键是代入后正确的运算,难度不大.24.(2019·湖北中考真题)“分母有理化”是我们常用的一种化简的方法,如:7==+除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:设x =,>,故0x >,由22332x ==+=,解得x =,即=)A .5+B .5C .5D .5-【答案】D进行化简,然后再进行合并即可.【详解】设x =<0x <,∴266x =-+,∴212236x =-⨯=,∴x =5=-,∴原式5=--5=-D . 【点睛】本题考查了二次根式的混合运算,涉及了分母有理化等方法,弄清题意,理解和掌握题中介绍的方法是解题的关键.25.(2019·山东聊城市·中考真题)下列各式不成立的是( )A= B =C 5== D = 【答案】C【分析】根据二次根式的性质、二次根式的加法法则、除法法则计算,判断即可.33-==,A 选项成立,不符合题意;==B 选项成立,不符合题意;==,C 选项不成立,符合题意;==D 选项成立,不符合题意; 故选C . 【点睛】本题考查的是二次根式的混合运算,掌握二次根式的性质、二次根式的混合运算法则是解题的关键.26.(2019·江苏常州市·中考真题)下列各数中与2+ )A .2+B .2CD .2 【答案】D【分析】利用平方差公式可知与2+2;【详解】(22431=-=;故选D .【点睛】本题考查分母有理化;熟练掌握利用平方差公式求无理数的无理化因子是解题的关键.27.(2021· )A .4B .4±C .D .±【答案】C()0,0,a b a b=≥≥直接化简即可得到答案.==故选:.C【点睛】本题考查的是二次根式的化简,掌握积的算术平方根的含义是解题的关键.28.(2020·重庆中考真题)下列计算中,正确的是()A=B.2+=C=D.2【答案】C【分析】根据同类二次根式的概念与二次根式的乘法逐一判断可得答案.【详解】解:AB.2C==D.2不是同类二次根式,不能合并,此选项错误;故选:C.【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的乘法法则与同类二次根式的概念.29.(2020·山东聊城市·).A.1B.53C.5D.9【答案】A【分析】利用二次根式的乘除法则计算即可得到结果.=÷=1=,故选:A.【点睛】本题主要考查了二次根式的乘除法,熟练掌握运算法则是解题的关键.30.(2020·内蒙古鄂尔多斯市·中考真题)中,x的取值范围在数轴上表示正确的是()A.B.C.D.【答案】D【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x 的范围. 【详解】解:根据题意得3+x ≥0,解得:x ≥﹣3, 故x 的取值范围在数轴上表示正确的是.故选D .【点睛】本题考查了二次根式的性质,二次根式中的被开方数必须是非负数,否则二次根式无意义. 二、填空题目31.(2021·天津中考真题)计算1)的结果等于_____. 【答案】9【分析】根据二次根式的混合运算法则结合平方差公式计算即可.【详解】21)19=-=.故答案为9.【点睛】本题考查二次根式的混合运算.掌握二次根式的混合运算法则是解答本题你的关键.32.(2021·湖北武汉市·_______________________.【答案】5【分析】根据二次根式的性质进行求解即可.5=5,故答案为5.【点睛】本题考查了二次根式的性质,熟练掌握二次根式的性质是解题的关键.33.(2021·浙江丽水市·有意义,则x 可取的一个数是__________. 【答案】如4等(答案不唯一,3x ≥)【分析】根据二次根式的开方数是非负数求解即可.有意义,∴x ﹣3≥0,∴x ≥3,∴x 可取x ≥3的任意一个数,故答案为:如4等(答案不唯一,3x ≥.【点睛】本题考查二次根式、解一元一次不等式,理解二次根式的开方数是非负数是解答的关键.34.(2021·四川广安市·中考真题)在函数y =x 的取值范围是___.【答案】1x 2≥【详解】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负12x 10x 2-≥⇒≥.35.(2021·湖北黄冈市·这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设a =12b +=,则1ab =,记11111S a b =+++,2221111S a b =+++,…,1010101111S a b=+++.则1210S S S +++=____.【答案】10【分析】先根据1ab =求出1111n n nS a b=+++(n 为正整数)的值,从而可得1210,,,S S S 的值,再求和即可得.【详解】解:1ab =,111111()1nn n n n n n a S a b a a b ∴=+=+++++(n 为正整数), 11()n n n n a a a ab =+++,111nnna a a =+++,1=, 12101S S S ===∴=,则121010S S S +++=,故答案为:10.【点睛】本题考查了二次根式的运算、分式的运算,正确发现一般规律是解题关键.36.(2021·湖南岳阳市·中考真题)已知1x x +=,则代数式1x x+=______. 【答案】0【分析】把1x x+=直接代入所求的代数式中,即可求得结果的值.【详解】10x x+==故答案为:0. 【点睛】本题考查了求代数式的值,涉及二次根式的减法运算,整体代入法是解决本题的关键.37.(2021·四川眉山市·中考真题)观察下列等式:1311212x ===+⨯;2711623x ===+⨯;313111234x ===+⨯;…… 根据以上规律,计算12320202021x x x x ++++-=______.【答案】12021-【解答】解:13111212x =+==+⨯;2711623x ==+⨯;313111234x ===+⨯; ⋯12320201111111111112021111120212020120211223342020202122334202020212021x x x x ∴+++⋯+-=++++++⋯++-=+-+-+-+⋯+--=-⨯⨯⨯⨯, 故答案为:12021-. 【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算.38.(2021·x 的取值范围是________. 【答案】0x >【分析】根据分式及二次根式有意义的条件可直接进行求解. 【详解】解:由题意得:0x ≠且20x≥,∴0x >;故答案为0x >. 【点睛】本题主要考查二次根式及分式有意义的条件,熟练掌握二次根式及分式有意义的条件是解题的关键.39.(2020·山东青岛市·中考真题)计算:-⨯=______. 【答案】4【分析】根据二次根式的混合法则运算计算即可.【详解】解:原式3⎫⎛=⎪ ⎪⎝⎭3=⨯4=,故答案为:4. 【点睛】本题考查二次根式的混合运算,熟练掌握运算顺序和运算法则是解题关键.40.(2020·山西中考真题)计算:2-=_____________.【答案】5【分析】先利用完全平方公式、二次根式的性质进行化简,然后合并同类项,即可得到答案.【详解】解:223=+-5=;故答案为:5.【点睛】本题考查了二次根式的性质,完全平方公式,解题的关键是熟练掌握运算法则进行化简.41.(2020·江苏南通市·中考真题)若m <<m +1,且m 为整数,则m =_____. 【答案】5【分析】利用二次根式的估值方法进行计算即可.【详解】解:=<<5<6,又∵m <m +1,∴m =5,故答案为:5.【点睛】本题考查了二次根式的估值求参数值的问题,熟练掌握二次根式的估值计算是解题的关键.42.(2020·湖南益阳市·中考真题)m 的结果为正整数,则无理数m 的值可以是__________.(写出一个符合条件的即可)【分析】根据2为12,即可得到一个无理数m 的值.【详解】解:∵212=,∴12m 时m (答案不唯一).【点睛】本题考查了二次根式,注意2a =是解题的关键.43.(2020·内蒙古中考真题)计算:2+=______.【分析】先将乘方展开,然后用平方差公式计算即可.【详解】解:2-==22⎡⎤-⎢⎥⎣⎦-.【点睛】本题考查了二次根式的混合运算以及平方差公式的应用,掌握二次根式混合运算的运算法则和平方差公式是解答本题的关键.44.(2020·湖南邵阳市·中考真题)在如图方格中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则2个空格的实数之积为________.【答案】【分析】先将表格中最上一行的3个数相乘得到,然后中间一行的三个数相乘以及最后一行的三个数相等都是【详解】解:由题意可知,第一行三个数的乘积为:2=设第二行中间数为x ,则16⨯⨯=x x =设第三行第一个数为y ,则3⨯=y y =∴2个空格的实数之积为xy ==.【点睛】本题考查了二次根数的乘法运算法则,熟练掌握二次根式的加减乘除运算法则是解决此类题的关键.45.(2020·==,则ab =_________. 【答案】6【分析】根据二次根式的运算法则即可求解.【详解】∵-==∴a=3,b=2∴ab =6故答案为:6.【点睛】此题主要考查二次根式的运算,解题的关键是熟知其运算法则.46.(2020·甘肃金昌市·中考真题)已知5y x =+,当分别取1,2,3,……,2020时,所对应y 值的总和是__________.【答案】2032【分析】先化简二次根式求出y 的表达式,再将x 的取值依次代入,然后求和即可得.【详解】545y x x x =+=--+当4x <时,4592y x x x =--+=- 当4x ≥时,451y x x =--+= 则所求的总和为(921)(922)(923)111-⨯+-⨯+-⨯++++75312017=+++⨯2032=故答案为:2032.【点睛】本题考查了二次根式的化简求值、绝对值运算等知识点,掌握二次根式的化简方法是解题关键.47.(2020·江苏南京市·的结果是__________.【答案】1 3【分析】先化成最简二次根式,再根据二次根式的加减法法则计算出分母,最后约分即可.==13=,故答案为:13.【点睛】本题考查了二次根式的混合运算,掌握二次根式的加减法法则是解题的关键.48.(2020·黑龙江绥化市·中考真题)在函数15yx=+-中,自变量x的取值范围是_________.【答案】3x≥且5x≠【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【详解】根据题意得:301050xxx-≥⎧⎪+>⎨⎪-≠⎩,解得:3x≥且5x≠.故答案为:3x≥且5x≠.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.49.(2020·青海中考真题)对于任意不相等的两个实数a,b(a > b )定义一种新运算a※,如3※,那么12※4=______【分析】按照规定的运算顺序与计算方法化为二次根式的混合运算计算即可.【详解】解:12※4==【点睛】此题考查二次根式的化简求值,理解规定的运算顺序与计算方法是解决问题的关键.50.(2019·四川绵阳市·中考真题)单项式1ax y--与2是同类项,则b a=______.【答案】1【分析】先根据同类项的定义列出方程,再结合二次根式的性质求出a ,b 的值,然后代入代数式计算即可.【详解】解:由题意知1a --=,即1a -, ∴10,10a b ,1a =,1b =,则()111b a ==,故答案为1.【点睛】此题考查了同类项的定义和二次根式的性质,属于基础题,解答本题的关键是掌握同类项的定义,难度一般.51.(2019·辽宁营口市·中考真题)和则这个长方形的面积为________.【答案】【分析】长方形的面积计算公式为长乘以宽,和按照二次根式乘法的运算法则计算,并化简成最简单二次根式即可.和==【点睛】本题考查了二次根式在长方形面积计算中的应用,明确二次根式乘法运算法则及如何化为最简二次根式是解题的关键.52.(2019·四川内江市·中考真题)若1001a a -=,则21001a -=_____. 【答案】1002.【分析】根据绝对值的性质和二次根式的性质,即可解答【详解】∵10020a -≥,∴1002a ≥.由1001a a -=,得1001a a -++=,1001=,∴210021001a -=.∴210011002a -=.故答案是:1002. 【点睛】此题考查绝对值的非负性,二次根式的性质,解题关键在于掌握运算法则 53.(2019·山东枣庄市·中考真题)观察下列各式:11111122⎛⎫=+=+- ⎪⨯⎝⎭,111112323⎛⎫=+=+- ⎪⨯⎝⎭,111113434⎛⎫=+=+- ⎪⨯⎝⎭,请利用你发现的规律,计算:____. 【答案】201820182019. 【分析】根据题意找出规律,根据二次根式的性质计算即可.12018++11111111122320182019⎛⎫⎛⎫⎛⎫=+-++-+++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1111111201812233420182019=+-+-+-++-201820182019=,故答案为201820182019. 【点睛】本题考查的是二次根式的化简、数字的变化规律,掌握二次根式的性质是解题 的关键.54.(2019·山东菏泽市·中考真题)已知x =,那么2x -的值是_____.【答案】4【分析】将所给等式变形为x -=【详解】∵x =,∴x =(22x =,∴226x -+=,∴24x -=,故答案为:4【点睛】本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算以及完全平方公式.注意正确的变形可以使得运算简便.55.(2019·湖南益阳市·中考真题)观察下列等式:①3﹣=﹣1)2,②5﹣=)2,③7﹣=﹣2,…请你根据以上规律,写出第6个等式____________.【答案】213-=【分析】第n 个等式左边的第1个数为2n+1,根号下的数为n(n+1),利用完全平方公式得到第n 个等式右边的式子为)2(n≥1的整数).【详解】∵①3﹣﹣1)2,②5﹣=)2,③7﹣=2,…,∴第n 个等式为:(2n+1)-)2,∴第6个等式为:213-=,故答案为213-=.【点睛】本题考查了规律题,涉及了二次根式的混合运算,通过所给等式发现等式左边与右边的变化规律是解题的关键.56.(2019·山东滨州市·中考真题)计算:21|2|2-⎛⎫--= ⎪⎝⎭_________.【答案】2+【分析】根据根式的计算法则计算即可.【详解】解:原式422=-=+2+.【点睛】本题主要考查根式的计算,注意绝对值的计算,这是同学们往往容易计算错误的,应当引起重视.57.(2019·山东青岛市·0-=___________.【答案】1【分析】根据二次根式混合运算的法则计算即可.0211=-=.故答案为. 【点睛】本题考查了二次根式的混合运算,熟记法则是解题的关键.58.(2020·辽宁营口市·中考真题)()()=_____. 【答案】12【分析】直接利用平方差公式计算得出答案.【详解】解:原式=()2)2=18﹣6=12.故答案为:12. 【点睛】本题考查了二次根式的混合运算,正确运用乘法公式是解题关键. 三、解答题59.(2021·湖南长沙市·中考真题)计算:(02sin 451-++°【答案】5.【分析】先化简绝对值、特殊角的正弦值、零指数幂、二次根式的乘法,再计算实数的混合运算即可得.【详解】解:原式212=⨯+14=+5=. 【点睛】本题考查了化简绝对值、特殊角的正弦值、零指数幂、二次根式的乘法等知识点,熟练掌握各运算法则是解题关键.60.(2021·山东临沂市·中考真题)计算221122⎫⎫+-⎪⎪⎭⎭.【答案】【分析】化简绝对值,同时利用平方差公式计算,最后合并.【详解】解:221122⎫⎫+-⎪⎪⎭⎭11112222⎡⎤⎡⎤⎫⎫⎫⎫+-⎪⎪⎪⎪⎢⎥⎢⎥⎭⎭⎭⎭⎣⎦⎣⎦【点睛】本题考查了二次根式的混合运算,解题的关键是合理运用平方差公式进行计算.61.(2021·四川遂宁市·中考真题)计算:()101tan 60232-⎛⎫-+︒-+- ⎪⎝⎭π【答案】-3【分析】分别利用负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的性质化简,再进行计算即可.【详解】解:()101tan 60232-⎛⎫-+︒-+- ⎪⎝⎭π(=2-=221--=3-【点睛】本题考查了负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的化简等知识点,熟悉相关性质是解题的关键.62.(2020·广西玉林市·()23.141π--+【答案】10.【分析】先计算零指数幂、绝对值运算、算术平方根,再计算二次根式的乘法、去括号、有理数的乘方,然后计算二次根式的加减法即可得.【详解】原式211)3=-+19=++10=.【点睛】本题考查了零指数幂、绝对值运算、算术平方根、二次根式的加减法与乘法等知识点,熟记各运算法则是解题关键.63.(2020·上海中考真题)计算:1327(12)﹣2+|3. 【答案】0.【分析】利用分数的指数幂的意义,分母有理化,负指数幂的意义,绝对值的性质计算后合并即可.【详解】原式=133(3)+ 2﹣4+32﹣4+3.【点睛】本题考查了分数指数幂的运算,负指数幂的运算,绝对值的意义以及分母有理化运算,熟练掌握实数的运算法则是解题的关键.64.(2019·2318- 【答案】-3.【分析】首先进行二次根式的化简、去绝对值符号以及二次根式的乘法,然后再合并同类二次根式即可.2318-124-+=-3. 【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.65.(2019·辽宁大连市·中考真题)计算:22)+【答案】7【分析】直接利用完全平方公式以及结合二次根式的性质化简进而得出答案.【详解】解:原式346=+-34=+-7=. 【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.祝你考试成功!祝你考试成功!。

