过程参数检测技术实验报告

合集下载

齿轮参数的测定实验报告

齿轮参数的测定实验报告

齿轮参数的测定实验报告引言齿轮是机械传动中常用的零件,其使用范围广泛,从小型日用品到大型工业机械都需要使用到齿轮。

在齿轮的设计和制造过程中,需要对齿轮参数进行精确的测定。

通过测定齿轮参数,可以确保齿轮的精度和可靠性,满足不同工作条件下的要求。

本实验旨在通过实验方法对齿轮参数进行测定,从而了解不同齿轮参数对齿轮运动学特性的影响。

实验原理1.齿轮齿数计算齿轮齿数是齿轮的基本参数之一。

常见的计算方法有齿轮齿数比计算和模数计算两种。

齿轮齿数比计算需要通过输入齿轮的齿数,再通过给出的齿轮齿数比计算得到另一齿轮的齿数。

模数计算需要先给出齿轮的模数,再通过齿轮齿数计算得到齿轮的分度圆直径。

2.齿轮齿廓测量齿轮齿廓是齿轮的重要性能参数之一,其测量需要用到螺旋测量仪。

通过螺旋测量仪,可以得到齿轮齿廓曲线的三维坐标数据。

通过对齿轮齿廓曲线进行计算和比较,可以评价齿轮的齿廓精度和几何误差。

3.齿间角测量齿间角是齿轮参数中的一个重要参数,直接影响到齿轮的传动精度。

通过齿间角的测量,可以评估齿轮的传动性能和齿间配合情况。

实验步骤根据测定到的齿轮分度圆直径,通过模数计算测得齿轮齿数,将齿轮齿数记录下来。

通过给定的齿轮齿数比,可计算出另一齿轮的齿数。

通过齿间角测量器对齿轮齿间角进行测量,并记录齿间角的数值。

实验结果与分析通过实验测量得到齿轮的齿数、齿廓、齿间角等参数,得到如下数据:齿轮1的齿数为20,模数为1.5mm,齿廓误差为±0.01mm,齿间角为22.5度。

通过计算机对齿轮齿廓进行比较分析,得到齿轮1和齿轮2的齿廓精度都较高,且几何误差较小。

通过齿间角的测量,发现齿轮1和齿轮2的齿间角都符合设计要求。

可以认为齿轮1和齿轮2均符合齿轮设计要求,并且具有一定的传动精度。

结论本实验通过测量齿轮的齿数、齿廓和齿间角等参数,得到了齿轮的基本几何参数和齿轮运动学特性,可以用于评估齿轮的传动精度和几何误差。

实验结果表明,齿轮齿数、齿廓和齿间角对齿轮的传动精度和齿轮工作状态有着重要的影响。

有机废物好氧堆肥实验

有机废物好氧堆肥实验

有机废物好氧堆肥实验【实验目的】1.通过参与好氧堆肥实验装置的建立和全过程参数检测,了解作为有机废物无害化。

资源化处理处置方法之一的堆肥技术的典型过程及技术特征。

2.通过已掌握的微生物群落检测、计数方法,了解堆肥不同过程的微生物学变化特征。

3.掌握堆肥腐熟度检测方法之一的种子发芽率和发芽指数法。

【实验原理】堆肥化(composting)是指依靠自然界广泛分布的细菌、放线菌、真菌等微生物,或是通过人工接种待定功能的菌,在一定工况条件下,有控制地促进可被生物降解的有机物向稳定的腐殖质转化的生物化学过程,其实质是一种生物代谢过程。

废物经过堆肥化处理,制得的成品称堆肥(compost)。

好氧堆肥中底物的降解是细菌、放线菌和真菌等多种微生物共同作用的结果,在一个完整的好氧高温堆肥的各个阶段,微生物的群落结构演替非常迅速,即在堆肥这个动态过程中,占优势的微生物区系随着不同堆肥阶段的温度,含水率,好氧速率,pH值等理化性质的改变进行着相应的演替。

本实验通过学生全过程参与好氧堆肥装置的建立和关键参数检测,了解作为有机废物无害化、资源化处理处置方法之一的堆肥技术的典型过程及技术特征,掌握堆肥关键参数的检测方法,主要包括以下三部分内容:1.堆肥过程特征参数检测分析:包括堆温、pH、气体成分和含量变化监测2.堆肥过程微生物群落变化分析:采用平板计数法检测微生物种群的数量来研究高温阶段和堆肥腐熟阶段微生物种群结构和数量的变化,包括细菌、放线菌、真菌以及纤维素分解菌。

3.堆肥腐熟度检测:堆肥腐熟度是指堆肥产品的稳定程度。

判断堆肥腐熟度的指标包括物理学指标、化学指标(包括腐殖质)和生物学指标。

其中简单的判断堆肥腐熟的方法包括:1)根据外观和气味:在堆肥化过程中,物料的色度和气味的变化反映出微生物的活跃程度。

对于正常的堆肥过程,随着进程的不断推进,堆肥物料的颜色逐渐发黑,腐熟后的堆肥产品呈黑褐色或黑色,气味由最初的氨味转变成土腥味。

过程控制实验报告

过程控制实验报告

过程控制实验报告1. 实验目的本次实验的目的是学习和掌握过程控制的基本原理和操作方法,了解过程控制系统的组成和结构,掌握过程控制系统的基本调试方法和过程控制的自动化程度。

2. 实验原理过程控制是指对一组物理过程进行控制的技术和方法。

过程控制的目的是使被控制的物理过程在一定的条件下,达到预期的目标,如稳定、精度、速度、延迟、可靠性、安全性、经济性等等。

过程控制系统由传感器、执行元件、控制器和执行器构成,其中传感器用于检测被控制物理过程的状态,控制器根据传感器获取的信息进行决策,并通过执行元件控制执行器实现对被控制物理过程的控制。

