江苏省扬州市2020-2021学年高三下学期期初调研测试数学答案
江苏省扬州市2024届高三下学期考前调研模拟预测测试语文试题含答案
扬州市2024届高三考前调研测试语文2024.05注意事项:考生在答题前认真阅读本注意事项及各题答题要求1.试卷共8页;满分为150分,考试时间为150分钟。
2.答题前,请将学校、姓名、考试证号等认真填写在答题卡上。
并请认真核对规定填写的项目是否准确、条形码上的信息与本人是否一致。
3.所有答案在答题卡上完成。
选择题用2B铅笔填涂,主观题答案必须用0.5毫米书写黑色字迹的签字笔填写在答题卡上的指定位置,在其它位置作答一律无效。
考试结束后,请将答题卡交回。
一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成1~5题。
①表现确定的情感或激情完全不是音乐艺术的职能。
②情感并不是孤立地存在于心灵中,好像可以用一种艺术把它从心灵里提取出来,而这种艺术却无法表现其他的精神活动似的。
相反地,情感是以观念和判断——即理智和理性思维的全部领域,也就是被人们看作是情感的对立面的那个领域为依据的。
③是什么使情感成为某一特定的情感?使它成为渴慕、希望、爱情呢?也许只是内心波动的强弱么?不是的。
不同的情感可以有同一的强度;同一情感,可以因人、因时,而强弱不同。
只有在一系列的想象和判断的基础上——这些想象和判断在强烈感受的顷刻也许没有被意识到——我们的内心状态才可能凝结为某一特定的情感。
希望的情感是与想象一个未来的、比之现今更幸福的情况分不开。
忧伤则是把过去的幸福与目前情况相比较。
这是一些非常确定的想象和概念,没有这些东西,没有这种思想的材料,就说不上我们目前的感受是“希望”或“忧伤”,造成这些情绪的,正是思想的材料。
如果把它抽掉,那么留下来只是一种不确定的波动,或者只是一般的快感或不快的感觉。
没有某个被爱者的形象,没有那种要使之幸福并企图赞美和占有这个对象的愿望,就不能设想什么爱情。
不单是心灵的波动形式,更是这种波动所具有的概念核心,它的真实的、历史的内容才能使它成为爱情。
就它的力度说,它可以是温柔的,也可以是暴风雨似的,它可以是愉快的,也可以是痛苦的,在各种情况下表达的却都是爱情。
江苏省扬州市高邮市2022-2023学年高三上学期10月学情调研测试数学试题(解析版)
2022/2023学年第一学期高三10月学情调研测试数学试题一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合][(){},14,,11A B x a x a ∞∞=-⋃+=-<<+,若A B =∅ ,则实数a 的取值范围为()A.()2,3 B.[)2,3 C.(]2,3 D.[]2,3【答案】D 【解析】【分析】利用数轴法解决集合的交集运算即可.【详解】因为][(){},14,,11A B x a x a ∞∞=-⋃+=-<<+,且A B =∅ ,所以1114a a -≥⎧⎨+≤⎩,解得23a a ≥⎧⎨≤⎩,故23a ≤≤,即[]2,3a ∈.故选:D.2.已知i 为虚数单位,则复数13i12iz -=+对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C 【解析】【分析】利用复数的四则运算化简,结合复数的几何意义,即可得到答案.【详解】13i (13i)(12i)1i 12i (12i)(12i)z ---===--++- ,∴复数z 在复平面内对应的点为(1,1)--,位于第三象限.故选:C .3.已知单位向量,a b满足2a b -= ,则a 在b 方向上的投影向量为()A.bB.b -C.2aD.a-【答案】B 【解析】【分析】先由条件计算得a b ⋅ 的值,再利用a 在b 方向上的投影向量为cos b a b ba b b bθ⋅⋅=⋅求得答案.【详解】因为,a b是单位向量,所以1,1a b == ,故22221,1a a b b ==== ,由2a b -= 得24a b -= ,即()24a b-=,则2224a b a b =⋅+- ,即1214a b ⋅=+- ,得1a b ⋅=-,设a 与b 的夹角为θ,则a 在b 方向上的投影向量为1cos 11b a b b ba b b bbθ⋅-⋅=⋅=⋅=-.故选:B.4.与直线310x y -+=关于y 轴对称的直线的方程为()A.310x y -+= B.310x y +-= C.310x y ++= D.310x y ++=【答案】B 【解析】【分析】设(,)P x y 为所求直线上任一点,则(,)P x y 关于y 轴对称的点为(,)x y -,将其代入310x y -+=中化简可得答案.【详解】设(,)P x y 为所求直线上任一点,则(,)P x y 关于y 轴对称的点为(,)x y -,由题意可得点(,)x y -在直线310x y -+=上,所以310x y --+=,即310x y +-,所以与直线310x y -+=关于y 轴对称的直线的方程为310x y +-=,故选:B5.定义:若函数()f x 的图象经过Ω变换后所得图象的对应函数的值域与()f x 的值域相同,则称Ω变换是()f x 的”同值变换”.则下列正确的是()A.()cos()6f x x π=+:Ω将函数()f x 的图象关于点(e 0),对称B.2()=2f x x x -:Ω将函数()f x 的图象关于原点对称C.()=21xf x -:Ω将函数()f x 的图象关于x 轴对称D.2()=log f x x :Ω将函数()f x 的图象关于直线y x =对称【答案】A 【解析】【分析】讨论原函数和变化后的函数值域是否相同即可.【详解】因为函数()cos()6f x x π=+的图象关于x 轴上的点(e 0),对称后得到的仍然为三角函数,值域仍然为[]1,1-,所以A 选项正确;因为2()=2f x x x -的值域为[)1,-+∞,关于原点对称后的函数为2()=2f x x x -+,值域为(],1-∞,所以B 选项错误;()=21x f x -的值域为(1,)-+∞,关于x 对称后的值域为(,1)-∞,所以C 选项错误;2()=log f x x 的值域为R ,2()=log f x x 关于直线y x=对称的函数为2()=log f x x 的反函数,即2x y =值域为(0,)+∞,所以D 选项错误.故选:A.6.椭圆E :22x a +22y b=1(a >b >0)左右焦点分别为12F F ,上顶点为A ,射线AF 1交椭圆E 于B ,以AB 为直径的圆过2F ,则椭圆E 的离心率是()A.22B.33C.12D.5【答案】D 【解析】【分析】以AB 为直径的圆过2F ,即22AF BF ⊥,由勾股定理与椭圆定义用a 表示出1BF ,2BF ,然后在12AF F △和12BF F △中,由1212cos cos 0AF F BF F ∠+∠=得出,a c 的齐次等式,变形后可得离心率.【详解】由题意12AF AF a ==,设1BF t =,则22BF a t =-,又以AB 为直径的圆过2F ,即22AF BF ⊥,所以222(2)()a a t a t +-=+,解得23t a =,所以243BF a =,在12AF F △和12BF F △中,12cos c AF F a∠=,22222124164399cos 22223c a a c a BF F ac c a +--∠==⋅⋅,1212180AF F BF F ∠+∠=︒,所以1212cos cos 0AF F BF F ∠+∠=,即22302c c a a ac-+=,整理得225a c =,所以55c e a ==.故选:D .7.定义在[0,π]上的函数πsin(6y x ω=-(ω>0)存在极值点,且值域1[,)2M ⊆-+∞,则ω的范围是()A.[76,2] B.24[,]33C.74(,63] D.[223,]【答案】B 【解析】【分析】由π[,]666x ωωππ-∈-π-,根据极值点和值域范围即可求得ω的范围.【详解】定义在[0,π]上的函数πsin()6y x ω=-,π[,]666x ωωππ-∈-π-,因为函数存在极值点,所以π62ωππ-≥,即ω≥23.又因为值域1[,)2M ⊆-+∞,所以π66ω7ππ-≤,即有:43ω≤,综上:24[,33ω∈.故选:B8.当0x >时,不等式2e 2ln 1x x mx x ≤++有解,则实数m 的范围为()A.[)1,+∞ B.1,e ⎡-+∞⎫⎪⎢⎣⎭C.2,e ⎡⎫+∞⎪⎢⎣⎭D.[)2,+∞【解析】【分析】先令1m =,构造导数证得在()0,1上存在0x 使得02000e2ln 1x x x x =++,即1m =满足题意,故排除D ;再利用一次函数的单调性证得当1m <时,2e 2ln 1x x x m x >++在()0,∞+上恒成立,即可排除BC ,实则至此已经可以选择A 选项,然而我们可以进一步证得当1m >时,题设不等式也成立,由此选项A 正确.【详解】当1m =时,题设不等式可化为2e 2ln 10x x x x ---≤有解,令()()2e 2ln 10xf x x x x x =--->,则问题转化为()0f x ≤有解,()()()()22e 2e 1212xxx x f x x x xx '+-=-+=-,令()()210e xx x g x =->,则()()2e 20xg x x x +=>',所以()g x 在()0,∞+上单调递增,又()010g =-<,()1e 10g =->,故()g x 在()0,1上存在唯一零点0x ,且0201e x x =,两边取自然对数得002ln 0x x +=,所以当00x x <<时,()0g x <,即()0f x '<,故()f x 单调递减;当0x x >时,()0g x >,即()0f x '>,故()f x 单调递增;所以()()()00220000000min e 2ln 1e 12ln 0xxf x f x x x x x x x ==---=--+=,即在()0,1上存在0x 使得02000e2ln x x x x =++,即()0f x ≤有解0x ,即1m =满足题意,故排除D.由上述证明可得2e 2ln 10x x x x ---≥,即2e 2ln 1x x x x ≥++在()0,∞+上恒成立,令()2ln 1h m xm x =++,则()0h m x '=>,故()h m 在R 上单调递增;所以当1m <时,()()1h h m >,即2ln 12ln 1x x mx x ++>++,故2e 2ln 1x x x m x >++,即当1m <时,2e 2ln 1x x x m x >++在()0,∞+上恒成立,显然题设不等式无解,矛盾,故排除BC ;当1m >时,()()1h m h >,即2ln 12ln 1mx x x x ++>++,故00002ln 12ln 1mx x x x ++>++,又02000e2ln 1x x x x =++,故02000e 2ln 1x x mx x <++,即2e 2ln 1x x mx x ≤++至少有一解0x ;综上:m 1≥,即选项A 正确.【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.已知0,0a b >>,且24a b +=,则下列结论正确的是()A.2ab ≤ B.12a +1b1≥ C.426a b +≥ D.2248a b +≤【答案】AB 【解析】【分析】对于A ,由42a b =+≥,可得2ab ≤,即可判断;对于B ,由12a +1b 111(2)(42a b a b=++,利用基本不等式求解即可;对于C ,由24222a b a b +=+≥=对于D ,由2224(2)4164a b a b ab ab +=+-=-,及2ab ≤即可求得2248a b +≥,从而即可判断.【详解】解:因为0,0a b >>,且24a b +=,对于A ,42a b =+≥2242ab ab ≤⇒≤⇒≤,当2a b =,即12a b =⎧⎨=⎩时,等号成立,故正确;对于B ,因为24a b +=,所以1(2)14a b +=,12a +1b 111(2)()42a b a b =++1211(2)(2(22)14244a b b a =++≥+=+=,当22a b b a =,即12a b =⎧⎨=⎩时,等号成立,故正确;对于C ,因为24222248a b a b +=+≥===⨯=,当2a b =,即12a b =⎧⎨=⎩时,等号成立,故错误;对于D ,因为2224(2)4164a b a b ab ab +=+-=-,又因为2ab ≤,所以48ab -≥-,所以1641688ab -≥-=,即2248a b +≥,当2a b =,即12a b =⎧⎨=⎩时,等号成立,故错误.故选:AB .10.已知向量()()1,1,cos ,sin (0)a b θθθπ==≤≤.则下列命题正确的是()A.若22,22b ⎛= ⎝⎭ ,则4πθ= B.存在θ,使得a b a b+=-C.与a共线的单位向量为22,22⎛⎫ ⎪ ⎪⎝⎭ D.向量a与b夹角的余弦值范围是2,12⎡⎤⎢⎥⎣⎦【答案】ABD 【解析】【分析】对于A ,由特殊角的三角函数值与θ的取值范围可得到4πθ=,故A 正确;对于B ,利用向量的数量积运算由a b a b +=- 易得0a b ⋅= ,从而得到tan 1θ=-,故34πθ=,即说法成立,故B 正确;对于C ,利用a a± 易求得与a 共线的单位向量有两个,故C 错误;对于D ,利用向量数量积运算求得,a b夹角的余弦值的表达式,结合三角函数的图像即可得到其取值范围是2,12⎡⎤⎢⎥⎣⎦,故D 正确.【详解】对于A ,由题意得2cos 2θ=,又0θπ≤≤,故4πθ=,故A 正确;对于B ,因为a b a b +=- ,即22a b a b +=- ,即()()22a b a b +=- ,整理得222222a a b b a a b b +⋅+=-⋅+,即0a b ⋅= ,故1cos 1sin 0θθ⨯+⨯=,即sin cos θθ=-,得sin tan 1cos θθθ==-,又0θπ≤≤,所以34πθ=,即存在θ,使得a b a b +=- ,故B 正确;对于C ,因为()1,1a =r,所以a ==a共线的单位向量为a a ⎛±=±=±± ⎝ ,故C 错误;对于D,22cos ,cos sin sin 224a b a b a bπθθθ⋅⎛⎫==+=+ ⎪⎝⎭,又0θπ≤≤,所以5444p p p q £+£,所以2sin 124πθ⎛⎫-≤+≤ ⎪⎝⎭,即向量a 与b 夹角的余弦值范围是22⎡⎤⎢⎥⎣⎦,故D 正确.故选:ABD.11.已知定义在R 上的函数()f x ,满足()cos f x x +是奇函数,且()sin f x x -是偶函数.则下列命题正确的是()A.34f π⎛⎫= ⎪⎝⎭B.12f π⎛⎫= ⎪⎝⎭C.()()f k x f x π+=D.22f x f x ππ⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭【答案】BD 【解析】【分析】由()cos f x x +是奇函数,可得()()2cos f x f x x -+=-,由()()2cos f x f x x -+=-,可得()()2sin x f x x --=-两方程联立求出()f x 的解析式,然后逐个分析判断.【详解】因为()cos f x x +是奇函数,所以()cos()()cos f x x f x x -+-=-⎡+⎤⎣⎦,()cos ()cos f x x f x x -+=--,所以()()2cos f x f x x -+=-,因为()sin f x x -是偶函数,所以()sin()()sin f x x f x x ---=-,所以()()2sin f x f x x --=-,所以()sin cos f x x x =-,对于A ,33322sin cos 044422f πππ⎛⎫=-=-=⎪⎝⎭,所以A 错误,对于B ,sin cos 1222f πππ⎛⎫=-=⎪⎝⎭,所以B 正确,对于C ,()()()sin cos f k x k x k x πππ+=+-+,当k 为偶数时,()()()sin cos sin cos ()f k x k x k x x x f x πππ+=+-+=-=,当k 为奇数时,()()()sin cos sin cos sin cos ()f k x k x k x x x x x f x πππ+=+-+=---=--≠,所以C 错误,对于D ,因为sin cos cos sin 222f x x x x x πππ⎛⎫⎛⎫⎛⎫-=---=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,sin cos cos sin cos sin 222f x x x x x x x πππ⎛⎫⎛⎫⎛⎫+=+-+=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以22f x f x ππ⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭,所以D 正确,故选:BD12.过点()10P -,的直线l 与圆220:412C x y y +--=交于A ,B 两点,线段MN 是圆C的一条动弦,且MN =)A.AB 的最小值为B.△ABC 面积的最大值为8C.△ABCD.PM PN +uuu r uuu r的最小值为6-【答案】ACD 【解析】【分析】设圆心C 到直线AB 的距离为d ,求出AB ,即可判断A ;再由1||2ABC S AB d =⋅ ,求出ABC 面积的最大值即可判断B ,C ;取MN 的中点E ,求PM PN +uuu r uuu r的最小值转化为求PE的最小值即可判断D .【详解】∵224120x y y +--=即22(2)16x y +-=,∴圆心()0,2C ,半径4r =()1,0P -在圆C 内,PC =,设圆心C 到直线AB 的距离为d ,由题意得0d ≤≤∵AB =min AB ==A 正确;1122ABC S AB d d =⋅=⨯=△∵205d ≤≤,∴当25d =时,()max ABC S =△,故B 错误,C 正确.取MN 的中点E ,则CE MN ⊥,又MN =3CE ==,∴点E 的轨迹是以()0,2C 为圆心,半径为3的圆.因为2PM PN PE +=,且min33PEPC =-= ,所以||PM PN +的最小值为6-,故D 正确.故选:ACD .三、填空题:本题共4小题,每小题5分,共20分.13.若4cos 45πα⎛⎫-= ⎪⎝⎭,则sin 2α=_________.【答案】725【解析】【分析】利用二倍角公式可求解.【详解】2247sin 2cos 22cos 12124525ππααα⎛⎫⎛⎫⎛⎫=-=--=⋅-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:725.14.若“[1,2]x ∀∈,都有2210x x λ-+<成立”是假命题,则实数λ的取值范围是________【答案】9,2⎛⎤-∞ ⎥⎝⎦【解析】【分析】求出命题为真时,参数范围,再求其在R 上的补集,则得命题为假时的范围.【详解】若[1,2]x ∀∈,都有2210x x λ-+<成立是真命题,则2108210λλ-+<⎧⎨-+<⎩,解得92λ>,所以若[1,2]x ∀∈,都有2210x x λ-+<成立是假命题时,92λ≤.故答案为:9(,]2-∞.15.已知实数x ,y 满足20x y >>,若2z x =+22x y y-(),则z 的最小值是_____【答案】8【解析】【分析】先由基本不等式放缩(2)x y y -,然后再用基本不等式得最小值.【详解】因为20x y >>,所以20x y ->,2211(2)2(2)22228x y y x x y y -+⎡⎤-≤=⎢⎥⎣⎦,当且仅当22x y y -=,即4x y =时取等号,所以222216(2)z x x x y y x =+≥+-8≥=,当且仅当2216x x =,即2x =时等号成立,此时14y =.故答案为:8.16.椭圆E :22143x y +=内有一个圆C ,圆C 与椭圆内切,圆C 面积的最大值是________;若切点是椭圆的右顶点,则圆C 面积的最大值是_____【答案】①.3π②.9π4【解析】【分析】空1:当圆半径r b =是圆的面积最大.空2:切点是椭圆的右顶点,设半径为r ,圆心为()2,0r -,列出圆的方程,然后和椭圆方程联立得到含有r 的二次方程,因为和圆有一个切点,故0∆=,得到r ,求得圆的面积.【详解】空1:因为圆C 与椭圆内切,当r b =时,圆C 的面积最大,最大为22π=π=3πr b .空2:因为切点是椭圆的右顶点,设半径为r ,圆心为()2,0r -,所以圆C 的方程为:()2222x r y r --+=⎡⎤⎣⎦和椭圆方程22143x y +=联立得()()2222322234x r x r x r --+-+-=化解得()21227404x r x r --+-=因为有一个切点,所以()()22142474(23)04r r r ∆=--⨯-=-=故32r =.综上所述:圆C 面积的最大值为24ππ9r =.故答案为:3π,9π4.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知(){}22log 242A x x x =-->,11|327x aB x -⎧⎫⎪⎪⎛⎫=<⎨⎬⎪⎝⎭⎪⎪⎩⎭(1)当2a =时,求R A B ⋂ð;(2)已知“x A ∈”是“x B ∈”的必要条件,求实数a 的取值范围.【答案】(1)R {2A B x x ⋂=<-ð或45}x <≤;(2)[)1,+∞.【解析】【分析】(1)先解对数不等式得到集合A ,再解指数不等式得到集合B ,由此利用数轴法对集合进行交并补运算即可;(2)先求得集合B ,再由题设条件得到B A ⊆,由由此利用数轴法对集合进行运算即可.