2023中考数学真题汇编05 二次根式(含答案与解析)

2023中考数学真题汇编05  二次根式(含答案与解析)

2023中考数学真题汇编·05二次根式一、单选题1.(2023·是同类二次根式的是()AB C D 2.(2023·x的取值范围是()A .x <1B .x ≤1C .x >1D .x ≥13.(2023·x 的取值范围在数轴上表示为()A .B .C .D .4.(2023·有意义,则a 的值可以是()A .1 B .0C .2D .65.(2023·辽宁大连)下列计算正确的是()A .0B .CD 266.(2023·)A .0,0a bB .0,0a bC .0,0a bD .0,0a b7.(2023·山东临沂)设m m 所在的范围是()A .5mB .54mC .43mD .3m8.(2023·山东)若代数式2x 有意义,则实数x 的取值范围是()A .2xB .0xC .2xD .0x 且2x9.(2023·天津)sin 45 )A .1BC D .210.(2023·河北)若a b ()A .2B .4C D11.(2023·湖北荆州)已知k ,则与k 最接近的整数为()A .2B .3C .4D .5二、填空题12.(2023·湖北黄冈)请写出一个正整数mm _____________.13.(2023·湖南永州)已知x在实数的范围内没有意义....的x 值是_______.14.(2023·x 应满足的条件是__________.15.(2023·x 的取值范围是__________.16.(2023·有意义,则实数x 的取值范围是______17.(2023·黑龙江绥化)若式子x有意义,则x 的取值范围是_______.18.(2023·黑龙江齐齐哈尔)在函数12y x 中,自变量x 的取值范围是______.19.(2023·江苏连云港)计算:2 __________.20.(2023·天津)计算的结果为________.21.(2023·山东聊城)计算: ______.22.(2023·上海)已知关于x2 ,则x ________三、解答题23.(2023·24.(2023·213325.(2023· 10220231 .26.(2023·四川内江)计算:2202301(1)3tan 30(3)2|2【参考答案与解析】1.【答案】C【解析】解:A 2 B不是同类二次根式,不符合题意;C是同类二次根式,符合题意;D不是同类二次根式,不符合题意;故选:C .2.【答案】D【解析】解:由题意得,x -1≥0,解得x ≥1.故选:D .3.【答案】C【解析】解:根据题意得,10x ,解得1x ,在数轴上表示如下:故选:C .4.【答案】D【解析】解:有意义,∴40a ,解得:4a ,则a 的值可以是6故选:D .5.【答案】D【解析】解:A. 1 ,故该选项不正确,不符合题意;B. ,故该选项不正确,不符合题意;C.D.26 故选:D .6.【答案】D【解析】解:根据二次根式有意义的条件,得000a b ab,0,0a b ,故选:D .7.【答案】B【解析】解:m∵∴54 ,即54m ,故选:B .8.【解析】解:∵代数式2x 有意义,∴020x x ,解得0x 且2x ,故选:D.9.【答案】B 【解析】解:222sin 45222故选:B .10.【答案】A 【解析】解:∵a b2,故选:A .11.【答案】B【解析】解:k53∵22.5=6.25,23=9∴532 ,∴与k 最接近的整数为3,故选:B .二、填空题12.【答案】8【解析】解:∴8m 要是完全平方数,∴正整数m 的值可以为8,即864m 8 ,故答案为:8(答案不唯一).13.【答案】1(答案不唯一)【解析】解:当30x 没有意义,解得3x ,x ∵为正整数,x 可取1,2,故答案为:1.14.【答案】4x 【解析】根据题意得:40x ,解得:4x ,故答案为:4x .15.【答案】9x 【解析】解:∵∴90x ,解得:9x ,故答案为:9x .16.【答案】3x 【解析】有意义,∴3030x x ≥,且,解得x 3>,故答案为:x 3>.17.【答案】5x 且0x /0x 且5x【解析】∵∴50x 且0x ,∴5x 且0x ,故答案为:5x 且0x .18.【答案】1x 且2x 【解析】解:依题意,10,20x x∴1x 且2x ,故答案为:1x 且2x .19.【答案】5【解析】解:2 5故答案为:5.20.【答案】1【解析】解:22761 故答案为:1.21.【答案】3【解析】解:333 .故答案为:3.22.【答案】18【解析】解:根据题意得,140x ,即14x ,2 ,等式两边分别平方,144x 移项,18x ,符合题意,故答案为:18.三、解答题23.【答案】24.【答案】解:原式2293 6 .25.【答案】解: 102202313211211 4 .26.【答案】解:2202301(1)3tan 30(3)2|231431231412 4 .。

2022中考真题分类5——二次根式(参考答案)

2022中考真题分类5——二次根式(参考答案)

2022中考真题分类——二次根式(参考答案)1.(2010·四川眉山()A.3B.−3C.±3D.92.(2022·辽宁大连)下列计算正确的是()A2= =B3=−C.=D.21)33.(2022·四川雅安)有意义的x的取值范围在数轴上表示为()A.B.C .D . 【答案】B 【分析】根据二次根式有意义的条件可得20x −≥,求出不等式的解集,然后进行判断即可. 【详解】解:由题意知,20x −≥,解得2x ≥,∴解集在数轴上表示如图,故选B .【点睛】本题考查了二次根式有意义的条件以及在数轴上表示解集.解题的关键在于熟练掌握二次根式有意义的条件.4.(2022·湖北黄石)函数11y x =+−的自变量x 的取值范围是( ) A .3x ≠−且1x ≠B .3x >−且1x ≠C .3x >−D .3x ≥−且1x ≠【答案】B【分析】直接利用二次根式有意义的条件、分式有意义的条件分析得出答案. 【详解】解:依题意,3010x x +>⎧⎨−≠⎩ ∴3x >−且1x ≠故选B【点睛】此题主要考查了函数自变量的取值范围,正确掌握二次根式与分式有意义的条件是解题关键.5.(2022·辽宁丹东)在函数y x 的取值范围是( ) A .x ≥3B .x ≥−3C .x ≥3且x ≠0D .x ≥−3且x ≠0 【答案】D【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式组,解不等式组即可得到答案.【详解】解:由题意得:x +3≥0且x ≠0,解得:x ≥−3且x ≠0,故选:D .【点睛】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.6.(2022·广东广州)x 应满足的条件为( ) A .1x ≠−B .1x >−C .1x <−D .x ≤−1 【答案】B【分析】根据分式分母不为0及二次根式中被开方数大于等于0即可求解.【详解】解:由题意可知:10x +>,∴1x >−,故选:B .【点睛】本题考查了分式及二次根式有意义的条件,属于基础题.7.(2022·湖北恩施)函数y =的自变量x 的取值范围是( ) A .3x ≠B .3x ≥C .1x ≥−且3x ≠D .1x ≥−8.(2022·黑龙江绥化)2x −在实数范围内有意义,则x 的取值范围是( ) A .1x >−B .1x −C .1x −且0x ≠D .1x −且0x ≠ 【答案】C【分析】根据二次根式被开方数不能为负数,负整数指数幂的底数不等于0,计算求值即可;【详解】解:由题意得:x +1≥0且x ≠0,∴x ≥−1且x ≠0,故选: C .【点睛】本题考查了二次根式的定义,负整数指数幂的定义,掌握其定义是解题关键.9.(2022·内蒙古)实数a 1|1|a +−的化简结果是( )A .1B .2C .2aD .1−2a10.(2022·四川遂宁)实数a ,b 在数轴上的位置如图所示,化简1a +=______.11.(2022·四川广安)若(a−3)2,则以a、b为边长的等腰三角形的周长为________.+=__________.12.(2022·广西贺州)若实数m,n满足50∣∣,则3m n−−=m n13.(2022·贵州黔东南)若()2250x y+−=,则x y−的值是________.14.(2022·内蒙古·)已知x,y是实数,且满足y18的值是______.15.(2022·四川眉山)2,…,2,,4;…若2的位置记为(1,2)的位置记为(2,3),则________.32故答案为:(4,2)【点睛】本题考查了类比点的坐标解决实际问题的能力和阅读理解能力.被开方数全部统一是关键.。

二次根式专题(含答案详解)

二次根式专题(含答案详解)