3. 实验步骤本次实验的过程控制系统由一台工业控制计算机、一台工业控制器和一组执行器构成。

实验的具体步骤如下:(1) 将传感器与控制器连接,并将控制器与计算机连接。

(2) 在计算机上启动控制软件,在软件中设置控制器和传感器的参数。

(3) 将执行器与控制器连接,并调试执行器的控制参数。

(4) 在控制软件中设置控制策略和控制目标,并启动控制器。

(5) 监测被控制物理过程的状态,并记录相关数据。

(6) 对控制策略和控制参数进行调整,直到被控制物理过程达到预期目标。

4. 实验结果经过多次实验,我们成功地控制了被控制的物理过程,并达到了预期目标。

实验结果表明,过程控制技术可以有效地控制物理过程,并提高物理过程的稳定性、精确性和可靠性。

5. 实验总结本次实验使我们深入了解了过程控制的原理和操作方法,掌握了过程控制系统的基本调试方法和过程控制的自动化程度。

通过实验,我们发现过程控制技术在许多工业领域都具有广泛的应用前景,是提高生产效率和质量的重要手段。

在今后的学习和工作中,我们将继续深入学习和研究过程控制技术,为推动工业自动化和智能化发展做出贡献。

电路参数测量实验报告

电路参数测量实验报告

一、实验目的1. 掌握使用万用表、示波器等常用仪器测量电路参数的方法。

2. 理解电路参数(如电阻、电容、电感、电压、电流等)在电路中的作用。

3. 培养实验操作能力和数据分析能力。

二、实验原理本实验主要测量电路中的电阻、电容、电感等参数。

以下为各参数的测量原理:1. 电阻测量:利用万用表测量电路中某段导线的电阻值。

根据欧姆定律,电阻值等于电压与电流的比值。

2. 电容测量:利用交流信号源和示波器测量电路中电容的充放电过程,根据电容的充放电公式计算电容值。

3. 电感测量:利用交流信号源和示波器测量电路中电感的自感电压,根据自感电压与电流的关系计算电感值。

4. 电压测量:利用万用表测量电路中某点的电压值。

5. 电流测量:利用万用表测量电路中某段导线的电流值。

三、实验仪器与器材1. 万用表2. 示波器3. 交流信号源4. 电阻、电容、电感等电子元件5. 电路连接线6. 电路实验板四、实验步骤1. 搭建电路:根据实验要求,将电阻、电容、电感等元件按照电路图连接在电路实验板上。

2. 电阻测量:使用万用表测量电路中某段导线的电阻值。

3. 电容测量:a. 将电容与电阻串联,接入交流信号源。

b. 用示波器观察电容的充放电波形。

c. 根据电容的充放电公式计算电容值。

4. 电感测量:a. 将电感与电阻串联,接入交流信号源。

b. 用示波器观察电感的自感电压波形。

c. 根据自感电压与电流的关系计算电感值。

5. 电压测量:使用万用表测量电路中某点的电压值。

6. 电流测量:使用万用表测量电路中某段导线的电流值。

五、实验数据记录与分析1. 电阻测量:记录万用表读数,计算电阻值。

2. 电容测量:记录示波器显示的电容充放电波形,计算电容值。

3. 电感测量:记录示波器显示的电感自感电压波形,计算电感值。

4. 电压测量:记录万用表读数,计算电压值。

5. 电流测量:记录万用表读数,计算电流值。

六、实验结果与讨论1. 通过实验,我们成功测量了电路中的电阻、电容、电感等参数。

一般检查实验报告

一般检查实验报告

竭诚为您提供优质文档/双击可除一般检查实验报告篇一:检测技术实验报告《检测技术实验》实验名称:院(系):姓名:实验室:同组人员:评定成绩:实验报告第一次实验(一、三、五)自动化专业:自动化xxxxxx 学号:xxxxxxxx实验组别:实验时间:年月日审阅教师:实验一金属箔式应变片――单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二、实验仪器:应变传感器实验模块、托盘、砝码、数显电压表、±15V、±4V电源、万用表、导线等。

三、实验原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε,式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。

金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感组件,如图1-1所示,四个金属箔应变片分别贴在弹性体的上下两侧,弹性体受到压力发生形变,上面的应变片随弹性体形变被拉伸,对应为模块面板上的R1、R3,下面的应变片随弹性体形变被压缩,对应为模块面板上的R2、R4。

图2-1应变式传感器安装示意图图2-2应变传感器实验模板、接线示意图图2-3单臂电桥工作原理通过这些应变片转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,如图1-2所示R5、R6、R7为固定电阻,与应变片一起构成一个单臂电桥,其输出电压e为电桥电源电压,式1-1表明单臂电桥输出为非线性,非线性误差为四、实验内容与步骤1、图1-1应变传感器上的各应变片已分别接到应变传感器模块左上方的R1、R2、R3、R4上,可用万用表测量判别,R1=R2=R3=R4=350Ω。

2、从主控台接入±15V电源,检查无误后,合上主控台电源开关,将差动放大器的输入端ui短接,输出端uo2接数显电压表(选择2V档),调节电位器Rw4,使电压表显示为0V。

工测实验报告模板

工测实验报告模板

工测实验报告模板
以下是一个工测实验报告的基本模板,你可以根据具体的实验内容和要求进行相应的调整和填写。

实验报告
实验名称:(填写实验的具体名称)
一、实验目的:
(简要描述实验的目的,例如验证某个理论、测定某个物理量等)
二、实验原理:
(简要描述实验所基于的理论原理和相关知识,可以引用相关的公式或图表)
三、实验装置和仪器:
(描述实验所使用的装置和仪器的具体型号和基本参数)
四、实验步骤:
(详细描述实验的具体步骤和操作过程,可以配上图示或流程图)
五、实验数据和结果:
(列举实验中所测得的数据和结果,并结合实验原理进行分析和解释)
六、实验误差和讨论:
(分析实验中可能存在的误差来源、误差分析方法和结果,并对实验结果进行讨论和比较)
七、实验结论:
(根据实验结果,回答实验的目的是否达到,并得出一个准确的结论)
八、实验体会:
(简要总结实验过程中的心得体会和对实验的进一步思考)
以上仅是一个简单的实验报告模板,具体的实验报告要根据实验的具体内容和要求进行相应的修改和填写。

在实验报告中,要注意使用科学的语言和符合实验规范的书写格式,可以借鉴相关的实验报告范例进行参考。

三表法测量交流参数实验报告总结

三表法测量交流参数实验报告总结

三表法测量交流参数实验报告总结
本次实验是以三表法测量交流参数,主要是通过使用电压表、电流表和功率表来测量交流电路中的电压、电流和功率等参数。

通过实验,我们可以更加深入地了解交流电路的基本参数和特性,为今后的学习和实践打下坚实的基础。

在实验中,我们首先需要了解三表法的基本原理和操作方法。

三表法是一种常用的测量交流电路参数的方法,它可以同时测量电压、电流和功率等参数,具有简单、准确、可靠等优点。

在实验中,我们需要将电压表、电流表和功率表依次接入电路中,通过读取表盘上的数值来测量电路中的各项参数。

在实验过程中,我们需要注意一些细节问题。

首先,需要选择合适的电压表、电流表和功率表,以保证测量的准确性和可靠性。

其次,需要正确接线,避免接错或接反导致测量结果出现误差。

最后,需要注意安全问题,避免触电等危险情况的发生。

通过本次实验,我们不仅学习了三表法测量交流参数的基本原理和操作方法,还深入了解了交流电路的基本参数和特性。

同时,我们也发现了一些问题和不足之处,需要在今后的学习和实践中加以改进和完善。

总之,本次实验对我们的学习和实践都具有重要的意义和价值。

电容参数测试实验报告(3篇)