【小问1详解】因为()22log 242x x -->,所以由2log y x =的单调性可得2244x x -->,即()()240x x +->,解得2x <-或4x >,故{2A x x =<-或4}x >,当2a =时,由11327x a-⎛⎫< ⎪⎝⎭,得231133x -⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故23x ->,即5x >,故{}5B x x =>,所以{}R 5B x x =≤ð,所以R {2A B x x ⋂=<-ð或45}x <≤,【小问2详解】由11327x a-⎛⎫<⎪⎝⎭得31133x a-⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故3x a ->,即3x a >+,故{}3B x x a =>+,由“x A ∈”是“x B ∈”的必要条件得B A ⊆,所以34a +≥,解得1a ≥,即[)1,a ∈+∞.18.圆C :22(2)(1)9x y -+-=,过点(1,3)P -向圆C 引两切线,A ,B 为切点,(1)求切线的方程:(2)求PA PB ⋅的值【答案】(1)1x =-或512410x y -+=(2)2013-【解析】【分析】(1)按斜率存在和不存在分类讨论,斜率存在时,设出切线方程,由圆心到切线距离等于半径求得结论;(2)求出,,PC PA PB ,在直角三角形中得出sin APC ∠,用二倍角公式求得cos APB ∠,然后由数量积的定义计算.【小问1详解】若过P 点的直线斜率不存在,符合题意,切线方程为1x =-;若过P 点的直线斜率存在,设切线方程为3(1)y k x -=+,即30kx y k -++=,圆心C3=,解得512k =,则512410x y -+=,综上,切线方程为1x =-或512410x y -+=【小问2详解】|||||2PC PA PB ===sin CA CPA PC∠==,225cos 12sin 1213APB CPA ∠=-∠=-=-.520cos 221313PA PB PA PB APB ⎛⎫⋅=∠=⨯⨯-=- ⎪⎝⎭.19.新能源汽车是指除汽油、柴油发动机之外的所有其他能源汽车,被认为能减少空气污染和缓解能源短缺的压力、在当今提倡全球环保的前提下,新能源汽车越来越受到消费者的青睐.某车企随机调查了今年某月份购买本车企生产的20n (n ∈N +)台汽车车主,统计得到以下22⨯列联表,经过计算可得2 5.556x ≈.喜欢不喜欢总计男性10n12n女性3n总计15n(1)完成表格并求出n 值,并判断有多大的把握认为购车消费者对新能源车的喜欢情况与性别有关:(2)用样本估计总体,用本车企售出汽车样本的频率代替售出汽车的概率.从该车企今年某月份售出的汽车中,随机抽取4辆汽车,设被抽取的4辆汽车中属于不喜欢新能源购车者的辆数为X ,求X 的分布列及数学期望.附:()22()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.a =P (2x ≥k )0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.828【答案】(1)表格见解析,5,有97.5%的把握认为购车消费者对新能源车的喜欢情况与性别有关;(2)列联表见解析,1【解析】【分析】(1)根据列联表算出2x ,利用独立性检验即可判断;(2)利用二项分布即可列出分布列,从而求期望.【小问1详解】补充表格数据如下:喜欢不喜欢总计男性10n 2n 12n 女性5n 3n 8n 总计15n5n20n根据数表可得2220(31052)10 5.5561551289n n n n n n x n n n n ⨯-⨯==≈⨯⨯⨯,又n *∈N ,得5n =;由题意,2 5.556(5.024,6.635)x ≈∈,故有97.5%的把握认为购车消费者对新能源车的喜欢情况与性别有关;【小问2详解】随机抽取1辆汽车属于不喜欢新能源购车者的概率为2511004=,被抽取的4辆汽车中属于不喜欢新能源购车者的辆数为X ,X 的可能值为:0,1,2,3,4依题意,14,4X B ⎛⎫ ⎪⎝⎭,4041381(0)C 44256P X ⎛⎫⎛⎫==⋅= ⎪⎪⎝⎭⎝⎭,13141327(1)C 4464P X ⎛⎫⎛⎫==⋅=⎪ ⎪⎝⎭⎝⎭,22241354(2)C 44256P X ⎛⎫⎛⎫==⋅= ⎪⎪⎝⎭⎝⎭,3134133(3)C 4464P X ⎛⎫⎛⎫==⋅=⎪ ⎪⎝⎭⎝⎭,444131(4)44256P X C ⎛⎫⎛⎫==⋅=⎪ ⎪⎝⎭⎝⎭所以X 的分布列为:X 01234P812562764542563641256X 的数学期望81275431()0123412566425664256E X =⨯+⨯+⨯+⨯+⨯=.所以X 的数学期望为120.在三角形ABC 中,A =60︒,D AC 边上,AD =1,DC(1)BD ,求△ABD 的面积.(2)若E 点在AB 边上,AD =AE ,∠DBC =30°,求sin ∠EDB .【答案】(1)4(2)sin 2EDB ∠=【解析】【分析】(1)在ABD △中利用余弦定理和面积公式即可;(2)在BDE 和BDC 中利用正弦定理分析求解.【小问1详解】在ABD △中,由余弦定理得2222cos 60BD AB AD AB AD =+-⋅⋅︒,即260AB AB --=,则3AB =(舍负)所以,11sin6031sin60224ABD S AB AD ︒︒=⋅⋅=⨯⨯⨯=△.【小问2详解】,60AD AE A ==︒,则ADE 为正三角形,1,60DE AD AED ADE ==∠=∠=︒,设EDB θ∠=,在BDE 中,120,60BED EBD θ∠=∠=︒-︒,由正弦定理得()1sin120sin 60BD θ=︒-︒.(*)在BDC 中,30,30,DBC BCD DC θ︒=+︒∠=∠=由正弦定理得()3sin 30sin 30BD θ=+︒︒(**)由(*)和(**)得()()1sin 30sin 604θθ︒+︒-=,即()1sin 6022θ︒+=,又060θ︒<<︒,则60602180θ︒<︒+<︒,故602150θ︒+=︒,所以45θ=︒,sin 2EDB ∠=.21.如图,半圆所在的平面与矩形所在平面ABCD 垂直,P 是半圆弧上一点(端点除外),AD 是半圆的直径,AB =1,AD =2.(1)求证:平面PAB ⊥平面PDC ;(2)是否存在P 点,使得二面角B PC D --的正弦值为32若存在,求四棱锥P -ABCD 的体积;若不存在,说明理由,【答案】(1)证明见解析(2)23【解析】【分析】(1)根据矩形性质和面面垂直性质定理可证CD ⊥平面ADP ,结合直径所对圆周角为直角可证AP ⊥平面PDC ,然后由面面垂直判定定理可证;(2)建立空间直角坐标系,利用向量法可得二面角B PC D --为正弦值为2时点P 坐标,然后计算可得体积.【小问1详解】在矩形ABCD 中,CD AD ⊥,又平面ABCD ⊥平面ADP ,平面ABCD 平面,ADP AD CD =⊂平面ABCD ,所以,CD ⊥平面ADP ,又AP ⊂平面ADP ,所以CD AP ⊥,P 是AD 为直径的半圆上一点,所以DP AP ⊥,又,,CD DP P CD DP =⊂ 平面PDC ,所以,AP ⊥平面PDC ,又AP ⊂平面PAB ,则平面PAB ⊥平面PDC 【小问2详解】取BC 中点E ,以AD 的中点O 为坐标原点,OA 为x 轴,OE 为y 轴建立如图所示空间直角坐标系,由平面ABCD ⊥平面可知,半圆在平面xOz 平面内,设(,0,)P a b,则221,0a b b +=>,又(1,0,0),(1,1,0),(1,1,0),(1,0,0)A B C D --,由(1)可知,平面PDC 的一个法向量为,(1,0,)AP AP a b =-,设平面PBC 的法向量为(,,)n x y z =,又(1,1,),(2,0,0)BP a b BC =--=- ,则(1)020BP n a x y bz BC n x ⎧⋅=--+=⎨⋅=-=⎩,取1z =,则(0,,1)n b = ,设二面角B PC D --的大小为α,|cos ||cos ,|AP n α==若3sin 2α=,则1|cos |2α=,又b =,12==,又(1,1)a ∈-,得0,1a b ==所以,四面体P ABCD -的体积1233ABCD V S b =⋅=22.已知函数()e a x f x -=,()ln g x a x =-,()f x 与()g x 在1x =处的切线相同.(1)求实数a 的值;(2)令(),1()(),1f x x m x g x x <⎧=⎨>⎩,若存在12x x <,使得12()()2m x m x +=,(i )求12()x m x +的取值范围;(ii )求证:122x x +>.【答案】(1)1;(2)①(,2)-∞;②证明见解析.【解析】【分析】(1)由题设(1)(1)(1)(1)f g f g =⎧⎨''=⎩即可求a 的值;(2)由(1)1e ,1()1ln ,1x x m x x x -⎧<=⎨->⎩,(i )根据()m x 区间单调性求对应值域,即可知只存在121x x <<使()()122m x m x +=,进而得()()111211e 21x x m x x x -+=-+<,构造1e 2(1)x y x x -=-+<研究其单调性求值域,即可得结果;(ii )由(i )得112e 1ln 2xx -+-=,(双变量变量统一):首先有()11e11211e 1x x x x x --+=+<,令11e 10x t -=->得11ln(1)x t =-+,进而构造()1ln(1)e (0)t h t t t =-++>并利用导数证明()2h t >即可证;(极值点偏移):构造()(2)[2()]x m x m x ϕ=---且1x <,利用导数研究其单调性可得min ()0x ϕ>,即(2)[2()]m x m x ->-,进而可得()()122m x m x ->,结合1221,1x x ->>及()1ln m x x =-单调性,即可证结论.【小问1详解】由题意(1)(1)(1)(1)f g f g =⎧⎨''=⎩,则11e ln1e 1a a a --⎧=-⎪⎨-=-⎪⎩,可得1a =.【小问2详解】由(1)得1e ,1()1ln ,1x x m x x x -⎧<=⎨->⎩,(i )当121x x <<时,由()(1)1m x m >=,则()()122m x m x +>,不合题意,舍去;当121x x <<时,()1ln 1ln11m x x =-<-=,则()()122m x m x +<,不合题意,舍去;故只存在121x x <<时,才能使()()122m x m x +=,即112e 1ln 2xx -+-=,所以()()()111112121111ln 1e1e 21x x x m x x x x x x --+=+-=+--=-+<,令1e 2(1)x y x x -=-+<,则11e 0x y -=+'>,故1e 2x y x -=-+在(,1)-∞上递增,即2y <,故()12x m x +的取值范围为(,2)-∞.(ii )证明:由(i )知:121x x <<,且112e 1ln 2xx -+-=(*),法一(双变量变量统一):由(*)得:111111e 1222e 1ln 2ln e 1e x x x x x x ----+-=⇔=-⇒=,故()11e11211e 1x x x x x --+=+<令11e 1x t -=-,而11<x ,则110t ->-=,且11ln(1)x t =-+,则()11e11211e 1()1ln(1)e (0)x t x x x x h t t t --+=+<⇔=-++>,要证122x x +>,即证()1ln(1)e (0)t h t t t =-++>的最小值大于2,又1()e 1th t t =-+',且21()e 0(1)th x t ''=+>+,故()h t '在(0,)+∞上递增,则min ()(0)0h t h >'=',∴()h t 在(0,)+∞上单调递增,即0min ()(0)1ln1e 2h t h >=-+=,则122x x +>得证.法二(极值点偏移):构造函数()(2)[2()]x m x m x ϕ=---且1x <,即()11()[1ln(2)]2e e ln(2)1x x x x x ϕ--=----=---且1x <,此时11()e2xx xϕ-'=-+-,且121()e 0(2)xx x ϕ-''=+>-,故()x ϕ'在(,1)-∞上递增,故max ()(1)0t ϕϕ<'=',∴()ϕx 在(,1)-∞上单调递减,且11min ()(1)e ln(21)10x ϕϕ->=---=,当(,1)x ∞∈-时,(2)[2()]m x m x ->-,∵11<x ,()()122m x m x +=,∴()()()1122[2]m x m x m x --=>,而121x x <<知:1221,1x x ->>,且()1ln m x x =-在(1,)x ∈+∞上单调递减,∴122x x -<,故122x x +>得证.【点睛】关键点点睛:第二问,利用等量关系构造12()x m x +关于1x 的表达式,构造函数研究其值域;应用双变量变量统一或极值点偏移,注意构造中间函数并利用导数研究不等式恒成立即可.。
江苏省扬州市2023届高三考前调研测试数学试题及答案
扬州市2023届高三考前调研测试数学一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集}{0,1,2,3,4,5,6U A B ==,{}1,3,5UAB =,则B =( ).A .{}1,0,2,4,6-B .{}0,2,4,6C .{}1,2,4,6-D .{}2,4,62.已知空间内不过同一点的三条直线,,m n l ,则“,,m n l 两两相交”是“,,m n l 在同一平面”的( ). A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件3.以点π(,0)2k ()k ∈Z 为对称中心的函数是( ).A .sin y x =B .cos y x =C .tan y x =D .|tan |y x =4.某教学楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,某同学从二楼到三楼准备用7步走完,则第二步走两级台阶的概率为( ). A .17B .27C .37D .476.复数i z x y =+(,x y ∈R ,i 为虚数单位)在复平面内对应点(,)Z x y ,则下列为真命题的是( ).A .若|1||1|z z +=-,则点Z 在圆上B .若|1||1|=2z z ++-,则点Z 在椭圆上C .若|1||1|=2z z +--,则点Z 在双曲线上D .若|1|=|1|x z +-,则点Z 在抛物线上7.已知函数()f x 的导函数为()g x ,()f x 和()g x 的定义域均为R ,()g x 为偶函数,()sin x f x e x --也为偶函数,则下列不等式一定成立的是( ).A .(0)0f =B .(0)0g =C .()(e )x f x f <D .()(e )x g x g <8.已知向量(1,)a x y =++,(1,)b x y =-,满足a b ⊥的动点(,)M x y 的轨迹为E ,经过点(2,0)N 的直线l 与E 有且只有一个公共点A ,点P 在圆22(1x y +-=上,则A P 的最小值为( ).A .3-B 1C .2D .1二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知两个离散型随机变量X ,Y ,满足21Y X =+,其中X 的分布列如下:A .16a =B .23b =C .()2E Y =D .4()3D Y =10.已知函数32()()f x x x x a a =--+∈R 的图象为曲线C ,下列说法正确的有( ). A .a ∀∈R ,()f x 都有两个极值点 B .a ∀∈R ,()f x 都有三个零点C .a ∀∈R ,曲线C 都有对称中心D .a ∃∈R ,使得曲线C 有对称轴11.定义:在数列的每相邻两项之间插入此两项的积,形成新的数列,这样的操作叫作该数列的一次“美好成长”.将数列1,2进行“美好成长”,第一次得到数列1,2,2;第二次得到数列1,2,2,4,2;;设第n 次“美好成长”后得到的数列为1221,,,,,k x x x ,并记()122log 12k n a x x x ⨯=⨯⨯⨯⨯,则( ).A .25a =B . 21n k =+C .131n n a a +=-D .数列13n n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为112231n +-+12.圆柱1OO 高为1,下底面圆O 的直径AB 长为2,1BB 是圆柱1OO 的一条母线,点,P Q 分别在上、下底面内(包含边界),下列说法正确的有(). A .若3PA PB +=,则P 点的轨迹为圆B .若直线OP 与直线1OB 成45︒,则P 的轨迹是抛物线的一部分C .存在唯一的一组点,P Q ,使得AP PQ ⊥D .1AP PQ QB ++的取值范围是+三、填空题:本题共4小题,每小题5分,共20分. 13.若()20232202301220235x a a x a x a x +=++++,3012202T a a a a =++++,则T 被5除所得的余数为 .14.圆O (O 为坐标原点)与直线:2l x y +=相切,与直线l 垂直的直线m 与圆O 交于不同的两点P 、Q ,若0OP OQ ⋅<,则直线m 的纵截距的取值范围是 .15.已知正四棱锥的侧面是边长为3的正三角形,它的侧棱的所有三等分点都在同一个球面上,则该球的表面积为________.16.若直线l 是曲线ln y x =的切线,也是曲线2x y e -=的切线,则直线l 的方程为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.在①233n n S a =-;②13a =,313log log 1n n a a +=+这两个条件中任选一个,补充在下面问题中,并解答问题. 设数列{}n a 的前n 项和为n S ,满足________,139,n n n b n a *+-=∈N . (1)求数列{}n a 的通项公式;(2)若存在正整数0n ,使得0n n b b ≥对*n ∀∈N 恒成立,求0n 的值.注:如果选择多个条件分别解答,按第一个解答计分. 18.随着网络技术的迅速发展,各种购物群成为网络销售的新渠道.在凤梨销售旺季,某凤梨基地随机抽查了100个购物群的销售情况,各购物群销售凤梨的数量情况如下:(2)假设所有购物群销售凤梨的数量X 服从正态分布2)(,N μσ,其中μ为(1)中的平均数,212100σ=.若该凤梨基地参与销售的购物群约有1000个,销售凤梨的数量在[266,596)(单位:盒)内的群为“一级群”,销售数量小于266盒的购物群为“二级群”,销售数量大于等于596盒的购物群为“优质群”.该凤梨基地对每个“优质群”奖励1000元,每个“一级群”奖励200元,“二级群”不奖励,则该凤梨基地大约需要准备多少资金?(群的个数按四舍五入取整数)附:若X 服从正态分布2~(,)X N μσ,则()0.683P X μσμσ-<<+≈,(22)0.954P X μσμσ-<<+≈,(33)0.997P X μσμσ-<<+≈.19.在△ABC 中,角,,A B C 所对的边分别为,,a b c ,222sin 2sin 2sin C B A =-. (1)求证:4cos c a B =;(2)延长BC 至点D ,使得AD BD =,求CAD ∠的最大值.20.如图,平行六面体1111ABCD A B C D -的体积为6,截面11ACC A 的面积为6. (1)求点B 到平面11ACC A 的距离;(2)若2AB AD ==,60BAD ∠=︒,1AA =,求直线1BD 与平面11CC D D 所成角的正弦值.21.已知椭圆C :22221(0)x y a b a b +=>>的左顶点为A ,过右焦点F 且平行于y 轴的弦3PQ AF ==.(1)求△APQ 的内心坐标;(2)是否存在定点D ,使过点D 的直线l 交C 于,M N ,交PQ 于点R ,且满足MR ND MD RN ⋅=⋅?若存在,求出该定点坐标,若不存在,请说明理由.22.已知函数()sin ln(1)()f x a x x a =-+∈R . (1)若1a =-,求证:0x ∀>,()20f x x +>;(2)当1a ≥时,对任意[0,]2kx ∈,都有()0f x ≥,求整数k 的最大值.扬州市2023届高三考前调研测试数学参考答案1.B 2.A 3.C 4.C 5.B 6.D 7.C 8.A9.ABD 10.AC 11.ACD 12.BC 13.1 14.( 15.10π 16.1y x =-或1y x e=17.【解析】(1)若选择条件①:233n n S a =- 11233n n S a ++∴=-,则112233n n n n S S a a ++-=-即13n n a a +=, ……………………3分 令1n =,则11233S a =-,解得130a =≠ 13n na a +∴= {}n a ∴是以3为首项,3为公比的等比数列 3n n a ∴= ……………………5分若选择条件②:13133,log log 1n n a a a +=-= {}3log n a ∴是以31log 1a =为首项,1为公差的等差数列()3log 111n a n n ∴=+-⨯= ……………………3分 3n n a ∴= ……………………5分 (2)∴13933n n n n n b a +--== ……………………6分 11113372333n n n n n n n nb b ++++----=-= ……………………7分 ∴当113,0n n n b b +≤≤->,即1234b b b b <<<;当14,0n n n b b +≥-<,即4567b b b b >>>>; ……………………9分∴当04n =时,0n n b b ≥对*n ∀∈N 恒成立. ……………………10分18.