数学专题 第六讲:二次根式【基础知识回顾】一、 二次根式式子a ( )叫做二次根式提醒:①次根式a 必须注意a___o 这一条件,其结果也是一个非数即:a ___o ②二次根式a (a ≥o )中,a 可以表示数,也可以是一切符合条件的代数式 二、 二次根式的性质:①(a )2= (a ≥0)③= (a ≥0 ,b ≥0)④= (a ≥0, b ≥0)提醒:二次根式的性质注意其逆用:如比较23和可逆用(a )2=a(a ≥0)将根号外的整数移到根号内再比较被开方数的大小 三、最简二次根式:最简二次根式必须同时满足条件:1、被开方数的因数是 ,因式是整式2、被开方数不含 的因数或因式 四、二次根式的运算:1、二次根式的加减:先将二次根式化简,再将 的二次根式进行合并,合并的方法同合并同类项法则相同2、二次根式的乘除:= (a ≥0 ,b ≥0)(a ≥0,b >0) 3、二次根式的混合运算顺序:先算 再算 最后算提醒:1、二次根式除法运算过程一般情况下是用将分母中的根号化去这一方法进行:如:= = 2、二次根式混合运算过程要特别注意两个乘法公式的运用 3、二次根式运算的结果一定要化成 重点考点例析考点一:二次根式有意义的条件A .x ≠3B .x <3 C .x >3 D .x ≥3(a ≥o )(a <o )思路分析:根据二次根式的意义得出x-3≥0,根据分式得出x-3≠0,即可得出x-3>0,求出即可. 解:要使代数式43x -有意义, 必须x-3>0, 解得:x >3. 故选C .点评:本题考查了二次根式有意义的条件,分式有意义的条件的应用,注意:分式B A中A ≠0,二次根式a 中a ≥0. 对应训练 1.使代数式21xx -有意义的x 的取值范围是( ) A .x≥0 B .x≠12C .x≥0且x≠12 D .一切实数 解:由题意得:2x-1≠0,x≥0,解得:x≥0,且x≠12,故选:C .考点二:二次根式的性质例2 实数a 、b 在轴上的位置如图所示,且|a|>|b|,则化简2||a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b思路分析:现根据数轴可知a <0,b >0,而|a|>|b|,那么可知a+b <0,再结合二次根式的性质、绝对值的计算进行化简计算即可. 解:根据数轴可知,a <0,b >0,原式=-a-[-(a+b )]=-a+a+b=b .故选C .点评:二次根式的化简和性质、实数与数轴,解题的关键是注意开方结果是非负数、以及绝对值结果的非负性. 对应训练2.实数a ,b 在数轴上的位置如图所示,则2()a b a ++的化简结果为 .解:∵由数轴可知:b <0<a ,|b|>|a|, ∴2()a b a ++=|a+b|+a =-a-b+a=-b , 故答案为:-b .考点三:二次根式的混合运算思路分析:利用二次根式的分母有理化以及分数指数幂的性质和负整数指数幂的性质,分别化简,进而利用有理数的混合运算法则计算即可.=3.二次根式的混合运算以及负整数指数幂的性质,将各式进行化简是解题关键. 对应训练=4=+考点四:与二次根式有关的求值问题222)(1)(x x x ++-思路分析:先根据分式混合运算的法则把原式进行化简,再把x 的值代入进行计算即可.2(1)1)4x x x+0, 1+, (1)11)44x x x+=考查的是二次根式及分式的化简求值,解答此题的关键是当1,此题难度不大.对应训练A .0B .25C .50D .80分析:根据平方差公式求出1142-642=(114+64)×(114-64)=178×50,再提出50得出50×(178-50)=50×128,分解后开出即可. 解:2221146450-- =2(11464)(11464)50+-- =1785050⨯- =50(17850)⨯- =50128⨯=222582⨯⨯⨯=2×5×8,=80, 故选D .考查了平方差公式,因式分解,二次根式的运算等知识点的应用,解此题的关键是能选择适当的方法进行计算 【聚焦中考】1.下列运算正确的是( )B .A 2(5)5-=- B .21()164--= C .x 6÷x 3=x 2 D .(x 3)2=x 52.计算:182= .0 3.计算:0(3)123-+⨯= .7【备考真题过关】 一、选择题1.要使式子2x -有意义,则x 的取值范围是( D )A .x >0B .x≥-2C .x≥2 D.x≤2 2.计算102÷=( A )A 5B .5C .52D .1023.计算:322-=( )4.已知3()(221)3m =-⨯-,则有( ) A .5<m <6 B .4<m <5 C .-5<m <-4 D .-6<m <-5 解:3()(221)3m =-⨯- 23213=⨯ 2373=⨯ 2728==,∵252836<<,∴5286<<,即5<m <6, 故选A .5.下列计算正确的是( D ) A .x 3+x 3=x 6B .m 2•m 3=m 6C .3223-=D .14772⨯=6.下列等式一定成立的是( B )A .945-=B .5315⨯=C .93=±D .2(9)9--=7.使式子有意义的x 的取值范围是( ) A . x≥﹣1 B . ﹣1≤x≤2C . x≤2D . ﹣1<x <2解:根据题意,得,解得,﹣1≤x≤2; 故选B .8.在下列各式中,二次根式的有理化因式是( )A .B .C .D .解:∵×=a ﹣b ,∴二次根式的有理化因式是:.故选:C .主要考查了二次根式的有理化因式的概念,熟练利用定义得出是解题关键. 9.下列计算错误的是( )A.B.C.D.分析:根据二次根式的乘法对A、B进行判断;根据二次根式的除法对C进行判断;根据二次根式的性质对D进行判断.解:A、=,所以A选项的计算正确;B、与不是同类二次根式,不能合并,所以B选项的计算错误;C、÷===2,所以C选项的计算正确;D、==×=2,所以D选项的计算正确.故选B.10.下列计算正确的是()A.B.C.D.分析:根据同类二次根式才能合并可对A进行判断;根据二次根式的乘法对B进行判断;先把化为最简二次根式,然后进行合并,即可对C进行判断;根据二次根式的除法对D 进行判断.解:A、与不能合并,所以A选项不正确;B、×=,所以B选项不正确;C、﹣=2=,所以C选项正确;D、÷=2÷=2,所以D选项不正确.故选C.11.下列计算或化简正确的是()A.a2+a3=a5B.C.D.分析:A、根据合并同类项的法则计算;B、化简成最简二次根式即可;C、计算的是算术平方根,不是平方根;D、利用分式的性质计算.解:A、a2+a3=a2+a3,此选项错误;B、+3=+,此选项错误;C、=3,此选项错误;D、=,此选项正确.故选D.考查了合并同类项、二次根式的加减法、算术平方根、分式的性质,解题的关键是灵活掌握有关运算法则,并注意区分算术平方根、平方根.12.下列计算正确的是()A.B.C.D.分析:根据二次根式的乘除法则,及二次根式的化简结合选项即可得出答案.解:A、•=1,故本选项正确;B、﹣≠1,故本选项错误;C、=,故本选项错误;D、=2,故本选项错误;故选A.二、填空题解:∵20n=22×5n. ∴整数n 的最小值为5. 故答案是:5.∴222a <-<,即22b <<.故答案为:22b <<.1205的结果是22的结果是2)222+⨯⨯1。

二次根式中考真题及详解

二次根式中考真题及详解

二次根式中考真题及详解(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2二次根式知识梳理知识点1.二次根式重点:掌握二次根式的概念 难点:二次根式有意义的条件 式子a (a ≥0)叫做二次根式. 例1下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+, 其中是二次根式的是_________(填序号).解题思路:运用二次根式的概念,式子a (a ≥0)叫做二次根式.答案:1)、3)、4)、5)、7)例2若式子3x -有意义,则x 的取值范围是_______. 解题思路:运用二次根式的概念,式子a (a ≥0)注意被开方数的范围,同时注意分母不能为0答案:3x >例3若y=5-x +x -5+2009,则x+y=解题思路:式子a (a ≥0),50,50x x -≥⎧⎨-≥⎩ 5x =,y=2009,则x+y=2014练习1使代数式43--x x 有意义的x 的取值范围是( )A 、x>3B 、x ≥3C 、 x>4D 、x ≥3且x ≠4211x x --2()x y =+,则x -y 的值为( )A .-1B .1C .2D .3 答案:1. D 2. C知识点 2.最简二次根式重点:掌握最简二次根式的条件 难点:正确分清是否为最简二次根式同时满足:①被开方数的因数是整数,因式是整式(分母中不含根号);②被开方数中含能开得尽方的因数或因式.这样的二次根式叫做最简二次根式. 例1.在根式222;2);3);4)275xa b x xy abc +-,最简二次根式是( )3A .1) 2)B .3) 4)C .1) 3)D .1) 4) 解题思路:掌握最简二次根式的条件,答案:C 练习.下列根式中,不是..最简二次根式的是( ) A .7B .3C .12D .2答案:C知识点3.同类二次根式 重点:掌握同类二次根式的概念 难点:正确分清是否为同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫同类二次根式.例在下列各组根式中,是同类二次根式的是( )A .3和18B .3和13C 22.11a b ab a a +-和和182318A 错.133 313B 正确.22||,ab b a a b =│a b ∴C 错,而显然,D 错,∴选B .练习已知最简二次根式322b a b b a --+和a=______,b=_______. 答案:a=0 ,b=2知识点4.二次根式的性质 重点:掌握二次根式的性质难点:理解和熟练运用二次根式的性质a 2=a (a ≥00(0)a a ≥≥ 2a │a │=(0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩;例1、若()22340a b c -+--=,则=+-c b a .解题思路:2|2|30,(4)0a b c -≥--≥,非负数之和为0,则它们分别都为0,则4oba2,3,4a b c ===,=+-c b a 3例2、化简:21(3)a a -+-的结果为( )A 、4—2aB 、0C 、2a —4D 、4解题思路:由条件则30,3a a -≥≥,运用(a )2=a (a ≥0)则2(3)3a a -=- 答案:C例3.如果表示a ,b 两个实数的点在数轴上的位置如图所示,那么化简│a -b │+2()a b + 的结果等于( )A .-2bB .2bC .-2aD .2a解题思路:运用2a =│a │=(0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩;由数轴则0a b -> , 0a b +<,则原式=a b a b ---=-2b 选A练习1.已知a<0,那么│2a -2a │可化简为( ) A .-a B .a C .-3a D .3a2.如图所示,实数a ,b 在数轴上的位置,化简222()a b a b ---.-1b a O3.若y x -+-324=0,则2xy= 。

2022年全国中考数学真题分类汇编专题5:二次根式(附答案解析)

2022年全国中考数学真题分类汇编专题5:二次根式(附答案解析)
第8页共9页
故答案为:﹣10. 三.解答题(共 2 小题) 29.计算:(﹣2)×0+5.
【解答】解:(﹣2)×0+5 =0+5 =5. 30.计算:3×(﹣1)+22+|﹣4|. 【解答】解:原式=﹣3+4+4 =5.
第9页共9页
2022 年全国中考数学真题分类汇编专题 5:二次根式
一.选择题(共 7 小题)
1.代数式 A.x≥3
在实数范围内有意义,则 x 的取值范围是(
B.x>3
C.x≤3
) D.x<3
2.若二次根式
有意义,则实数 x 的取值范围是( )
A.x≥1
B.x>1
C.x≥0
D.x>0
3.下列正确的是( )
A. t h 2+3
使用负数的实例.《九章算术》的“方程”一章,在世界数学史上首次正式引入负数及其
加减法运算法则,并给出名为“正负术”的算法,请计算以下涉及“负数”的式子的值:
﹣1﹣(﹣3)2=

三.解答题(共 2 小题)
29.计算:(﹣2)×0+5. 30.计算:3×(﹣1)+22+|﹣4|.
第2页共9页
2022 年全国中考数学真题分类汇编专题 5:二次根式

13.化简:

14.计算:

15.计算:
的结果为

16.计算:

17.若
在实数范围内有意义,则 x 的取值范围是
18.若
在实数范围内有意义,则实数 x 的取值范围是
第1页共9页
. .
19.若
有意义,则 x 的取值范围是