电容参数测试实验报告(3篇)

第1篇一、实验目的1. 了解电容器的参数及其测试方法;2. 掌握使用示波器、万用表等仪器进行电容器参数测试的操作技巧;3. 熟悉电容器参数对电路性能的影响。

二、实验原理电容器是一种储存电荷的电子元件,其参数主要包括电容量、耐压值、损耗角正切等。

电容量是指电容器储存电荷的能力,单位为法拉(F);耐压值是指电容器能够承受的最大电压,单位为伏特(V);损耗角正切是衡量电容器损耗性能的参数,其值越小,电容器性能越好。

电容器参数测试实验主要通过测量电容量、耐压值和损耗角正切等参数,来评估电容器的性能。

三、实验仪器与材料1. 实验仪器:(1)示波器:用于观察电容器充放电波形;(2)万用表:用于测量电容器的电容量、耐压值和损耗角正切;(3)信号发生器:用于提供测试信号;(4)电容器:待测试的电容元件。

2. 实验材料:(1)测试电路板;(2)连接线;(3)电源。

四、实验步骤1. 连接电路:按照实验电路图连接测试电路,包括信号发生器、电容器、示波器、万用表等。

2. 测量电容量:(1)打开电源,调节信号发生器输出频率为1kHz,输出电压为5V;(2)使用万用表测量电容器的电容量,记录数据。

3. 测量耐压值:(1)使用万用表测量电容器的耐压值,记录数据;(2)将电容器接入测试电路,逐渐增加电压,观察电容器是否击穿,记录击穿电压。

4. 测量损耗角正切:(1)打开示波器,将示波器探头连接到电容器的两端;(2)使用信号发生器输出正弦波信号,调节频率为1kHz,输出电压为5V;(3)观察示波器显示的波形,记录电容器的充放电波形;(4)使用万用表测量电容器的损耗角正切,记录数据。

5. 数据处理与分析:(1)根据测量数据,计算电容器的电容量、耐压值和损耗角正切;(2)分析电容器的性能,比较不同电容器的参数差异。

五、实验结果与分析1. 电容量:根据实验数据,电容器A的电容量为10μF,电容器B的电容量为15μF。

2. 耐压值:电容器A的耐压值为50V,电容器B的耐压值为60V。

食品专业大实验实验报告

食品专业大实验实验报告

一、实验目的1. 熟悉食品加工过程中的基本原理和操作技术。

2. 培养食品专业学生的实际操作能力和创新思维。

3. 提高学生对食品质量安全的认识,增强食品安全意识。

二、实验内容本次实验主要涉及以下几个方面:1. 食品原料的预处理2. 食品加工过程中的工艺参数控制3. 食品品质的检测与评价4. 食品包装与保鲜技术三、实验仪器与试剂1. 仪器:粉碎机、搅拌机、发酵设备、杀菌设备、包装机、电子天平、pH计、折光仪、感官评价室等。

2. 试剂:面粉、酵母、糖、盐、水、香精、防腐剂等。

四、实验步骤1. 食品原料的预处理(1)称取适量的面粉,加入适量的水、糖、盐等原料,搅拌均匀。

(2)将混合好的原料通过粉碎机进行粉碎,得到所需细度的粉状原料。

2. 食品加工过程中的工艺参数控制(1)将粉状原料加入发酵设备中,进行发酵处理。

(2)根据实验要求,调整发酵温度、湿度、时间等参数。

(3)发酵完成后,将发酵好的原料进行搅拌,使面团充分混合均匀。

(4)将面团进行适当的成型处理,如挤压、切割等。

3. 食品品质的检测与评价(1)采用折光仪检测食品的固形物含量。

(2)使用pH计检测食品的酸碱度。

(3)感官评价:邀请若干名志愿者对食品的外观、口感、香气等方面进行评价。

4. 食品包装与保鲜技术(1)将食品进行适当的包装,如真空包装、充氮包装等。

(2)根据食品特性,选择合适的保鲜剂和保鲜方法,如低温保存、防腐剂等。

五、实验结果与分析1. 通过实验,成功制备了发酵食品,并对其品质进行了检测和评价。

2. 实验结果表明,食品加工过程中的工艺参数对食品品质有着重要影响。

3. 通过感官评价,食品的外观、口感、香气等方面均达到了预期效果。

六、实验结论1. 本实验成功制备了发酵食品,并对其品质进行了检测和评价。

2. 实验结果表明,食品加工过程中的工艺参数对食品品质有着重要影响。

3. 通过本次实验,提高了学生对食品加工过程中各项参数控制的重视程度,增强了食品安全意识。

过程控制控实验报告

过程控制控实验报告

实验一 单容自衡水箱特性的测试一、实验目的1. a 根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K 、T 和传递函数。

二、实验设备1. A3000高级过程控制实验系统2. 计算机及相关软件 三、实验原理由图2.1可知,对象的被控制量为水箱的液位h ,控制量(输入量)是流入水箱中的流量Q 1,Q 2为流出水箱的流量。

手动阀QV105和闸板QV116的开度(5~10毫米)都为定值。

根据物料平衡关系,在平衡状态时:0Q Q 2010=- (1) 动态时则有: dtdVQ Q 21=- (2) 式中V 为水箱的贮水容积,dtdV为水贮存量的变化率,它与h 的关系为Adh dV =,即:dtdhA dt dV = (3) A 为水箱的底面积。

把式(3)代入式(2)得:QV116V104V103h∆h QV105QV102P102LT103LICA 103FV101MQ 1Q 2图2.1单容水箱特性测试结构图图2.2 单容水箱的单调上升指数曲线dtdhA=-21Q Q (4) 基于S 2R h Q =,R S 为闸板QV116的液阻,则上式可改写为dtdhA R h Q S =-1,即:或写作:1)()(1+=TS Ks Q s H (5) 式中T=AR S ,它与水箱的底积A 和V 2的R S 有关;K=R S 。

式(5)就是单容水箱的传递函数。

若令SR s Q 01)(=,R 0=常数,则式(5)可改为: TS KR S R K S R T S T K s H 0011/)(0+-=⨯+= 对上式取拉氏反变换得: )e -(1KR h(t)t/T0-= (6)当∞→t 时0KR )h(=∞,因而有=∞=0R )h(K 阶跃输入输出稳态值。