【解析】(1)由题意得:1222032100m +++=,解得18m =. ……………………2分 故平均数为1(1501225018350204503255018)376100⨯⨯+⨯+⨯+⨯+⨯=. ……………………4分 (2)由题意,376μ=,且266376110μσ=-=-,5963762202μσ=+=+,故1(596)(2)(10.954)0.0232P X P X μσ>=>+=⨯-=,所以“优质群”约有10000.02323⨯=个;11(266596)(2)0.6830.9540.818522P X P X μσμσ≤<=-<<+=⨯+⨯=,所以“一级群”约有10000.8185818.5819⨯=≈个; ……………………9分 所以需要资金为 231000819200186800⨯+⨯=,故至少需要准备186800元. ……………………12分 19.【解析】(1)222sin 2sin 2sin C B A =-∴在△ABC 中,由正弦定理得22222c b a =- ………………2分2222cos b a c ac B =+- 2222222224cos c a b a c ac B ∴+==+- 4cos c a B ∴=………………4分 (2)∴在△ABC 中,由正弦定理得:sin 4sin cos C A B = (显然角B 为锐角) 在△ABC 中,()sin sin C A B =+ sin cos cos sin 4sin cos A B A B A B ∴+= cos sin 3sin cos A B A B ∴=角B 为锐角 ∴角A 也为锐角 tan 3tan B A ∴= ……………………8分AD BD =B BAD A CAD ∴∠=∠=∠+∠CAD B A ∴∠=- ……………………9分()tan tan tan tan 1tan tan B ACAD B A B A-∴∠=-=+由(1)可知tan 3tan B A =,π0,2A ⎛⎫∈ ⎪⎝⎭22tan tan 13tan 2133tan tan A CAD A A A∴∠=+=≤=+ ……………………11分 当且仅当13tan tan A A=,即πtan 36A A ==时取等号. 此时DAC ∠的最大值为π6. ……………………12分 20.【解析】(1)在平行六面体1111ABCD A B C D -中,111ABC A B C -是三棱柱,11111111121233B ACC A ABC A B C ABCD A B C D V V V ---===, ………………………………2分设点B 到平面11ACC A 的距离为d ,则1111116233B ACC A ACC A V S d d -=⋅=⨯=,所以1d =,即点B 到平面11ACC A 的距离为1. ………………………………4分(2)在ABCD 中,2,60AB AD BAD ==∠=︒,所以ABCD 是菱形,连接BD 交AC 于O ,则1BO =, 由(1)知点B 到平面11ACC A 的距离为1,所以BO ⊥平面11ACC A . ………6分 设点1A 在直线AC 上射影为点H,11116ACC A SAC A H H =⋅==,则1A H =1BO A H ⊥,AH === 所以O 和H 重合,即1A O AO ⊥. ………………………8分以O 为坐标原点,1,,OA OB OA 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则1(0,1,0),(3,0,0),(0,1,0),(0,0,3)B A D A -,根据11(AA DD ==-,(AB DC ==-,则1(D-1(3,2,BD =--,设平面11CC D D 的一法向量为(,,)n x y z =,则13030DD n DC n y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,取1x =,则(1,3,1)n =, ………………10分 设直线1BD 与平面11CC D D 所成角为α,则111sin |cos ,||||||||BD n BD n BD n α⋅-=<>===, 所以直线1BD 与平面11CC D D 所成角正弦值为5. ………………12分 21.【解析】(1)22222,32,1b a b c a c a b c a=+=+=∴=== ∴椭圆C 的标准方程为22143x y +=, ………………2分 不妨取33(1,),(1,),(2,0)22P Q A --,则32AP PF ==; 因为△APQ 中,AP AQ =,所以△APQ 的内心在x 轴,设直线PT 平分APQ ∠,交x 轴于T ,则T 为△APQDCB A的内心,且AT AP TF PQ ==AT =,则T ; …………4分 (2)椭圆和弦PQ 均关于x 轴上下对称∴若存在定点D ,则点D 必在x 轴上∴设(,0)D t ………………6分 设直线l 方程为()y k x t =-,1122(,),(,)M x y N x y ,直线方程与椭圆方程联立22()143y k x t x y =-⎧⎪⎨+=⎪⎩,消去y 得22222(43)84(3)0k x k tx k t +-+-=,则22248(3)0k k t ∆=+->,212284+3k tx x k +=,221224(3)43k t x x k -=+① ………………8分点R 的横坐标为1,M R N D 、、、均在直线l 上,MR ND MD RN ⋅=⋅∴221212(1)(1)()(1)()(1)k x t x k t x x +--=+-- ………………10分12122(1)()20t t x x x x ∴-+++= ∴2222284(3)2(1)+204343k t k t t t k k --+⨯=++,整理得4t =,因为点D 在椭圆外,则直线l 的斜率必存在 ∴存在定点(4,0)D 满足题意. ………………12分 22.【解析】(1)1a =-时,设()()2sin ln(1)2g x f x x x x x =+=--++,则1'()cos 21g x x x=--++, 011x x >∴+> 1(1,0)1x ∴-∈-+cos [1,1]x ∈- 1cos 201x x ∴--+>+,即'()0g x >在(0,)+∞上恒成立 ()g x ∴在(0,)+∞上单调增 又(0)0g = ()(0)0g x g ∴>=,即:0x ∀>,()20f x x +>;………………4分 (2)1a =时,当4k =时,(2)sin 2ln30f =-<,所以4k <. ………………5分 下证3k =符合.3k =时,当3[0,]2x ∈时,sin 0x >,所以当1a ≥时,()sin ln(1)sin ln(1)f x a x x x x =-+≥-+.记()sin ln(1)h x x x =-+,则只需证()sin ln(1)0h x x x =-+≥对3[0,]2x ∈恒成立.1'()cos 1h x x x =-+,令1()cos 1x x x φ=-+,则21'()sin (1)x x x φ=-++在π(0,)2递减, 又2π1'(0)10,'()102(1)2φφπ=>=-+<+,所以存在1(0,)2x π∈,使得'1()0x φ=, 则11(0,),'()0,()x x x x φφ∈>在1(0,)x 递增,11π(,),'()0,()2x x x x φφ∈<在1π(,)2x 递减;又1(0)0,()0212πφφπ==-<+,所以存在21π(,)2x x ∈使得2()0x φ=,且22π(0,),()0,(,),()02x x x x x x φφ∈>∈<, 所以()h x 在2(0,)x 递增,在2π(,)2x 递减,又ππ(0)0,()1ln(1)022h h ==-+>,所以()0h x ≥对π[0,]2x ∈恒成立因为3π[0,][0,]22⊆,所以3k =符合.综上,整数k 的最大值为3. ………………12分。
2020-2021学年江苏省高考考前调研测试(5月)数学试卷及答案解析
高三考前调研测试试 题Ⅰ(全卷满分160分,考试时间120分钟)注意事项:1.答卷前,请考生务必将自己的学校、姓名、考试号等信息填写在答卷规定的地方. 2.试题答案均写在答题卷相应位置,答在其它地方无效.一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应位置) 1.已知{}{}0,1,2,2,4A B ==,则A B ⋃= ▲ .2.若复数z 满足(2)1i z i -=+,则复数z 在复平面上对应的点在第 ▲ 象限.3.随着社会的发展,食品安全问题渐渐成为社会关注的热点,为了提高学生的食品安全意识,某学校组织全校学生参加食品安全知识竞赛,成绩的频率分布直方图如下图所示,数据的分组依次为[)20,40,[)40,60,[)60,80,[)80,100,若该校的学生总人数为3000,则成绩不超过60分的学生人数大约为▲ .第5题4.在区间()0,5内任取一个实数m , 则满足34m <<的概率为 ▲ . 5.如图是一个算法流程图,则输出S 的值为 ▲ .6.函数1()()42x f x =-的定义域为 ▲ . 7.已知双曲线2221(0)20x y a a -=>的一条渐近线方程为2y x =,则该双曲线的焦距为 ▲ . 8.已知1sin ,(0,)32πθθ=∈,则tan 2θ= ▲ . 9.已知圆锥的侧面展开图是半径为4,圆心角等于2π的扇形,则这个圆锥的体积是 ▲ 10.已知圆22:2220(C x y ax y a +--+=为常数)与直线y x =相交于,A B 两点,若3ACB π∠=,则实数a = ▲ .11、设等差数列{}n a 的前n 项和为n S ,若53a =,1040S =, 则n nS 的最小值为 ▲ . 12.若动直线(x t t R =∈)与函数2()cos ()4f x x π=-,()3sin()cos()44g x x x ππ=++的图第3题象分别交于,P Q 两点,则线段PQ 长度的最大值为 ▲ .13.在ABC ∆中,D 、E 分别是AB 、AC 的中点,M 是直线DE 上的动点.若ABC ∆的面积为2,则2BC MC MB +⋅的最小值为 ▲ .14.已知函数221,(0,1]()1,(1,)kx x x f x kx x ⎧+-∈=⎨+∈+∞⎩有两个不相等的零点12,x x ,则1211x x +的最大值为▲ .二、解答题(本大题共6小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分14分)在ABC ∆中,角A,B,C 的对边分别为a,b,c ,若2222a c ac b +=,10sin 10A =. ⑴求sin C 的值;⑵若2a =,求ABC ∆的面积. 16.(本小题满分14分)如图,在四棱锥P-ABCD 中,底面ABCD 为梯形,CD ∥AB ,AB=2CD , AC 交BD 于O ,锐角∆PAD 所在平面⊥底面ABCD ,PA ⊥BD ,点Q 在侧棱PC 上,且PQ=2QC. 求证:⑴PA ∥平面QBD ;QCDPO⑵BD ⊥ AD.17.(本小题满分14分)如图是一座桥的截面图,桥的路面由三段曲线构成,曲线AB 和曲线DE 分别是顶点在路面A 、E 的抛物线的一部分,曲线BCD 是圆弧,已知它们在接点B 、D 处的切线相同,若桥的最高点C 到水平面的距离6H =米,圆弧的弓高1h =米,圆弧所对的弦长10BD =米.(1)求弧¼BCD所在圆的半径; (2)求桥底AE 的长.18.(本小题满分16分)如图,已知椭圆2222:1(0)x y E a b a b +=>>的左顶点(2,0)A -,且点3(1,)2-在椭圆上,1F 、2F 分别是椭圆的左、右焦点。
专题07 三角函数(江苏精编)-2020-2021学年高一下学期数学期末冲刺卷(江苏专用)(解析版)
专题07 三角函数(共43题)一、单选题1.(2021·江苏启东市·高一期末)要得到函数2sin2x y =的图像,只需将函数()2sin 24x y π=-的图像( )A .向左平移8π个单位长度 B .向右平移4π个单位长度 C .向左平移2π个单位长度 D .向右平移2π个单位长度 【答案】C 【解析】由三角函数图像平移变化规律求解即可解:因为()()12sin 2sin 2422x y x ππ=-=-,所以要得到函数2sin 2x y =的图像,只需将函数()2sin 24x y π=-的图像向左平移2π个单位长度即可,故选:C2.(2021·江苏苏州市·高一期中)已知()12sin a α=,,()cos ,sin b αα=,3,22ππα⎛⎫∈ ⎪⎝⎭,若a b ,则α=( ) A .23π B .56π C .πD .43π 【答案】C 【解析】利用向量平行的条件,求出α.∵()12sin a α=,,()cos ,sin b αα=,3,22ππα⎛⎫∈ ⎪⎝⎭,且a b , ∴1sin cos 2sin ααα⨯=⨯, 当α=π时, sin 0α=,此时()10a =,,()1,0b =-,满足a b ;当α≠π时, sin 0α≠,要使a b ,只需1cos 2α=,因为3,22ππα⎛⎫∈ ⎪⎝⎭,所以无解. 综上:α=π.故选:C. 【点睛】若()()1122,,,a x y b x y ==,则有:(1)1221a b x y x y ⇔=∥(2)1212+0a b x x y y ⇔=⊥3.(2021·江苏南通市·海门市第一中学高一期末)已知函数y =f (x )的部分图象如图所示,则其解析式可能是( )A .()sin 2f x x x =B .()||sin 2f x x x =C .()cos 2f x x x =D .()||cos2f x x x =【答案】B 【解析】利用函数()0f π=排除两个选项,再由奇偶性排除一个后可得正确选项.由图象知()0f π=,经验证只有AB 满足,C 中()cos 2f ππππ==,D 中()f ππ=,排除CD ,A 中函数满足()sin(2)sin 2()f x x x x x f x -=--==为偶函数,B 中函数满足()sin(2)sin 2()f x x x x x f x -=--=-=-为奇函数,而图象关于原点对称,函数为奇函数,排除A ,选B . 故选:B . 【点睛】思路点睛:由函数图象选择解析式可从以下方面入手:(1)从图象的左右位置,观察函数的定义域;从图象的上下位置,观察函数的值域; (2)从图象的变化趋势观察函数的单调性; (3)从图象的对称性观察函数的奇偶性; (4)从图象的特殊点,排除不合要求的解析式.. 4.(2021·江苏淮安市·高一月考)使函数()sin()3cos()f x x x ϕϕ=++为偶函数的ϕ的一个值为( )A .23π B .3πC .3π-D .56π-【答案】D 【解析】利用辅助角公式化简,根据函数()f x 为偶函数,即可求得ϕ的值.()sin()3cos()2sin()3f x x x x πϕϕϕ=+++=++函数()f x 为偶函数,所以32k ππϕ+=(k 为奇数),当1k =-时,ϕ=56π-. 故选:D .5.(2021·江苏南通市·海门市第一中学高一期末)函数2()cos f x x x =-在区间(,1)k k +上存在零点,其中k ∈Z ,则k 的值为( ) A .-2 B .-2或-1C .-1D .-1或0【答案】D 【解析】利用零点存在性定理判断选项.当2k =-时,()24cos20f -=->,()11cos10f -=->,并且函数()2cos f x x x =-在区间()2,1--单调递减,所以不存在零点;当1k=-时,()11cos10f -=->,()0cos010f =-=-<,此时区间()1,0-上存在零点;当0k =时,()11cos10f =->,()()010f f <,此时区间()0,1存在零点.故选:D6.(2021·江苏泰州市·高一期末)现有四个函数:①y =x |sin x |,②y =x 2cos x ,③y =x ·e x ;④1y x x=+的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是( )A .①②③④B .①③②④C .②①③④D .③②①④【答案】D【解析】根据各函数的特征如函数值的正负,单调性、奇偶性,定义域、值域等进行判断.左边第一个图象中0x <时,0y <,只有③满足,此时只有D 可选,实际上,左边第二个图象关于y 轴对称,是偶函数,只有②满足,而0x >时,10y x x=+>恒成立,只有最右边的图象满足,由此也可得顺序是③②①④,选D . 故选:D . 【点睛】思路点睛:本题考查由函数解析式选择函数图象,解题时可两者结合,由函数解析式和图象分别确定函数的性质,如奇偶性、单调性、函数值的正负,特殊的函数值,变化趋势等等,两者对照可得结论.7.(2021·江苏苏州市·高一期中)函数()222cos 3f x x x =++在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值是( )A .4B .3C .5D .6【答案】B 【解析】利用三角恒等变换思想化简函数解析式为()2sin 246f x x π⎛⎫=++ ⎪⎝⎭,由0,2x π⎡⎤∈⎢⎥⎣⎦计算出26x π+的取值范围,结合正弦函数的基本性质可求得函数()f x 的最小值.()222cos 32cos 242sin 246f x x x x x x π⎛⎫=++=++=++ ⎪⎝⎭,因为02x π≤≤时,72666x πππ≤+≤, 所以,当7266x ππ+=时,函数()f x 取得最小值,即()min 712sin 424362f x π⎛⎫=+=⨯-+= ⎪⎝⎭. 故选:B. 【点睛】方法点睛:求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤:第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式;第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sinx ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值). 8.(2021·江苏宿迁市·高一期末)要得到函数()2sin 26f x x π⎛⎫=+ ⎪⎝⎭的图象,只需要将函数()sin 6g x x π⎛⎫=- ⎪⎝⎭的图象上所有的点( ).A .纵坐标变为原来的2倍(横坐标不变),再向右平移3π个单位,然后横坐标变为原来的12倍(纵坐标不变);B .纵坐标变为原来的12倍(横坐标不变),再向左平移6π个单位,然后横坐标变为原来的2倍(纵坐标不变);C .纵坐标变为原来的12倍(横坐标不变),再向右平移6π个单位,然后横坐标变为原来的2倍(纵坐标不变);D .纵坐标变为原来的2倍(横坐标不变),再向左平移3π个单位,然后横坐标变为原来的12倍(纵坐标不变).【答案】D 【解析】直接利用三角函数的图象变换知识求解.将函数()sin 6g x x π⎛⎫=-⎪⎝⎭的图象上所有的点纵坐标变为原来的2倍(横坐标不变),得到2sin()6y x π=-,再把函数2sin()6y x π=-的图象上向左平移3π个单位,得到2sin()2sin()366y x x πππ=+-=+,再将横坐标变为原来的12倍(纵坐标不变)得到2sin(2)6y x π=+.故选:D 【点睛】结论点睛:三角函数图像的平移变换和上下变换: 平移变换:左加右减,上加下减把函数()y f x =向左平移φ(0)φ>个单位,得到函数()y f x φ=+的图像 把函数()y f x =向右平移φ(0)φ>个单位,得到函数()y f x φ=-的图像 把函数()y f x =向上平移φ(0)φ>个单位,得到函数()y f x φ=+的图像 把函数()y f x =向下平移φ(0)φ>个单位,得到函数()y f x φ=-的图像 伸缩变换:①把函数()y f x =图象的纵坐标不变,横坐标伸长到原来的1w 倍得()y f x ω=(01)ω<< ②把函数()y f x =图象的纵坐标不变,横坐标缩短到原来的1w倍得()y f x ω=(1)ω>③把函数()y f x =图象的横坐标不变,纵坐标伸长到原来的ϖ倍得()y f x ω=(1)ω> ④把函数()y f x =图象的横坐标不变,纵坐标缩短到原来的ϖ倍得()y f x ω=(01)ω<< 9.(2021·南京市秦淮中学)函数()(1)cos π=-f x x x 的部分图象大致为( )A .B .C .D .【答案】B 【解析】取特殊区间进行判断函数在该区间上的正负,利用排除法可得答案解: 当102x <<时,10x -<,cos 0x π>,所以()0f x <, 当12x =时,()0f x =, 当112x <<时, 10x -<,cos 0x π<,所以()0f x >,所以排除A ,C , 当102x -<<时,10x -<,cos 0x π>,所以()0f x <,所以排除D故选:B10.(2021·江苏南通市·高一期末)已知函数()f x 满足()()2f x f x π=+,且当[],x ππ∈-时,()2sin ,02,0x x f x ax x ππ⎧≤≤⎪=⎨⎪-≤<⎩,则2021f a -⎛⎫= ⎪⎝⎭( )A .12BC.2D .2π 【答案】B 【解析】利用周期性求出a 后可求2021f a -⎛⎫⎪⎝⎭的值.因为()()2f x f x π=+,故()()f f ππ-=,故()2sin2a ππ=⨯-, 故2a π=-,所以202120211010222f f f f a ππππ-⎛⎫⎛⎫⎛⎫⎛⎫==+==⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭故选:B.11.