20.若

中考数学二次根式知识点-+典型题及解析

中考数学二次根式知识点-+典型题及解析

一、选择题1.下列计算正确的是( ) A .916916+=+ B .2222-=C .()2236=D .1515533==2.下列根式是最简二次根式的是( ) A .4B .21x +C .12D .40.53.若实数m 、n 满足等式402n m -+=-,且m 、n 恰好是等腰ABC 的两条边的边长,则ABC 的周长( ) A .12B .10C .8D .64.下列各式一定成立的是( )A .2()a b a b +=+B .222(1)1a a +=+C .22(1)1a a -=-D .2()ab ab =5.化简x 1x-,正确的是( ) A .x -B .xC .﹣x -D .﹣x 6.实数a ,b 在数轴上的位置如图所示,则化简﹣+b 的结果是( )A .1B .b+1C .2aD .1﹣2a7.2a a =-成立,那么a 的取值范围是( ) A .0a ≤B .0a ≥C .0a <D .0a >8.给出下列化简①(2-)2=222-=()2221214+=311142-=,其中正确的是( ) A .①②③④ B .①②③C .①②D .③④9.230x x +-=成立的x 的值为( )A .-2B .3C .-2或3D .以上都不对 10.下列运算正确的是( )A 826=B 222=C 3515=D 2739=二、填空题11.比较实数的大小:(1)5?-______3- ;(2)514-_______12 12.已知2216422x x ---=,则22164x x -+-=________. 13.(1)已知实数a 、b 在数轴上的位置如图所示,化简()222144a a ab b +--+=_____________;(2)已知正整数p ,q 32016p q =()p q ,的个数是_______________;(3)△ABC 中,∠A=50°,高BE 、CF 所在的直线交于点O,∠BOC 的度数__________. 14.已知3,3-1,则x 2+xy +y 2=_____.15.甲容器中装有浓度为a 40kg ,乙容器中装有浓度为b 90kg ,两个容器都倒出m kg ,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m 的值为_________.16.已知实数m 、n 、p 满足等式33352m n m n m n p m n p -+--+----,则p =__________.17.对于任意实数a ,b ,定义一种运算“◇”如下:a ◇b =a(a -b)+b(a +b),如:3◇2=3×(3-2)+2×(3+2)=1332=_____. 18.36,3,2315,,则第100个数是_______.19.25523y x x =--,则2xy 的值为__________.20.12a 1-能合并成一项,则a =______.三、解答题21.计算:(18322(2))((25225382+-+. 【答案】(1)52 【分析】(1)先化简二次根式,再合并同类二次根式即可; (2)根据平方差公式化简,再化简、合并同类二次根式即可. 【详解】(18322=22422 =52(2))((222+-+=2223--+ =5-4-3+2 =022.先阅读下列解答过程,然后再解答:,a b ,使a b m +=,ab n =,使得22m +==)a b ==>7,12m n ==,由于437,4312+=⨯=,即:227+=,=2===+。

二次根式(优选真题60道)-三年(2021-2023)中考数学真题分项汇编(解析版)

二次根式(优选真题60道)-三年(2021-2023)中考数学真题分项汇编(解析版)