当t=T 时,则)h(KR )e-(1KR h(T) 001∞===-0.6320.632。

式(6)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图2.2所示。

三表法测量交流参数实验报告总结

三表法测量交流参数实验报告总结

三表法测量交流参数实验报告总结三表法是电力系统中常用的测量交流参数的方法之一。

本次实验旨在通过三表法测量电源电压、电源频率以及负载电流,并分析实际测量结果与理论数值之间的误差。

通过本次实验,我对三表法的原理和实验操作有了更深入的了解,并加深了对交流电参数测量的认识。

实验中,我们使用了数字示波器、电阻箱、交流电压源、电流表和万用表等仪器设备。

首先,我们通过示波器测量了电源的电压和频率,为后续的实验提供了准确的参数。

然后,我们依次使用稳压直流电源和电阻箱提供负载电流,并通过万用表测量负载电流的值。

最后,我们使用电流表测量负载电流,并与万用表的测量结果进行比对。

在实验过程中,我们注意到了某些因素可能对测量结果产生误差。

例如,电流表的内阻和负载电阻形成了一个并联电路,导致了一定的分流现象,从而使电流表的测量值比真实值要小。

另外,由于电流表的量程有限,当负载电流超过电流表的量程时,我们无法进行准确的测量,导致了一定的误差。

通过对实验结果的分析,我们发现测量电源电压和频率的结果与示波器的测量值非常接近,误差非常小。

这说明三表法可以有效地测量交流电的电压和频率。

然而,测量负载电流的结果与万用表的测量值存在一定的差异。

这部分差异主要是由于电流表的内阻和分流现象导致的。

综上所述,本次实验通过三表法测量交流参数的方法,对电源电压、电源频率和负载电流进行了测量和分析。

通过与示波器和万用表的比对,我们发现三表法可以准确地测量电源电压和频率,并能够较为精确地测量负载电流。

然而,在测量负载电流时需要注意电表的内阻和分流现象可能导致的偏差。

因此,在实际应用中,应该综合考虑实验条件和仪器设备的特点,选择合适的测量方法,以获得更准确的测量结果。

参考内容:1. 电力系统运行与控制. 王荃, 李颂豪, 郗智勇, 严宣宇. 中国电力出版社, 2018.2. 电气测量技术与仪器. 周宁一, 孔令青, 黄峰, 邓菊生. 清华大学出版社, 2017.3. 电测技术手册. 罗定邦, 李明良. 中国电力出版社, 2007.4. 电力系统测量与仪表. 李慧, 宋自长, 张继伟. 中国电力出版社, 2012.5. 交流参数测量技术. 张鹏. 电力系统自动化, 2009.。

原件参数测量实验报告(3篇)

原件参数测量实验报告(3篇)

第1篇一、实验目的1. 掌握常用电子元件的识别与参数测量方法。

2. 学习使用万用表等仪器进行电子元件参数的测量。

3. 了解不同类型电子元件的特性和应用。

二、实验内容本次实验主要测量以下电子元件的参数:1. 电阻2. 电容3. 二极管4. 三极管三、实验原理1. 电阻测量:通过万用表的电阻测量功能,根据欧姆定律(U=IR)计算出电阻值。

2. 电容测量:通过万用表的电容测量功能,根据电容的充放电原理和RC时间常数计算出电容值。

3. 二极管测量:通过万用表的二极管测试功能,测量二极管的正向压降和反向电阻,判断其极性和性能好坏。

4. 三极管测量:通过万用表的hFE测试功能,测量三极管的电流放大倍数,判断其类型和三个管脚(e、b、c)。

四、实验仪器与设备1. 数字万用表2. 电阻3. 电容4. 稳压二极管5. 整流二极管6. 发光二极管7. 三极管五、实验步骤1. 电阻测量:- 将万用表调至电阻测量挡位。

- 将红表笔和黑表笔分别接触到电阻的两端。

- 读取万用表显示的电阻值。

2. 电容测量:- 将万用表调至电容测量挡位。

- 将红表笔和黑表笔分别接触到电容的两端。

- 读取万用表显示的电容值。

3. 二极管测量:- 将万用表调至二极管测试挡位。

- 将红表笔和黑表笔分别接触到二极管的正负极。

- 读取万用表显示的正向压降和反向电阻值,判断二极管的极性和性能好坏。

4. 三极管测量:- 将万用表调至hFE测试挡位。

- 将红表笔和黑表笔分别接触到三极管的e、b、c三个管脚。

- 读取万用表显示的电流放大倍数,判断三极管的类型。

六、实验结果与分析1. 电阻测量:- 测量结果与标称值基本一致,说明电阻参数测量准确。

2. 电容测量:- 测量结果与标称值基本一致,说明电容参数测量准确。

3. 二极管测量:- 正向压降和反向电阻值符合二极管特性,说明二极管性能良好。

4. 三极管测量:- 电流放大倍数符合三极管类型,说明三极管性能良好。

七、实验结论1. 通过本次实验,掌握了常用电子元件的识别与参数测量方法。

光纤参数测量实验报告(3篇)

光纤参数测量实验报告(3篇)

第1篇一、实验目的1. 熟悉光纤的基本特性和结构。

2. 掌握光纤参数测量的基本原理和方法。

3. 了解光纤连接、衰减、色散等关键参数的测量方法。

4. 培养实验操作技能和数据分析能力。

二、实验原理光纤作为一种传输信息的介质,其性能参数直接关系到光通信系统的质量和效率。

本实验主要测量以下光纤参数:1. 光纤长度:通过光时域反射仪(OTDR)测量光纤的长度。

2. 光纤衰减:通过插入损耗测试仪测量光纤在特定波长下的衰减。

3. 光纤色散:通过色散分析仪测量光纤在特定波长下的色散。

4. 光纤连接损耗:通过插入损耗测试仪测量光纤连接器的插入损耗。

三、实验仪器与材料1. 光纤测试仪:包括光时域反射仪(OTDR)、插入损耗测试仪、色散分析仪等。

2. 光纤跳线:用于连接测试仪和被测光纤。

3. 被测光纤:用于测试的光纤。

4. 光纤连接器:用于连接被测光纤和跳线。

四、实验步骤1. 光纤长度测量- 将被测光纤连接到OTDR上。

- 启动OTDR,进行光纤长度测量。

- 记录测量结果。

2. 光纤衰减测量- 将被测光纤连接到插入损耗测试仪上。

- 选择测试波长,设置测试参数。

- 进行衰减测量,记录结果。

3. 光纤色散测量- 将被测光纤连接到色散分析仪上。

- 选择测试波长,设置测试参数。

- 进行色散测量,记录结果。

4. 光纤连接损耗测量- 将被测光纤连接到跳线上,再将跳线连接到插入损耗测试仪上。

- 进行连接损耗测量,记录结果。

五、实验数据与分析1. 光纤长度测量结果- 测量结果:X米- 分析:与理论值基本一致,说明被测光纤长度准确。

2. 光纤衰减测量结果- 测量结果:Y dB- 分析:与理论值基本一致,说明被测光纤衰减符合要求。

3. 光纤色散测量结果- 测量结果:Z ps/nm·km- 分析:与理论值基本一致,说明被测光纤色散符合要求。

4. 光纤连接损耗测量结果- 测量结果:A dB- 分析:与理论值基本一致,说明被测光纤连接器质量良好。

过程检测技术及仪表实验指导书(成教)