(2020·江苏连云港市·高一期末)已知函数()f x 是定义在R 上的增函数,()0,1A -,()3,1B 是其图象上的两点,那么|(2sin 1)|1f x +≤ 的解集为( )A .,33xk x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣ B .722,66xk x k k ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭Z ∣ C .,63xk x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣ D .722,66xk x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣ 【答案】D【解析】 由题意可得()01f =-,()31f =,所要解的不等式等价于()()0(2sin 1)3f f x f ≤+≤,再利用单调性脱掉f ,可得02sin 13x ≤+≤,再结合正弦函数的图象即可求解.由|(2sin 1)|1f x +≤可得1(2sin 1)1f x -≤+≤,因为()0,1A -,()3,1B 是函数()f x 图象上的两点,所以()01f =-,()31f =,所以()()0(2sin 1)3f f x f ≤+≤,因为()f x 是定义在R 上的增函数,可得02sin 13x ≤+≤,解得:1sin 12x -≤≤, 由正弦函数的性质可得722,66k x k k Z ππππ-+≤≤+∈, 所以原不等式的解集为722,66xk x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭Z ∣, 故选:D 【点睛】关键点点睛:本题解题的关键点是将要解得不等式转化为()()0(2sin 1)3f f x f ≤+≤利用单调性可得02sin 13x ≤+≤.12.(2021·江苏盐城市·高一期末)古希腊地理学家埃拉托色尼(Eratosthenes ,前275一前193)用下面的方法估算地球的周长(即赤道周长).他从书中得知,位于尼罗河第一瀑布的塞伊尼(现在的阿斯旺,在北回归线上),夏至那天正午立杆无影;同样在夏至那天,他所在的城市——埃及北部的亚历山大城,立杆可测得日影角大约为7︒(如图),埃拉托色尼猜想造成这个差异的原因是地球是圆的,并且因为太阳距离地球很远(现代科学观察得知,太阳光到达地球表面需要8.3s ,光速300000km/s ),太阳光平行照射在地球上.根据平面几何知识,平行线内错角相等,因此日影角与两地对应的地心角相等,他又派人测得两地距离大约5000希腊里,约合800km :按照埃拉托色尼所得数据可以测算地球的半径约为( )A .72000km 7πB .5600kmC .134000km 7πD .144000km 7π【答案】D 【解析】根据7AOB ∠=︒,对应的弧长为800km ,可求得地球的周长,代入公式,即可求得答案.由题意得:7AOB ∠=︒,对应的弧长为800km ,设地球的周长为C ,地球半径为R ,则7800360C =,解得80036028800077C ⨯==, 又2C R π=,所以28800027R π=,解得1440007R π=,所以按照埃拉托色尼所得数据可以测算地球的半径约为144000km 7π, 故选:D13.(2021·江苏徐州市·高一期末)智能主动降噪耳机工作的原理是:通过耳机两端的噪声采集器采集周围的噪音,然后通过听感主动降噪芯片生成相等的反向的波抵消噪音,已知某噪音的声波曲线()sin y A x ϕ=+(0A >,02πφ≤<)的振幅为2,经过点36π⎛ ⎝,则通过听感主动降噪芯片生成相等的反向波曲线为( )A .2sin 6y x π⎛⎫=+⎪⎝⎭B .2sin 6πy x ⎛⎫=-+ ⎪⎝⎭C .2sin y x =D .2sin y x =-【答案】B 【解析】由振幅去确定2A =,再由点36π⎛⎝确定ϕ的值,再结合该噪声的声波曲线与反向波叠加后相抵消得出所求解析式.因为振幅为2,所以2A = 由2sin 36πϕ⎛⎫+=⎪⎝⎭整理得3sin 62πϕ⎛⎫+= ⎪⎝⎭因为02πφ≤<,所以6π=ϕ,故某噪音的声波曲线2sin 6y x π⎛⎫=+ ⎪⎝⎭ 由于该噪声的声波曲线与反向波叠加后相抵消,故反向波曲线应为2sin 6πy x ⎛⎫=-+ ⎪⎝⎭故选:B14.(2021·江苏宿迁市·高一期末)声音是由物体振动产生的声波.我们听到的每个音都是由纯音合成的,纯音的数学模型是函数sin y A wt =.音有四要素:音调、响度、音长和音色,它们都与函数sin y A wt =中的参数有关,比如:响度与振幅有关,振幅越大响度越大,振幅越小响度越小;音调与频率有关,频率低的声音低沉,频率高的声音尖利.像我们平时听到乐音不只是一个音在响,而是许多音的结合,称为复合音.我们听到的声音函数是111sin sin 2sin 3sin 4234y x x x x =++++.结合上述材料及所学知识,你认为下列说法中正确的有( ).A .函数1111sin sin 2sin 3sin 4sin100234100y x x x x x =+++++不具有奇偶性; B .函数111()sin sin 2sin 3sin 4234f x x x x x =+++在区间,1616ππ⎡⎤-⎢⎥⎣⎦上单调递增; C .若某声音甲对应函数近似为111()sin sin 2sin 3sin 4234f x x x x x =+++,则声音甲的响度一定比纯音1()sin 22h x x =响度大; D .若某声音甲对应函数近似为1()sin sin 22g x x x =+,则声音甲一定比纯音1()sin 33h x x =更低沉. 【答案】B 【解析】A.结合奇偶性的定义判断即可B.用正弦型函数的单调性作出判断 CD 可取特值说明A. ()1111sin sin 2sin 3sin 4sin100234100f x x x x x x =+++++ ()()()()()()()1111sin sin 2sin 3sin 4sin 100234100f x x x x x x f x -=-+-+-+-++-=-,()f x 为奇函数 B.,1616x ππ⎡⎤∈-⎢⎥⎣⎦时,2,88x ππ⎡⎤∈-⎢⎥⎣⎦,333,1616x ππ⎡⎤∈-⎢⎥⎣⎦,4,44x ππ⎡⎤∈-⎢⎥⎣⎦,故sin ,sin 2,sin 3,sin 4x x x x 在,1616ππ⎡⎤-⎢⎥⎣⎦上均为增函数 故111()sin sin 2sin 3sin 4234f x x x x x =+++在区间,1616ππ⎡⎤-⎢⎥⎣⎦上单调递增. C. ()()11()sin sin 3sin 434g x f x h x x x x =-=++ ()()11()sin sin 3sin 434g x f x h x x x x =-=++()()11()sin sin 3sin 4034g f h ππππππ=-=++=故声音甲的响度不一定比纯音1()sin 22h x x =响度大D. ()11()()sin sin 2sin 323h x g x h x x x x =-=+- ()11()()sin sin 2sin 3023h g h ππππππ=-=+-=甲不一定比纯音1()sin 33h x x =更低沉故选:B 【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝. 15.(2021·江苏省锡山高级中学高一期末)函数()()()2sin 0f x x ωϕω=+>图像上一点()(),22P s t t -<<向右平移2π个单位,得到的点Q 也在()f x 图像上,线段PQ 与函数()f x 的图像有5个交点,且满足()4f x f x π⎛⎫-= ⎪⎝⎭,()02f f π⎛⎫-> ⎪⎝⎭,若()y f x =,0,2x π⎡⎤∈⎢⎥⎣⎦与y a =有两个交点,则a 的取值范围为( ) A .(2,2⎤--⎦B .2,2⎡⎤--⎣⎦C .)2,2⎡⎣D .2,2⎡⎤⎣⎦【答案】A 【解析】首先根据已知条件分析出22PQ T π==,可得2ω=,再由()4f x f x π⎛⎫-= ⎪⎝⎭可得()y f x =对称轴为8x π=,利用()02f f π⎛⎫-> ⎪⎝⎭可以求出符合题意的一个ϕ的值,进而得出()f x 的解析式,再由数形结合的方法求a 的取值范围即可.如图假设()0,0P ,线段PQ 与函数()f x 的图像有5个交点,则2PQ π=,所以由分析可得22PQ T π==,所以T π=,可得222T ππωπ===, 因为()4f x f x π⎛⎫-= ⎪⎝⎭所以488f x f x πππ⎡⎤⎛⎫⎛⎫-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,即88f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 所以8x π=是()f x 的对称轴,所以()282k k Z ππϕπ⨯+=+∈,即()4k k Z πϕπ=+∈,()()2sin 2sin 02sin 2f f ππϕϕϕ⎛⎫-=-+=->= ⎪⎝⎭, 所以sin 0ϕ<,可令1k =-得34πϕ=-, 所以()32sin 24x x f π⎛⎫=-⎪⎝⎭, 当0,2x π⎡⎤∈⎢⎥⎣⎦时,令332,444x t πππ⎡⎤-=∈-⎢⎥⎣⎦,则()2sin f x t =,3,44t ππ⎡⎤∈-⎢⎥⎣⎦ 作()f t 图象如图所示:当34t π=-即0x =时3y =-2t π=-即8x π=时,2y =-,由图知若()y f x =,0,2x π⎡⎤∈⎢⎥⎣⎦与y a =有两个交点,则a 的取值范围为(2,2-,故选:A 【点睛】关键点点睛:本题解题的关键是取特殊点()0,0P 便于分体问题,利用已知条件结合三角函数图象的特点,以及三角函数的性质求出()f x 的解析式,再利用数形结合的思想求解a 的取值范围.16.(2021·江苏扬州市·扬州中学高一开学考试)已知()f x 是定义在[]1,1-上的奇函数,且()11f -=-,当,1,1a b 且0a b +≠时()()0f a f b a b+>+.已知,22ππθ⎛⎫∈- ⎪⎝⎭,若()243sin 2cos f x θθ<+-对[]1,1x ∀∈-恒成立,则θ的取值范围是( )A .,62ππ⎛⎫-⎪⎝⎭B .,23ππ⎛⎫-- ⎪⎝⎭C .,32ππ⎛⎫-⎪⎝⎭D .,26ππ⎛⎫-⎪⎝⎭【答案】A 【解析】由奇偶性分析条件可得()f x 在[]1,1-上单调递增,所以()max 1f x =,进而得2143sin 2cos θθ<+-,结合角的范围解不等式即可得解.因为()f x 是定义在[]1,1-上的奇函数,所以当,1,1a b 且0a b +≠时()()()()00()f a f b f a f b a b a b +-->⇔>+--,根据,a b 的任意性,即,a b -的任意性可判断()f x 在[]1,1-上单调递增,所以()max (1)(1)1f x f f ==--=,若()243sin 2cos f x θθ<+-对[]1,1x ∀∈-恒成立,则2143sin 2cos θθ<+-,整理得(sin 1)(2sin 1)0θθ++>,所以1sin 2θ>-, 由,22ππθ⎛⎫∈- ⎪⎝⎭,可得,62ππθ⎛⎫∈- ⎪⎝⎭, 故选:A.【点睛】关键点点睛,本题解题的关键是利用()()()()00()f a f b f a f b a b a b +-->⇔>+--,结合变量的任意性,可判断函数的单调性,属于中档题. 17.(2021·江苏高一单元测试)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足2220a c ac b ++-=,则2coscos 222A C C的取值范围为( )A .(B .13,44⎛⎫⎪⎝⎭C .3,14⎛⎤⎥⎝⎦D .33,42⎛⎫⎪⎝⎭【答案】B 【解析】利用余弦定理求出B 的值,再根据题意利用三角恒等变换和三角函数的图象与性质,即可求得对应的取值范围.由2220a c ac b ++-=,可得222a c b ac +-=-,由余弦定理得2221cos 22a cb B ac +-==-,因为(0,)B π∈,可得23B π∈,又由2111cos cos (cos 21)cos sin()2222232A C C C A A π=+=-+1111cos sin()42262A A A π=-+=-+,因为03A π<<,所以666A πππ-<-<,所以11sin()262A π-<-<, 所以1113sin()42624A π<-+<,即2coscos 222A C C 的取值范围为13(,)44. 故选:B.18.(2021·江苏南通市·高一期末)在ABC 中,2AB =,3AC =,4BC =,若点M 为边BC 所在直线上的一个动点,则432MA MB MC ++的最小值为( )A .B .CD 【答案】D 【解析】以B 为原点,BC 所在直线为x 轴,建立坐标系.由余弦定理可求出11cos 16ABC ∠=,结合同角三角函数的基本关系可求出sin ABC ∠=,从而可求出()0,0B ,()4,0C ,118A ⎛ ⎝⎭,设(),0Mx ,用x 表示向量432MA MB MC ++的坐标,从而可求出432MA MB MC++的表达式,进而可求出最小值.解:由余弦定理可知22222224311cos 222416AB BC AC ABC AB BC +-+-∠===⋅⋅⨯⨯,所以sin ABC ∠=== 如图,以B 为原点,BC 所在直线为x 轴,建立坐标系,则()0,0B ,()4,0C ,设(),0M x ,因为1111cos 2168AB ABC ⋅∠=⨯=,sin 2AB ABC ⋅∠==则118A ⎛⎝⎭,所以118MA x ⎛=- ⎝⎭,(),0MB x =-,()4,0MC x =-,因为()()11274324982x x x x ⎛⎫-+-+-=-⎪⎝⎭,43020+⨯+⨯=所以2743292MA MB MC x ⎛++=-⎝⎭, 则27432MA MB MC ⎛++= 227902x ⎛⎫-≥ ⎪⎝⎭, 当32x =时等号成立,所以315432MA MB MC ++≥,故选:D.【点睛】本题考查了余弦定理,考查了同角三角函数的基本关系,考查了向量的线性坐标运算,考查了向量模的坐标表示.本题的关键是通过建立坐标系,用一个未知数表示所求模长.二、多选题 19.(2021·江苏高一月考)已知函数()|sin |3|cos |f x x x =+,则下列说法中正确的有( )A .函数()f x 的值域为[3,2] B .直线0x=是函数()f x 图象的一条对称轴C .函数()f x 的最小正周期为πD .函数()f x 在910,109ππ⎡⎤⎢⎥⎣⎦上是增函数 【答案】BC 【解析】先利用函数周期性的定义判断()f x 的最小正周期为π,利用偶函数的定义判断直线0x =是函数()f x 图象的一条对称轴,对()|sin |3|cos |f x x x =+的解析式在[]0,x π∈上进行化简,研究其性质.作出()|sin |3|cos |f x x x =+图像如图示:∵()|sin |3cos |f x x x =+,∴()()()|sin |cos |=|sin |cos |=()f x x x x x f x πππ+=++,∴函数()f x 的最小正周期为π,故C 正确;在一个周期内,sin 0,2()sin ,2x x x f x x x x πππ⎧⎡⎤+∈⎪⎢⎥⎪⎣⎦=⎨⎛⎤⎪-∈ ⎥⎪⎝⎦⎩, 即2sin 0,32()2sin ,32x x f x x x πππππ⎧⎛⎫⎡⎤+∈ ⎪⎪⎢⎥⎪⎝⎭⎣⎦=⎨⎛⎫⎛⎤⎪-∈ ⎪ ⎥⎪⎝⎭⎝⎦⎩∴在0,2x π⎡⎤∈⎢⎥⎣⎦时,5,336x πππ⎡⎤+∈⎢⎥⎣⎦,[]2sin 1,23x π⎛⎫+∈ ⎪⎝⎭,故A 错误; ∵()()()|sin |cos |=|sin |cos |=()f x x x x x f x -=--,所以()f x 为偶函数,故直线0x =是函数()f x 图象的一条对称轴,故B 正确; 函数()f x 在9,10ππ⎡⎤⎢⎥⎣⎦上单减,在10,9ππ⎡⎤⎢⎥⎣⎦上单增,故D 错误. 故选:BC. 【点睛】(1)三角函数问题通常需要把它化为“一角一名一次”的结构,借助于sin y x =或cos y x =的性质解题; (2)求单调区间,最后的结论务必写成区间形式,不能写成集合或不等式. 20.(2020·江苏南京市·南京一中高一期中)关于函数()cos 2cos 236f x x x ππ⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭,其中正确命题是( )A .()y f x =的最大值为B .()y f x =是以π为最小正周期的周期函数C.将函数y x =的图像向左平24π个单位后,将与已知函数的图像重合 D .()y f x =在区间13,2424ππ⎛⎫⎪⎝⎭上单调递减 【答案】ABD【解析】先把()cos 2cos 236f x x x ππ⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭化为()5212f x x π⎛⎫=+ ⎪⎝⎭,直接对四个选项一一验证.()cos 2cos 236f x x x ππ⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭cos 2cos 2626x x πππ⎛⎫⎛⎫=+-++ ⎪ ⎪⎝⎭⎝⎭sin 2cos 266x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭264x ππ⎛⎫=++ ⎪⎝⎭5212x π⎛⎫=+ ⎪⎝⎭显然A 、B 选项正确C 选项: 将函数y x 的图像向左平24π个单位得到212y x π⎛⎫=+ ⎪⎝⎭,图像不会与原图像重合,故C 错误; D 选项:当13,2424x ππ⎛⎫∈ ⎪⎝⎭,则532,1222x πππ⎛⎫+∈ ⎪⎝⎭,∴()y f x =在区间13,2424ππ⎛⎫⎪⎝⎭上单调递减成立. 故选:ABD 【点睛】(1)三角函数问题通常需要把它化为“一角一名一次”的结构,借助于sin y x =或cos y x =的性质解题; (2)求单调区间,最后的结论务必写成区间形式,不能写成集合或不等式.21.(2021·江苏南通市·海门市第一中学高一期末)对于函数()sin cos 2sin cos f x x x x x =++,下列结论正确的是( )A .把函数f (x )的图象上的各点的横坐标变为原来的12倍,纵坐标不变,得到函数g (x )的图象,则π是函数y =g (x )的一个周期B .对123,,2x x ππ⎛⎫∀∈ ⎪⎝⎭,若12x x <,则()()12f x f x <C .对,44x f x f x ππ⎛⎫⎛⎫∀∈-=+ ⎪ ⎪⎝⎭⎝⎭R 成立D .当且仅当,4x k k Z ππ=+∈时,f (x )取得最大值1【答案】AC 【解析】根据三角函数的变换规则化简即可判断A ;令sin cos 4tx x x π⎛⎫=+=+ ⎪⎝⎭, ()21f t t t =+-,判断函数的单调性,即可判断B ;代入直接利用诱导公式化简即可;首先求出()f t 的最大值,从而得到x 的取值;解:因为()2()sin cos 2sin cos sin cos sin cos 1f x x x x x x x x x =++=+++-,令sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,所以t ⎡∈⎣,所以()21f t t t =+-, 对于A :将()sin cos 2sin cos f x x x x x =++图象上的各点的横坐标变为原来的12倍,则()sin 2cos 22sin 2cos 2g x x x x x =++,所以()()()()()sin2cos22sin2cos2g x x x x x πππππ+=++++++()sin 2cos22sin 2cos2x x x x g x =++=,所以π是函数y =g (x )的一个周期,故A 正确;对于B :因为3,2x ππ⎛⎫∈ ⎪⎝⎭,所以57,444x πππ⎛⎫+∈ ⎪⎝⎭,则)14t x π⎛⎫⎡=+∈- ⎪⎣⎝⎭在5,4ππ⎛⎫ ⎪⎝⎭上单调递减,在53,42ππ⎛⎫⎪⎝⎭上单调递增,又()2215124f t t t t ⎛⎫=+-=+- ⎪⎝⎭,对称轴为12t =-,开口向上,函数()21f t t t =+-在)1⎡-⎣上单调递减,所以函数()f x 在5,4ππ⎛⎫ ⎪⎝⎭上单调递增,在53,42ππ⎛⎫⎪⎝⎭上单调递减, 故B 错误; 对于C :sin c 4os 2sin cos 4444f x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=----⎪ ⎪ ⎪ ⎪ ⎪⎝+⎝⎭⎝⎭⎭⎝⎭+⎝⎭sin c 4os 2sin cos 4444f x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝+⎝⎭⎝⎭⎭⎝⎭+⎝⎭c 2424242sin os 2sin cos 4x x x x ππππππππ⎥++⎡⎤⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-------- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎢⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦⎣⎦4444sin cos 2sin cos 4x x x x f x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----=- ⎪ ⎪ ⎪ ⎪ ⎪=⎝⎭⎝⎭⎝⎭⎝⎭⎝+⎭+,故C 正确;因为()2215124f t t t t ⎛⎫=+-=+- ⎪⎝⎭,2,2t ⎡⎤∈-⎣⎦,当2t =时()f t 取得最大值()max 21f t =+,令2sin 24t x π⎛⎫=+= ⎪⎝⎭,则sin 14x π⎛⎫+= ⎪⎝⎭,所以2,42x k k Z πππ+=+∈,解得2,4x k k Z ππ=+∈,即当2,4x k k Z ππ=+∈时,函数()f x 取得最大值21+,故D 错误;故选:AC 【点睛】本题考查三角函数的综合应用,解答的关键是换元令sin cos t x x =+,将函数转化为二次函数; 22.