专题03二次根式(优选真题60道)一.选择题(共24小题)1(2023•烟台)下列二次根式中,与2是同类二次根式的是()A.4B.6C.8D.12【答案】C【分析】先根据二次根式的性质化成最简二次根式,再根据同类二次根式的定义得出答案即可.【解答】解:A.4=2,和2不是同类二次根式,故本选项不符合题意;B.6和2不是同类二次根式,故本选项不符合题意;C.8=22,和2是同类二次根式,故本选项符合题意;D.12=23,和2不是同类二次根式,故本选项不符合题意;故选:C.【点评】本题考查了同类二次根式的定义,能熟记同类二次根式的定义是解此题的关键,几个二次根式化成最简二次根式以后,如果被开方数相同,那么这几个二次根式叫同类二次根式.2(2023•岳阳)对于二次根式的乘法运算,一般地,有a•b=ab.该运算法则成立的条件是()A.a>0,b>0B.a<0,b<0C.a≤0,b≤0D.a≥0,b≥0【答案】D【分析】根据二次根式的乘法法则,即可解答.【解答】解:对于二次根式的乘法运算,一般地,有a•b=ab.该运算法则成立的条件是a≥0,b≥0,故选:D.【点评】本题考查了二次根式的乘除法,熟练掌握二次根式的乘法法则是解题的关键.3(2023•金华)要使x-2有意义,则x的值可以是()A.0B.-1C.-2D.2【答案】D【分析】根据二次根式有意义的条件列出不等式,解不等式求出x的范围,判断即可.【解答】解:由题意得:x-2≥0,解得:x≥2,则x的值可以是2,故选:D.【点评】本题考查的是二次根式有意义的条件,熟记二次根式的被开方数是非负数是解题的关键.4(2023•巴中)下列运算正确的是()A.x2+x3=x5B.3×2=6C.(a-b)2=a2-b2D.|m|=m【答案】B【分析】根据二次根式的乘法、合并同类项、完全平方公式、绝对值的性质计算,判断即可.【解答】解:A、x2与x3,不是同类项,不能合并,故本选项计算错误,不符合题意;B、3×2=6,计算正确,符合题意;C、(a-b)2=a2-2ab+b2,故本选项计算错误,不符合题意;D、当m≥0时,|m|=m,故本选项计算错误,不符合题意;故选:B.【点评】本题考查的是二次根式的乘法、合并同类项、完全平方公式、绝对值的性质,掌握相关的运算法则和性质是解题的关键.5(2023•江西)若a-4有意义,则a的值可以是()A.-1B.0C.2D.6【答案】D【分析】直接利用二次根式的定义得出a的取值范围,进而得出答案.【解答】解:a-4有意义,则a-4≥0,解得:a≥4,故a的值可以是6.故选:D.【点评】此题主要考查了二次根式的有意义的条件,正确得出a的取值范围是解题关键.6(2023•临沂)设m=515-45,则实数m所在的范围是()A.m<-5B.-5<m<-4C.-4<m<-3D.m>-3【答案】B【分析】将原式进行化简后判断其在哪两个连续整数之间即可.【解答】解:m=515-45=25×15-35=5-35=-25=-20,∵16<20<25,∴16<20<25,即4<20<5,那么-5<-20<-4,则-5<m<-4,故选:B.【点评】本题考查无理数的估算,将原式计算后得出结果为-20是解题的关键.7(2023•天津)sin45°+22的值等于()A.1B.2C.3D.2【答案】B【分析】根据特殊锐角的三角函数值及二次根式的加法法则计算即可.【解答】解:原式=22+22=2,故选:B.【点评】本题考查二次根式的运算及特殊锐角的三角函数,其相关运算法则是基础且重要知识点,必须熟练掌握.8(2023•扬州)已知a=5,b=2,c=3,则a、b、c的大小关系是()A.b>a>cB.a>c>bC.a>b>cD.b>c>a【答案】C【分析】一个正数越大,其算术平方根越大,据此进行判断即可.【解答】解:∵3<4<5,∴3<4<5,即3<2<5,则a>b>c,故选:C.【点评】本题考查实数的大小比较,此为基础且重要知识点,必须熟练掌握.9(2023•台州)下列无理数中,大小在3与4之间的是()A.7B.22C.13D.17【答案】C【分析】一个正数越大,其算术平方根越大;据此进行无理数的估算进行判断即可.【解答】解:∵4<7<8<9<13<16<17,∴4<7<8<9<13<16<17,即2<7<22<3<13<4<17,那么13在3和4之间,故选:C.【点评】本题考查无理数的估算,此为基础且重要知识点,必须熟练掌握.10(2023•云南)按一定规律排列的单项式:a,2a2,3a3,4a4,5a5,⋯,第n个单项式是() A.n B.n-1a n-1 C.na n D.na n-1【答案】C【分析】根据题干所给单项式总结规律即可.【解答】解:第1个单项式为a,即1a1,第2个单项式为2a2,第3个单项式为3a3,...第n个单项式为na n,故选:C.【点评】本题考查数式规律问题,根据已知单项式总结出规律是解题的关键.11(2023•重庆)估计5×6-1 5的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【答案】A【分析】先化简题干中的式子得到30-1,明确30的范围,利用不等式的性质求出30-1的范围得出答案.【解答】解:原式=30-1.∵5<30<6.∴4<30-1<5.故选:A.【点评】本题以计算选择为背景考查了无理数的估算,考核了学生对式子的化简和比较大小的能力,解题关键是将式子化简,确定无理数的范围最后利用不等式的性质.12(2022•内蒙古)实数a在数轴上的对应位置如图所示,则a2+1+|a-1|的化简结果是()A.1B.2C.2aD.1-2a【答案】B【分析】根据数轴得:0<a<1,得到a>0,a-1<0,根据a2=|a|和绝对值的性质化简即可.【解答】解:根据数轴得:0<a<1,∴a>0,a-1<0,∴原式=|a|+1+1-a=a+1+1-a=2.故选:B.【点评】本题考查二次根式的性质与化简,实数与数轴,掌握a2=|a|是解题的关键.13(2022•安顺)估计(25+52)×15的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【答案】B【分析】直接利用二次根式的性质结合估算无理数的大小方法得出答案.【解答】解:原式=2+10,∵3<10<4,∴5<2+10<6,故选:B.【点评】此题主要考查了二次根式的混合运算,估算无理数的大小,正确估算无理数是解题关键.14(2022•广州)代数式1x+1有意义时,x应满足的条件为()A.x≠-1B.x>-1C.x<-1D.x≤-1【答案】B【分析】直接利用二次根式有意义的条件、分式有意义的条件分析得出答案.【解答】解:代数式1x+1有意义时,x+1>0,解得:x>-1.故选:B.【点评】此题主要考查了二次根式有意义的条件以及分式有意义的条件,正确掌握相关定义是解题关键.15(2022•聊城)射击时,子弹射出枪口时的速度可用公式v=2as进行计算,其中a为子弹的加速度,s为枪筒的长.如果a=5×105m/s2,s=0.64m,那么子弹射出枪口时的速度(用科学记数法表示)为()A.0.4×103m/sB.0.8×103m/sC.4×102m/sD.8×102m/s【答案】D【分析】把a=5×105m/s2,s=0.64m代入公式v=2as,再根据二次根式的性质化简即可.【解答】解:v=2as=2×5×105×0.64=8×102(m/s),故选:D.【点评】此题主要考查了二次根式的性质与化简以及科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16(2022•青岛)计算(27-12)×13的结果是()A.33B.1C.5D.3【答案】B【分析】先根据二次根式的乘法进行计算,再根据二次根式的性质进行计算,最后算减法即可.【解答】解:(27-12)×1 3=27×13-12×13=9-4=3-2=1,故选:B.【点评】本题考了二次根式的混合运算,能正确运用二次根式的运算法则进行计算是解此题的关键.17(2022•绥化)若式子x+1+x-2在实数范围内有意义,则x的取值范围是()A.x>-1B.x≥-1C.x≥-1且x≠0D.x≤-1且x≠0【答案】C【分析】根据二次根式的被开方数是非负数,a-p=1a p(a≠0)即可得出答案.【解答】解:∵x+1≥0,x≠0,∴x≥-1且x≠0,故选:C.【点评】本题考查了二次根式有意义的条件,负整数指数幂,掌握二次根式的被开方数是非负数,a-p=1a p (a≠0)是解题的关键.18(2021•内江)函数y=2-x+1x+1中,自变量x的取值范围是()A.x≤2B.x≤2且x≠-1C.x≥2D.x≥2且x≠-1【答案】B【分析】根据二次根式的被开方数是非负数、分母不为0计算即可.【解答】解:由题意得:2-x≥0,x+1≠0,解得:x≤2且x≠-1,故选:B.【点评】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.19(2021•泰州)下列各组二次根式中,化简后是同类二次根式的是()A.8与3B.2与12C.5与15D.75与27【答案】D【分析】一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.先将各选项进行化简,再根据被开方数是否相同进行判断即可.【解答】解:A、8=22和3不是同类二次根式,本选项不合题意;B、12=23与2不是同类二次根式,本选项不合题意;C、5与15不是同类二次根式,本选项不合题意;D、75=53,27=33是同类二次根式,本选项符合题意.故选:D.【点评】本题考查了同类二次根式,解答本题的关键在于熟练掌握二次根式的化简及同类二次根式的概念.20(2021•大连)下列计算正确的是()A.(-3)2=-3B.12=23C.3-1=1D.(2+1)(2-1)=3【答案】B【分析】根据二次根式的性质,立方根的概念,平方差公式进行化简计算,从而作出判断.【解答】解:A、(-3)2=3,故此选项不符合题意;B、12=23,正确,故此选项符合题意;C、3-1=-1,故此选项不符合题意;D、(2+1)(2-1)=2-1=1,故此选项不符合题意,故选:B.【点评】本题考查二次根式的性质,立方根的概念和二次根式的混合运算,理解二次根式的性质和概念是解题基础.21(2021•益阳)将452化为最简二次根式,其结果是()A.452B.902C.9102D.3102【答案】D【分析】根据二次根式的性质进行化简即可.【解答】解:452=9×5×22×2=3102,故选:D.【点评】本题考查了最简二次根式的定义和二次根式的性质,注意:满足以下两个条件:①被开方数中的因式是整式,因数是整数,②被开方数中不含有能开得尽方的因式或因数,像这样的二次根式叫最简二次根式.22(2021•娄底)2、5、m是某三角形三边的长,则(m-3)2+(m-7)2等于()A.2m-10B.10-2mC.10D.4【答案】D【分析】直接利用三角形三边关系得出m的取值范围,再利用二次根式的性质化简得出答案.【解答】解:∵2、5、m是某三角形三边的长,∴5-2<m<5+2,故3<m<7,∴(m-3)2+(m-7)2=m-3+7-m=4.故选:D.【点评】此题主要考查了三角形三边关系以及二次根式的化简,正确化简二次根式是解题关键.23(2021•河北)与32-22-12结果相同的是()A.3-2+1B.3+2-1C.3+2+1D.3-2-1【答案】A【分析】化简32-22-12=9-4-1=4=2,再逐个选项判断即可.【解答】解:32-22-12=9-4-1=4=2,∵3-2+1=2,故A符合题意;∵3+2-1=4,故B不符合题意;∵3+2+1=6,故C不符合题意;∵3-2-1=0,故D不符合题意.故选:A.【点评】本题考查了二次根式的运算性质,熟悉二次根式的运算性质是解题关键.24(2021•常德)计算:5+12-1•5+12=()A.0B.1C.2D.5-12【答案】B【分析】直接利用二次根式的混合运算法则计算得出答案.【解答】解:5+12-1•5+12=5+1-22×5+12=5-12×5+12=(5)2-124=44=1.故选:B.【点评】此题主要考查了二次根式的混合运算,正确运用乘法公式计算是解题关键.二.填空题(共26小题)25(2023•滨州)一块面积为5m2的正方形桌布,其边长为 5m .【答案】5m.【分析】结合已知条件,求得5的算术平方根即可.【解答】解:设正方形桌布的边长为am(a>0),则a2=5,那么a=5,即正方形桌布的边长为5m,故答案为:5m.【点评】本题考查算术平方根的应用,其定义是基础且重要知识点,必须熟练掌握.26(2023•陕西)如图,在数轴上,点A表示3,点B与点A位于原点的两侧,且与原点的距离相等.则点B表示的数是 -3 .【答案】-3.【分析】根据原点左边的数是负数,由绝对值的定义可得答案.【解答】解:由题意得:点B表示的数是-3.故答案为:-3.【点评】此题考查了数轴,绝对值,掌握绝对值的意义是解本题的关键.27(2023•枣庄)计算(2023-1)0+12-1= 3 .【答案】3.【分析】根据零指数幂和负整数指数幂的计算法则求解即可.【解答】解:(2023-1)0+12 -1=1+2=3故答案为:3.【点评】本题主要考查了零指数幂和负整数指数幂,正确计算是解题的关键,注意非零底数的零指数幂的结果为1.28(2023•安徽)计算:38+1= 3 .【答案】3.【分析】直接利用立方根的性质化简,进而得出答案.【解答】解:原式=2+1=3.故答案为:3.【点评】此题主要考查了实数的运算,正确掌握立方根的性质是解题关键.29(2023•广安)16的平方根是 ±2 .【答案】±2.【分析】利用算术平方根与平方根的意义解答即可.【解答】解:∵16=4,4的平方根为±2,∴16的平方根为±2.故答案为:±2.【点评】本题主要考查了算术平方根与平方根,熟练掌握上述法则与性质是解题的关键.30(2023•自贡)请写出一个比23小的整数 4(答案不唯一) .【答案】4(答案不唯一).【分析】根据算术平方根的定义估算无理数23的大小即可.【解答】解:∵42=16,52=25,而16<23<25,∴4<23<5,∴比23小的整数有4(答案不唯一),故答案为:4(答案不唯一).【点评】本题考查估算无理数的大小,理解算术平方根的定义是正确解答的前提.31(2023•天津)计算(7+6)(7-6)的结果为 1 .【答案】1.【分析】利用平方差公式进行计算,即可解答.【解答】解:(7+6)(7-6)=(7)2-(6)2=7-6=1,故答案为:1.【点评】本题考查了二次根式的混合运算,平方差公式,熟练掌握平方差公式是解题的关键.32(2023•永州)已知x为正整数,写出一个使x-3在实数范围内没有意义的x值是 1(答案也可以是2) .【答案】1(答案也可以是2).【分析】根据二次根式没有意义即被开方数小于0求解即可.【解答】解:要使x-3在实数范围内没有意义,则x-3<0,∴x<3,∵x为正整数,∴x的值是1(答案也可以是2).故答案为:1(答案也可以是2).【点评】本题考查了二次根式有意义的条件,熟知二次根式a有意义,则a≥0,若没有意义,则a<0.本题较简单,属于基础题.33(2023•连云港)计算:(5)2= 5 .【答案】5.【分析】(a)2=a(a≥0),据此即可求得答案.【解答】解:(5)2=5,故答案为:5.【点评】本题考查二次根式的性质,此为基础且重要知识点,必须熟练掌握.34(2022•朝阳)计算:63÷7-|-4|= -1 .【答案】-1.【分析】先算除法,去绝对值,再合并即可.【解答】解:原式=63÷7-4=3-4=-1.故答案为:-1.【点评】本题考查二次根式的运算,解题的关键是掌握二次根式运算的相关法则.35(2022•日照)若二次根式3-2x在实数范围内有意义,则x的取值范围为 x≤32 .【答案】x≤3 2.【分析】根据二次根式的被开方数是非负数列出不等式,解不等式得到答案.【解答】解:由题意得:3-2x≥0,解得:x≤3 2,故答案为:x≤3 2.【点评】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.36(2022•青海)若式子1x-1有意义,则实数x的取值范围是x>1.【答案】x>1.【分析】根据二次根式的被开方数为非负数,分式的分母不等于零列式计算可求解.【解答】解:由题意得x-1>0,解得x>1,故答案为:x>1.【点评】本题主要考查二次根式有意义的条件,分式有意义的条件,掌握二次根式有意义的条件,分式有意义的条件是解题的关键.37(2022•北京)若x-8在实数范围内有意义,则实数x的取值范围是x≥8.【答案】x≥8.【分析】根据二次根式有意义的条件,可得:x-8≥0,据此求出实数x的取值范围即可.【解答】解:∵x-8在实数范围内有意义,∴x-8≥0,解得:x≥8.故答案为:x≥8.【点评】此题主要考查了二次根式有意义的条件,解答此题的关键是要明确:二次根式中的被开方数是非负数.38(2022•哈尔滨)计算3+313的结果是23 .【答案】23.【分析】先化简各二次根式,再根据混合运算的顺序依次计算可得答案.【解答】解:原式=3+3×3 3=3+3=23.故答案为:23.【点评】此题考查的是二次根式的运算,掌握其运算法则是解决此题的关键.39(2022•包头)若代数式x+1+1x在实数范围内有意义,则x的取值范围是x≥-1且x≠0.【答案】见试题解答内容【分析】根据二次根式有意义的条件,分式有意义的条件是分母不等于零,列不等式组,解出即可.【解答】解:根据题意,得x+1≥0 x≠0,解得x≥-1且x≠0,故答案为:x≥-1且x≠0.【点评】本题主要考查了二次根式有意义的条件、分式有意义的条件,掌握这两个知识点的应用,列出不等式组是解题关键.40(2022•荆州)若3-2的整数部分为a,小数部分为b,则代数式(2+2a)•b的值是2.【答案】2.【分析】根据2的范围,求出3-2的范围,从而确定a、b的值,代入所求式子计算即可.【解答】解:∵1<2<2,∴1<3-2<2,∵若3-2的整数部分为a,小数部分为b,∴a=1,b=3-2-1=2-2,∴(2+2a)•b=(2+2)(2-2)=2,故答案为:2.【点评】本题考查了估算无理数的大小的应用,解题的关键是求出a、b的值.41(2022•常德)要使代数式xx-4有意义,则x的取值范围为x>4.【答案】x>4.【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解答】解:由题意得:x-4>0,解得:x>4,故答案为:x>4.【点评】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.42(2022•随州)已知m为正整数,若189m是整数,则根据189m=3×3×3×7m=33×7m可知m有最小值3×7=21.设n为正整数,若300n是大于1的整数,则n的最小值为3,最大值为75.【答案】3;75.【分析】先将300n化简为103n,可得n最小为3,由300n是大于1的整数可得300n越小,300n越小,则n越大,当300n=2时,即可求解.【解答】解:∵300n=3×100n=103n,且为整数,∴n最小为3,∵300n是大于1的整数,∴300n越小,300n越小,则n越大,当300n=2时,300n=4,∴n=75,故答案为:3;75.【点评】本题考查二次根式的乘除法,二次根式的性质与化简,解题的关键是读懂题意,根据关键词“大于”,“整数”进行求解.43(2022•天津)计算(19+1)(19-1)的结果等于18.【答案】18.【分析】根据平方差公式即可求出答案.【解答】解:原式=(19)2-12=19-1=18,故答案为:18.【点评】本题考查平方差公式与二次根式的混合运算,解题的关键是熟练运用平方差公式,本题属于基础题型.44(2022•泰安)计算:8•6-343= 23 .【答案】23.【分析】化简二次根式,然后先算乘法,再算减法.【解答】解:原式=8×6-3×23 3=43-23=23,故答案为:23.【点评】本题考查二次根式的混合运算,理解二次根式的性质,准确化简二次根式是解题关键.45(2022•遂宁)实数a、b在数轴上的位置如图所示,化简|a+1|-(b-1)2+(a-b)2=2.【答案】2.【分析】根据数轴可得:-1<a<0,1<b<2,然后即可得到a+1>0,b-1>0,a-b<0,从而可以将所求式子化简.【解答】解:由数轴可得,-1<a<0,1<b<2,∴a+1>0,b-1>0,a-b<0,∴|a+1|-(b-1)2+(a-b)2=a+1-(b-1)+(b-a)=a+1-b+1+b-a=2,故答案为:2.【点评】本题考查二次根式的性质与化简、实数与数轴,解答本题的关键是明确题意,利用数形结合的思想解答.46(2022•内蒙古)已知x,y是实数,且满足y=x-2+2-x+18,则x⋅y的值是 12 .【答案】见试题解答内容【分析】根据负数没有平方根求出x的值,进而求出y的值,代入计算即可求出值.【解答】解:∵y=x-2+2-x+1 8,∴x-2≥0,2-x≥0,∴x=2,y=18,则原式=2×18=14=12,故答案为:12【点评】此题考查了二次根式的化简求值,熟练掌握运算法则是解本题的关键.47(2022•六盘水)计算:12-23=0.【答案】见试题解答内容【分析】先化简各个二次根式,再合并同类二次根式.【解答】解:12-23=23-23=0.故答案为0.【点评】本题考查二次根式的加减,解题的关键是首先化简各个二次根式,再合并同类二次根式.48(2022•邵阳)若1x -2有意义,则x 的取值范围是x >2.【答案】x >2.【分析】先根据二次根式及分式有意义的条件列出x 的不等式组,求出x 的取值范围即可.【解答】解:∵1x -2有意义,∴x -2≥0x -2≠0 ,解得x >0.故答案为:x >2.【点评】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.49(2021•铜仁市)计算(27+18)(3-2)=3.【答案】3.【分析】先把二次根式化为最简二次根式,然后利用平方差公式计算.【解答】解:原式=(33+32)(3-2)=3(3+2)(3-2)=3×(3-2)=3.故答案为3.【点评】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解决问题的关键.50(2021•荆州)已知:a =12 -1+(-3)0,b =(3+2)(3-2),则a +b =2.【答案】2.【分析】先计算出a ,b 的值,然后代入所求式子即可求得相应的值.【解答】解:∵a =12-1+(-3)0=2+1=3,b =(3+2)(3-2)=3-2=1,∴a +b=3+1=4=2,故答案为:2.【点评】本题考查二次根式的化简求值、平方差公式、零指数幂、负整数指数幂,解答本题的关键是明确它们各自的计算方法.三.解答题(共10小题)51(2023•内江)计算:(-1)2023+12-2+3tan30°-(3-π)0+|3-2|.【答案】4.【分析】直接利用有理数的乘方运算法则、负整数指数幂的性质、特殊角的三角函数值、零指数幂的性质、绝对值的性质分别化简,进而得出答案.【解答】解:原式=-1+4+3×33-1+2-3=-1+4+3-1+2-3=4.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.52(2023•十堰)计算:|1-2|+12-2-(π-2023)0.【答案】2+2.【分析】直接利用负整数指数幂的性质、零指数幂的性质、绝对值的性质分别化简,进而得出答案.【解答】解:原式=2-1+4-1=2+2.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.53(2023•岳阳)计算:|-3|+4+(-2)×1.【答案】3.【分析】利用绝对值的意义,算术平方根的意义和有理数的乘法法则化简运算即可.【解答】解:原式=3+2+(-2)=3+2-2=3.【点评】本题主要考查了实数的运算,绝对值的意义,算术平方根的意义和有理数的乘法法则,熟练掌握上述法则与性质是解题的关键.54(2023•上海)计算:38+12+5-13-2+|5-3|.【答案】-6.【分析】根据立方根定义,二次根式的化简,负整数指数幂,绝对值的性质进行计算即可.【解答】解:原式=2+5-2(5+2)(5-2)-9+3-5=2+5-2-9+3-5=-6.【点评】本题考查实数的运算,其相关运算法则是基础且重要知识点,必须熟练掌握.55(2023•陕西)计算:5×(-10)-17-1+|-23|.【答案】-52+1.【分析】直接利用二次根式的乘法运算法则以及负整数指数幂的性质、绝对值的性质分别化简,进而得出答案.【解答】解:原式=-52-7+|-8|=-52-7+8=-52+1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.56(2023•岳阳)计算:22-tan60°+|3-1|-(3-π)0.【答案】2.【分析】先化简特殊角的三角函数值,绝对值,零指数幂,再根据实数的运算法则计算即可.【解答】解:22-tan60°+|3-1|-(3-π)0.=4-3+3-1-1=2.【点评】本题考查了实数的混合运算,掌握运算法则是解题的关键.57(2023•眉山)计算:(23-π)0-|1-3|+3tan30°+-1 2-2.【答案】6.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=1-(3-1)+3×33+4=1-3+1+3+4=6.【点评】此题考查了实数的运算,零指数幂、负整数指数幂,绝对值,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.58(2023•武威)计算:27÷32×22-62.【答案】62.【分析】直接利用二次根式的乘除运算法则计算,进而得出答案.【解答】解:原式=33×23×22-62=122-62=62.【点评】此题主要考查了二次根式的混合运算,正确掌握相关运算法则是解题关键.59(2022•陕西)计算:5×(-2)+2×8-13-1.【答案】-9.【分析】先算乘法,负整数指数幂,求出算术平方根,再算加减即可.【解答】解:原式=-10+16-3=-10+4-3=-9.【点评】本题考查实数的混合运算,解题的关键是掌握实数相关运算的法则.60(2022•襄阳)先化简,再求值:(a+2b)2+(a+2b)(a-2b)+2a(b-a),其中a=3-2,b=3 +2.【答案】6ab,6.【分析】直接利用完全平方公式、平方差公式化简,进而合并同类项,再把已知数据代入得出答案.【解答】解:原式=a2+4b2+4ab+a2-4b2+2ab-2a2=6ab,∵a=3-2,b=3+2,∴原式=6ab=6×(3-2)(3+2)=6.【点评】此题主要考查了二次根式的混合运算与整式的混合运算--化简求值,正确掌握整式的混合运算法则是解题关键.。