过程检测技术及仪表实验指导书(成教)

实验三扩散硅压力变送器实验1 实验原理及目的a) 掌握扩散硅压力变送器工作原理,了解扩散硅压力变送器的外型、结构、组成,加深对变送器信号转换原理的理解;b) 熟悉变送器的输入、输出特性;c) 熟悉变送器的实验配置、连接及实验仪器的使用等;d) 掌握变送器零点、量程的调整方法及检测方法;e) 掌握检测数据的处理。

2 实验内容a) 变送器零点、量程调整;b) 变送器基本性能检测:包括基本误差、回差、非线性误差;c) 变送器死区检测;d) 变送器输出交流分量检测。

3实验设备被测仪表:扩散硅压力变送器实验仪器:压力发生器、精密电阻箱、万用表4实验准备a) 阅读被测仪表说明书,结合实物,了解结构、组成,了解技术参数(包括供电电源、使用环境、量程范围、测量范围、输出信号、精度等级等),同时了解零点、量程的调整方法、使用方法和注意事项等;b) 阅读实验仪器说明书,了解其使用和注意事项;c) 按下图进行测试系统的连接d) 检查线路无误,且电阻箱置于250Ω后,方能打开电源进行测试,取输出电流在电阻箱(250Ω)上的压降作为输出测量值。

5 实验方法a) 零点、量程调整——输入量程0%信号,调变送器零点调节电位器,使输出满足精度要求;——输入量程100%信号,调变送器量程调节电位器,使输出满足精度要求;——输入信号回到量程的0%,观察输出满足精度要求吗?满足,检查输入50%时输出精度是否满足要求?满足,调试结束,否则,重复a、b,直到满足要求。

一般往返调试三遍,就能使变送器精度满足要求。

b) 基本性能测试在测试正式开始之前应使被测变送器和试验设备在所允许的规定条件下使其稳定,对所有可能影响试验的条件随时进行观察,并作相应记录。

测试点应包括上、下限值在内的至少五个点,如0%、25%、50%、75%、100%,这些测试点应均匀分布在整个测量范围内。

在测试正式开始之前,变送器应从0%到100%,然后再从100%到0%的全范围内移动三次,测试时输入信号必须按初始输入信号的同一方向逼近测试点,不允许有过冲现象发生,在每个测试点上输入信号应保持稳定,直至输出稳定并记录其对应的输出为止。

过程控制系统实验报告

过程控制系统实验报告

过程控制及检测装置硬件结构组成认识,控制方案的组成及控制系统连接过程控制是指自动控制系统中被控量为温度、压力、流量、液位等变量在工业生产过程中的自动化控制。

本系统设计本着培养工程化、参数化、现代化、开放性、综合性人材为出发点。

实验对象采用当今工业现场常用的对象,如水箱、锅炉等。

仪表采用具有人工智能算法及通讯接口的智能调节仪,上位机监控软件采用MCGS 工控组态软件。

对象系统还留有扩展连接口,扩展信号接口便于控制系统二次开辟,如PLC 控制、DCS 控制开辟等。

学生通过对该系统的了解和使用,进入企业后能很快地适应环境并进入角色。

同时该系统也为教师和研究生提供一个高水平的学习和研究开辟的平台。

本实验装置由过程控制实验对象、智能仪表控制台及上位机PC 三部份组成。

由上、下二个有机玻璃水箱和不锈钢储水箱串接, 4.5 千瓦电加热锅炉(由不锈钢锅炉内胆加温筒和封闭外循环不锈钢锅炉夹套构成),压力容器组成。

用,透明度高,有利于学生直接观察液位的变化和记录结果。

水箱结构新颖,内有三个槽,分别是缓冲槽、工作槽、出水槽,还设有溢流口。

二个水箱可以组成一阶、二阶单回路液位控制实验和双闭环液位定值控制等实验。

锅炉采用不锈钢精致而成,由两层组成:加热层(内胆)和冷却层(夹套)。

做温度定值实验时,可用冷却循环水匡助散热。

加热层和冷却层都有温度传感器检测其温度,可做温度串级控制、前馈-反馈控制、比值控制、解耦控制等实验。

采用不锈钢做成,一大一小两个连通的容器,可以组成一阶、二阶单回路压力控制实验和双闭环串级定值控制等实验。

整个系统管道采用不锈钢管连接而成,彻底避免了管道生锈的可能性。

为了提高实验装置的使用年限,储水箱换水可用箱底的出水阀进行。

检测上、下二个水箱的液位。

其型号:FB0803BAEIR,测量范围:0~1.6KPa,精度:0.5 。

输出信号:4~20mA DC。

LWGY-6A,公称压力:6.3MPa,精度:1.0%,输出信号:4~20mA DC本装置采用了两个铜电阻温度传感器,分别测量锅炉内胆、锅炉夹套的温度。

汽车参数实验报告总结(3篇)

汽车参数实验报告总结(3篇)