(2021·江苏南通市·高一期末)如图,已知函数()sin()f x A x ωϕ=+(其中0A >,0>ω,2πϕ≤)的图象与x 轴交于点A ,B ,与y 轴交于点C ,2BC BD =,3OCB π∠=,||2OA =,221AD =.则下列说法正确的有( ).A .()f x 的最小正周期为12B .6πϕ=-C .()f x 的最大值为163D .()f x 在区间(14,17)上单调递增【答案】ACD【解析】sin |2A πϕω=+,sin(2)0ωϕ+=,可得A ,B ,C ,D 的坐标,根据||AD =,可得方程22228(1)243A sin πϕω-+=,进而解出ω,ϕ,A .判断出结论.解:由题意可得:|||OB OC =,∴sin |2A πϕω=+,sin(2)0ωϕ+=,(2,0)A ,(2B πω+,0),(0,sin )C A ϕ.(12D πω∴+,sin )2A ϕ,||AD =,∴22228(1)243A sin πϕω-+=, 把|sin |)A πϕω=+代入上式可得:2()2240ππωω-⨯-=,0>ω. 解得6πω=,6πω∴=,可得周期212T ωπ==. sin()03πϕ∴+=,||2πϕ,解得3πϕ=-.可知:B 不对.∴sin()|263A π-=+,0A >,解得163A =.∴函数16()sin()363f x x ππ=-, 可知C 正确.(14,17)x ∈时,()(263x πππ-∈,5)2π,可得:函数()f x 在(14,17)x ∈单调递增. 综上可得:ACD 正确. 故选:ACD . 【点睛】本题考查了三角函数方程的解法、三角函数求值、三角函数的图象与性质,考查了推理能力与计算能力,属于较难题.23.(2021·江苏苏州市·星海实验中学高一月考)已知集合{(,)()}Mx y y f x ==∣,若对于()()1122,,,x y M x y M ∀∈∃∈,使得12120x x y y +=成立则称集合M是“互垂点集”.给出下列四个集合{}{}21234(,)1;{(,)(,);{(,)sin 1}x M x y y x M x y y M x y y e M x y y x ==+======+∣∣∣∣.其中是“互垂点集”集合的为( ) A .1M B .2MC .3MD .4M【答案】BD 【解析】根据题意即对于任意点1(P x ∀,1)y ,在M 中存在另一个点P ',使得OP OP ⊥'.,结合函数图象进行判断.由题意,对于1(x ∀,1)y M ∈,2(x ∃,2)y M ∈,使得12120x x y y +=成立即对于任意点1(P x ∀,1)y ,在M 中存在另一个点P ',使得OP OP ⊥'.21y x =+中,当P 点坐标为(0,1)时,不存在对应的点P '.所以所以1M 不是“互垂点集”集合,1y x =+的图象中,将两坐标轴进行任意旋转,均与函数图象有交点,所以在2M 中的任意点1(P x ∀,1)y ,在2M 中存在另一个点P ',使得OP OP ⊥'. 所以2M 是“互垂点集”集合,x y e =中,当P 点坐标为(0,1)时,不存在对应的点P '.所以3M 不是“互垂点集”集合,sin 1y x =+的图象中,将两坐标轴进行任意旋转,均与函数图象有交点,所以所以4M 是“互垂点集”集合, 故选:BD . 【点睛】本题考查命题真假的判断与应用,考查对新定义的理解与应用,属于较难题. 三、填空题24.(2021·江苏高一期中)若函数()sin 23cos2f x m x x =+的图象关于点3,08π⎛⎫⎪⎝⎭对称,则实数m =_______.【答案】3 【解析】解方程33sin(2)3cos(2)088m ππ⨯+⨯=,即得解.由题得33sin(2)3cos(2)088m ππ⨯+⨯=,所以3()0,22m ⨯+⨯-= 所以3m =. 当3m =时,函数()sin 23cos2f x m x x =+的图象关于点3,08π⎛⎫⎪⎝⎭对称.故答案为:325.(2021·江苏高一课时练习)函数()()sin f x x x x R =∈的值域是________.【答案】[]22-,【解析】首先利用辅助角公式将函数化简为()sin y A x b ωϕ=++,再根据正弦函数的有界性计算可得;解:()1sin 2sin 2sin 223f x x x x x x π⎛⎫⎛⎫==-=- ⎪ ⎪ ⎪⎝⎭⎝⎭因为[]sin 1,13x π⎛⎫-∈- ⎪⎝⎭所以()[]2,2f x ∈-故答案为:[]22-,26.(2021·江苏高一课时练习)函数f (x )=sin 2x +sin x cos x +1的最小正周期为________. 【答案】π 【解析】利用二倍角公式、两角差的正弦公式化函数为一个角的一个三角函数形式,然后求周期、f (x )=sin 2x +sin x cos x+1=1cos 22x -+12sin 2x +1=12 (sin 2x -cos 2x )+323)42x π-+, ∴T =π.. 故答案为:π.27.(2021·江苏高一课时练习)如果函数y =cos 2ωx ﹣sin 2ωx 的最小正周期是4π,那么正数ω的值是__. 【答案】14直接利用二倍角的余弦函数,化简函数的表达式,通过函数的周期的求法求解即可.因为函数y =cos 2ωx ﹣sin 2ωx =cos2ωx ,它的最小正周期是4π,所以24|2|ππω=, 解得||ω14=.所以正数14ω=. 故答案为:1428.(2021·高邮市临泽中学高一开学考试)已知函数()()()sin 20f x x ϕπϕ=+-<<的图象的一条对称轴是直线6x π=,则ϕ的值为______.【答案】56π- 【解析】 将6x π=代入()22x k k Z πϕπ+=+∈结合0πϕ-<<即可求解.将6x π=代入()22x k k Z πϕπ+=+∈可得()262k k Z ππϕπ⨯+=+∈,所以()6k k Z πϕπ=+∈,因为0πϕ-<<,所以1k =-,56ϕπ=-,故答案为:56π-.29.(2021·江苏镇江市·高一期末)“一湾如月弦初上,半壁澄波镜比明”描述的是敦煌八景之一的月牙泉.如图所示,月牙泉由两段在同一平面内的圆弧形岸连接围成.两岸连接点间距离为603米.其中外岸为半圆形,内岸圆弧所在圆的半径为60米.某游客绕着月牙泉的岸边步行一周,则该游客步行的路程为_______米.【答案】(40303)π+如图,作出月牙湖的示意图,由题意可得3sin QPO ∠=,可求,QPO QPT ∠∠的值,进而由图利用扇形的弧长公式可计算得解.如图,是月牙湖的示意图,O 是QT 的中点, 连结PO ,可得PO QT ⊥,由条件可知603QT=,60PQ = 所以3sin QPO ∠=,所以3QPO π∠=,23QPT π∠=,所以月牙泉的周长(260303403033l πππ=⨯+⨯=+. 故答案为:(40303π+【点睛】关键点点睛:本题的关键是根据实际问题抽象出图象,再根据数形结合分析问题. 30.(2021·江苏扬州市·扬州中学高一月考)若函数()sin 23cos2f x x x =在(3πα-,)α上单调递减,则α的取值范围是_______. 【答案】(,]64ππ【解析】先将函数化简为()2sin(2)3f x x π=+的形式,然后根据区间(3πα-,)α的中点为6π,找到()f x 含6π的递减区间,构造出α的不等式组即可.()sin 23cos22sin(2)3f x x x x π==+,区间(3πα-,)α的中点为6π, 令3222,232k x k k Z πππππ+++∈,所以7,1212k x k k Z ππππ++∈, 由题意,6π属于该单调递减区间,因此,当0k =时可得6π所在的单调区间为7[,]1212ππ,所以要使()f x 在(3πα-,)α上单调递减,只需312712ππαπα⎧-⎪⎪⎨⎪⎪⎩,并且3παα-<,解得64ππα<,故α的范围是(,]64ππ.故答案为:(,]64ππ. 【点睛】本题考查根据三角函数的性质求参数的取值范围,本题的关键是求出函数的单调递减区间后,确定含有6π的减区间,转化为子集问题求参数的取值范围. 31.(2021·江苏南通市·高一期末)已知函数()()sin 2f x x ϕ=+的图象关于点π,06⎛⎫⎪⎝⎭对称,且()π06f f ⎛⎫> ⎪⎝⎭,若()f x 在[)0,t 上没有最大值,则实数t 的取值范围是__________.【答案】511,612ππ⎛⎤⎥⎝⎦【解析】依题意得到2()sin(2)3f x x π=+,然后根据()f x 在[0,)t 上没有最大值可得,7252332t πππ<+,解出t 的范围即可.解:因为()()sin 2f x x ϕ=+的图象关于点π,06⎛⎫⎪⎝⎭对称,所以sin 206πϕ⎛⎫⨯+= ⎪⎝⎭,所以()26k k Z πϕπ⨯+=∈,所以()3k k Z πϕπ=-+∈,所以()()sin 23f x x k k Z ππ⎛⎫=-+∈ ⎪⎝⎭,又由(0)6f f π⎛⎫> ⎪⎝⎭,即()sin sin 3k k πππ⎛⎫-+> ⎪⎝⎭,所以k 为奇数,不妨取1k =,所以()2sin 23f x x π⎛⎫=+ ⎪⎝⎭则当[0x ∈,)t 时,2222[,2)333x t πππ+∈+, ()f x 在[0,)t 上没有最大值,∴7252332t πππ<+, ∴511612t ππ<,t ∴的取值范围为:511,612ππ⎛⎤⎥⎝⎦. 故答案为:511,612ππ⎛⎤⎥⎝⎦. 32.(2021·江苏盐城市·高一期末)已知函数()()sin 0,02f x x πωϕωϕ⎛⎫=+>-<< ⎪⎝⎭,()11f x =,()20f x =,12min 4x x π-=,对任意x ∈R 恒有()512f x f π⎛⎫≤ ⎪⎝⎭,则函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上单调增区间______. 【答案】50,12π⎡⎤⎢⎥⎣⎦【解析】 根据()11f x =,()20f x =,12min 4x x π-=,得到44T π=,进而求得2ω=,再由对任意x ∈R 恒有()512f x f π⎛⎫≤ ⎪⎝⎭,得到5112f π⎛⎫= ⎪⎝⎭,从而求得函数解析式,然后利用正弦函数的性质求解.因为函数()()sin 0,02f x x πωϕωϕ⎛⎫=+>-<< ⎪⎝⎭,()11f x =,()20f x =,12min 4x x π-=,所以44T π=,,2T πω==, 又因为对任意x ∈R 恒有()512f x f π⎛⎫≤ ⎪⎝⎭,所以55sin 1126f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, 所以5262k ϕπ=π+π+, 解得23k πϕπ=-,又因为02πϕ-<<,所以3πϕ=-,所以()sin 23πf x x ⎛⎫=-⎪⎝⎭,令222,232k x k k Z πππππ-+≤-≤+∈,解得5,1212k x k k Z ππππ-+≤≤+∈, 又因为0,2x π⎡⎤∈⎢⎥⎣⎦, 所以函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上单调增区间是50,12π⎡⎤⎢⎥⎣⎦故答案为:50,12π⎡⎤⎢⎥⎣⎦33.(2021·江苏省天一中学高一期末)设函数2cos ,[6,6]3()12,(,6)(6,)x x f x x xπ⎧∈-⎪⎪=⎨⎪∈-∞-⋃+∞⎪⎩,若关于x 的方程()()210()f x af x a R ++=∈⎡⎤⎣⎦有且仅有6个不同的实根.则实数a 的取值范围是_______.【答案】52a <-或52a =或2a =- 【解析】 作出函数()f x 的图象,设()f x t =,分关于210t at ++=有两个不同的实数根1t 、2t ,和两相等实数根进行讨论,当方程210t at ++=有两个相等的实数根0t 时,2a =±再检验,当方程210t at ++=有两个不同的实数根1t 、2t 时,()1222,0t t =-∈-,或[)120,22t t ∈>,,再由二次方程实数根的分布进行讨论求解即可.作出函数()f x 的简图如图,令()f x t =,要使关于x 的方程()()21f x af x ++⎡⎤⎣⎦()0a =∈R 有且仅有6个不同的实根,(1)当方程210t at ++=有两个相等的实数根0t 时, 由240a ∆=-=,即2a =±,此时01t =±当2a=,此时01t =-,此时由图可知方程()()210()f x af x a R ++=∈⎡⎤⎣⎦有4个实数根,此时不满足.当2a =-,此时01t =,此时由图可知方程()()210()f x af x a R ++=∈⎡⎤⎣⎦有6个实数根,此时满足条件.(2)当方程210t at ++=有两个不同的实数根1t 、2t 时,则()1222,0t t =-∈-,或[)120,22t t ∈>,当12t =-时,由4210a -+=可得52a =则25102t t ++=的根为12122t t =-=-,由图可知当12t =-时,方程()()210()f x af x a R ++=∈⎡⎤⎣⎦有2个实数根当212t =-时,方程()()210()f x af x a R ++=∈⎡⎤⎣⎦有4个实数根,此时满足条件. 当[)120,22t t ∈>,时,设()21g t t at =++由()010g=> ,则()2520g a =+<,即52a <-综上所述:满足条件的实数a 的取值范围是 52a <-或52a =或2a =- 故答案为:52a <-或52a =或2a =- 【点睛】关键点睛:本题考查利用复合型二次函数的零点个数求参数,考查数形结合思想的应用,解答本题的关键由条件结合函数的图象,分析方程210t at ++=的根情况及其范围,再由二次方程实数根的分布解决问题,属于难题.四、解答题34.(2021·江苏高一期中)已知函数()()0,<22f x x ππωϕωϕ⎛⎫=+>-≤ ⎪⎝⎭的图象关于直线3x π=对称,且图象相邻两个最高点的距离为π. (1)求ω和ϕ的值;(2)若2263f αππα⎛⎫⎫=<< ⎪⎪⎝⎭⎝⎭,求cos 3πα⎛⎫- ⎪⎝⎭的值.【答案】(1)2,6π-;(2)18.【解析】(1)利用周期求ω,利用图象关于直线3x π=对称求ϕ;(2)先求出6πα-的正弦、余弦值,再把3πα-拆成66ππα--,利用两角差的余弦公式求值即可.(1)∵()y f x =图象相邻两个最高点的距离为π, ∴()y f x =的最小正周期为π, ∴2ππω=,又0>ω解得:2ω=.∵的()y f x =图象关于直线3x π=对称,∴232k ππϕπ⨯+=+,又<22ππϕ-≤,解得:6πϕ=-.(2)由(1)知,()26x f x π⎛⎫=- ⎪⎝⎭,∴26f απα⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭1sin 64πα⎛⎫-= ⎪⎝⎭.因为263ππα<<,所以062ππα<-<,所以cos 64πα⎛⎫-=== ⎪⎝⎭,所以cos cos 366πππαα⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭ 6666cos cos sin sin ππππαα-+⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭-114242=+⨯=【点睛】(1)求三角函数解析式的方法:①求A 通常用最大值或最小值;②求ω通常用周期;③求φ通常利用函数上的点带入即可求解. (2)利用三角公式求三角函数值的关键:①角的范围的判断;②根据条件进行合理的拆角,如()()2()βαβαααβαβ=+-=++-,等. 35.(2021·江苏苏州市·南京师大苏州实验学校高一月考)已知0,2πα⎛⎫∈ ⎪⎝⎭,向量()4,5cos a α=,()3,4tan b α=-,a b ⊥.(1)求a b +的值;(2)求cos 4πα⎛⎫+ ⎪⎝⎭的值.【答案】(1)(2)10.【解析】(1)利用平面向量垂直的坐标表示可求得sin α的值,利用同角三角函数的基本关系可求得cos α、tan α的值,再利用平面向量的模长公式可求得a b +的值;(2)利用两角和的余弦公式可求得cos 4πα⎛⎫+ ⎪⎝⎭的值.(1)因为0,2πα⎛⎫∈ ⎪⎝⎭,向量()4,5cos a α=,()3,4tan b α=-,a b ⊥,则sin 1220cos tan 1220cos 1220sin 0cos a b αααααα⋅=-=-⋅=-=,可得3sin 5α=,所以,4cos 5α==,sin 3tan cos 4ααα==,则()4,4a =,()3,3b =-,所以,()7,1a b +=,因此,27+=+a b(2)43cos cos cos sin sin 44425510πππααα⎛⎫⎛⎫+=-=-= ⎪ ⎪⎝⎭⎝⎭. 【点睛】结论点睛:当向量a 与b 是坐标形式给出时,即11,a x y ,22,bx y ,则12120a b x x y y ⊥⇔+=.36.(2021·江苏高一月考)已知函数()sin cos f x x x =+,()()sin 2g x x f x =-.(1)当π,02x ⎡⎤∈-⎢⎥⎣⎦时,求函数()g x 的值域;(2)设()9191x x h x -=+,当()0,x ∈+∞时,不等式()02x mh h x ⎛⎫-> ⎪⎝⎭恒成立,设实数m 的取值范围对应的集合为M ,若在(1)的条件下,恒有()agx M ∉(其中0a >),求实数a 的取值范围. 【答案】(1)5,14⎡⎤-⎢⎥⎣⎦;(2)()0,2. 【解析】 (1)()π4f x x ⎛⎫=+ ⎪⎝⎭,首先求出()11f x -≤≤,令()sin cos f x x x μ==+,然后可得2sin 21x μ=-,然后()2215124y g x μμμ⎛⎫==--=-- ⎪⎝⎭,然后可求出答案;(2)由()02x mh h x ⎛⎫-> ⎪⎝⎭可得()()223131xx m +>+,令3xt =,则1t >,211m t t>++,然后可得{}2M m m =≥,由(1)可得()54a ag x a -≤≤,然后可得答案.(1)()πsin cos 4f x x x x ⎫⎛=+=+ ⎪⎝⎭, 当π,02x ⎡⎤∈-⎢⎥⎣⎦时,πππ,444x ⎡⎤+∈-⎢⎥⎣⎦,πsin 4x ⎫⎛≤+≤⎪⎝⎭,π114x ⎫⎛-≤+≤ ⎪⎝⎭, 即()11f x -≤≤,令()sin cos f x x x μ==+,则21sin 2x μ=+,2sin 21x μ=-,[]1,1μ∈-,由()()sin 2gx x f x =-,得()2215124y g x μμμ⎛⎫==--=-- ⎪⎝⎭,[]1,1μ∈-,∴当12μ=时,()y g x =有最小值54-,当1μ=-时,()y g x =有最大值1,∴当π,02x ⎡⎤∈-⎢⎥⎣⎦时,函数()g x 的值域为5,14⎡⎤-⎢⎥⎣⎦.(2)当()0,x ∈+∞,不等式319103191x x x x m --->++恒成立,0x时,310x ->,910x ->,()()223131x x m +∴>+恒成立,令3x t =,则1t >,()2222211222111111t t t t m t t t t t +++∴>==+=+++++,又21121t t+≤+=+,当且仅当1t t=即1t =时取等号,而1t >, ()22121t t +<+∴,即2m ≥,{}2M m m ∴=≥.又由(1)知,()514g x -≤≤, ∴当0a >时,()54a ag x a -≤≤,∴要使()ag x M ∉恒成立,只需02a <<,a ∴的取值范围是()0,2.【点睛】方法点睛:(1)常用分离变量法解决恒成立问题,(2)在解决复杂函数的问题时,常用换元法将其转化为常见的函数处理.37.(2021·江苏高一月考)已知函数2()sin cos f x x x x =⋅.。
2020-2021学年江苏省扬州中学高一下学期开学摸底考试化学试卷带讲解
江苏省扬州中学2020—2021学年高一第二学期开学检测试题化学试题注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共6页,包含选择题[第1题~第14题,共42分]、非选择题[第15题~第19题,共58分]两部分。
本次考试时间为75分钟,班级、姓名、学号、考生号、座位号用0.5毫米的黑色签字笔写在答题卡上相应的位置。
3.选择题每小题选出答案后,请用2B铅笔在答题纸指定区域填涂,如需改动,用橡皮擦干净后,再填涂其它答案。
非选择题请用0.5毫米的黑色签字笔在答题纸指定区域作答。
在试卷或草稿纸上作答一律无效。
可能用到的相对原子质量:H-1C-12N-14O-16Na-23Mg-24Al-27S-32Cl-35.5Fe-56Ba-137选择题(共42分)单项选择题(本题包括14小题,每题3分,共42分。
每小题只有一个选项符合题意)1.朱自清在《荷塘月色》中写道:“薄薄的青雾浮起在荷塘里……月光是隔了树照过来的,高处丛生的灌木,落下参差的斑驳的黑影……”月光穿过薄雾形成的种种美景本质原因是A.雾是一种胶体B.空气中的小水滴颗粒的布朗运动C.发生丁达尔现象D.空气中的小水滴颗粒直径大小约为1~100nmD【详解】雾是一种胶体,所以月光穿过薄雾形成的种种美景的本质原因是空气中的小水滴颗粒直径大小约为1~100nm,故选D。
2.对下列物质进行的分类正确的是A.纯碱、烧碱均属于碱B.KAl(SO4)2·12H2O属于纯净物C.凡能电离出H+的化合物均属于酸D.盐类物质一定含有金属阳离子B【详解】A.纯碱是Na2CO3,属于盐,不属于碱,故A错误;B.KAl(SO4)2·12H2O属于结晶水合物,属于纯净物,故B正确;C.电离出的阳离子全是H+的化合物属于酸,NaHSO4也可以电离出H+,但NaHSO4属于盐,故C错误;D.盐类不一定含有金属阳离子,如铵盐,NH4Cl不含有金属阳离子,故D错误。
江苏省扬州市高邮市2024届高三下学期期初调研测试生物试卷(含答案)