中考数学精选例题解析:二次根式

中考数学精选例题解析:二次根式

中考数学精选例题解析:二次根式知识考点:数的开方是学习二次根式、一元二次方程的准备知识,二次根式是初中代数的重要基础,应熟练掌握平方根的有关概念、求法以及二次根式的性质。

精典例题: 【例1】填空题:(1)()23-的平方根是 ;16的算术平方根是 ;25-的算术平方根是 ;38的立方根是 。

(2)若22-是a 的立方根,则a = ;若b 的平方根是±6,则b = 。

(3)若x 21-有意义,则x ;若321-x 有意义,则x 。

(4)若02=+m m ,则m ;若()13312-=-a a ,则a ;若12-=aa ,则a ;若()111--+x 有意义,则x 的取值范围是 ;(5)若x -2有意义,则()22x -= 。

(6)若a <0,则a a -2= ;若b <0,化简ba b ab a 32+= 。

答案:(1)3±,2,51,32;(2)42-,6;(3)x ≤21,x ≠2; (4)m ≤0,a ≥31,a <0,x ≥-1且x ≠0;(5)x -2;(6)a 2-,ab ab 2-【例2】选择题:1、式子1313--=--x xx x 成立的条件是( ) A 、x ≥3 B 、x ≤1 C 、1≤x ≤3 D 、1<x ≤3 2、下列等式不成立的是( )A 、()a a =2B 、a a =2C 、33a a -=-D 、a aa -=-13、若x <2,化简()x x -+-322的正确结果是( )A 、-1B 、1C 、52-xD 、x 25- 4、式子3ax --(a >0)化简的结果是( )A 、ax x -B 、ax x --C 、ax xD 、ax x - 答案:DDDA 【例3】解答题:(1)已知51=-aa ,求aa 1-的值。

(2)设m 、n 都是实数,且满足224422-+-+-=m m m n ,求mn 的值。

分析:解决题(1)的问题,一般不需要将a 的值求出,可将51=-aa 等式两边同时平方,可求得31=+a a ,再求41122-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛-a a a a 的值,开方即得所求代数式的值;题(2)中,由被开方数是非负数得2±=m ,但分母02≠-m ,故2-=m ,代入原等式求得n 的值。

2022年中考数学真题-专题03 二次根式(1)(全国通用解析版)

2022年中考数学真题-专题03 二次根式(1)(全国通用解析版)