第1篇一、实验目的本次实验旨在通过实际操作,深入了解汽车各个参数的测量方法、原理及数据处理方法,掌握汽车性能测试的基本技能,为今后从事汽车行业相关工作打下基础。

二、实验内容1. 发动机冷却水和润滑油温度测量(1)测量原理:利用温度传感器测量发动机冷却水和润滑油温度。

(2)实验步骤:①连接温度传感器,确保连接牢固。

②启动发动机,使冷却水和润滑油达到规定温度。

③读取温度传感器显示的温度值,记录实验数据。

2. 排气污染物检测(1)测量原理:利用尾气分析仪检测排气中的CO、HC、CO2、O2和NO等污染物。

(2)实验步骤:①连接尾气分析仪,确保连接牢固。

②启动发动机,使车辆达到规定车速。

③读取尾气分析仪显示的污染物浓度值,记录实验数据。

3. 汽车结构参数测量(1)测量原理:利用尺子、卷尺等工具测量汽车总宽、总长、侧向尺寸等结构参数。

(2)实验步骤:①将汽车停在平坦、干燥的路面上。

②使用尺子、卷尺等工具,依次测量汽车的总宽、总长、侧向尺寸等参数。

③记录实验数据。

4. 汽车传感器实验(1)测量原理:利用传感器测量汽车相关参数,如空气流量、进气歧管绝对压力、氧传感器等。

(2)实验步骤:①连接传感器,确保连接牢固。

②启动发动机,使传感器达到规定工作状态。

③读取传感器显示的参数值,记录实验数据。

5. 汽车制动性实验(1)测量原理:利用惯性测量系统、制动压力传感器等设备测量制动协调时间、充分发出的制动减速度和制动距离。

(2)实验步骤:①连接惯性测量系统、制动压力传感器等设备,确保连接牢固。

②启动发动机,使车辆达到规定车速。

③进行制动实验,记录制动协调时间、充分发出的制动减速度和制动距离。

6. 汽车毫米波雷达实验(1)测量原理:利用毫米波雷达测量车辆与周围环境的距离、速度等参数。

(2)实验步骤:①连接毫米波雷达,确保连接牢固。

②进行实验,记录雷达测量数据。

三、实验结果与分析1. 发动机冷却水和润滑油温度测量结果分析:通过实验,了解发动机冷却水和润滑油温度对发动机性能的影响,为发动机冷却系统优化提供依据。

检测技术实验报告

检测技术实验报告

实验一金属箔式应变片——单臂电桥性能实验一、实验目的了解金属箔式应变片的应变效应及单臂电桥工作原理和性能。

二、基本原理电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应。

描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R 为电阻丝电阻相对变化,K 为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化。

金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它反映被测部位受力状态的变化。

电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

单臂电桥输出电压Uo1= EKε/4。

三、实验器材主机箱(±4V、±15V、电压表)、应变传感器实验模板、托盘、砝码、万用表、导线等。

图2-1 应变式传感器安装示意图如图2-1,将托盘安装到应变传感器的托盘支点上,应变式传感器(电子秤传感器)已安装在应变传感器实验模板上。

传感器左下角应变片为R1,右下角为R2,右上角为R3,左上角为R4。

当传感器托盘支点受压时,R1、R3 阻值增加,R2、R4 阻值减小。

如图2-2,应变传感器实验模板中的R1、R2、R3、R4为应变片。

没有文字标记的5 个电阻是空的,其中4 个组成电桥模型是为实验者组成电桥方便而设的。

传感器中4片应变片和加热电阻已连接在实验模板左上方的R1、R2、R3、R4 和加热器上。

可用万用表进行测量判别,常态时应变片阻值为350Ω,加热丝电阻值为50Ω左右。

四、实验步骤1、根据图2-3 工作原理图、图2-2 接线示意图安装接线。

图2-2 应变传感器实验模板、接线示意图2、放大器输出调零:将实验模板上放大器的两输入端口引线暂时脱开,再用导线将两输入端短接(Vi=0);调节放大器的增益电位器RW3 大约到中间位置(先逆时针旋到底,再顺时针旋转2 圈);将主机箱电压表的量程切换开关打到2V 档,合上主机箱电源开关;调节实验模板放大器的调零电位器RW4,使电压表显示为零。

碰撞参数测量实验报告

碰撞参数测量实验报告

一、实验目的1. 理解和掌握碰撞实验的基本原理和方法。

2. 学习使用实验设备测量碰撞过程中的速度、位移和能量等参数。

3. 验证动量守恒和能量守恒定律在碰撞过程中的应用。

二、实验原理碰撞是指两个或多个物体在短时间内相互作用,使它们的速度、位移和能量发生改变的现象。

在碰撞过程中,动量守恒和能量守恒是两个重要的物理定律。

动量守恒定律表明,在碰撞过程中,系统的总动量保持不变;能量守恒定律表明,在碰撞过程中,系统的总能量保持不变。

三、实验仪器与材料1. 碰撞实验装置:包括两个滑块、碰撞器、轨道、计时器、天平等。

2. 实验材料:滑块、铁球、木块等。

四、实验步骤1. 将滑块放置在轨道上,调整轨道的倾斜角度,使滑块能够从一定高度下滑。

2. 将碰撞器固定在轨道上,确保滑块与碰撞器碰撞。

3. 记录滑块从静止开始下滑到碰撞前的速度和位移。

4. 将碰撞器与滑块进行碰撞,记录碰撞后的速度和位移。

5. 重复上述步骤,进行多次实验,以减小误差。

五、实验数据记录与处理1. 记录滑块碰撞前的速度v1和位移s1,碰撞后的速度v2和位移s2。

2. 根据实验数据,计算碰撞过程中的动量和能量变化。

六、实验结果与分析1. 计算滑块碰撞前的动量p1和能量E1,以及碰撞后的动量p2和能量E2。

p1 = m1 v1E1 = 1/2 m1 v1^2p2 = m1 v2E2 = 1/2 m1 v2^2其中,m1为滑块的质量。

2. 分析动量守恒和能量守恒定律在碰撞过程中的应用。

根据动量守恒定律,有:p1 = p2根据能量守恒定律,有:E1 = E23. 计算碰撞过程中的恢复系数e。

e = (v2 - v1) / (v1 - 0)4. 分析不同碰撞类型(完全弹性碰撞、完全非弹性碰撞)的恢复系数e。

完全弹性碰撞:e = 1完全非弹性碰撞:e = 0七、实验结论1. 通过实验验证了动量守恒和能量守恒定律在碰撞过程中的应用。

2. 碰撞实验可以用于研究不同碰撞类型下的恢复系数e,从而了解碰撞过程中的能量损失。

精密检测实验报告

精密检测实验报告

精密检测实验报告实验报告:精密检测摘要:本实验通过精密检测的方法,对待测物品进行了全面的检测和分析。

首先,我们使用了精密仪器和技术,对待测物品进行了各项指标的测量。

然后,根据测量结果进行数据分析和处理,得出了相应的结论。

实验结果表明,我们的精密检测方法具有高度准确性和可重复性,能够为待测物品的品质和性能提供有效的评价和反馈。

引言:精密检测是一种基于科学原理和先进技术的检测方法。

它能够对待测物品的各项指标进行全面和准确的测量,从而为产品的质量控制和改进提供依据。

本实验旨在通过精密检测的方法,对待测物品进行全面的检测和分析。

实验材料与方法:1. 实验仪器:精密测量仪器、电子天平、显微镜等;2. 待测物品:根据实验需要选择待测物品;3. 实验步骤:按照实验要求,使用相应的仪器进行各项指标的测量。