江苏省扬州市高邮市2024届高三下学期期初调研测试生物试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.手抓羊肉是西北地区餐桌上常见的美食,其味道鲜美,含有丰富的蛋白质。
下列有关蛋白质的叙述,错误的是( )A.煮熟后蛋白质变性,更容易被人体消化B.蛋白质可分解成氨基酸被人体细胞吸收C.人体细胞的生命活动主要由蛋白质承担D.蛋白质的功能主要取决于氨基酸的种类2.Ca2+在维持肌肉兴奋、收缩和骨骼生长等生命活动中发挥着重要作用,血液中Ca2+含量低会出现抽搐等症状。
下图是Ca2+在小肠的吸收过程。
下列叙述错误的是( )A.钙在离子态下易被吸收,维生素D可促进Ca2+的吸收B.Ca2+通过肠上皮细胞腔侧膜Ca2+通道进入细胞的方式属于被动运输C.Ca2+通过Ca2+-ATP酶从基底侧膜转出细胞的方式属于主动运输D.Na+-Ca2+交换的动力来自于Nat的浓度差,属于被动运输3.甲型流感病毒和肺炎支原体都是引发急性呼吸道传染病的常见病原体。
甲型流感病毒是单链RNA病毒,肺炎支原体是原核生物。
下列叙述错误的是( )A.甲型流感病毒和肺炎支原体的正常生命活动都离不开细胞B.甲型流感病毒和肺炎支原体的遗传物质都集中在拟核区域C.甲型流感病毒易发生变异可能导致原疫苗的保护效果减弱D.肺炎支原体细胞膜上的蛋白质在侵染过程中发挥重要作用4.当细胞接受到凋亡信号后,位于线粒体内膜上的细胞色素c(参与电子传递)会释放进而引发细胞凋亡。
研究人员用某种药物处理家蚕细胞不同时间后,用凝胶电泳法测定细胞不同结构中细胞色素c及微管蛋白的含量,结果如下图所示。
下列有关叙述错误的是( )A.凝胶电泳分离不同蛋白分子的关键是所带电荷性质B.细胞色素c参与有氧呼吸第三阶段的化学反应C.在细胞中含量比较稳定的微管蛋白可作为实验参照D.该种药物可促使细胞色素c释放到细胞质基质5.每条染色体的两个末端DNA片段称为端粒,体细胞的每次分裂,都会使端粒缩短一截,随着端粒缩短、消失,细胞将失去分裂能力。
2022年江苏省高考数学模拟应用题选编一-图文
2022年江苏省高考数学模拟应用题选编一-图文1、(江苏省如皋市2022届高三下学期语数英联考)如图,矩形公园ABCD中:OA2km,OC1km,公园的左下角阴影部分为以O为圆心,半径为1km的1圆面的人4工湖。
现计划修建一条与圆相切的观光道路EF(点E、F分别在边OA与BC上),D为切点。
(1)试求观光道路EF长度的最大值;(2)公园计划在道路EF右侧种植草坪,试求草坪ABFE面积S的最大值。
2.(江苏省张家港市崇真中学2022届高三上学期寒假自主学习检测)梯形ABCD顶点B、C在以AD为直径的圆上,AD=2米,(1)如图1,若电热丝由AB,BC,CD这三部分组成,在AB,CD上每米可辐射1单位热量,在BC上每米可辐射2单位热量,请设计BC的长度,使得电热丝辐射的总热量最大,并求总热量的最大值;⌒⌒⌒⌒(2)如图2,若电热丝由弧AB,CD和弦BC这三部分组成,在弧AB,CD上每米可辐射1单位热量,在弦BC上每米可辐射2单位热量,请设计BC的长度,使得电热丝辐射的总热量最大.图1第2题图图23、(江苏省淮阴中学、南师附中、海门中学、天一中学2022届高三下学期期初考试)如图,在某商业区周边有两条公路l1,l2,在点O处交汇,该商业区为圆心角,半径3km的扇形.现规划在该商业区外修建一条公路AB,与l1,l2分布交31于A,B,要求AB与扇形弧相切,切点T不在l1,l2上..(1)设OAakm,OBbkm,,试用a,b表示新建公路AB的长度,求出a,b 满足的关系式,并写出a,b的范围;(2)设AOT,试用表示新建公路AB的长度,并且确定A,B的位置,使得新建公路AB的长度最短.4、(江苏省联盟大联考2022届高三2月联考数学试题)某校园内有一块三角2,绿地内种植有3一呈扇形AMN的花卉景观,扇形AMN的两边分别落在AE和AF上,圆弧MN与形绿地AEF(如图1),其中AE20m,AF10m,EAFEF相切于点P.(1)求扇形花卉景观的面积;(2)学校计划2022年年整治校园环境,为美观起见,设计在原有绿地基础上2,并种植两块面积相同3的扇形花卉景观,两扇形的边都分别落在平行四边形ABCD的边上,圆弧都与扩建成平行四边形ABCD(如图2),其中BADBD相切,若扇形的半径为8m,求平行四边形ABCD绿地占地面积的最小值.5、(江苏省如皋市2022-2022学年度高三第二学期期初高三数学试卷)如图2所示,某工厂要设计一个三角形原料,其中AB3AC.(1)若BC2,求ABC的面积的最大值;(2)若ABC的面积为1,问BAC为何值时BC取得最小值.6、(江苏省中华中学、溧水高级中学、省句中、省扬中、镇江一中、省镇中2022届高三下学期六校联考试卷)某工厂要生产体积为定值V的漏斗,现选择半径为R的圆形马口铁皮,截取如图所示的扇形,焊制成漏斗.3(1)若漏斗的半径为2R,求圆形铁皮的半径R;(2)这张圆形铁皮的半径R至少是多少?7、(江苏盐城中学2022年高三开学检测)悦达集团开发一种新产品,为便于运输,现欲在大丰寻找一个工厂代理加工生产该新产品,为保护核心技术,核心配件只能从集团购买且由集团统一配送,该厂每天需要此核心为200个,配件的价格为1.8元/个,每次购买需支付运费238元。
江苏省扬州市2024-2025学年高三上学期开学考试数学试题(含解析)
2024-2025学年第一学期高三年级期初学情调研测试数学试题(考试时间:120分钟试卷满分:150分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则中元素的个数为( )A .1B .2C .3D .42.命题“,”的否定是()A .,B .,C .,D .,3.设集合,,若,则a =( )A .2B .-1C .1D .-24.已知a ,b ,c 为实数,下列说法正确的是( )A .若,则 B .若,则C .若,则 D .若,则5.已知函数f (x )在[1,+∞)上单调递减且对任意满足,则不等式的解集是( )A .B .C .D .(3,+∞)6.若不等式成立的充分条件是,则实数a 的取值范围是( )A .B .C .D .7.已知函数,若,则的最小值为( )A .B .3C .2D .8.已知函数f (x )的定义域为R ,且满足,f (x )的导函数为g (x ),函数为奇函数,则g (2024)=( ){}1,0,1,2A =-1|02x B x x +⎧⎫=⎨⎬-⎩⎭≤A B (),1x ∃∈-∞3210x x +-<[1,]x ∃∈+∞3210x x +-≥(),1x ∃∈-∞3210x x +-≥[1,]x ∀∈+∞3210x x +-≥(),1x ∀∈-∞3210x x +-≥{}0,3A a ={}1,2,22B a a =-+-A B ⊆a bc c>a b >22ac bc >a b >a b >22ac bc >a b <22a b<x ∈R ()()2f x f x =-()()23f x f x ->()5,3,3⎛⎫-∞+∞ ⎪⎝⎭ 5,33⎛⎫ ⎪⎝⎭5,3⎛⎫-∞ ⎪⎝⎭|1|x a +<04x <<1a -≤5a ≥1a -≥5a ≥()22ln f x x x x=-+()10f a f b ⎛⎫+= ⎪⎝⎭13b a +()()32f x f x +-=()121y g x =+-A .1B .3C .-1D .-3二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是( )A .的一个必要不充分条件是B .若集合中只有一个元素,则C .若,使得成立是假命题,则实数m 的取值范围为D .已知集合,则满足条件的集合N 的个数为410.已知,,且,则下列说法正确的是( )A .BC .D .11.设函数,则下列说法正确的是( )A .若函数f (x )在R 上单调递增,则实数a 的取值范围是(-∞,0]B .若函数f (x )有3个零点,则实数a 的取值范围是(8,+∞)C .设函数f (x )的3个零点分别是,,(),则的取值范围是D .任意实数a ,函数f (x )在(-1,1)内无最小值三、填空题:本大题共3小题,每小题5分,共15分,把答案填在答题卡中的横线上.12.已知随机变量,且,则的值为________.13.设,,,则a ,b ,c 的大小关系为________(用“<”连接).14.若存在正实数x ,使得不等式成立,则a 的最大值为________.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知集合,.(1)分别求,;1a b +<a b<{}2|20A x ax x =-+=18a =1[,3]2x ∃∈2210x mx -+≥()+∞{}1,3M =M N N = 0a >0b >22a b +=12ab ≥2+244a b+≥123a b a b +++()22,0e ,0x x ax a x f x a x ⎧---<⎪=⎨-⎪⎩≥1x 2x 3x 123x x x <<12313x x x +-(),8ln 2-∞--()2~1,X N σ()30.8P X <=()11P X -<<4log 3a =3log 2b =23c =()2ln 2ln 00axa x a ->≤{}|228x A x =≤≤{}2|log 1B x x =<A B ()A B R ð(2)已知集合,若,求实数a 的取值范围.16.(15分)已知函数.(1)若不等式的解集为(1,2),求f (x )的表达式;(2)解关于x 的不等式.17.(15分)随着经济的发展,富裕起来的人们健康意识日益提升,越来越多的人走向公园、场馆,投入健身运动中,成为一道美丽的运动风景线,某兴趣小组为了解本市不同年龄段的市民每周锻炼时长情况,随机抽取500人进行调查,得到如下表的统计数据:周平均锻炼时间少于6小时周平均锻炼时间不少于6小时合计60岁以下8012020060岁以上(含60)60240300合计140360500(1)根据表中数据,依据的独立性检验,能否认为周平均锻炼时长与年龄有关联?(2)现从60岁以上(含60)的样本中按周平均锻炼时间是否少于6小时,用分层随机抽样法抽取10人做进一步访谈,再从这10人中随机抽取3人填写调查问卷,记抽取3人中周平均锻炼时间不少于6小时的人数为X ,求X 的分布列和数学期望.参考公式及数据:,其中.α0.0250.010.0050.0015.0246.6357.87910.82818.(17分)如图,四棱锥P-ABCD 中,,,,.(1)若,证明:;(2)若,且二面角A-CP-DAD .19.(17分)设函数f (x )的导函数为f'(x ),若对任意恒成立,则称函数f (x )为区间{}|2C x x a =<<C A ⊆()()2212f x kx k x =-++()0f x <()0f x <0.001α=()()()()()22n ad bc a b c d a c b d χ-=++++n a b c d =+++x αPA ABCD ⊥底面2PA AC ==1BC =AB =AD PB ⊥AD PBC 平面P AD DC ⊥()||1f x '≤x D ∈D 上的“一阶有界函数”.(1)判断函数和是否为R 上的“一阶有界函数”,并说明理由:(2)若函数f (x )为R 上的“一阶有界函数”,且f (x )在R 上单调递减,设A ,B 为函数f (x )图像上相异的两点,直线AB 的斜率为k ,试判断“”是否正确,并说明理由;(3)若函数为区间[0,1]上的“一阶有界函数”,求a 的取值范围.参考答案1.C 2.D3.C4.B5.B6.D7.A8.A9.AD 10.BCD11.BCD12.0.313.14.15.(1)∵,∴ ∴ ∴(2)因为集合,,当时,,满足条件;当时,,则,即,综上所述,.16.(1)∵的解集为(1,2),∴1,2是方程的根且∴ ∴ ∴(2)当时,,∵ ∴,∴当时,,即,即当时,,∴或当时,(ⅰ)当时,无解()cos f x x =()2xg x =10k -<<()()32e e 1xh x ax x a x =+---b c a <<1eln 2{}|228[1,3]x A x ==≤≤{}()2|log 10,2B x x =<=[1,2)A B = ()(),13,A =-∞+∞R ð()()(),23,A B =-∞+∞R ð{}|2C x x a =<<C A ⊆2a ≤C =∅2a >C ≠∅3a ≤23a <≤(,3]a ∈-∞()0f x <()0f x =0k >2112212k k k +⎧+=⎪⎪⎨⎪⨯=⎪⎩1k =()232f x x x =-+0k =()2f x x =-+()0f x <20x -+<2x >0k ≠()()()21f x x kx =--()()210x kx --<()120k x x k ⎛⎫--< ⎪⎝⎭0k <()120x x k ⎛⎫--> ⎪⎝⎭2x >1x k <0k >()120x x k ⎛⎫--< ⎪⎝⎭12k =(ⅱ)当时,(ⅲ)当时,综上所述:当时,不等式的解集为当时,不等式的解集为当时,不等式的解集为当时,不等式的解集为当时,不等式的解集为17.(1)提出假设:周平均锻炼时长与年龄无关联,由列联表中的数据,可得,根据小概率值的独立性检验,我们推断不成立,即认为周平均锻炼时长与年龄有关联;(2)抽取的10人中,周平均锻炼时长少于6小时的有(人),不少于6小时的有(人),则X 所有可能的取值为1,2,3,所以,,,所以随机变量X 的分布列为:X 123P所以数学期望.12k >12x k <<12k <12x k<<0k <1|2x x x k ⎧⎫><⎨⎬⎩⎭或0k ={}|2x x >102k <<1|2x x k ⎧⎫<<⎨⎬⎩⎭12k =∅12k >1|2x x k ⎧⎫<<⎨⎬⎩⎭0H 22⨯()220.001500802401206050023.8110.82820030014036021x χ⨯⨯-⨯==≈>=⨯⨯⨯0.001α=0H 60102300⨯=240108300⨯=()2128310C C 11C 15P X ===()1228310C C 72C 15P X ===()38310C 73C 15P X ===115715715()177121231515155E X =⨯+⨯+⨯=18.(1)因为,而,所以,又,,,所以,而,所以.因为,所以,根据平面知识可知,又,,所以.(2)法一:以DA ,DC 为x ,y 轴,过点D 作平面ABCD 垂直的线为z 轴,建立如图所示空间直角坐标系D-xyz :令,则A (t ,0,0),P (t ,0,2),D (0,0,0),,,设平面ACP 的法向量,所以,设,,所以,设平面CPD 的法向量为,所以,设,则,,所以,因为二面角A-CP-D,,解得,所以法二:如图所示,过点D 作于E ,再过点E 作于F ,连接DF ,PA ABCD ⊥平面AD ABCD ⊂平面PA AD ⊥AD PB ⊥PB PA P = ,PB PA PAB ⊂平面AD PAB ⊥平面AB PAB ⊂平面AD AB ⊥222BC AB AC +=BC AB ⊥AD BC P AD PBC ⊄平面BCPBC ⊂平面AD PBC 平面P AD t =DC =()C ()1111,,n x y z = 1111020n AC tx z ⎧⋅=-=⎪⎨=⎪⎩1x =1y t =10z =)1,0n t = ()2222,,n x y z = 2222220n DP tx z n DC ⎧⋅=+=⎪⎨⋅==⎪⎩ 2z t =22x =-20y =()22,0,n t =-121212|cos ,|||||n n n n n n ⋅===t =AD =DE AC ⊥EF CP ⊥因为,所以,而,所以,又,所以,根据二面角的定义可知,即为二面角A-CP-D 的平面角,即,即.因为,设,则,又,而为等腰直角三角形,所以,故,解得,即注:其他做法相应给分.19.(1),在R 上恒成立,故是R 上的“一阶有界函数”;,,当时,,故不是R 上的“一阶有界函数”.(2)正确.若函数f (x )为R 上的“一阶有界函数”,则,又f (x )在R 上单调递减,即,所以,令,,所以F (x )在R 上单调递增,设,,其中;又f (x )在R 上单调递减,所以,,故;(3)函数,若h (x )为区间[0,1]上的“一阶有界函数”,则,对恒成立PA ABCD ⊥平面PAC ABCD ⊥平面平面PAC ABCD AC = 平面平面DE PAC ⊥平面EF CP ⊥CP DEF ⊥平面DFE ∠sin DFE ∠=tan DFE ∠=AD DC ⊥AD x =CD =DE =242x CE -==EFC △EF =tan DFE ∠==x =AD =()cos f x x =()|||sin |1f x x '=-≤()cos f x x =()2x g x =()||2ln 2x g x '=1x >()1||2ln 21g x '>>=()2xg x =()||1f x '≤()0f x '≤()10f x '-≤≤()()F x f x x =+()()10F x f x ''=+≥()11,A x y ()22,B x y 12x x >1k >-()()12f x f x <()()12120f x f x k x x -=<-10k -<<()()32e e 1xh x ax x a x =+---()2e 32e 1xh x ax x a '=+--+()||1h x '≤()11h x '-≤≤[0,1]x ∀∈则,,;,,,则.令,,其中,因为,在区间[0,1]上单调递增,所以区间[0,1]上单调递增,∵,,所以存在,使,即,当时,,T (x )单调递减;当,,T (x )单调递增.所以,h ′(x )在区间单调递减,在区间单调递增,所以,所以在区间时有解,因为对称轴为,在区间上单调递减,所以,∴,综上:.()|0|1h '≤|2|1a -≤13a ≤≤()|1|1h '≤|2e 1|1a -+≤e 2e22a -≤≤e12a ≤≤()()2e 32e 1xT x h x ax x a '==+--+()e 62e xT x ax '=+-e 12a ≤≤e xy =6y ax =()e 62e xT x ax '=+-()012e 0T '=-<()16e 0T a '=->()00,1x ∈()00T x '=00e 62e 0xax +-=00x x <<()0T x '<01x x <<()0T x '>()00,x ()0,1x ()()()02200000min e 32e 1362e 2e 1xh x h x ax x a ax a x a ''==+--+=-++-+()01h x '-≥()00,1x ∈62e e1163a x a a+==+>()0h x '()00,1x ∈()02e 11h a '=-+>-2e 2a <+e [1,2a ∈。
江苏省扬州市2020-2021学年高一下学期期中学情调研历史试题及答案
2020—2021学年第二学期高一期中学情调研历史试卷注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
满分为100分,考试时间为75分钟。
2.请将第I卷选择题的答案用2B铅笔涂在答题纸上,第II卷答案用黑色墨水笔直接书写在答题纸的规定位置。
第I卷(选择题共76分)一、单选题(本大题共38小题,每题2分,共计76分。
在每小题列出的四个选项中,只有一个选项是最符合题目要求的。
)1.马克思说:“除了自由人和奴隶之间的差别外,又出现了富人和穷人的差别。
”这种差别导致了奴隶与奴隶主、富人与穷人、氏族一般成员与氏族贵族之间的斗争,这种斗争A.导致了氏族公社解体和国家产生B.导致了社会混乱,是历史的倒退C.出现了脑力劳动者和体力劳动者D.是人类进入文明阶段的唯一标志2.美国学者在《食物:味道的历史》中指出:“约1万年前,近东的人类首先开始种植小麦和大麦等谷物。
距今八九千年前,中美洲人率先开始种植玉米和豆子等重要主食,而中国人则是培育稻米的先驱。
”这表明A.世界农耕起源多元B.世界各地经济发展不均衡C.古代亚洲农业发达D.古代农业生产具有封闭性3.在希腊,山岭纵横,河流交错,港湾众多,几乎没有大面积的整块平地。
这种地形对古希腊历史发展的影响是A.对古希腊民主政治起了决定作用B.促进了古希腊传统农林业的发展C.有利于古希腊海外商贸业的发展D.使古代希腊很难与外界广泛交流4.某旅行社为配合某高中学生研学旅行,制作了下面的旅行广告,其中符合历史事实的广告词是A.沿尼罗河而行,了解楔形文字,领略胡夫金字塔的壮美B.在两河流域驻足,了解种姓制度,欣赏古巴比伦城市遗址C.浏览恒河岸边风光,了解象形文字,感受古代印度的风采D.参观波斯帝国博物馆,了解行省制,体验伊朗文化的魅力5.古代文明各自的扩展,使不同文明区相互连接起来,促进了大帝国的兴起。
下图对应的帝国是A.波斯帝国B.亚历山大帝国C.罗马帝国D.印加帝国6.在中世纪西欧封建贵族向国王效忠的誓词中有这样一句话:“与您一样优秀的我们,向并不比我们更优秀的您起誓,承认您为我们的国王和最高领主,只要您遵从我们的地位和法律;如果您不如此,上述誓言即无效。
江苏南通徐州宿迁淮安泰州镇江六市联考2020-2021学年下高三第一次调研考试数学试题(全解析)
江苏省南通、徐州、宿迁、淮安、泰州、镇江六市联考2021届高三第一次调研测试数 学2021.02注意事项:1. 答卷前,考生务必将自己的姓名、考生号,考场号、座位号填写在答题卡上。