专题03 二次根式一、选择题(2022·湖南衡阳)1. a 的取值范围是( )A. 1a >B. 1a ≥C. 1a <D. 1a ≤【答案】B【解析】【分析】根据二次根式中的被开方数是非负数求解可得.【详解】根据题意知1a -≥0,解得1a ≥,故选:B .【点睛】本题主要考查二次根式有意义的条件,解题的关键是掌握二次根式的双重非负性.(2022·江苏连云港)2. 函数y =x 的取值范围是( ) A. 1≥xB. 0x ≥C. 0x ≤D. 1x ≤【答案】A【解析】 【分析】根据二次根式有意义的条件列出不等式,即可求解.【详解】解:∵10x -≥,∴1≥x .故选A .【点睛】本题考查了求函数自变量取值范围,二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.(2022·重庆)3. 的值应在( )A. 10和11之间B. 9和10之间C. 8和9之间D. 7和8之间【答案】B【解析】6=+,从而判定即可.【详解】6=+∴43,∴910<,故选:B .【点睛】本题考查了二次根式混合运算及无理数的估算,熟练掌握无理数估算方法是解题的关键.(2022·湖南常德)4.3=3=3=,…,6666633n ++++++=个根号,一般地,对于正整数a ,b ,如果满足n b b b b b a a ++++++=个根号时,称(),a b 为一组完美方根数对.如上面()3,6是一组完美方根数对.则下面4个结论:①()4,12是完美方根数对;②()9,91是完美方根数对;③若(),380a 是完美方根数对,则20a =;④若(),x y 是完美方根数对,则点(),P x y 在抛物线2yx x 上.其中正确的结论有( ) A. 1个B. 2个C. 3个D. 4个 【答案】C【解析】【分析】根据定义逐项分析判断即可.【详解】解:1244+=,∴()4,12是完美方根数对;故①正确;10=9≠∴()9,91不是完美方根数对;故②不正确;若(),380a a =即2380a a =+解得20a =或19a =- a 是正整数则20a =故③正确;若(),x y x =2y x x ∴+=,即2y x x故④正确故选C【点睛】本题考查了求算术平方根,解一元二次方程,二次函数的定义,理解定义是解题的关键.(2022·河北)5. 下列正确的是( )A. 23=+ 23=⨯ 0.7=【答案】B【解析】【分析】根据二次根式的性质判断即可.【详解】解:23=≠+,故错误;23=⨯,故正确;=≠0.7≠,故错误;故选:B .【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键. (2022·河南)6. 下列运算正确的是( )A. 2-= B. ()2211a a +=+ C. ()325a a = D. 2322a a a ⋅= 【答案】D【解析】【分析】根据二次根式的加减,完全平方公式,幂的乘方,单项式乘以单项式逐项分析判断即可求解.【详解】解:A. =B. ()22112a a a +=++,故该选项不正确,不符合题意;C. ()326a a =,故该选项不正确,不符合题意;D. 2322a a a ⋅=,故该选项正确,符合题意;故选:D.【点睛】本题考查了二次根式的加减,完全平方公式,幂的乘方,单项式乘以单项式,正确地计算是解题的关键.(2022·湖南怀化)7. 下列计算正确的是( )A. (2a 2)3=6a 6B. a 8÷a 2=a 4C. =2D. (x ﹣y )2=x 2﹣y 2【答案】C【解析】【分析】根据积的乘方、同底数幂的除法、二次根式的化简、完全平方公式求解即可;【详解】解:A.(2a 2)3=8a 6≠6a 6,故错误;B.a 8÷a 2=a 6≠a 4,故错误;=2,故正确;D.(x ﹣y )2=x 2﹣2xy +y 2≠x 2﹣y 2,故错误;故选:C .【点睛】本题主要考查积的乘方、同底数幂的除法、二次根式的化简、完全平方公式等知识,掌握相关运算法则是解题的关键.(2022·湖南怀化)8. 下列计算正确的是( )A. (2a 2)3=6a 6B. a 8÷a 2=a 4C. =2D. (x ﹣y )2=x 2﹣y 2【答案】C【解析】【分析】根据积的乘方、同底数幂的除法、二次根式的化简、完全平方公式求解即可;【详解】解:A.(2a 2)3=8a 6≠6a 6,故错误;B.a 8÷a 2=a 6≠a 4,故错误;=2,故正确;D.(x ﹣y )2=x 2﹣2xy +y 2≠x 2﹣y 2,故错误;故选:C .【点睛】本题主要考查积的乘方、同底数幂的除法、二次根式的化简、完全平方公式等知识,掌握相关运算法则是解题的关键.(2022·云南) 9. 下列运算正确的是( )A. =B. 030=C. ()3328a a -=- D. 632a a a ÷= 【答案】C【解析】【分析】根据合并同类二次根式判断A ,根据零次幂判断B ,根据积的乘方判断C ,根据同底数幂的除法判断D .【详解】解:题意;B.031=,此选项运算错误,不符合题意;C.()3328a a -=-,此选项运算正确,符合题意;D.633a a a ÷=,此选项运算错误,不符合题意;故选:C .【点睛】本题考查了二次根式的加法、零次幂、积的乘方、同底数幂相除,熟练掌握运算法则是解题的关键.(2022·四川德阳) 10. 下列计算正确的是( )A. ()222a b a b -=- 1=C. 1a a a a÷⋅= D. 32361126ab a b ⎛⎫-=- ⎪⎝⎭【答案】B【解析】 【分析】根据完全平方公式、二次根式的化简、同底数幂的乘除法则、积的乘法法则逐项判断即可.【详解】A.222()2a b a ab b -=-+,故本选项错误;1=,故本选项符合题意;C.1111a a a a a÷⋅=⋅=,故本选项错误; D.23332336111228()()ab a b a b ⨯-=-=-,故本选项错误; 故选:B .【点睛】本题考查了完全平方公式、二次根式的化简、同底数幂的乘除法则、积的乘法法则,熟练掌握同底数幂的乘除法则、积的乘法法则是解答本题的关键. (2022·江苏连云港)11. 函数y =x 的取值范围是( ) A. 1≥xB. 0x ≥C. 0x ≤D. 1x ≤【答案】A【解析】 【分析】根据二次根式有意义的条件列出不等式,即可求解.【详解】解:∵10x -≥,∴1≥x .故选A .【点睛】本题考查了求函数自变量取值范围,二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.(2022·四川自贡)12. 下列运算正确的是( )A. ()212-=-B. 1=C. 632a a a ÷=D. 0102022⎛⎫-= ⎪⎝⎭ 【答案】B【解析】【分析】根据乘方运算,平方差公式,同底数幂的除法法则,零指数幂的运算法则进行运算即可.【详解】A.()211-=,故A 错误;B.221=-=,故B 正确;C.633a a a ÷=,故C 错误;D.0112022⎛⎫-= ⎪⎝⎭,故D 错误. 故选:B .【点睛】本题主要考查了整式的运算和实数的运算,熟练掌握平方差公式,同底数幂的除法法则,零指数幂的运算法则,是解题的关键.(2022·四川凉山)13. )A. ±2B. -2C. 4D. 2【答案】D【解析】【分析】先计算(-2)2=4,再求算术平方根即可.==,2故选:D.【点睛】本题考查算术平方根,熟练掌握算术平方根的定义是解题的关键.(2022·重庆)14. 4的值在()A. 6到7之间B. 5到6之间C. 4到5之间D. 3到4之间【答案】D【解析】【分析】根据49<54<64,得到78<<,进而得到344<<,即可得到答案.【详解】解:∵49<54<64,∴78<<,∴344<<4的值在3到4之间,故选:D.【点睛】此题考查了无理数的估算,正确掌握无理数的估算方法是解题的关键.二、填空题(2022·云南)15. x的取值范围是______.【答案】x≥﹣1【解析】【分析】根据二次根式有意义的条件可得:x+1≥0,即可求得.有意义∴x+1≥0,∴x≥﹣1.故答案为:x≥﹣1.【点睛】本题考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.(2022·湖北武汉)16.的结果是_________.【答案】2【解析】【分析】根据二次根式的性质进行化简即可.2=.故答案为:2. ()()(0000a a a a a a ⎧⎪===⎨⎪-⎩>)<.(2022·湖北荆州)17. 若3的整数部分为a ,小数部分为b ,则代数式()2b ⋅的值是______.【答案】2【解析】【分析】先由12<<得到132<<,进而得出a和b ,代入()2b +⋅求解即可.【详解】解:∵ 12<<,∴132<<,∵ 3的整数部分为a ,小数部分为b ,∴1a =,312b ==∴()((222242b +⋅=⨯=-=,故答案为:2.【点睛】本题主要考查无理数及代数式化简求值,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法.(2022·山东滨州) 18. 在实数范围内有意义,则x 的取值范围为_____.【答案】x ≥5【解析】【分析】根据二次根式有意义的条件得出x −5≥0,计算求解即可.【详解】解:由题意知,50x -≥,解得,5x ≥,故答案为:5x ≥.【点睛】本题考查了二次根式有意义的条件,解一元一次不等式.熟练掌握二次根式有意义的条件是解题的关键.(2022·四川南充)19. 为整数,x 为正整数,则x 的值是_______________.【答案】4或7或8【解析】【分析】根据根号下的数大于等于0和x 为正整数,可得x 可以取1、2、3、4、5、6、7、8为整数即可得x 的值.【详解】解:∵80x -≥∴8x ≤∵x 为正整数∴x 可以为1、2、3、4、5、6、7、8为整数∴x 为4或7或8故答案为:4或7或8.【点睛】本题考查了利用二次根式的性质化简、解一元一次不等式等知识点,掌握二次根式的性质是解答本题的关键.(2022·天津)20. 计算1)+的结果等于___________.【答案】18【解析】【分析】根据平方差公式即可求解.【详解】解:221)119118=-=-=,故答案为:18.【点睛】本题考查了平方差公式的应用,熟练掌握平方差公式的展开式是解题的关键.(2022·浙江嘉兴)21. 如图,在ABC 中,∠ABC =90°,∠A =60°,直尺的一边与BC 重合,另一边分别交AB ,AC 于点D ,E .点B ,C ,D ,E 处的读数分别为15,12,0,1,则直尺宽BD 的长为_________.【答案】3【解析】 【分析】先求解33,,3AB AD 再利用线段的和差可得答案. 【详解】解:由题意可得:1,15123,DE DC60,90,A ABC ∠=︒∠=︒ 33,tan 603BC AB 同理:13,tan 6033DE AD 3233,33BD AB AD【点睛】本题考查的是锐角的正切的应用,二次根式的减法运算,掌握“利用锐角的正切求解三角形的边长”是解本题的关键.(2022·新疆)22. 在实数范围内有意义,则x 的取值范围为__________.【答案】3x ≥【解析】【分析】根据二次根式有意义的条件,得到不等式,解出不等式即可.有意义,则需要-30x ≥,解出得到3x ≥.故答案为:3x ≥【点睛】本题考查二次根式有意义的条件,能够得到不等式是解题关键. (2022·四川眉山)23. ,2,,按下列方式进行排列:,2,,,4;…若2的位置记为(1,2)(2,3),则________.【答案】(4,2)【解析】【分析】先找出被开方数的规律,然后再求得【详解】数字可以化成:∴规律为:被开数为从2开始的偶数,每一行4个数,∵=28是第14个偶数,而14432÷=∴(4,2)故答案为:(4,2)【点睛】本题考查了类比点的坐标解决实际问题的能力和阅读理解能力.被开方数全部统一是关键.(2022·江苏扬州)24. x 的取值范围是__.【答案】1x【解析】【分析】二次根式有意义的条件:被开方数为非负数,再列不等式,从而可得答案.则10x -,解得:1x .故答案为:1x .【点睛】本题考查的是二次根式有意义的条件,解题的关键是根据二次根式有意义的条件列不等式.(2022·四川遂宁)25. 实数a ,b 在数轴上的位置如图所示,化简1a +-=______.【答案】2【解析】 【分析】利用数轴可得出102a b -<<<<,1,进而化简求出答案.【详解】解:由数轴可得:102a b -<<<<,1,则10,10,0a b a b +>->-<∴1a +-=|1||1|||a b a b +--+-=1(1)()a b a b +----=11a b a b +-+-+=2.故答案为:2.【点睛】此题主要考查了二次根式的性质与化简,正确得出a ,b 的取值范围是解题关键.(2022·湖南衡阳)26._____.【答案】4【解析】【分析】根据二次根式的乘法法则计算即可.4===.故答案为:4.【点睛】本题考查了二次根式的乘法,解题的关键是掌握运算法则.(2022·湖南娄底)27.函数y =的自变量x 的取值范围是_______. 【答案】1x >【解析】有意义可得:10,x ->再解不等式可得答案.有意义可得: 10,10x x 即10,x ->解得: 1.x >故答案为:1x >【点睛】本题考查的是二次根式与分式有意义的条件,函数自变量的取值范围,理解函数自变量的取值范围的含义是解本题的关键.(2022·山西)28. 的结果是________. 【答案】3【解析】 【分析】直接利用二次根式的乘法法则计算得出答案.=3.故答案为:3.【点睛】此题主要考查了二次根式的乘法法则,熟练掌握二次根式的乘法法则是解题关键.(2022·四川宜宾) 29. 《数学九章》是中国南宋时期杰出数学家秦九韶的著作,书中提出了已知三角形三边a 、b 、c 求面积的公式,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即为S =长为18的三角形的三边满足::4:3:2a b c =,则用以上给出的公式求得这个三角形的面积为______.【答案】【解析】【分析】根据周长为18的三角形的三边满足::4:3:2a b c =,求得8,6,4a b c ===,代入公式即可求解.【详解】解:∵周长为18的三角形的三边满足::4:3:2a b c =,设4,3,2a k b k c k ===∴43218k k k ++=解得2k =∴8,6,4a b c ===∴S =====故答案为:【点睛】本题考查了化简二次根式,正确的计算是解题的关键.(2022·湖北荆州)30. 如图,在Rt △ABC 中,∠ACB =90°,通过尺规作图得到的直线MN 分别交AB ,AC 于D ,E ,连接CD .若113CE AE ==,则CD =______.【解析】【分析】先求解AE ,AC ,再连结BE ,证明,,AEBE AD BD 利用勾股定理求解BC ,AB ,从而可得答案.【详解】解:113CE AE==,3,4,AE AC如图,连结,BE由作图可得:MN是AB的垂直平分线,3,,AE BE AD BD90,ACB∠=︒223122,BC2242226,AB16.2BD AB【点睛】本题考查的是线段的垂直平分线的作图与性质,勾股定理的应用,二次根式的化简,熟悉几何基本作图与基本图形的性质是解本题的关键.(2022·湖南常德)31.x的取值范围是______.【答案】4x>【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】解:根据题意,得:4040xx-≥⎧⎨-≠⎩,解得:x>4,故答案为:x>4.【点睛】本题考查了二次根式有意义的条件是二次根式的被开方数是非负数,分式有意义的条件是分母不为0.(2022·湖南岳阳)32. x的取值范围是_______.【答案】1x【解析】【分析】根据二次根式的被开方数是非负数列出不等式10x-,解不等式即可求得x的取值范围.【详解】解:根据题意得10x-,解得1x.故答案为:1x.【点睛】本题考查了二次根式有意义的条件,解题的关键是利用被开方数是非负数得出不等式.(2022·山东泰安)33. =__________.【答案】【解析】【分析】先计算乘法,再合并,即可求解.3=4233=,故答案为:【点睛】本题主要考查了二次根式的混合运算,熟练掌握二次根式的混合运算法则是解题的关键.(2022·湖北随州)34. 已知m 是整数,则根据==m 有最小值3721⨯=.设n 为正整数,若1的整数,则n 的最小值为______,最大值为______. 【答案】 ∵. 3 ∵. 75【解析】【分析】根据n 为正整数, 1的整数,先求出n 的值可以为3、12、75,3001的整数来求解.==1的整数,1=>. ∵n 为正整数∴n 的值可以为3、12、75,n 的最小值是3,最大值是75.故答案为:3;75.【点睛】本题考查了无理数的估算,理解无理数的估算方法是解答关键. (2022·四川达州)35. 人们把10.6182≈这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设a =b =11111S a b =+++,2222211S a b =+++,…,10010010010010011S a b =+++,则12100S S S +++=_______.【答案】5050【解析】【分析】利用分式的加减法则分别可求S 1=1,S 2=2,S 100=100,•••,利用规律求解即可.【详解】解:a =,b =1ab ==∴, 1112211112a b a b a b b b a bS a a ++++=+===+++++++, 222222222222222222221112a b a b S a b a b a b a b++++=+=⨯=⨯=+++++++, …,10010010010010010010010010010010011100100111a b S a b a b a b +++=+=⨯=+++++ ∴12100S S S +++=121005050++⋯⋯+=故答案为:5050 【点睛】本题考查了分式的加减法,二次根式的混合运算,求得1ab =,找出的规律是本题的关键.三、解答题(2022·四川乐山)36. 1sin 302-︒+【答案】3【解析】【分析】根据特殊角三角函数值、二次根式的性质、负整数指数幂求解即可.【详解】解:原式113322=+-=. 【点睛】本题主要考查了特殊角三角函数值、负整数指数幂、二次根式的性质等知识,熟知相关计算法则是解题的关键.(2022·江苏宿迁)37.计算:112-⎛⎫-⎪⎝⎭4sin60°.【答案】2【解析】【分析】先计算负整数指数幂,二次根式的化简,特殊角的三角函数值,再计算乘法,再合并即可.【详解】解:11124sin6023422=+2=【点睛】本题考查的是特殊角的三角函数值的运算,负整数指数幂的含义,二次根式的化简,掌握“运算基础运算”是解本题的关键.(2022·湖南娄底)38. 计算:()101202212sin602π-⎛⎫-++--︒⎪⎝⎭.【答案】-2【解析】【分析】分别计算零指数幂、负整数指数幂、绝对值和特殊角的三角函数值,然后按照去括号、先乘除后加减的顺序依次计算即可得出答案.【详解】解:()-1012022-12sin602π⎛⎫+-+-︒⎪⎝⎭(1212=---121=--2=-.【点睛】此题考查实数的混合运算,包含零指数幂、负整数指数幂、绝对值和特殊角的三角函数值.熟练掌握相关运算的运算法则以及整体的运算顺序是解决问题的关键.(2022·浙江湖州)39.计算:()223+⨯-.【答案】0【解析】【分析】先算乘方,再算乘法和减法,即可.【详解】()26(6)6236=+-=+--=⨯【点睛】本题考查实数的混合运算,关键是掌握2a=.(2022·甘肃武威)40.【答案】【解析】【分析】根据二次根式的混合运算进行计算即可求解.【详解】解:原式==【点睛】本题考查了次根式的混合运算,正确的计算是解题的关键.(2022·湖南常德)41.计算:213sin30452-︒︒⎛⎫-+⎪⎝⎭【答案】1【解析】【分析】根据零次幂,负整指数幂,特殊角的三角函数值,二次根式的性质进行计算即可求解.【详解】解:原式=1142-⨯+1=.【点睛】本题考查了实数的混合运算,掌握零次幂,负整指数幂,特殊角的三角函数值,二次根式的性质是解题的关键.(2022·四川广元)42. 计算:2sin60°﹣2|+(π)0+(﹣12)﹣2.【答案】3【解析】【分析】代入特殊角的三角函数值,按照实数的混合运算法则计算即可得答案.【详解】解:2sin60°﹣2|+(π﹣)0+(﹣12)﹣2=3.【点睛】本题考查特殊角的三角函数值、零指数幂、负整数指数幂及二次根式的性质与化简,熟练掌握实数的混合运算法则,熟记特殊角的三角函数值是解题关键. (2022·湖北十堰)43. 计算:1202212(1)3-⎛⎫+-- ⎪⎝⎭.【解析】【分析】根据负整数指数幂、乘方、绝对值的性质化简后计算即可.【详解】解:1202212(1)3-⎛⎫+-- ⎪⎝⎭321=+-【点睛】本题考查实数的混合运算,解题的关键是根据负整数指数幂、绝对值的性质化简.(2022·四川宜宾)44. 计算:(14sin 302︒;(2)21111a a a ⎛⎫-÷ ⎪+-⎝⎭.【答案】(1(2)1a -【解析】【分析】(1)先化简二次根式,把特殊角三角函数值代入,并求绝对值,再计算乘法,最后合并同类二次根式即可;(2)先计算括号,再运用除法法则转化成乘法计算即可求解.【小问1详解】解:原式1422=⨯+=【小问2详解】 解:原式211111a a a a a+-⎛⎫=-⋅ ⎪++⎝⎭ ()()111a a a a a+-=⋅+ 1a =-.【点睛】本题考查实数的混合运算,分式的混合运算,熟练掌握实数混合运算与分式混合运算法则,熟记特殊角的三角函数值.(2022·四川南充)45. 先化简,再求值:(2)(32)2(2)x x x x +--+,其中1x =.【答案】24x -;-【解析】【分析】利用多项式乘以多项式及单项式乘以多项式运算法则进行化简,然后代入求值即可.【详解】解:原式=22326424x x x x x -+---=24x -;当x 1时,原式=)214-=3+1-4=-【点睛】题目主要考查整式的乘法及加减化简求值及二次根式混合运算,熟练掌握运算法则是解题关键.(2022·湖南岳阳)46. 计算:2022032tan 45(1))π--︒+--.【答案】1【解析】【分析】根据特殊角的三角函数值,零指数幂,实数的运算,有理数的乘方,绝对值等计算法则求解即可.【详解】解:2022032tan 45(1))π--︒+-- 32111=-⨯+-3211=-+-1=.【点睛】本题考查了特殊角的三角函数值,零指数幂,实数的运算,有理数的乘方,绝对值,准确熟练地化简各式是解题的关键.(2022·湖南娄底)47. “体育承载着国家强盛、民族振兴的梦想”.墩墩使用握力器(如实物图所示)锻炼手部肌肉.如图,握力器弹簧的一端固定在点P 处,在无外力作用下,弹簧的长度为3cm ,即3cm PQ =.开始训练时,将弹簧的端点Q 调在点B 处,此时弹簧长4cm PB =,弹力大小是100N ,经过一段时间的锻炼后,他手部的力量大大提高,需增加训练强度,于是将弹簧端点Q 调到点C 处,使弹力大小变为300N ,已知120∠=︒PBC ,求BC 的长.注:弹簧的弹力与形变成正比,即F k x =⋅∆,k 是劲度系数,x ∆是弹簧的形变量,在无外力作用下,弹簧的长度为0x ,在外力作用下,弹簧的长度为x ,则0x x x ∆=-.【答案】2-【解析】【分析】利用物理知识先求解,k 再求解336,PC再求解,,BM PM 再利用勾股定理求解MC ,从而可得答案.【详解】解:由题意可得:当100F时,431,x 100,k 即100,F x当300F =时,则3,x336,PC如图,记直角顶点为M ,120,90,PBC PMBPBBPM 而4,30,22BM PM2,4223,22MC6232426,BC MC BM26 2.【点睛】本题是跨学科的题,考查了正比例函数的性质,三角形的外角的性质,勾股定理的应用,含30的直角三角形的性质,二次根式的化简,理解题意,建立数学函数模型是解本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式知识梳理知识点1.二次根式重点:掌握二次根式的概念 难点:二次根式有意义的条件 式子a (a ≥0)叫做二次根式. 例1下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+, 其中是二次根式的是_________(填序号).解题思路:运用二次根式的概念,式子a (a ≥0)叫做二次根式.答案:1)、3)、4)、5)、7).例2若式子13x -有意义,则x 的取值范围是_______.解题思路:运用二次根式的概念,式子a (a ≥0)注意被开方数的范围,同时注意分母不能为0 答案:3x >例3若y=5-x +x -5+2009,则x+y=解题思路:式a (a ≥0),50,50x x -≥⎧⎨-≥⎩ 5x =,y=2009,则x+y=2014练习1使代数式43--x x 有意义的x 的取值范围是( ) A 、x>3B 、x ≥3C 、 x>4D 、x ≥3且x ≠4211x x --2()x y =+,则x -y 的值为( ) A .-1 B .1 C .2 D .3答案:1. D 2. C :知识点 2.最简二次根式重点:掌握最简二次根式的条件 难点:正确分清是否为最简二次根式同时满足:①被开方数的因数是整数,因式是整式(分母中不含根号);②被开方数中含能开得尽方的因数或因式.这样的二次根式叫做最简二次根式. 例1.在根式1)222;2);3);4)275xa b x xy abc +-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4) 解题思路:掌握最简二次根式的条件,答案:C练习.下列根式中,不是..最简二次根式的是( ) A .7B .3C .12D .2答案:C—知识点3.同类二次根式重点:掌握同类二次根式的概念 难点:正确分清是否为同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫同类二次根式. 例在下列各组根式中,是同类二次根式的是( )A .3和18B 313C 22.11a b ab a a +-和和182318A 错.133 313B 正确.—22||,ab b a a b =│a b , ∴C 错,而显然,D 错,∴选B .练习已知最简二次根式322b a b b a --+和a=______,b=_______. 答案:a=0 ,b=2知识点4.二次根式的性质 重点:掌握二次根式的性质难点:理解和熟练运用二次根式的性质a 2=a (a ≥00(0)a a ≥≥ 2a │a │=(0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩;例1、若()22340a b c ---=,则=+-c b a .解题思路:2|2|30,(4)0a b c -≥-≥-≥,非负数之和为0,则它们分别都为0,则2,3,4a b c ===,=+-c b a 3oba例2、化简:21(3)a a -+-的结果为( )A 、4—2aB 、0C 、2a —4D 、4解题思路:由条件则30,3a a -≥≥,运用(a )2=a (a ≥0)则2(3)3a a -=- 答案:C例3.如果表示a ,b 两个实数的点在数轴上的位置如图所示,那么化简│a -b │+2()a b + 的结果等于( )A .-2bB .2bC .-2aD .2a解题思路:运用2a =│a │=(0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩;由数轴则0a b -> , 0a b +<,则原式=a b a b ---=-2b 选A¥练习1.已知a<0,那么│2a -2a │可化简为( )A .-aB .aC .-3aD .3a 2.如图所示,实数a ,b 在数轴上的位置,化简222()a b a b ---.1-1b a O3.若y x -+-324=0,则2xy= 。