实验结果与讨论:在实验过程中,我们通过精密仪器和技术对待测物品进行了各项指标的测量。

例如,我们使用电子天平对待测药品的质量进行了准确的测量,使用显微镜对待测材料的表面形貌和微观结构进行了观察和分析。

通过对测量数据的处理和分析,我们得出了以下结论:1. 待测物品的质量符合设计要求:根据测量结果,我们确定待测物品的质量符合设计要求,没有超出规定的误差范围。

这说明待测物品在生产过程中的质量控制得到了有效的保障,能够满足用户的需求和期望。

2. 待测物品的表面形貌和微观结构良好:通过显微镜的观察和分析,我们发现待测材料的表面形貌和微观结构都十分良好,没有明显的缺陷或瑕疵。

这表明待测物品的生产工艺和材料选择都经过了严格的控制和筛选,能够保证产品的质量和性能。

3. 待测物品的其他指标:根据具体实验的要求,我们还对待测物品的其他指标进行了测量和分析。

例如,我们对待测电路板的电阻、电容等参数进行了测量,发现其数值与设计要求基本一致,说明电路板的性能良好。

结论:通过本实验,我们采用了精密检测的方法,对待测物品进行了全面的检测和分析。

智能检测技术实验报告(3篇)

智能检测技术实验报告(3篇)

第1篇一、实验背景随着科技的飞速发展,智能检测技术在各个领域得到了广泛应用。

为了提高检测效率和准确性,降低人工成本,本实验旨在验证智能检测技术在特定场景下的应用效果。

二、实验目的1. 探究智能检测技术在实际应用中的可行性;2. 评估智能检测技术的检测精度和效率;3. 分析智能检测技术的优缺点,为后续研究和应用提供参考。

三、实验材料1. 智能检测设备:包括摄像头、传感器、无人机等;2. 被检测对象:如建筑、桥梁、电力设备等;3. 实验平台:包括计算机、操作系统、软件等;4. 实验数据:包括检测数据、处理结果等。

四、实验方法1. 数据采集:利用智能检测设备采集被检测对象的图像、视频或传感器数据;2. 数据预处理:对采集到的数据进行滤波、去噪、特征提取等处理;3. 检测算法设计:根据实验需求,设计合适的检测算法,如基于深度学习的图像识别、基于机器学习的异常检测等;4. 检测结果分析:对检测结果进行评估,包括检测精度、效率、可靠性等方面;5. 实验结果对比:将智能检测技术与传统检测方法进行对比,分析其优缺点。

五、实验步骤1. 选择实验场景:确定实验中被检测对象的类型和检测需求;2. 准备实验材料:搭建实验平台,安装所需软件,准备检测设备;3. 数据采集:利用智能检测设备采集被检测对象的图像、视频或传感器数据;4. 数据预处理:对采集到的数据进行滤波、去噪、特征提取等处理;5. 检测算法设计:根据实验需求,设计合适的检测算法;6. 检测实验:利用设计的检测算法对预处理后的数据进行检测;7. 结果分析:对检测结果进行评估,包括检测精度、效率、可靠性等方面;8. 实验结果对比:将智能检测技术与传统检测方法进行对比,分析其优缺点;9. 实验总结:对实验过程、结果和结论进行总结。

六、实验结果与分析1. 检测精度:实验结果显示,智能检测技术在特定场景下的检测精度较高,能够满足实际需求;2. 检测效率:与传统检测方法相比,智能检测技术的检测效率明显提高,节省了大量人力成本;3. 检测可靠性:智能检测技术具有较高的可靠性,能够有效降低误检和漏检率;4. 实验结果对比:与传统检测方法相比,智能检测技术在检测精度、效率和可靠性方面具有明显优势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

过程参数检测技术实验报告班级:学号:姓名:实验一压力表和压力变送器的校验、使用及特性分析1实验目的1.1了解压力表和霍尔式压力变送器的测量原理及使用方法。

1.2掌握用活塞式压力计校验测压仪表的方法。

1.3通过对压力表和压力变送器的校验进一步了解仪表变差、绝对误差、相对误差及精度等基本概念。

2实验内容2.1学习活塞式压力计的操作方法。

2.2对弹簧管压力表进行精度校验。

2.3对霍尔式压力变送器进行精度校验和量程调整。

3实验所用仪器设备•活塞式压力计1台•标准压力表1块•弹簧管压力表1块• HYD-2型霍尔式压力变送器1块•数字万用表1台4校验步骤和方法校验仪器连接图如图用活塞式压力计作为压力表的压力输入源,关闭活塞式压力计上的切断阀a、b、c、d。

将标准压力表、被校压力表或压力变送器分别安装在相应的压力输出端口。

4.1弹簧管压力表的校验4.1.1检查活塞式压力计是否正常•打开进油阀,转动手轮将螺旋杆旋出再旋进往复几次,将管内的空气挤出(在顺时针转动手轮将螺旋杆旋进时,观察油罐内没有气泡出现为止)。

•逆时针转动手轮,将油罐中的油抽到发生器中来(螺旋杆旋出10cm左右即可)。

然后关闭进油阀d,打开切断阀b、c。

•顺时针转动手轮产生压力,观察标准表指针上升到被校表最大压力时,停止加压,保持五分钟,检查发生器是否有泄漏。

若标准表指针保持不动,说明没有泄露。

若标准表指针下移,说明有泄漏,查处漏处,减压后进行处理。

然后再重新检查指导不泄漏为止。

然后逆时针旋转手轮是标准表指针指零。

4.1.2精度校验在被校表量程范围内均匀取5点,填入表“被校表示值”一栏。

分别进行正行程校验和反行程校验4.1.3将校验数据列表,计算仪器的绝对误差、变差及精度。

4.2霍尔式压力变送器的调校将霍尔式压力变送器装在校验连接图中被校表的位置上,接好电源线,输出信号用数字万用表监测。

4.2.1检查活塞式压力计是否正常4.2.2霍尔式压力变送器零点、量程调整•转动手轮,是标准压力表指针指零,测量变送器此时的输出应为0mV,若不是,进行零点调整,使之为0mV。

•转动手轮,是标准压力表指针指到被校表最大值,测量变送器此时的输出应为20mV,若不是,进行量程调整,使之为20mV。

4.2.3精度校验在被校变送器量程范围内均匀取6点,填入表内“标准表示值”一栏。

•正行程校验:顺时针转动手轮,是标准表指针由零逐渐上升到被校变送器的量程最大值,分别测取并记录变送器在各校验点的实际输出值。

•反行程校验:逆时针转动手轮,是标准压力表指针由量程最大值逐渐下降到各被校刻度值,分别测取并记录变送器在各校验点的实际输出值。

4.2.4将校验数据列表,计算仪器绝对误差、变差及精度。

5注意事项•转动手轮加压或降压时不能太快,防止空气进入产生误差•校验过程应保证被校表指针单方向无跳动地移动6实验总结被校弹簧管压力表存在系统误差,精度为1.5级量程0~1.6MPa。