2.回答选择题时, 选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题 5分,共 40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A ={}26x N x ∈<<,B ={}2log (1)2x x -<,则A B =A .{}35x x ≤<B .{}25x x <<C .{3,4}D .{3,4,5} 2.已知2+i 是关于x 的方程250x ax ++=的根,则实数a =A .2-iB .-4C .2D .4 3.哥隆尺是一种特殊的尺子,图1的哥隆尺可以一次性度量的长度为1,2,3,4,5,6.图2的哥隆尺不能一次性度量的长度为A .11B .13C .15D .174.医学家们为了揭示药物在人体内吸收、排出的规律,常借助恒速静脉滴注一室模型来进行描述,在该模型中,人体内药物含量x (单位:mg )与给药时间t (单位:h )近似满足函数关系式0(1e )kt k x k-=-,其中0k ,k 分别称为给药速率和药物消除速率(单位:mg /h ).经测试发现,当t =23时,02k x k=,则该药物的消除速率k 的值约为(ln2≈0.69) A .3100 B .310 C .103 D .10035.(12)n x -的二项展开式中,奇数项的系数和为 A .2nB .12n - C .(1)32n n -+ D .(1)32n n--6.函数sin 21xy x π=-的图象大致为A BC D 7.已知点P 是△ABC 所在平面内一点,有下列四个等式: 甲:PA PB PC ++=0; 乙:()()PA PA PB PC PA PB ⋅-=⋅-; 丙:PA PB PC ==; 丁:PA PB PB PC PC PA ⋅=⋅=⋅. 如果只有一个等式不成立,则该等式为A .甲B .乙C .丙D .丁8.已知曲线ln y x =在A (1x ,1y ),B (2x ,2y )两点处的切线分别与曲线e x y =相切于C (3x ,3y ),D (4x ,4y ),则1234x x y y +的值为A .1B .2C .52D .174二、 选择题:本大题共4小题,每小题5分, 共计20分.在每小题给出的选项中,有多项符合题目要求。
江苏省扬州市2023届高三下学期调研测试(扬州三模)化学含答案
第 1 页 共 6 页扬州市2023届高三考前调研测试化 学注意事项:考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共6页,包含选择题[第1题~第13题,共39分]、非选择题[第14题~第17题,共61分]两部分。
本次考试时间为75分钟,满分100分。
考试结束后,请将答题卡交回。
2.答题前,请考生务必将自己的学校、班级、姓名、学号、考生号、座位号用0.5毫米的黑色签字笔写在答题卡上相应的位置。
3.选择题每小题选出答案后,请用2B 铅笔在答题纸指定区域填涂,如需改动,用橡皮擦干净后,再填涂其它答案。
非选择题请用0.5毫米的黑色签字笔在答题纸指定区域作答。
在试卷或草稿纸上作答一律无效。
4.如有作图需要,可用2B 铅笔作答,并请加黑加粗,描写清楚。
可能用到的相对原子质量:H -1 C -12 N -14 O -16 Mn -55 Fe -56 Cu -64选择题(共39分)单项选择题:本题包括13小题,每小题3分,共计39分。
每小题只有一个选项符合题意。
1.下列措施中能有效促进“碳中和”的是 A .CO 2合成淀粉 B .火力发电 C .燃煤脱硫 D .可燃冰开采2.检验微量砷的原理为2AsH 3 + 12AgNO 3 + 3H 2O = As 2O 3↓ + 12HNO 3 + 12Ag ↓。
AsH 3常温下为无色气体。
下列说法正确的是 A .As 的基态核外电子排布式为[Ar]4s 24p 3 B .NO -3的空间构型为平面三角形 C .固态AsH 3属于共价晶体 D .HNO 3既含离子键又含共价键 3.软钾镁矾(化学式为K 2SO 4·MgCl 2·6H 2O )是一种重要的钾肥。
下列说法正确的是A .半径大小:r (Cl -)>r (K +) B .电负性大小:χ(K)>χ(H) C .电离能大小:I 1(S)>I 1(O) D .碱性强弱:Mg(OH)2>KOH 4.用表面有油污的铁屑等原料可以制备FeSO 4·7H 2O ,实验中的部分装置和操作如下图所示,其中不能..达到实验目的的是A .用装置甲去除铁屑表面的油污B .用装置乙溶解铁屑制备FeSO 4C .用装置丙吸收铁屑溶解过程中产生的H 2SD .用装置丁蒸干溶液,获得FeSO 4·7H 2O第 2 页 共 6 页阅读下列材料,完成5~7题:Cu 2S 可用于钾离子电池的负极材料。
2024届江苏省扬州市高邮市高三下学期开学化学试题及答案
2023-2024学年第二学期高三期初学情调研测试化学试题试卷满分:100分 考试时间:75分钟可能用到的相对原子质量:H1 C12 N14 O16 Na23 S 32 Cl 35.5 Fe 56单项选择题:本题共13小题,每小题3分,共39分,每题只有一个选项最符合题意。
1.食品安全重于泰山。
下列做法不恰当...的是( ) A.葡萄酒酿制过程中添加少量2SO B.海鲜保存时加入少量甲醛 C.奶粉生产时加入聚葡萄糖D.向水果罐头中加入维生素C2.配位化合物广泛应用于物质分离、定量测定、医药、催化等方面。
利用氧化法可制备某些配位化合物,如()2432232252CoCl 2NH Cl 8NH H O 2Co NH Cl Cl 2H O +++=+ 。
下列说法正确的是( )A.3NH 的电子式:B.提供孤电子对的成键原子是N 和ClC.()235Co NH Cl +中存在配位键、共价键和离子键D.氧化剂22H O 是非极性分子3.太阳能电池可由Si GaP GaAs 、、等半导体材料构成。
有关元素在元素周期表中的位置如图所示,下列说法正确的是( )A.原子半径:(Ga)(As)r r <B.第一电离能:11(Si)(P)I I <C.电负性:(P)(As)χχ<D.酸性:3434H PO H AsO <4.下列物质结构与性质或物质性质与用途不具有...对应关系的是( ) A.甲烷的热值高,用于工业制备炭黑B.葡萄糖具有还原性,用于玻璃等材料表面化学覆银C.2Mg +的半径比2Ca+小,MgO 的熔点比CaO 高D.CO 可2Fe +以配位键结合,CO 会引起人体中毒5.向含223Na S O 的废液中通入HCl 气体,原理为:22322Na S O 2HCl SO 2NaCl S H O +=++↓+利用下列装置制备S 并回收NaCl .其中装置正确并能达到实验目的的是( ) A.①④B.③④C.①②D.②③阅读下列资料,完成6~7题:氨广泛用于生产铵盐、硝酸、纯碱、医药等;肼()24N H 的燃烧热为1624kJ mol −⋅,是常用的火箭燃料;常温下,242N H H O ⋅在碱性条件下能将()32Ag NH +还原成银,24N H 在水中与3NH 性质相似。
江苏省扬州市高邮市2024-2025学年高三上学期10月月考数学试题(含答案)
2024-2025学年第一学期高三年级10月学情调研测试数学试题一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,若,则实数的值为( )A. B. C.12D.62.已知,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.关于实数的不等式的解集是或,则关于的不等式的解集是(A. B.C. D.4.若,则点位于( )A.第一象限 B.第二象限C.第三象限D.第四象限5.若函数在上单调递增,则实数的取值范围是( )A. B. C. D.6.将函数的图象向左平移个单位,所得的函数图象关于对称,则()A. B. C. D.7.如图,在四边形中,的面积为3,{}{}21,2,3,4,70U Mx x x p ==-+=∣{}U 1,2M =ðp 6-12-,a b ∈R 1122log log a b >22a b <x 20x bx c ++>{2xx <-∣5}x >x 210cx bx ++>)11,,25∞∞⎛⎫⎛⎫--⋃+ ⎪ ⎪⎝⎭⎝⎭11,,52∞∞⎛⎫⎛⎫--⋃+ ⎪ ⎪⎝⎭⎝⎭11,25⎛⎫- ⎪⎝⎭11,52⎛⎫- ⎪⎝⎭ππ24α-<<-()sin cos ,tan sin P αααα+-()11,2,2x a x x f x xa x -⎧+-≥⎪=⎨⎪<⎩R a ()0,1(]1,2(]1,4[]2,4()()sin 2(0π)f x x ϕϕ=+<<π6π6x =ϕ=π6π32π35π6ABCD ,cos AB AD B ACB BC ACD ∠⊥===V则长为( )8.已知函数的定义域均是满足,,则下列结论中正确的是( )A.为奇函数B.为偶函数C.D.二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列各结论正确的是()A.“”是“”的充要条件B.命题“,有”的否定是“,使”的最小值为2D.若,则10.某物理量的测量结果服从正态分布,下列选项中正确的是( )A.越大,该物理量在一次测量中在的概率越大B.该物理量在一次测量中小于10的概率等于0.5C.该物理量在一次测量中小于9.98与大于10.02的概率相等D.该物理量在一次测量中落在与落在的概率相等11.已知函数,有下列四个结论,其中正确的结论为()A.的图像关于轴对称CD ()(),f x g x (),f x R ()()()()40,021f x f x g g ++-===()()()()g x y g x y g x f y ++-=()f x ()g x ()()11g x g x --=-+()()11g x g x -=+0x y≥0xy ≥0x ∀>20x x +>0x ∃>20x x +≤+0,0a b m <<<a a m b b m+>+()210,N σσ()9.8,10.2()9.8,10.2()9.9,10.3()cos2cos f x x x =+()f x yB.不是的一个周期C.在区间上单调递减D.当时,的值域为三、填空题:本大题共3小题,每小题5分,共15分.把答案填在答题卡中的横线上.12.若命题“”是假命题,则实数的取值范围是__________.13.已知__________.14.若对一切恒成立,则的最大值为__________.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知(1)化简;(2)若,求的值.16.(15分)已知三棱锥底面,点是的中点,点为线段上一动点,点在线段上.(1)若平面,求证:为的中点;(2)若为的中点,求直线与平面所成角的余弦值.17.(15分)在每年的1月份到7月份,某品牌空调销售商发现:“每月销售量(单位:台)”与“当年π()f x ()f x π,π2⎡⎤⎢⎥⎣⎦π0,2x ⎡⎤∈⎢⎥⎣⎦()f x 2⎤⎥⎦2,20x x x a ∀∈-+>R a πsin sin 3αα⎛⎫++= ⎪⎝⎭πsin 26α⎛⎫-= ⎪⎝⎭ln 2ax x b ≥+()0,x ∞∈+b a()()()23ππsin cos tan π22πsin πcos 2f αααααα⎛⎫⎛⎫-+⋅-⋅-- ⎪ ⎪⎝⎭⎝⎭=⎛⎫--- ⎪⎝⎭()fα()2f α=3cos2sin2αα-,A BCD AD -⊥,,4,2BCD BC CD AD BC CD ⊥===P AD Q BC M DQ PM ∥ABC M DQ Q BC DQ ABC的月份”线性相关.根据统计得下表:月份123456销量101931455568(1)根据往年的统计得,当年的月份与销量满足回归方程.请预测当年7月份该品牌的空调可以销售多少台?(2)该销售商从当年的前6个月中随机选取2个月,记为销量不低于前6个月的月平均销量的月份数,求的分布列和数学期望18.(17分)已知锐角的内角,所对的边分别为,满足.(1)求角的大小;(2)若,求面积的取值范围.19.(17分)已知函数.(1)讨论在区间上的单调性;(2)若在上有两个极值点.①求实数的取值范围:②求证:.xy x y ˆ10yx t =+X X ABC V A B C 、、a b c 、、1cos c A b A=B 2b =ABC V ()()2e 23x f x x a x a ⎡⎤=-+++⎣⎦()f x R ()f x ()0,312,x x a ()()2124e f x f x <2024—2025学年第一学期高三年级10月学情调研测试参考答案1.C2.A3.C4.C5.B6.D7.B8.D9.BD 10.BC 11.ABD12. 13.14.13.(1).(2)由(1)得,所以14.(1)连结因为平面平面,平面平面,所以,又因为是的中点,所以是中点.(2)方法一:因为底面,如图建立坐标系,则,可得,,设平面的法向量为,则,令,则,可得,(],1∞-19-12()()()()2cos sin tan tan sin sin f ααααααα-⋅⋅==--⋅-tan 2α=-()22223cos sin 2sin cos 3cos2sin2sin cos αααααααα--⋅-=+2233tan 2tan 31241tan 141ααα---+===-++AQPM∥,ABC PM ⊂ADQ ADQ ⋂ABC AQ =PM ∥AQ P AD M DQ AD ⊥,BCD BC CD ⊥()()()()2,0,0,0,2,0,2,0,4,0,1,0D B A Q ()2,1,0DQ =- ()()2,0,4,0,2,0CA CB == ABC (),,n x y z = 24020n CA x z n CB y ⎧⋅=+=⎪⎨⋅==⎪⎩ 0,20y x z ∴=+=1z =0,2y x ==-()2,0,1n =-,设直线与平面所成角为,又则.因此直线与平面所成角的余弦值为.方法二:过点作交于,连接,因为底面底面,则,且平面,则平面,由平面,可得,且,平面,所以平面,可知即为直线与平面所成角.在中,,则,所以,又则.所以直线与平面所成角的余弦值为.17.解:(1),,又回归直线过样本中心点,所以,得,4cos ,5DQ n DQ n DQ n⋅<>=== DQ ABC 4,sin cos ,5DQ n θθ∴=<>= π0,2θ⎡⎤∈⎢⎥⎣⎦3cos 5θ=DQ ABC 35D DN AC ⊥AC N QN AD ⊥,BCD BC ⊂BCD AD BC ⊥,,,BC CD AD CD D AD CD ⊥⋂=⊂ACD BC ⊥ACD DN ⊂ACD BC DN ⊥AC BC C ⋂=,AC BC ⊂ABC DN ⊥ABC DQN ∠DQ ABC Rt ACD V 2,4CD AD ==AC =DN =DQ QN ==3cos 5QN DQN QD ∠==DQ ABC 35123456 3.56x +++++==101931455568386y +++++==()x y 3810 3.5t =⨯+3t =所以,当时,,所以预测当年7月份该品牌的空调可以销售73台;(2)因为,所以销量不低于前6个月的月平均销量的月份数为,所以所以所以的分布列为:012故数学期望18.(1)由,得,即根据正弦定理,得.因为,所以,即因为,所以,所以,又则.(2)在中由正弦定理得:所以,ˆ103yx =+7x =ˆ73y =38y =4,5,60,1,2X =()()()21123333222666C C C C 1310,1,2C 5C 5C 5P X P X P X ⋅=========X XP 153515()1310121555E X =⨯+⨯+⨯=1cos c A b A =1cos c b A =sin cos c A b A =+sin sin sin cos C B A B A =+()()sin sin πsin C A B A B ⎡⎤=-+=+⎣⎦sin cos cos sin sin sin cos A B A B B A B A +=+sin cos sin A B B A=()0,πA ∈sin 0A ≠tan B =()0,πB ∈π6B =ABC V sin sin sin a b c A B C ==4sin ,4sin a A c C ==215πsin 4sin sin 4sin sin 2sin cos 26ABC S ac B A C A A A A A ⎛⎫===-=+ ⎪⎝⎭V πsin22sin 23A A A ⎛⎫=+=- ⎪⎝⎭因为为锐角三角形,所以,即.所以,所以所以即面积的取值范围为19.(1)当,即时,恒成立,则在上单调递增;当,即或时,令,得或令综上所述:当时,单调递增区间是,无单调递减区间;当或时,的单调递增区间是和单调减区间是(2)①因为在有两个极值点,所以在有两个不等零点,所以解得,所以实数的取值范围为②由①知.所以同理.ABC V π025ππ062A A ⎧<<⎪⎪⎨⎪<-<⎪⎩ππ32A <<ππ2π2,333A ⎛⎫-∈ ⎪⎝⎭πsin 23A ⎤⎛⎫-∈⎥ ⎪⎝⎭⎦(2ABC S ∈+V ABC V (2+()()2e 1,x f x x ax x '-=+∈R 2Δ40a =-≤22a -≤≤()0f x '≥()f x R 2Δ40a =->2a <-2a >()0f x '>x <x >()0f x '<x <<22a -≤≤()f x (),∞∞-+2a <-2a >()f x ∞⎛- ⎝∞⎫+⎪⎪⎭()f x ()0,312,x x ()21g x x ax =-+()0,312,x x ()()2Δ4003201031030a a g g a ⎧=->⎪⎪<<⎪⎨⎪=>⎪=->⎪⎩1023a <<a 102,3⎛⎫ ⎪⎝⎭1212,1x x a x x +==()()()()1112111111e 23e 123e 22x x x f x x a x a ax a x a x a ⎡⎤⎡⎤=-+++=--+++=-++⎣⎦⎣⎦()()222e 22x f x x a =-++所以.设所以,所以函数在区间上单调递减,所以,所以()()()()()()1212121212221e 2222e 422(2)x x x x f x f x x a x a x x a x x a ++⎡⎤⎣⎦=-++-++=-++++()()22e 422(2)e 8a a a a a a ⎡⎤=-+++=-⎣⎦()()210e 8,2,3x h x x x ⎛⎫=-∈ ⎪⎝⎭()()()e 420x h x x x =-+-<'()h x 102,3⎛⎫ ⎪⎝⎭()()224e h x h <=()()2124e f x f x <。
江苏省扬州市2024-2025学年高三上学期开学考试数学试题
2024-2025学年第一学期高三年级期初学情调研测试数学试题(考试时间:120分钟试卷满分:150分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,0,1,2A =-,102x B x x ⎧⎫+=≤⎨⎬-⎩⎭,则A B ⋂中元素的个数为()A.1B.2C.3D.4【答案】C 【解析】【分析】根据集合交集的运算可得.【详解】因{}10122x B xx x x ⎧⎫+=≤=-≤<⎨⎬-⎩⎭,故{}{}{}1,0,1,2121,0,1A B x x ⋂=-⋂-≤<=-,故选:C2.命题“(),1x ∃∈-∞,3210x x +-<”的否定是()A.[1,]x ∃∈+∞,3210x x +-≥B.(),1x ∃∈-∞,3210x x +-≥C.[1,]x ∀∈+∞,3210x x +-≥D.(),1x ∀∈-∞,3210x x +-≥【答案】D 【解析】【分析】根据全称命题与存在性命题的关系,准确改写,即可求解.【详解】根据全称命题与存在性命题的关系,可得:命题“(),1x ∃∈-∞,3210x x +-<”的否定是“(),1x ∀∈-∞,3210x x +-≥”.故选:D.3.设集合{}0,3A a =,{}1,2,22B a a =-+-,若A B ⊆,则a =()A.2B.1- C.1D.2-【答案】C 【解析】【分析】根据A B ⊆,可得20a +=或220a -=,分别确定,A B ,再进行验证.【详解】因为A B ⊆,所以0B ∈.所以20a +=或220a -=.若20a +=⇒2a =-,此时{}0,6A =-,{}1,0,6B =-,A B ⊆不成立,故2a =-不合题意;若220a -=⇒1a =,此时{}0,3A =,{}1,0,3B =-,A B ⊆成立.故1a =.故选:C4.已知a ,b ,c 为实数,下列说法正确的是()A.若a bc c>,则a b > B.若22ac bc >,则a b >C.若a b >,则22ac bc > D.若a b <,则22a b <【答案】B 【解析】【分析】通过不等式的性质和特例可排除ACD ,根据不等式的性质判断B 的真假.【详解】对A :当0c >时,a b c c >⇒a b >;当0c <时,a bc c>⇒a b <.故A 错误;对B :因为22ac bc >,所以20c >,故a b >成立.故B 正确;对C :当2c =0时,a b >⇒22ac bc =.故C 错误;对D :若0a b <<,则22a b >.故D 错误.故选:B5.已知函数()f x 在[1,)+∞上单调递减且对任意R x ∈满足()()2f x f x =-,则不等式()()23f x f x ->的解集是()A.()5,3,3⎛⎫-∞+∞ ⎪⎝⎭B.5,33⎛⎫ ⎪⎝⎭C.5,3⎛⎫-∞ ⎪⎝⎭D.()3,+∞【答案】B 【解析】【分析】由对任意R x ∈满足()()2f x f x =-得出()f x 的对称轴为直线1x =,结合函数()f x 在[1,)+∞上单调递减得出()f x 在(),1-∞上单调递增,根据对称性及单调性求解不等式即可.【详解】因为对任意R x ∈满足()()2f x f x =-,所以()f x 的对称轴为直线1x =,又函数()f x 在[1,)+∞上单调递减,所以()f x 在(),1-∞上单调递增,所以()()()()22232311f x f x x x ->⇔--<-,解得5,33x ⎛⎫∈ ⎪⎝⎭,故选:B .6.若不等式1x a +<成立的充分条件是04x <<,则实数a 的取值范围是()A.1a ≤- B.5a ≤ C.1a ≥- D.5a ≥【答案】D 【解析】【分析】先分情况求不等式1x a +<的解集,再根据集合的包含关系求参数a 的取值范围.【详解】设不等式1x a +<的解集为A ,()0,4B =,因为不等式1x a +<成立的充分条件是04x <<,,所以B A ⊆,所以A ≠∅,所以0a >.由|1|x a +<⇒1a x a -<+<11a x a --<<-,所以()1,1A a a =---.由B A ⊆可得1014a a --≤⎧⎨-≥⎩⇒5a ≥.故选:D7.