答案: 2. -2b知识点5.分母有理化及有理化因式重点:掌握分母有理化及有理化因式的概念 难点:熟练进行分母有理化,求有理化因式把分母中的根号化去,叫做分母有理化;两个含有二次根式的代数式相乘,•若它们的积不含二次根式,则称这两个代数式互为有理化因式. ]例观察下列分母有理化的计算:21,32,43213243===+++,从计算结果中找出规律,并利用这一规律计算:(20081)213220082007+⋅⋅⋅+++=_____________解题思路:(213220082007)(20081)(20081)(20081)2007=⋅⋅⋅==练习 .化简132+,甲,乙两位同学的解法如下132:3 2.32(32)(32)132(32)(32):32323232-==-++--+-===-+++甲乙对于甲,乙两位同学的解法,正确的判断( )A .甲,乙的解法都正确B .甲正确,乙不正确C .甲,乙都不正确D .甲不正确,乙正确 答案:A /知识点6.二次根式的运算重点:掌握二次根式的运算法则 难点:熟练进行二次根式的运算(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.ab a b (a ≥0,b ≥0);b ba a=(b ≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算. 例1已知a>b>0,ab a ba b+的值为( )A .22 B .2 C 2 D .12…解题思路:∵a>b>0,∴(a b )2ab ab a b )2=a+b -ab ab22()412,22()8a b ab a b a b ab a b--==∴=++,故选A . 例2先化简,再求值:11()ba b b a a b ++++,其中51+,51-.解题思路:原式=22()()()()ab a a b b a b a bab a b ab a b ab+++++==++当a=512+,b=512-时,原式=5.例3计算:101(32)4cos30|12|3-⎛⎫-++-- ⎪⎝⎭°.解题思路::11(32)4cos30|12|3-⎛⎫-++-- ⎪⎝⎭°.3134122=++⨯- @42323=+-4=最新考题中考要求及命题趋势1、 掌握二次根式的有关知识,包括概念,性质、运算等;2、熟练地进行二次根式的运算中考二次根式的有关知识及二次根式的运算仍然会 以填空 、选择和解答题的形式出现,二次根式的概念,性质将是今后中考的一个热点。

应试对策 -掌握二次根式的有关知识,包括概念,性质、运算,在运算过程中注意 运算顺序,掌握运算规律,注重二次根式性质的理解和运用。

考查目标一、理解二次根式的概念和性质 例1. (2009年梅州市) 如果,则=_______.解题思路: 根据二次根式的概念,在a 中,必须是非负数,即≥0,可以是单项式,也可以是多项式.所以由已知条件,得≥0且≥0.解:由题意得≥0且≥0,∴x =32,=2,∴=5.例2. (2009龙岩)已知数a ,b ,若2()a b -=b -a ,则 ( ) A. a>b B. a<b C. a≥b D. a≤b解题思路:此题是二次根式2a 的性质的应用,根据其性质,即是指|a -b|=b -a ,根据绝对值的意义,可得a -b≤0,所以有a≤b ,故选D. 例3. 当a ab b=成立时,的取值范围是___________.解题思路:商的算术平方根的性质a ab b成立的条件是≥0,>0,不能与二次根式有意义的条件混淆.!解:由≥0和2->0得0≤<2.例4. (2009年铁岭市)若互为相反数,则_______。

解题思路:互为相反数的特点,点评:绝对值、算术平方根、完全平方数为非负数。

即:,。

非负数有一个重要的性质,即若干个非负数的和等于零,那么每一个非负数分别为零。

即:;;;.考查目标二、二次根式的化简与计算例5. 将根号外的a移到根号内,得()%A. ;B. -;C. -;D.解题思路:字母从根号外移到根号内,应特别注意其正负情况,是正数则可以平方后直接移到根号内,与根号内的被开方数相乘,是负数则应整理后再做移动.此题隐含了条件<0,所以绝不可直接平方后移动.解:由已知得<0,所以=-(-)=-=-.故选B.例6.计算:解题思路:;,考查目标三、在实数范围内分解因式例7. 在实数范围内分解因式。

(1);(2)解题思路:(1)原式(2)原式考查目标四、比较数值例8. 比较下列数值的大小。

【(1);(2)解题思路:为了比较两个数的大小,本题要用乘法运算的逆向思维法解决。

解:(1)由,得(2)由,得考查目标五、无理数大小比较例9. (2009贺州)的整数部分是_________,小数部分是________。

解题思路:因为是无理数,即无限不循环小数,所以把分成整数部分a和小数部分b,其中a是小于且最靠近的整数,而,这样就可以从中先求出a,再求出b。

~解:,即,,即又是无限不循环小数。

的整数部分是2,小数部分是。

考查目标六、规律性问题例10. 观察下列各式及其验证过程:,验证:;验证:.(1)按照上述两个等式及其验证过程的基本思路,猜想4415的变形结果,并进行验证;(2)针对上述各式反映的规律,写出用n(n≥2,且n是整数)表示的等式,并给出验证过程.]解题思路:这是一道规律探索题,探索某些特殊的二次根式,可以将根号外面的数直接移到根号内与被开方数相加.通过观察不难发现,这类特殊的二次根式其根号外面的数与根号内的数的分子相同,根号内的数的分母是根号外的数的平方与1的差.其验证过程也给我们提供了解题思路.解:(1);验证略(2)(n≥2,且是整数).验证:.例11. 已知,则a_________解题思路:把已知式的前三项分母有理化后,解出a。

解:已知式化为*,,点评:因之前的各项分母有理化后,“环环相扣,前后相消”,仅留2,就好求a了。

进一步看到,若把2看成,则。

发展:已知,则a______。

(答案:a).过关测试一、选择题:1. 若在实数范围内有意义,则m的取值范围是()。

相关文档
最新文档