被校表在测量0.4~0.8MPa范围内的压力值误差小,建议测量压力大约0.4~0.8MPa时使用。

霍尔压力变送器比较精准精度为0.5级,正行程的误差较小,反行程误差较大。

建议使用时正行程测量压力。

活塞式压力计使用时标准表和被校表的切断阀不能打开过多以免转手轮加压时压力过大阀门喷出油。

转动手轮加压和降压时不能旋转太快,正行程加压超过被校值时,应先降压再增压到被校验值;反行程降压超过被校验值时,应先加压再降压到被校验值。

实验二测温数字显示仪表的校验1.实验目的1.1了解XMT智能型数字显示仪表的基本功能及使用方法。

1.2掌握XMT智能型数字显示仪表的功能检查方法。

1.3掌握XMT智能型数字测温显示仪表的精度校验防范。

2.实验内容2.1观察XMT智能型数字显示仪表的内部结构及组成。

2.2分别对XMT-121型(热电偶输入)和XMT-121型(热电阻输入)数字显示仪表进行功能检查和精度校验。

3.实验所用主要仪器设备•数字万用表1台•毫伏信号发生器1台•精密电阻箱1台• XMT-121型和XMT-121型数字显示仪表各1台4.校验步骤和方法4.1XMT-121型智能数字显示仪表的功能检查和精度校验将XMT-121型仪表按后面板接线图接好线4.1.1功能检查(1)检查仪表是否正常工作•该仪表具有热电偶冷端温度补偿功能。

将仪表接通电源后,输入为0mV时,仪表应显示室温,且用手摸接在表外端子上的温度补偿电阻R t一段时间,显示值应有所增加。

•该仪表内有两个继电器。

可置上限、下限两个控制点。

调节毫伏发生器改变输入信号使显示值由室温上升至满度过程,可听到表内继电器吸合/断开动作声响。

(2)参数设定设定量程为0~850℃(3)检查控制情况4.1.2精度校验•用水银温度计测室温t0,由分度表查得E(t0,0℃),•在仪表量程范围内均匀取5点,分别查分度表得E(t0,0℃),并计算出E (t,t0)= E(t,0℃)- E(t0,0℃)列表:t0= 21 ℃E(t,0℃)= 0.838 mVN=850℃:;r=△t max/N*100%=1.06%,所以精度为1.5级•用毫伏发生器给仪表分别输入校验温度点对应的毫伏数E(t,t0)(数字万用表监测),记录仪表显示的温度值。

4.2XMT-122智能型数字显示仪表的功能检查和精度校验将XMT-122型仪表按后面板图接好线,接线方式为三线制4.2.1功能检查(1)检查仪表是否正常工作•该仪表为热电阻P t100输入,调节标准电阻箱,由100Ω逐渐增加时,显示温度应随之增加(注:电阻输入不能超过满度所对应的阻值)。

•该仪表内有两个继电器,可置上限、下限两个控制点,调节标准电阻箱改变输入信号使显示值由0℃上升满度过程,可听到表内继电器吸合/断开的动作声响。

(2)参数设定设定量程为0~300℃(3)检查控制情况调节标准电阻箱给仪表输入被测参数P测,检查继电器动作情况及接点输出开/关状态•在仪表量程范围内均匀取6点,分别查分度表的R t列表/N*100%=1.27%;所以精度为1.5级量程N=300℃;r=△tmax5、实验总结热电偶温度表可能存在线性递增的系统误差,热电偶的测量范围较广可以测量高温,因为冷端温度不是0℃,需要引入冷端补偿才能正常使用。

本次实验室温21℃,使用温度补偿后校验得精度为1.5级。

热电偶使用建议测量高温这样的相对误差较小。

热电阻温度表同样可能存在线性递增系统误差,热电阻阻值在低温范围变化大,所以热电阻温度表适合测量一些不是很高的温度。

本次实验使用热电阻表精度为1.5级。

使用时注意三线制接法,否则影响测量精度。

使用热电偶时注意其上温度补偿电阻,不要触摸影响校验。

实验三一体化温度变送器模块的校验及使用1.实验目的1.1了解一体化温度变送器(以下简称温变)模块的功能及使用方法。

1.2掌握一体化温度模块的校验方法。

2.实验内容2.1分别对SWBR(配热电偶)和SWBZ(配热电阻)两种一体化温变模块进行精度校验。

2.2 改变负载电阻R L(应用时后序仪表的内阻),观察对测量的影响。

3.实验所用主要仪器设备•数字万用表1台•毫伏信号发生器1台•标准电阻箱1台•毫安表1台• SWEBR-K型和SWEBZ-P t100型一体化温变模块各一块。

4.校验步骤和方法校验接线如下图4.1SWEBR-K型一体化温变模块的校验用毫伏发生器代替热电偶给温变模块输入,输出4 – 20mA用毫安表测量。

负载电阻R L用电阻箱代替。

该温变R Lmax为500Ω,校验时R L置250Ω。

4.1.1精度校验•用水银温度计测室温t0,由分度表查得E(t0,0℃),•在仪表量程范围内均匀取6点,分别查分度表得E(t0,0℃),并计算出E(t,t0)= E(t,0℃)- E(t0,0℃)列表:t0= 21 ℃E(t,0℃)= 0.838 mV仪表精度0.5级•调节毫伏发生器给校温模块分别输入校验温度点对应的毫伏数E(t,t0)(用数字万用表监测)。

由毫伏表读取温变输出电流I,并记录。

4.1.2改变负载电阻R L,观察对测量的影响•给被校温变输入至满量程信号(由毫安表观测温变输出电流I为20mA)•改变R L(调节代替R L的电阻箱)由0Ω逐步增加,观察温变输出的变化,并记录。

4.2SWBZ-P t100型一体化温变模块的校验用标准变阻箱代替热电偶给温变输入,除此之外,校验所用的仪器及接线同4.1项。

4.2.1精度校验•在仪表量程范围内均匀取6点,分别查分度表的R t列表:仪表精度0.2级•调节标准电阻箱给被校温变分别输入校验温度点对应的电阻R t,由毫安表读取温变输出电流I,并记录。

4.2.2改变R t,观察对测量的影响(同4.1.2项)5、实验总结配热电偶一体化温变模块的精度校验为0.5级;配热电阻一花温变模块的精度校验为0.2级。

热电偶一体化温变模块的测量范围大,适合测量高温;热电阻一体化温变模块较低温度时的精度高,适合测量较低温度。

R L>R LMAX时变送器无法正常工作,因为IR LMAX=E,R L过大时变送器两端电压小于正常工作电压。

所以RL大到一定程度时测量数据不可靠。

因为量程上限是电流最大为20mA时候,最大负载电阻在此时求得,RL的变化使得电流变化最先在此时产生。

相关文档
最新文档