已知函数()22ln f x x x x=-+,若()10f a f b ⎛⎫+= ⎪⎝⎭,则13b a +的最小值为()A. B.3C.2D.【答案】A 【解析】【分析】先分析函数()f x 的单调性,结合()10f a f b ⎛⎫+=⎪⎝⎭,可得0a b =>,再结合基本不等式可求13b a+的最小值.【详解】因为()22ln f x x x x =-+(0x >),所以()2212f x x x'=++.当0x >时,′>0,所以()f x 在0,+∞上单调递增.又1212ln f x x x x ⎛⎫=-+⎪⎝⎭22ln x x x ⎛⎫=--+ ⎪⎝⎭()f x =-.由()10f a f b ⎛⎫+= ⎪⎝⎭⇒()()0f a f b -=,所以0a b =>.所以13b a +13a a =+≥=,当且仅当33a =时等号成立.故选:A8.已知函数()f x 的定义域为R ,且满足()()32f x f x +-=,()f x 的导函数为()g x ,函数()121y g x =+-为奇函数,则(2024)g =()A.1 B.3C.1- D.3-【答案】A 【解析】【分析】根据()()32f x f x +-=两边求导得()()3g x g x =-,再根据()121y g x =+-为奇函数得()()22g x g x +-=,由对称性得出()g x 是周期为2的周期函数,即可求解.【详解】由()()32f x f x +-=两边求导得,()()30g x g x --=,即()()3g x g x =-,因为()121y g x =+-为奇函数,所以()()121121g x g x --=-+-⎡⎤⎣⎦,即()()12122g x g x -++=,所以()g x 关于()1,1中心对称,所以()()121g x x g ++-=,变形得()()22g x g x +-=,且(1)1g =,由()()3g x g x =-,得()()322g x g x -+-=,变形得()()12g x g x ++=,所以()()122g x g x +++=,则()(2)g x g x =+,所以()g x 是周期为2的周期函数,则(2024)(0)2(1)1g g g ==-=,故选:A .二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是()A.1a b +<的一个必要不充分条件是a b<B.若集合2{|20}A x ax x =-+=中只有一个元素,则18a =C.若1[,3]2x ∃∈,使得2210x mx -+≥成立是假命题,则实数m 的取值范围为)+∞D.已知集合{1,3}M =,则满足条件M N N ⋂=的集合N 的个数为4【答案】AD 【解析】【分析】利用不等式性质及充分条件、必要条件的定义判断A ;举例说明判断B ;求出m 的范围判断C ;利用集合的包含关系判断D.【详解】对于A ,由1a a <+,1a b +<,得a b <;反之若a b <,而1a a <+,不能判断1a +与b 的大小,因此1a b +<的一个必要不充分条件是a b <,A 正确;对于B ,当0a =时,集合{|20}A x x =-+=只有一个元素,B 错误;对于C ,1[,3]2x ∃∈,使得2210x mx -+≥成立,即1[,3]2x ∃∈,12m x x≤+成立,而函数12y x x =+在12[,22上单调递减,在2,3]2上单调递增,当3x =时,max 193y =,因此193m ≤,由1[,3]2x ∃∈,使得2210x mx -+≥成立是假命题,得193m >,C 错误;对于D ,由M N N ⋂=,得N M ⊆,由{1,3}M =,得M 有4个子集,因此集合N 的个数为4,D 正确.故选:AD10.已知0a >,0b >,且22a b +=,则下列说法正确的是()A.12ab ≥B.2≤C.244a b +≥D.12334a b a b +++【答案】BCD 【解析】【分析】由基本不等式得22212a b a b +⎛⎫⋅≤= ⎪⎝⎭,即可判断A ;由基本不等式得2≤,即可判断B ;由基本不等式及指数运算即可判断C ;根据基本不等式“1”的妙用,得出()()122311343a a b a b a b a b b b a +++⎡⎤⎣⎦⎛⎫+=+ ⎪++++⎝⎭,即可判断D .【详解】对于A ,22212a b a b +⎛⎫⋅≤= ⎪⎝⎭,即12≤ab ,当且仅当2a b =,即11,2a b ==时等号成立,故A 错误;对于B 2≤,=11,2a b ==时等号成立,故B 正确;对于C ,224224a b a b +=+≥,当且仅当222a b =,即11,2a b ==时等号成立,故C 正确;对于D ,因为22a b +=,所以()()()324224a b a b a b a b +++=+=+=⎡⎤⎣⎦,所以()()122311343a a b a b a b a b b b a +++⎡⎤⎣⎦⎛⎫+=+ ⎪++++⎝⎭()22313313214444a b a b a b a b +⎛⎫++=+≥+⨯ ⎪⎝+⎭+++,当且仅当()233a b a ba b a b ++++=,即106a b =-+=-时等号成立,故D 正确;故选:BCD .11.设函数()22,0e ,0xx ax a x f x a x ⎧---<=⎨-≥⎩,则下列说法正确的是()A.若函数()f x 在R 上单调递增,则实数a 的取值范围是(],0-∞B.若函数()f x 有3个零点,则实数a 的取值范围是()8,∞+C.设函数()f x 的3个零点分别是1x ,2x ,3x (123x x x <<),则12313x x x +-的取值范围是(),8ln 2∞---D.任意实数a ,函数()f x 在−1,1内无最小值【答案】BCD。
扬州市2023-2024学年高三下学期考前调研模拟预测测试数学试题+答案
扬州市2023-2024学年高三考前调研测试数学一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}20,,1,1,1A aB a a ==+-,则“1a =”是“A B ⊆”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件2.若复数z 满足1i z=,则z 等于( )A.12 D.23.圆22:9O x y +=被直线:2l y =+所截线段的长度为( )A.2B.4C.D.4.某外来入侵植物生长迅速,繁殖能力强,大量繁殖会排挤本地植物,容易形成单一优势种群,导致原有植物种群的衰退甚至消失,使当地生态系统的物种多样性下降,从而破坏生态平衡.假如不加控制,它的总数量每经过一年就增长一倍.则该外来入侵植物由入侵的1株变成100万株大约需要( )(参考数据:lg20.301≈)A.40年B.30年C.20年D.10年5.已知某圆锥底面半径为1,高为2,则该圆锥的外接球表面积为( ) A.25π8 B.25π6 C.25π4 D.25π26.在二项式2024(13)x +的展开式中,记各项的系数和为S ,则S 被5除所得的余数是( ) A.4 B.3 C.2 D.17.在ABC 中,2,DC BD M =为线段AD 的中点,过M 的直线分别与线段AB AC 、交于P Q 、,且2,3AP AB AQ AC λ==,则λ=( ) A.16 B.13 C.12 D.23 8.将一颗骰子连续抛掷三次,向上的点数依次为123,,x x x ,则123x x x 剟的概率为( ) A.554 B.754C.527D.727二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有错的得0分.9.已知函数()2π2cos 6f x x ⎛⎫=-⎪⎝⎭,则( ) A.()f x 最小正周期为2π B.π6x =是()f x 图象的一条对称轴 C.5π,112⎛⎫⎪⎝⎭是()f x 图象的一个对称中心 D.()f x 在ππ,44⎛⎫-⎪⎝⎭上单调 10.已知正实数,m n 满足ln e ln m m n n =⋅+(e 是自然对数的底数,e 2.718≈),则( ) A.e m m n =⋅ B.e n n m =⋅ C.1e m n -的最大值为21e D.方程1e emn -=-无实数解 11.如图,一个棱长为6的透明的正方体容器(记为正方体1111ABCD A B C D -)放置在水平面α的上方,点A 恰在平面α内,点B 到平面α的距离为2,若容器中装有水,静止时水面与表面11AA D D 的交线与1A D的夹角为0,记水面到平面α的距离为d ,则( )A.平面11ABC D ⊥平面αB.点1D 到平面α的距离为8C.当()2,8d ∈时,水面的形状是四边形D.当7d =时,所装的水的体积为7474三、填空题:本大题共3小题,每小题5分,共15分.12.在ABC 中,内角,,A B C 的对边分别是,,a b c .若sin :sin :sin 2:3:4A B C =,则sin C =__________.13.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别是12F F 、,若双曲线左支上存在点P ,使得212PF PF =,则该双曲线离心率的最大值为__________.14.对于有穷数列{}n a ,从数列{}n a 中选取第1i 项、第2i 项、、第m i 项()12m i i i <<<,顺次排列构成数列{}k b ,其中,1k k i b a k m =剟,则称新数列{}k b 为{}n a 的一个子列,称{}k b 各项之和为{}n a 的一个子列和.规定:数列{}n a 的任意一项都是{}n a 的子列.则数列1,2,4,8,16,32的所有子列和的和为__________.四、解答题:本大题共5小题,计77分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)已知各项均为正数的数列{}n a 前n 项和为n S ,且()21n n n S a a =+. (1)求数列{}n a 的通项公式; (2)证明:121112nS S S +++<. 16.(本小题满分15分)如图,在四棱锥P ABCD -中,底面ABCD 是等腰梯形,112AB AD CD BC ====,点M 在PB 上,点N 在BC 上,平面AMN ∥平面PCD .(1)求证:N 是BC 的中点;(2)若,,PA AB PA AB PC BC ⊥==,求直线MC 与平面PCD 所成角的正弦值. 17.(本小题满分15分)扬州是国家历史文化名城,“烟花三月下扬州”“春风十里扬州路”传诵千年.为了给来扬州的客人提供最好的旅游服务,某景点推出了预订优惠活动,下表是该景点在某App 平台10天预订票销售情况:经计算可得:10101021111 1.85,96,38510i i i i i i i y y t y t =======∑∑∑. (1)因为该景点今年预订票购买火爆程度远超预期,该App 平台在第10天时系统异常,现剔除第10天数据,求y 关于t 的线性回归方程(结果中的数值用分数表示);(2)该景点推出团体票,每份团体票包含四张门票,其中X 张为有奖门票(可凭票兑换景点纪念品),X 的分布列如下:今从某份团体票中随机抽取2张,恰有1张为有奖门票,求该份团体票中共有3张有奖门票的概率. 附:对于一组数据()()()1122,,,,,,n n u v u v u v ,其回归线ˆˆˆv u αβ=+的斜率和截距的最小二乘估计分别为:1221ˆˆˆ,()ni i i ni i u v nuvv u un u βαβ==-==--∑∑ 18.(本小题满分17分) 已知函数()()sin ,f x x g x x ==.(1)求函数()()()()2,0,2πh x f x x x =∈的极值; (2)函数()()()π,0,2g x x x f x ϕ⎛⎫=∈ ⎪⎝⎭. (i )讨论函数()x ϕ的单调性; (ii )函数()()()1cos 0F x a x x x ϕϕ=⋅⋅-<,求实数a 的取值范围. 19.(本小题满分17分)己知椭圆2222:1(0)x y E a b a b+=>>短轴长为2,椭圆E 上一点M 到()0,2P距离的最大值为3.(1)求a 的取值范围;(2)当椭圆E 的离心率达到最大时,过原点O 斜率为()0k k ≠的直线l 与E 交于A C 、两点,PA PC 、分别与椭圆E 的另一个交点为B D 、.(i )是否存在实数λ,使得BD 的斜率k '等于k λ?若存在,求出λ的值;若不存在,说明理由; (ii )记AC 与BD 交于点Q ,求线段PQ 长度的取值范围.扬州市2024届高三考前调研测试数学参考答案1.B2.A3.D4.C5.C6.D7.B8.D9.BC 10.ACD 11.ABD13.3 14.2016 15.【解析】(1)因为()21n n n S a a =+①,所以()11121n n n S a a +++=+②,()11121S a a =+③, 由③得:()2110a -=,所以11a =,②-①得:()()221112n n n n n a a a a a +++=-+-,整理得:()()1110n n n n a a a a +++--=,又因为{}n a 各项均为正数,所以11n n a a +-=,所以{}n a 是公差1d =的等差数列,()()1111n a a n d n n =+-=+-=. (2)证明:由(1),()()1122n n n a a n n S ++==,所以()122211n S n n n n ==-++, 所以12111222222222122311n S S S n n n ⎛⎫⎛⎫⎛⎫+++=-+-++-=-< ⎪⎪ ⎪++⎝⎭⎝⎭⎝⎭. 16.【解析】(1)因为平面AMN ∥平面PCD ,平面ABCD ⋂平面AMN AN =, 平面ABCD ⋂平面PCD CD =.所以AN ∥CD ,又由梯形ABCD 可得AD ∥CN ,所以四边形ADCN 为平行四边形, 所以12CN AD BC ==,所以N 是BC 的中点. (2)连接AC ,由(1)知N 是BC 的中点,12AN CD BC ==,所以90BAC ∠=,即AB AC ⊥,因为,,CB CP AB AP CA CA ===,所以ABC 与APC 全等, 所以90PAC BAC ∠∠==,即PA AC ⊥,又,,,PA AB AB AC A AB AC ⊥⋂=⊂平面ABCD ,所以PA ⊥平面ABCD , 以{},,AB AC AP 为正交基底,建立如图所示空间直角坐标系A xyz -,则()()()10,0,1,1,0,0,,2P B C D ⎛⎫- ⎪ ⎪⎝⎭,所以()1313,,0,,,1,0,3,02222CD PD AC ⎛⎫⎛⎫=--=--= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,设平面PCD 的法向量为(),,n x y z =,则00n CD n PD ⎧⋅=⎪⎨⋅=⎪⎩,即102102x y x y z ⎧--=⎪⎪⎨⎪-+-=⎪⎩,取x =1,y z =-=(3,1,n =-,由平面AMN ∥平面PCD ,平面PBC ⋂平面AMN MN =,平面PBC ⋂平面PCD PC =. 得MN ∥PC ,又N 是BC 的中点,所以M 是PB 的中点,1111,0,,,2222M CM ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭.设直线MC 与平面PCD 所成角为3,sin cos ,7CM n CM n CM nθθ⋅====⋅⋅,所以直线MC 与平面PCD 所成的角的正弦值为7. 17.【解析】(1)设y 关于t 的线性回归方程:ˆˆˆy t αβ=+, 则910111291115,0.5(1.85100.5)2,2999i i i i t y y y ==+++⎛⎫====-=⨯-= ⎪⎝⎭∑∑, 910910222111110385100285,100.596591,i ii i i i i i i i t tt y t y =====-=-=⋯=-⨯=-=∑∑∑∑,所以9122219919521123ˆˆˆ,25285956060129()i ii Oii t y tyy t tt βαβ==--⨯⨯====-=-⨯=-⨯-∑∑, 所以y 关于t 的线性回归方程是231ˆ1260yt =+. (2)记“从某份团体票中随机抽取2张,恰有1张为有奖门票”为事件A , “该份团体票中共有i 张有奖门票”为事件i B ,则()313P B =, ()1131324C C 1C 2P A B ==∣,所以()()()33316P AB P B P A B ==∣,()()11222424C C 2,0C 3P A B P A B ===∣∣,所以()()()()234P A P AB P AB P AB =++()()()()()22344121102362P B P A B P AB P B PA B =++=⨯++=∣∣.所以()()()33116132P AB P B A P A ===∣. 答:所求概率是13.18.【解析】(1)函数()2sin h x x =,导函数()2cos h x x =' 令()()π0,0,2π,h x x x =∈='或11π,x =由上表,函数()h x 极大值为π166h ⎛⎫=-⎪⎝⎭,极小值为11π166h ⎛⎫=-- ⎪⎝⎭(2)(i )()()()()2πsin cos ,0,,sin 2sin g x x x x x x x x f x x x ϕϕ-⋅⎛⎫==∈= ⎪⎝⎭' 记()sin cos x x x x γ=-⋅,则()()cos cos sin sin x x x x x x x γ=--⋅=⋅'π0,2x ⎡⎫∈⎪⎢⎣⎭时,()0x γ'≥,所以π0,2x ⎛⎫∈ ⎪⎝⎭时,()()00x γγ>=,所以()0x ϕ'>,所以()x ϕ是π0,2⎛⎫⎪⎝⎭上的增函数. (ii )()cos sin π,0,sin 2ax x x F x x x x ⎛⎫=-∈ ⎪⎝⎭当0a ≤时,()0F x <恒成立; 当0a >时,()22sin cos 0cos sin 0sin x xF x a x ax x x x x=⋅⋅-<⇔-< 令()22πcos sin ,0,2G x ax x x x ⎛⎫=-∈ ⎪⎝⎭ 当1a >时,令()()()πsin ,0,,1cos 0,2M x x x x M x x M x ⎛⎫=-∈=-> ⎪⎝⎭'在π0,2⎛⎫ ⎪⎝⎭单调递增,()()00,M x M >=即sin x x >()()22222cos sin cos cos 1G x ax x x ax x x x a x =->-=-因为1a >,所以()000π10,,cos ,02x x G x a⎛⎫∃∈=> ⎪⎝⎭,不满足题意, 所以1a >不成立.01a <≤时,()2222cos sin cos sin G x ax x x x x x =--…记()()222cos sin ,2cos sin 2sin cos H x x x x H x x x x x x x =-='--由(i )知π0,2x ⎛⎫∈ ⎪⎝⎭时,cos sin x x x <, 所以()22sin sin 2sin cos H x x x x x x <--'222222sin 1cos 2sin 2sin 2sin 2022222x x x x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=⋅--=⋅-<⋅-=⎢⎥ ⎪ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎝⎭⎣⎦,所以()()00H x H <=.所以01a <≤成立. 综上所述:1a ≤.19.【解析】(1)设(),M x y ,由题知,22b =,即1b =,则2221x y a+=,即()222211,x a a y y =--剟记()()222222(2)144f y MP x y a y y a ==+-=---++, 则()f y 在[]1,1-上的最大值为9,对称轴为2201y a -=<- ①当2211a ---…,即(a ∈时,()max ()19f y f =-=,成立; ②当2211a ->--,即a >22max 222244()41559111f y f a a a a a -⎛⎫==++=-++= ⎪---⎝⎭…,当且仅当22411a a -=-,即23a =时等号成立,不成立; 综上,(a ∈.(2)由(1)得,222222111c a e a a a -===-,所以当a =离心率达到最大,此时,椭圆22:13x E y += (i )设()00,A x kx ,则()00,C x kx --,其中2220013x k x +=即()220313k x +=,由00222:213kx PA y x x x y -⎧=+⎪⎪⎨⎪+=⎪⎩得:()()22220000031121212290k x kx x x kx x x ⎡⎤+-++-+=⎣⎦ 即()()22000544230kx x x kx x x -+-+=,所以20000033,5445B B x x x x x kx kx -==--, 所以0000354,4545x kx B kx kx ⎛⎫--⎪--⎝⎭,同理可得:0000354,4545x kx D kx kx ⎛⎫-+ ⎪++⎝⎭所以,BD 的斜率000000000054544545183333054545kx kx kx kx kx k k x x x kx kx +--+--===----+'- (ii )由(i )知,()00000035416203334:54545554555x kx kx BD y k x kx kx kx kx kx ⎛⎫--=-++=-+=-+ ⎪---⎝⎭ 由34:55:BD y kx AC y kx⎧=-+⎪⎨⎪=⎩.,3455y y =-+,即12Q y =,将12y =代入椭圆方程得:32x =±,所以,Q的轨迹方程为133222y x⎛⎫=-<<⎪⎝⎭,所以,线段PQ长度的取值范围为3,22⎡⎢⎣⎭.。